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1. Introduction

Neutron stars (NSs) may suffer instabilities. Although these instabilities come from

different origins, they have the general common feature that they can be directly

associated with unstable modes of oscillation [1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13,

14, 15, 16, 17, 18, 19]. In the present work the r-mode instability is investigated with

reference to the nuclear equation of state (EOS). The discovery of the r-mode oscillation

in neutron stars by Andersson [1] and confirmed by Friedman and Morsink [5] opened

the window for study of the gravitational waves emitted by NSs by using advanced

detecting systems. Also it provides a possible explanation for the spin-down mechanism

in the hot young NSs as well as for the spin up in cold old accreting NSs.

The r-mode oscillation results from a perturbation in velocity field of the star. In a

non-rotating star, the r-modes are neutral rotational motions. In a rotating star Coriolis

effects provide a weak restoring force that gives them a genuine dynamics. The r-mode

frequency always has different signs in the inertial and rotating frames. That is, although

the modes appear to be retrograde in the rotating system, an observer in the inertial

frame shall view them as prograde. To the leading order, the pattern speed of the mode

is σ = (l−1)(l+2)
l(l+1)

Ω [20, 21]. Since 0 < σ < Ω for all modes l ≥ 2, where Ω is the angular

velocity of the star in the inertial frame, the r-modes are destabilized by the standard

Chandrasekhar-Friedman-Schutz (CFS) mechanism [22, 23] and are unstable because

of emission of gravitational waves. The gravitational radiation emitted by the r-modes

comes from their time-dependent mass currents. This is the gravitational analogue of

magnetic monopole radiation. The quadrupole l = 2 r-mode is more strongly unstable to

gravitational radiation than any other mode in neutron stars. Further, these modes exist

with velocity perturbation if and only if l = m [21, 24]. This emission in gravitational

waves causes a growth in the mode energy Erot in the rotating frame, despite a decrease

in the inertial-frame energy Einertial. This puzzling effect can be understood from the

relation between the two energies, Erot = Einertial − ΩJ, where the angular momentum

of the star is J . From this fact it is clear that Erot may increase even in the case that

both Einertial and J decrease.

The instability of the r-mode is relevant if it grows faster than it is damped out

by the viscosity [25]. So the time-scale for gravitational driven instability needs to

be sufficiently short as compared to the viscous damping time-scale. The amplitude

of r-modes evolves with a time dependence eiωt−t/τ as a consequence of ordinary

hydrodynamics and the influence of the various dissipative processes. The real part

of the frequency ω of these modes at the lowest order of its expansion in terms of the

angular velocity Ω is given by ω = − (l−1)(l+2)
l+1

Ω [7, 20]. The imaginary part 1/τ is

determined by the effects of gravitational radiation, viscosity, etc. [9, 7, 26]. The time-

scales associated with the different processes involve the actual physical properties of

the neutron star. In computing these time-scales the role of nuclear physics comes into

picture, where one gets a platform to attempt to constrain the uncertainties existing in

the nuclear EOS.
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In some studies in this context [27, 28, 29], one of the basic emphases was to

examine the influence of the slope of nuclear symmetry energy, i.e. the L-value, on

the r-mode instability boundary where the predictions are examined with the data of

the NS pulsars in Low-mass X-ray binaries (LMXBs) and millisecond radio pulsars

(MSRPs). In the present work we make a related study but using the finite-range

simple effective interaction [30, 31]. We examine the L-dependence of the instability

boundary in the context of observational NS data. In order to study the influence of the

nuclear matter stiffness, the calculation has also been done for two values of the nuclear

incompressibility.

In Section 2, the condition for the r-mode instability is outlined along with the

various dissipative mechanisms and the respective time-scales. The expression for the

spin-down rate is given under the consideration of constant temperature. In the same

Section we give details about the finite range simple effective interaction (SEI) and its

parameter determination. The neutron star equation of state is obtained using SEI and

assuming n + p + e + µ matter in normal phase. The crust-core phase transition is

discussed using the thermodynamic method. In Section 3, we present our results for the

r-mode instability boundary and compare with earlier findings. The upper limit of the

r-mode amplitude is calculated using the thermal equilibrium condition in NS pulsars

and their spin-down rate is computed and compared with the observations where data

are available as well as with the predictions of earlier works. In the last Section 4 we

give a brief summary and conclusion.

2. Dissipative time scales and stability of the r-modes

In this work we want to study the impact due to the gravitational radiation and the

dissipative influence of viscosities on the evolution of the r-modes. For this purpose we

shall consider the effects of the radiation on the evolution of the energy mode, which is

expressed as the integral of the fluid perturbation [7, 8]

Ẽ =
1

2

∫ [
ρδ~v.δ~v∗ +

(
δp

ρ
− δΦ

)
δρ∗
]
d3r, (1)

with ρ being the mass density of the star, δ~v, δp, δΦ and δρ are perturbations in the

velocity, pressure, gravitational potential and density due to oscillation of the mode.

The time scales for different processes associated with the r-mode oscillation are given

by [7],

1

τi
= − 1

2Ẽ

(
dẼ

dt

)

i

, (2)

where, the index i refers to the various dissipative mechanisms, i.e., gravitational wave

emission and viscosity (bulk, shear and viscous dissipation at the boundary layer between

the crust and the core).

The expressions of the terms involved in the current and mass multipoles are

deduced in Ref [32, 33]. In the small angular velocity limit, the energy of the mode
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in equation (1) can be reduced to a one-dimensional integral [7, 28]

Ẽ =
1

2
α2R−2l+2Ω2

∫ R

0

ρ(r)r2l+2dr, (3)

where, R is the radius of the NS, α is the dimensionless amplitude mode parameter,

Ω is the angular velocity of the NS and ρ(r) is the radial dependence of the NS mass

density.

The rate of increase or decrease in the mode energy (dẼ
dt
) under gravitational

and viscous dissipation processes have been computed [32]. The time-scale 1/τ of

the imaginary part of the r-mode oscillation can now be expressed as the sum of the

contributions of all the different dissipative processes and is given by

1

τ(Ω, T )
=

1

τGR(Ω)
+

1

τBV (Ω, T )
+

1

τSV (T )
+

1

τV E(Ω, T )
, (4)

where, 1/τGR, 1/τBV ,1/τSV and 1/τV E are the contributions from gravitational radiation,

bulk and shear viscous time-scales in the fluid core and viscous dissipation in the crust-

core boundary layer, respectively. Any other possible contribution to the dissipation

mechanism of the energy of the r-mode can be considered in equation (4), but in the

present work we have restricted to the four mechanisms mentioned above. The crucial

importance of the viscous dissipation in the crust-core boundary layer was shown first

by Bildsten and Urshomirsky [10]. In a model where the solid crust is not taken into

consideration, the dissipation contributions come only from the bulk and shear viscosity

of the fluid star and it is referred to as ”minimal model”.

The analytical expression for the gravitational radiation time scale is given as

[33, 26, 7],

1

τGR
=

−32πGΩ2l+2

c2l+3

(l − 1)2l

[(2l + 1)!!]2

(
l + 2

l + 1

)(2l+2) ∫ Rx

0

ρ(r)r2l+2dr
(
s−1
)
,(5)

where, G and c are the gravitational constant and the velocity of light. The analytical

expression for the bulk viscous time-scale is obtained in an approximate way, which is

valid for stars rotating with slow frequency [26, 7, 28],

1

τBV
=

4πR2l−2

690

(
Ω

Ω0

)4(∫ Rx

0

ρ(r)r2l+2dr

)−1

×
∫ Rx

0

ξBV

( r

R

)6 [
1 + 0.86

( r

R

)2]
r2dr

(
s−1
)
, (6)

where, ξ is the bulk viscosity. The shear viscous dissipation time-scale 1/τSV is obtained

in Ref. [7] and reads

1

τSV
= (l − 1)(2l + 1)

(∫ Rx

0

ρ(r)r2l+2dr

)−1 ∫ Rx

0

η r2ldr
(
s−1
)
, (7)

where, η is the shear viscosity. The upper limit Rx of the integrals (5)–(7) is R, the

radius of the fluid star, if the effect of the crust is not considered and Rc, the core radius,
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if the crust is explicitly taken into account. The time scale 1/τV E for viscous dissipation

at the boundary layer between the crust and the core is given by [9, 10, 29].

1

τV E

=

[
1

2Ω

2l+3/2(l + 1)!

l(2l + 1)!!Il

√
2ΩR2

cρc
η

∫ Rc

0

ρ(r)

ρc

(
r

Rc

)2l+2
dr

Rc

]−1
(
s−1
)
,(8)

where ρc is the density at the outer edge of the core. Il in equation (8) has the value

I2 = 0.80411 for l = 2 [9].

The viscous time scale in equation (8) is obtained by considering the dissipation

in the viscous boundary layer between the solid crust and the liquid core under the

assumption that the crust is rigid and hence static in the rotating frame [9]. The

motion of the crust due to mechanical coupling to the core effectively increases τV E by

(∆v
v
)−2, where ∆v

v
is the difference in the velocities in the inner edge of the crust and

outer edge of the core divided by the velocity of the core [34]. In the cases of shear

viscosity in the bulk and viscous dissipation at the core-crust boundary, the effects of

the viscosity come from the electron-electron (ee) and neutron-neutron (nn) scattering.

The ee-scattering effect dominates in the temperature range T ≤ 107 K, whereas in the

range T < 109 K the nn-scattering is dominant. The respective viscosities ηee(nn) are

given by [9]

ηee = 6× 106
(

ρ

g cm−3

)2(
T

K

)−2 (
g cm−1 s−1

)
, (9)

ηnn = 347

(
ρ

g cm−3

)9/4(
T

K

)−2 (
g cm−1 s−1

)
. (10)

The bulk viscosity in equation (6) should be computed for the modified URCA process,

but here we have used the approximate expression used in Refs.[35, 25, 65], given by

ξBV = 6×10−59

(
l + 1

2

)2(
Hz

Ω

)2(
ρ

g cm−3

)2(
T

K

)2 (
g cm−1 s−1

)
.(11)

In the present study, we will examine the influence of the symmetry energy slope

parameter L and of the incompressibility K on the instability window and on the

saturation value of the r-mode amplitude of a pulsar neutron star using the finite-

range simple effective interaction (SEI) [30, 31]. We will compare our results with the

predictions of earlier related works [28, 29, 27, 14]. The gravitational radiation tends

to drive the r-mode to the instability, while the viscosity suppresses it. The dissipation

effects due to viscosity cause the r-mode to decay exponentially as e−t/τ as long as

τ > 0 [7]. In order to make out the role of Ω and T in various time-scales, it is useful

to factor them out by defining respective fiducial time-scales. The time-scale τ given in

the equation (4) can now be expressed as,

1

τ(Ω, T )
=

1

τ̃GR

(
Ω

Ω0

)2l+2

+
1

τ̃SV

(
109K

T

)2

+
1

τ̃BV

(
Ω

Ω0

)2(
T

109K

)6

+
1

τ̃V E

(
108K

T

)(
Ω

Ω0

)1/2

, (12)
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where, Ω0 =
√
πGρ̄, with ρ̄ = 3M/4πR3 being the mean density of a NS with mass M

and radius R, and τ̃GR, τ̃SV , τ̃BV and τ̃V E are the respective fiducial time-scales that can

be defined from equations (5)-(8). At small Ω, the gravitational radiation is small (due

to the Ω2l+2 dependence) while the viscosity dominates and keeps the mode stable. But

for large angular velocity Ω, the gravitational radiation dominates and drives the mode

to the instability. For a given mode l, the critical angular velocity Ωc is obtained from

the condition,

1

τ(Ωc, T )
= 0, (13)

where, 1/τ is given in equation (12). At a given T and mode l, the equation for Ωc is a

polynomial of order l+1 in Ω2
c and thus each mode has its own characteristic Ωc value.

Since the smallest mode l = 2 is the most important one, the study is made for this

l = 2 mode, where the critical frequency is obtained from the solution of equation (13).

As the angular frequency of the NS exceeds the critical value Ωc, the mode

becomes unstable and the star emits gravitational radiation that takes away the angular

momentum and energy, and the star spins down to the region of stability. Following the

work of Owen et al. [26], the evolution of the angular velocity as the angular momentum

is radiated to infinity by the gravitational radiation is given by

dΩ

dt
=

2Ω

τGR

α2Q

1− α2Q
, (14)

where, α is the dimensionless r-mode amplitude and Q = 3J̃

2Ĩ
with

J̃ =
1

MR4

∫ R

0

ρ(r)r6dr (15)

and

Ĩ =
8π

3MR2

∫ R

0

ρ(r)r4dr. (16)

The r-mode amplitude α is treated as a free parameter whose value varies within

a wide range 1 − 10−8. Under the consideration of a thermal steady state, where the

heat generated by the viscous effect is the same as that taken out by neutrino emission

[36, 29], the spin-down rate can be derived from equation (14) to be,

dΩ

dt
= C

(
Ω−6

in − 6tC
)−7/6

, (17)

where C is given by the expression C = 2α2Q
τ̃GR(1−α2Q)

1
Ω6

0
and Ωin is a free parameter whose

value corresponds to be the initial angular velocity. The NS spin shall decrease until it

approaches its critical angular velocity Ωc. The time tc taken by the NS to evolve from

its initial value Ωin to its minimum value Ωc is given by

tc =
1

6C

(
Ω−6

in − Ω−6
c

)
. (18)
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2.1. Neutron star EOS using SEI

The finite range simple effective interaction (SEI) constructed in 1998 [30] has been

widely used in studies of nuclear matter [37, 38, 39, 40] at zero and finite temperature.

This interaction, with a Gaussian form factor for the finite range part, has also been

used to study the ground-state properties of spherical and deformed nuclei [41, 42, 43]

as well as in the dynamical calculation of fission phenomena [42]. Here, in the present

study of the r-mode oscillation in NSs, we use again the SEI with a Gaussian form

factor. The SEI used in this calculation is given by [43]

veff(r) = t0(1 + x0Pσ)δ(r)

+
t3
6
(1 + x3Pσ)

(
ρ(R)

1 + bρ(R)

)γ

δ(r)

+ (W +BPσ −HPτ −MPσPτ ) f(r), (19)

where, r = ~r1 − ~r2 and R = (~r1 + ~r2)/2 are the relative and center of mass coordinates

of the two nucleons and f(r) is the functional form factor of the finite range interaction,

which can take any conventional Yukawa, Gaussian or exponential form and depends

on a single parameter αG, which is the range of the interaction. The zero range density

dependent part (t3 term) is modified with the denominator (1+bρ) in order to ensure that

the EOS of nuclear matter does not become supraluminous at any density. Therefore the

parameter b is determined by the condition bρ0 ≥
[(

mc2

Tf0
/5−e(ρ0)

)1/(γ+1)

− 1

]−1

, where

mc2 and Tf0 =
~2k2

f0

2m
with kf0 =

(
3π2ρ0

2

)(1/3)
are the nucleon mass and the Fermi

kinetic energy, respectively, with ρ0 being the saturation density and γ is the exponent

of the density dependent term of the interaction [44]. The SEI contains altogether

eleven parameters, namely, t0, x0, t3, x3, b, γ, αG, W , B, H and M . The energy per

particle in asymmetric nuclear matter (ANM) for the SEI with a Gaussian form factor,

f(r) = e−r2/α2
G is given by [43]

e(ρn, ρp) =
3ℏ2

10mρ

(
k2
nρn + k2

pρp
)
+

εl0
2ρ0ρ

(
ρ2n + ρ2p

)
+

εul0
ρ0ρ

ρnρp

+
1

ρ

[
εlγ

2ργ+1
0

(
ρ2n + ρ2p

)
+

εulγ

ργ+1
0

ρnρp

](
ρ(R)

1 + bρ(R)

)γ

+
εlex
2ρ0ρ

ρ2n

[
3Λ6

16k6
n

− 9Λ4

8k4
n

+

(
3Λ4

8k4
n

− 3Λ6

16k6
n

)
e−4k2n/Λ

2

]

+
εlex
2ρ0ρ

ρ2p

[
3Λ6

16k6
p

− 9Λ4

8k4
p

+

(
3Λ4

8k4
p

− 3Λ6

16k6
p

)
e−4k2p/Λ

2

]

+
εlex
2ρ0ρ

[
3Λ3

2k3
n

ρ2n

∫ 2kn/Λ

0

e−t2dt+
3Λ3

2k3
p

ρ2p

∫ 2kp/Λ

0

e−t2dt

]

+
εulexρn
ρ0ρ

1

Λ2

∫ kp

0

dkk2
[ 3Λ4

8kk3
n

{
e−(

k+kn
Λ )

2

− e−(
k−kn

Λ )
2}
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+
3Λ3

4k3
nρ

∫ ( k+kn
Λ )

( k−kn
Λ )

e−t2dt
]
, (20)

where, Λ = 2
αG

, and ρn and ρp are the neutron and proton densities, and kn and

kp represent the neutron and proton Fermi momentum, respectively, ki = (3π2ρi)
1/3

i = n, p. The superscripts ’l’ and ’ul’ denote the strength of the interaction between like

and unlike pairs of nucleons. The nine parameters required for the complete study of

ANM are γ, b, αG, ε
l
0, ε

ul
0 , ε

l
γ, ε

ul
γ , ε

l
ex and εulex. The later six new parameters appearing

here are connected to the interaction parameters W,B,H,M, t3, t0, x0 and x3 by the

relations given in Ref.[43]. In symmetric nuclear matter (SNM), ρn = ρp = ρ/2 and in

this case the energy per particle becomes

e(ρ) =
3ℏ2k2

f

10m
+

(εl0 + εul0 )

4ρ0
ρ+

(εlγ + εulγ )

4ργ+1
0

ρ

(
ρ(R)

1 + bρ(R)

)γ

+
(εlex + εulex)

4ρ0
ρ
[ 3Λ6

16k6
f

− 9Λ4

8k4
f

+

(
3Λ4

8k4
f

− 3Λ6

16k6
f

)
e−4k2

f
/Λ2

+
3Λ3

2k3
f

∫ 2kf/Λ

0

e−t2dt
]

(21)

where, ρ = ρn+ρp is the nuclear matter density, kf =
(

3π2

2
ρ
)1/3

is the Fermi momentum

and
(
εl0 + εul0

2

)
= ε0,

(
εlγ + εulγ

2

)
= εγ,

(
εlex + εulex

2

)
= εex. (22)

The study of SNM requires only six parameters γ, b, αG, εex, ε0 and εγ . The

parameters which describe the ANM and SNM are adjusted carefully using appropriate

experimental/empirical constraints as we outline in the following.

The parameters εex and αG, associated with the exchange part of the energy

expression, are determined adopting a simultaneous minimization procedure [30] subject

to the constraint that the attractive nucleonic mean field changes sign for a kinetic

energy of 300 MeV of the incident nucleon [45, 46]. With the knowledge of these two

parameters, εex and αG, one can compute the momentum dependence of the mean field,

which compares well with the predictions of the realistic interaction UVI4+UVII [47]

over a wide range of momentum and density [30, 31]. The two parameters ε0 and εγ
are determined from the saturation conditions, where the standard values e(ρ0)=16

MeV, Tf0=37 MeV (corresponding to ρ0=0.161 fm−3) are used. The parameter γ of

the density dependent t3-term is kept as a free parameter allowing all values of γ for

which the pressure-density curve passes through the region extracted from the analysis

of high-energy heavy-ion collision data [48].

The study of ANM requires to know the splitting of the strength parameters εex, εγ
and ε0 into the like (l) and unlike (ul) channels. The splitting of the exchange strength

parameter εex into like and unlike channels is decided from the condition that the entropy

per particle in pure neutron matter (PNM) should not exceed that of symmetric matter
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SNM [40]. This prescribes a limiting value for the splitting of εex given by εlex = 2εex
3
.

With this partition of εex, the n and p effective mass splitting in ANM at saturation

density as a function of isospin asymmetry β = ρn−ρp
ρn+ρp

calculated with SEI [43] compares

well over the whole range of asymmetries with the microscopic Dirac-Brueckner-Hartree-

Fock (DBHF) prediction [49]. The splitting of the remaining two strength parameters

ε0 and εγ into like and unlike channels is decided by assuming a standard value of the

symmetry energy coefficient Es(ρ0), and varying E ′

s(ρ0) = ρ0
dEs(ρ)

dρ
|ρ=ρ0 , subject to the

condition that the asymmetric contribution of the nucleonic part in charge neutral β-

equilibrated n+p+e+µ matter, referred to as neutron star matter (NSM), be maximum

over a wide range of density, taken here to be 10ρ0 [38]. This asymmetric contribution

of the nucleonic part is defined as SNSM(ρ) = e(ρ, Yp)− e(ρ, Yp = 1/2).

The slope parameter of the symmetry energy is L(ρ0) = 3E ′

s(ρ0). The density

dependence of nuclear symmetry energy thus predicted is neither very stiff nor soft and

also does not allow direct URCA cooling in typical NSs. The parameter x0 is determined

by imposing that the effective mass splitting between spin-up and spin-down neutron

in spin polarized neutron matter reproduce the DBHF predictions [41]. Finally, the t0
parameter as well as the spin-orbit strength W0, used in finite nuclei calculations, are

fitted to reproduce the binding energy of 40Ca and 208Pb.

The finite nuclei study using SEI [43, 41, 42] predicts characteristic values for Es(ρ0)

and ρ0, for EOSs having different incompressibilities K(ρ0), for which the energies and

radii over the nuclear chart are reproduced with minimum root mean square (rms)

deviation. The values of Es(ρ0) and Tf0 vary within the ranges 36-35 MeV and 36.1-

35 MeV, respectively while K(ρ0) varies in the range 210-263 MeV. Here for the two

considered EOSs the exponents of the density-dependent term are γ =1/2 and 2/3

(K(ρ0)=246 MeV and 263 MeV, respectively). The symmetry energy is chosen as

Es(ρ0)=35 MeV and the values of E ′

s(ρ0), obtained from the condition of maximum

asymmetric contribution of the nucleonic part SNSM(ρ), are 25.42 MeV for L(ρ0)=76.26

MeV and 25.77 MeV for L(ρ0)=77.31 MeV. For the sake of illustration, the symmetry

energy Es(ρ), the equilibrium proton fraction Yp =
ρp
ρ
and the asymmetric contribution

of the nucleonic part SNSM(ρ) are shown as functions of density in the panels (a), (b)

and (c) of Figure 1, respectively, for the EOS γ=1/2 with different values of L(ρ0) in the

range 70-110 MeV. The parameters of SEI along with the corresponding nuclear matter

saturation properties are given in Table 1 for the two EOSs γ=1/2 and 2/3.

2.2. EOS of neutron star matter

The study of the r-mode is performed for typical NSs whose core is composed by

neutrons, protons, electrons (e) and muons (µ), which are in β-equilibrium and fulfill

the global charge neutrality condition. The equations expressing these conditions are,

µn − µp = µe = µµ, (23)

and

Yp = Ye + Yµ, (24)
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Figure 1. (Colour online) The symmetry energy Es(ρ) in panel (a), equilibrium

proton fraction Yp in panel (b) and asymmetric nucleonic contribution SNSM (ρ) in

panel (c) as functions of density ρ for the EOS γ=1/2 with values of slope parameter

in the range 70 MeV ≤ L ≤ 110 MeV. The curves in red in the three panels correspond

to the characteristic E′
s(ρ0) value.

where, µi and Yi =
ρi
ρ
, i = n, p, e, µ are the chemical potentials and particle fraction of

neutrons, protons, electrons and muons, respectively. The leptonic chemical potentials

µi, i = e, µ are obtained by considering them in the relativistic Fermi gas model, given

by

µe(µ) = (c2~2k2
e(µ) +m2

e(µ)c
4)1/2, (25)

with ke(µ) = (3π2ρe(µ))
1/3 = (3π2ρYe(µ))

1/3 being the electron (muon) Fermi momentum.

The n(p) chemical potentials, given by µn(p) =
∂Hn(p)(ρ,Yp)

∂ρn(p)
where Hn(p) = ρn(p)e(ρ, β),

are obtained from the expression for the energy per particle in ANM given in equation

(20). The simultaneous solution of equations (23) and (24) as a function of density ρ

predicts the composition of the core.

The equilibrium proton fraction Yp thus calculated as a function of density is shown

in the panel (b) of figure 1 for different values of the slope of the symmetry energy L

covering the range 70MeV ≤ L(ρ0) ≤ 110MeV for the EOS γ = 1/2 of table 1. The

energy density HNSM and pressure PNSM of the NSM is now given by

HNSM = HN(ρ, Yp) +He(ρ, Yp) +Hµ(ρ, Yp), (26)

PNSM = PN(ρ, Yp) + P e(ρ, Yp) + P µ(ρ, Yp), (27)

where, H i and P i for i = N, e, µ are the nucleonic, electronic and muonic contributions

to the energy density and pressure, respectively, in the NSM. The nucleonic energy
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density and pressure, HN and PN , are obtained from the expression for the energy per

particle in ANM given in equation (20) as HN = ρe(ρ, Yp) and PN = ρ2 ∂e(ρ,Yp)

∂ρ
, for the

equilibrium value of the proton fraction Yp. The leptonic energy densities and pressure,

H i and P i for i = e, µ, are obtained by treating these systems as a relativistic Fermi

gas model. The NS properties are calculated using HNSM and PNSM as a function of

density in the Tolman-Oppenheimer-Volkov (TOV) equations.

2.3. Crust-core transition in neutron stars

The crust-core transition in neutron stars is calculated by the thermodynamical method

[50, 51]. In this framework, the stability condition of the uniform homogeneous core

in liquid phase is constructed from the principles of thermodynamics using the β-

equilibrated nuclear matter EOS. This has been illustrated in the work of Moustakidis

[52]. The resulting stability condition involves the EOS of ANM. Since the isospin

dependence in the energy expression is complicated while one works with a finite range

effective force, the quadratic approximation of the energy is popularly used that makes

the problem relatively ease to handle. However, in an recent work [42] it has been

shown explicitly that the quadratic approximation is not valid in the low-density, highly-

asymmetric regime as the one found in the region of the crust-core transition. In this

case it is necessary to work using the complete EOS. In order to facilitate the study,

the thermodynamical stability condition, expressed in terms of the neutron and proton

chemical potentials, is given by

Vthermal =
ρ

4

[(
∂µn

∂ρn
+ 2

∂µn(p)

∂ρp(n)
+

∂µp

∂ρp

)
+ 2(1− 2Yp)

(
∂µn

∂ρn
− ∂µp

∂ρp

)

+ (1− 2Yp)
2

(
∂µn

∂ρn
− 2

∂µn(p)

∂ρp(n)
+

∂µp

∂ρp

)

−

{
(∂µn

∂ρn
− ∂µp

∂ρp
) + (1− 2Yp)(

∂µn

∂ρn
− 2

∂µn(p)

∂ρp(n)
+ ∂µp

∂ρp
)
}2

∂µn

∂ρn
− 2

∂µn(p)

∂ρp(n)
+ ∂µp

∂ρp

]
> 0, (28)

where, µi =
∂H(ρ,Yp)

∂ρi
for i = n, p. The matter is uniform and stable so long as Vthermal > 0.

The transition density, ρt, at which this stability condition starts being violated, marks

the phase transition from uniform homogeneous matter to the inhomogeneous phase

indicating the onset of nucleonisation and depicts the inner boundary of the neutron

star crust.
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Table 1. Values of the nine parameters of ANM for the two EOSs of SEI corresponding

to γ = 1/2 and γ = 2/3 together with their nuclear matter saturation properties (see

text for details).

γ b αG εex εlex ε0 εl0 εγ εlγ

fm fm MeV MeV MeV MeV MeV MeV
1
2

0.5914 0.7597 -94.4614 -62.9743 -78.7832 -45.8788 77.5068 57.76866
2
3

0.78522 0.7609 -93.5766 -62.3844 -61.9929 -33.9536 61.6895 47.0768

Nuclear matter properties at saturation density

γ ρ0 (fm−3) e(ρ0) (MeV) K(ρ0) (MeV) m∗

m
(ρ0, kf0) Es(ρ0) (MeV) L(ρ0) (MeV)

1
2

0.1571 -16.0 245.6 0.7111 35.0 76.26
2
3

0.1552 -16.0 262.6 0.7119 35.0 77.31
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3. Results and Discussion

The NS properties required in the present study of the r-mode oscillation are the mass

density as a function of the distance from the center, the radius of the star, the core-crust

transition density and pressure and the radius of the core. These properties of the NS

are calculated for the two EOSs γ = 1/2 and 2/3 of table 1, where the realistic crustal

EOSs of Feynman, Metropolis and Teller [53] and Baym, Pethick, and Sutherland [54]

are used for densities below the transition density ρt. As mentioned before, these values

of γ correspond to nuclear matter incompressibilities 246 MeV and 263 MeV.
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Figure 2. (Colour online) (a) The mass-radius relation for different slope parameters,

L(ρ0), in the range 70-110 MeV for the EOS γ=1/2. (b) Same as (a) but for the EOS

γ=2/3.

For each EOS corresponding to a given γ value, the NS mass-radius relations are

shown in Figure 2 (a) and (b) for different values of L(ρ0) in the range 70-110 MeV. In

these Figures the red line is for the characteristic L value provided by the condition of

maximum asymmetric contribution of the nucleonic part in NSM, as explained in the

fitting protocol described in subsection 3.2, while the black lines are obtained by relaxing

this condition and imposing a given L value. The results of the crust-core transition

density ρt obtained from the solution of equation (28), pressure Pt at transition density,

total radius R and core radius Rc are given for NSs of masses of 1.4 and 1.8 M⊙ in

Table 2 for the two EOSs. A linearly decreasing behaviour of ρt and Pt with increasing

value of L(ρ0) is found for both EoSs, in agreement with the findings of earlier works

[29, 27, 55]. Also it may be seen that for the same L(ρ0), the EOS having higher value

of the incompressibility predicts relatively higher values of ρt and Pt.
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Table 2. Values of the crust-core transition density ρt in fm−3, pressure Pt in MeV

fm−3 at the transition density, radius R of the NS in km and core radius Rc in km

for 1.4 and 1.8 M⊙ NSs for the EOSs γ =1/2 and 2/3. In each case three values L are

considered in the range 70-110 MeV.

L ρt Pt R Rc R Rc

(MeV ) (fm−3) (MeV fm−3) (km) (km) (km) (km)

1.4 M⊙ 1.4 M⊙ 1.8 M⊙ 1.8 M⊙

γ = 1/2

70.00 0.08297 0.53228 12.1671 11.0649 11.0538 10.4778

76.26 0.07994 0.50899 12.4831 11.3226 11.5834 10.9330

110.00 0.06143 0.26836 13.6787 12.4269 12.7915 12.0584

γ = 2/3

70.00 0.08470 0.55109 12.4115 11.2513 11.5648 10.9078

77.31 0.08126 0.52391 12.7630 11.5394 12.0803 11.3471

110.00 0.06450 0.30082 13.8916 12.5564 13.1910 12.3783

The various time-scales in equations (5)-(8) for the l = 2 r-mode result into the

following analytical expressions:

1

τGR

= 1.3705× 10−41 [I(Rx),6]

(
Ω

Hz

)6 (
s−1
)
, (29)

1

τ eeV E

=
6.9150× 106

[I(Rx),6]

(
Rc

km

)6(
ρc,14

g cm−3

)3/2(
Ω

Hz

)1/2(
K

T

) (
s−1
)
,(30)

1

τnnV E

=
2.9572× 106

[I(Rx),6]

(
Rc

km

)6(
ρc,14

g cm−3

)13/8(
Ω

Hz

)1/2(
K

T

) (
s−1
)
,(31)

1

τ eeSV
= 5.34072069× 109

(
K

T

)2
[Iee(Rx),4]

[I(Rx),6]

(
s−1
)
, (32)

1

τnnSV

= 3.5678× 108
(
K

T

)2
[Inn(Rx),4]

[I(Rx),6]

(
s−1
)
, (33)

1

τBV
= 4.4177× 1080

(
M⊙

M

)2(
R

km

)8(
Ω

Hz

)2(
T

K

)6

×

[(
km
R

)6
IBV (Rx),8 +

(
km
R

)8
IBV (Rx),10

]

[I(Rx),6]

(
s−1
)
, (34)

where, ρc,14=H(ρt)/c
2 in the unit 1014g cm−3. The various I-functions appearing in the

above equations (29)-(34) are given by,

I(Rx),6 =

∫ Rx

0

[
H(ρ(r))

MeV fm−3

]( r

km

)6
d
( r

km

)
, (35)
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I(Rx),8 =

∫ Rx

0

[
H(ρ(r))

MeV fm−3

]( r

km

)8
d
( r

km

)
, (36)

Inn(Rx),4 =

∫ Rx

0

[
H(ρ(r))

MeV fm−3

]9/4 ( r

km

)4
d
( r

km

)
, (37)

Iee(Rx),4 =

∫ Rx

0

[
H(ρ(r))

MeV fm−3

]2 ( r

km

)4
d
( r

km

)
, (38)

IBV (Rx),8 =

∫ Rx

0

[
H(ρ(r))

MeV fm−3

]2 ( r

km

)8
d
( r

km

)
, (39)

IBV (Rx),10 =

∫ Rx

0

[
H(ρ(r))

MeV fm−3

]2 ( r

km

)10
d
( r

km

)
, (40)

where, Rx has been defined before (i.e., below Eq.(7)) and H(ρ(r)) is the total energy

density HNSM in equation (26) as a function of mass density ρ(r).

The respective fiducial time scales, see Eq.(12), calculated from equations (29)-(34)

for the crust-core model are given in Table 3 for the EOSs γ=1/2 and 2/3. It is verified

that under the minimal model, the values of τ̃GR, τ̃
nn(ee)
SV and τ̃BV changes maximum

within 0.2% for both the EOSs. The temperature dependence of the critical frequency

νc = Ωc/2π, with Ωc being the critical angular velocity of the rotating NS, is calculated

from the solution of equation (13) in conjunction with equation (12). The critical

frequencies for NSs of masses 1.4 and 1.8 M⊙ are shown as a function of the temperature

for the EOS γ=1/2 in Figures 3 (a) and (b), respectively. For each mass, three values of

L(ρ0) are considered, namely, L(ρ0) =70 MeV, 110 MeV and the characteristic L value

for the EOS γ=1/2 given in table 1. The three curves in group (A) in these figures

correspond to the case where all the viscous dissipation effects considered in equation

(4) are taken into account. The three curves in group (B) of these figures display the

results obtained under the ”minimal model” condition, where the viscous dissipation at

the crust-core boundary layer is neglected, i.e., 1/τV E = 0. The curves of group (A)

correspond to the perfect rigid crust, i.e., to the case where the crust is co-rotating with

the core. But in real situation the inner region of the crust is smeared out due to the

presence of pasta phase and there shall be a relative motion between the inner edge of

the crust and outer edge of the core. This effect is roughly simulated by introducing the

so-called ”slippage” factor S where the effective time-scale due to viscous dissipation at

crust core boundary layer becomes τV E/S
2. In principle, the range for possible value

of S is 0 to 1. Glampekadis and Andersson [56] have obtained the realistic value for

S=0.05. Upon taking this realistic slippage factor, S=0.05, into account in equation

(13), the results for the critical frequency νc for the three L-values are shown by the

curves labelled (C) in Figures 3 (a) and (b). Available information about the spin

frequencies of NSs in LMXBs and MSRPs [14, 57] are also displayed in these figures.

Our theoretical predictions about critical frequencies are similar to those reported in

Ref. [57], in the sense that all the considered NSs are predicted to lie in the stable
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region if the hypothesis of rigid crust is assumed. However, for the minimal model

(1/τV E = 0) the instability window is lowered and many of the NSs are predicted to lie

in the instability region. Considering the elastic property of the viscous boundary layer

through the slippage factor S, the instability boundary is lowered and lies close to the

curve predicted by the minimal model if a realistic value of S = 0.05 is used. The L-

dependence of the instability boundary can be seen from curves in each group (A), (B)

and (C) in these figures. In the region of temperature T < 109 K the critical frequency is

lowered for higher L values, but in the range T > 1010 K the critical frequency remains

almost insensitive to the value of L. From these considerations we can conclude that

the region of instability increases with increasing values of the slope of the symmetry

energy, L.
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Figure 3. (Colour online) (a) Critical frequency νc as a function of temperature T for

the EOS γ=1/2 as L varies from 70 to 110 MeV for 1.4 M⊙ NS. 3-curves of (A) are

for rigid crust model; 3-curves of (B) are for minimal model; 3-curves of (C) are for

penetrating core model accounted for by slippage factor with realistic value S =0.05.

(b) Same as (a) but for 1.8 M⊙ NS. Legends used for the curves in both panels are the

same.

In order to make it more explicit, the different time-scales, τGR, τSV , τBV and τV E

are shown as a function of temperature for a given frequency, taken to be ν = 600 Hz,

for NSs of masses 1.4 M⊙ and 1.8 M⊙ in Figure 4(a) and (b) for two values of L= 70

and 110 MeV of the EOS γ = 1/2. The gravitational radiation being independent of
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Table 3. The fiducial time scales (in s) for NSs with masses M=1.4 M⊙ and 1.8 M⊙

for the EOSs γ=1/2 and 2/3, where the results are given, in each case, for 3 values of

L in the range 70-110 MeV.

L τ̃GR τ̃ eeV E τ̃nnV E τ̃BV τ̃ eeSV τ̃nnSV

MeV s s s s s s

γ = 1/2 M=1.4 M⊙

70.00 -2.6990 29.6133 66.3949 1.5969×1011 2.0969×108 5.7591×107

76.26 -3.0752 30.7745 69.3273 1.6772×1011 2.4203×108 6.5231×107

110.00 -4.9424 39.9715 93.1179 2.0248×1011 4.0418×108 1.0191×108

γ = 1/2 M=1.8 M⊙

70.00 -0.5885 32.6563 73.2175 1.4054×1011 9.6814 ×107 3.0191×107

76.26 -0.7358 33.8108 76.1674 1.5131×1011 1.2692 ×108 3.8146×107

110.00 -1.2318 44.1466 102.8443 1.8597×1011 2.1836 ×108 6.1220×107

γ = 2/3 M=1.4 M⊙

70.00 -2.9401 28.9290 64.6905 1.6328×1011 2.3608×108 6.3798×107

77.31 -3.3814 30.2415 67.9852 1.7192×1011 2.7575×108 7.3019×107

110.00 -5.3024 37.7902 87.4939 2.0584×1011 4.4760×108 1.1115×108

γ = 2/3 M=1.8 M⊙

70.00 -0.7203 31.5553 70.5635 1.4916×1011 1.2721 ×108 3.8197×107

77.31 -0.8908 32.8252 73.7935 1.6042×1011 1.6348 ×108 4.7452×107

110.00 –1.4081 41.3611 95.7615 1.9305×1011 2.6512 ×108 7.2320×107

temperature is given by the horizontal line. It can be seen from the curve of viscous

dissipation at the crust-core boundary layer τV E that it is the dominating one in the

temperature range T≤ 109 K and effectively prevents the gravitational radiation to

render the r-mode unstable. The bulk viscosity of the fluid core is dominating at higher

temperature T ≥ 109 K. Thus the area enclosed within the triangle obtained from the

intersection of τGR, τV E and τBV is the region of instability for the given frequency of

the star in the rigid crust-core model, (slippage factor S=1). As we soften the crust-

core contribution by decreasing S from 1, the curve of τV E moves upward, thereby

increasing the area of the triangle. In the minimal model, where the crust is neglected,

the effect of gravitational radiation is countered by shear viscosity of the fluid star in

the range T≤ 109 K. This effectively counters the effect of the gravitational radiation

below temperature T ≤ 107 K. Therefore, in the minimal model, the region of instability

represented by the area enclosed in the triangle formed from the intersection of τGR,

τSV and τBV is maximum. Now, on comparing the L-dependence of these time-scales

from the curves for L=70 and 110 MeV in figures 4(a) and (b), it can be seen that for
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higher L-values the τGR takes a relatively small value and moves down. The curves for

τV E and τSV move upward, whereas, the bulk viscous time-scale τBV remains almost

insensitive. Due to this behaviour of the time-scales, the area enclosed in the triangles

increases with an increase in the L value. This illustrates the features relating to the

L-dependence of the instability window shown in figures 3(a) and (b) for different values

of the slippage factor S. Comparing the results in figures 4(a) and (b), it can be seen

that with increasing mass of the NS the L-dependence of τGR and τSV becomes relatively

more prominent, whereas the influence on the time-scales τBV and τV E is not significant.

Due to this fact, the instability window in the temperature range T ≤ 109 K lowers by

a small extent in the case of stars of 1.8 M⊙ compared to stars of 1.4 M⊙. The pulsar

4U 1608-522 in figure 3(a), which is below the instability window for L=110 MeV of

the rigid crust-core case and predicted to be stable for mass 1.4 M⊙, coalesces with the

instability window for a mass 1.8 M⊙ as may be seen from figure 3(b). All these features

associated with the dependence of the instability window on the slope of the symmetry

energy and the NS mass can also be understood from equation (12) together with the

values of the various fiducial time-scales reported in table 3. From the values of τ̃V E , τ̃SV
and τ̃BV for a given value of L in any one of the EOS in table 3 it is evident that 1/τ̃V E

(= 1/τ̃nnV E +1/τ̃ eeV E) is the dominant term in equation (12) to counter the gravitational

radiation effect in the range T ≤ 109 K. In absence of τ̃V E, i.e., in the minimal model,

the 1/τ̃SV (= 1/τ̃nnSV +1/τ̃ eeSV ) term counters the effect of gravitational radiation in this

range of temperature. The bulk viscosity term 1/τ̃BV takes up overshadowing the effects

of other viscous terms as T increases beyond 109 K. As 1/τ̃V E >> 1/τ̃SV , the instability

window is raised by a proportionately large extent in the rigid crust model as compared

to the minimal model in the range T ≤ 109 K. Further, since both 1/τ̃V E and 1/τ̃SV
decrease with increase in L, the instability window in both the models is lowered in the

range T≤ 109 K. But the increase in τ̃BV is marginal as L increases from 70 to 110 MeV

and the instability window practically remains insensitive to the slope of the symmetry

energy l in the range T ≥ 1010 K. A similar behaviour is found using EOSs with different

incompressibilities, i.e., different values of the γ parameter. Now, an increase in the NS

mass for a given EOS and given L value results into an increase in τ̃V E but a decrease in

τ̃SV . Therefore, the instability window is lowered in the rigid crust model with increasing

mass of the NS, whereas, it is raised in the minimal model. All these features are shown

in Figures 5(a) and (b) for the EOSs γ=1/2 and 2/3, respectively, where the instability

windows for 1.4 M⊙ and 1.8 M⊙ stars are compared for L values of 70 and 110 MeV

in both the rigid crust and the minimal model. In order to see the influence of γ, the

instability windows for γ=1/2 and 2/3 are shown in both the models with L=70 and

110 MeV in Figures 6(a) and (b) for 1.4 M⊙ and 1.8 M⊙ stars, respectively. It can be

realized that with an increase in γ the instability window follows a lowering trend and

this effect becomes more important when the mass of the NS increases.

As a NS reaches the instability window the r-mode becomes unstable and the

amplitude of the oscillation increases raising the temperature of the star. A newly

born NS, whose temperature is T ≥ 1011K, enters in the region of instability and the



19

10
6

10
8

10
10

T (K)

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

T
im

e 
sc

al
es

 (
s)

τ
GR 

(L=70)

τ
VE 

(L=70)

τ
BV 

(L=70)

τ
SV

 (L=70)

τ
GR 

(L=110)

τ
VE

 (L=110)

τ
BV

 (L=110)

τ
SV

 (L=110)

10
6

10
8

10
10

T (K)

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

T
im

e 
sc

al
es

 (
s)

1.4 M
0

γ=1/2 γ=1/2
1.8 M

0

(a) (b)

Figure 4. (a) Different time-scales, τGR, τSV , τBV and τV E as a function of

temperature T for 1.4 M⊙ NS with the EOS γ =1/2 and two values of L=70 and

110 MeV (b) Same as (a) but for 1.8 M⊙ NS. Legends used for the curves in both

panels are the same.

star cools via neutrino and thermal emission. In the case of old accreting stars the

torque acquired due to accretion of mass is mostly responsible for the entrance in the

instability region. The rise in the temperature of the star due to the unstable r-mode

sets the viscous mechanism to act more effectively. The temperature of the star will

increase till the r-mode amplitude attains a saturation value due to nonlinear effects.

So far it is not clear which type of nonlinear mechanism is actually responsible for

saturating the r-mode amplitude. Different considerations predict different ranges for

the saturation value of the r-mode amplitude. For example, in the formulation where the

crust is not considered and the suprathermal bulk viscosity is taken to be the nonlinear

mechanism, the saturated value of α is found to be ≈1 [58, 13]. The study of the mode

coupling performed in [59, 60, 36] predicts a saturation value of α ≈ 10−4. In Ref.[14]

Mahmoodifar and Strohmayer have calculated an upper limit of α ≈ 10−8 - 10−6 from

the consideration that the r-mode heating provides the source of the NS luminosity in

the accreting NS in the absence of accretion.

As the r-mode amplitude α attains the saturation value, the NS emits gravitational

waves and releases its angular momentum and energy and spins down to the region of
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Figure 5. (a) Influence of mass of NS pulsar on the instability window for the EOS

γ=1/2. (b) Same as (a) but for the EOS γ=2/3. Legends for the curves used in both

panels are the same. For details, see the text.

stability. The spin-down rate can be calculated for a NS from equation (17), provided

the NS mass M , the temperature T , the initial angular velocity Ωin and the r-mode

amplitude α of the star are known. The spin-down rate is sensitive to the EOS through

the quantity Q (see Eq. (14)) and also crucially depends on the saturation value of

the r-mode amplitude α. In order to examine this, we have computed the spin-down

rate from equation (17) for 1.4 M⊙ and 1.8 M⊙ stars with Ωin=730 Hz using the EOSs

γ=1/2 and 2/3. In each case, the spin-down rate is calculated as a function of time

for NS masses of 1.4 M⊙ and 1.8 M⊙ with two values of L=70 and 110 MeV using two

values of α=10−8 and 1. The results for α=10−8 and of α=1 are shown in the upper

panels and lower panels in Figure 7, respectively. It is found that the spin-down rate is

much faster for α=1 than for α = 10−8. The spin-down rate increases with increasing

L value, with increasing mass of the pulsar NS, as well as with growing nuclear matter

incompressibility. In order to have a quantitative idea on the spin-down rate for different

α values, here we take the example of the particular pulsar NS 4U 1608-522 whose

frequency is 620 Hz. According to the minimal model it is in the unstable region. The

period needed to reach the instability boundary can be calculated from equation (18)

where Ωin is 620 Hz. If the NS mass is of 1.4 M⊙, the period to reach the boundary of
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the EOS, γ=1/2 and L=70 MeV, of the minimal model in figure 3(a) is 6.3×1021 yr if

α = 10−8, whereas it will decrease to 5.7×105 yr if α=1.

We shall now calculate the limiting value of the r-mode amplitude α from the

considerations of ’spin equilibrium’ and ’thermal equilibrium’. The spin equilibrium

[61, 12, 62, 63, 14] is based on the assumption that the outburst-quiescence cycle is

balanced by the r-mode spin-down torque due to gravitational radiation in the whole

cycle. The condition resulting from this is given by [14],

2πν̇su∆ =
2Jc

τGR
, (41)

where, Jc = −3
2
Ωα2J̃MR2 is the canonical angular momentum of the r-mode; ν̇su is the

spin up rate during outburst and ∆ = t0/tr is the ratio of the outburst duration (t0) to

the recurrence time (tr). Since the values of ∆ and ν̇su entering in the left hand side

of equation (41) can be extracted from observations of LMXBs, these quantities can be

used to compute Jc in the right hand side of (41). The α value which appears in Jc

can now be computed for a given EOS. Using the available data for ∆ and ν̇su of the

three pulsar NSs, namely IGR J00291+5934, SAXJ1808-3658 and XTE J1814-338, the

values of the r-mode amplitudes α, under the spin equilibrium consideration, obtained



22

10
0

10
4

10
8

10
12

10
16

10
20

t (yr)

0

6×10
-17

1×10
-16

2×10
-16

L=70
L=110

10
0

10
4

10
8

10
12

10
16

10
20

t (yr)

0

6×10
-17

1×10
-16

2×10
-16

10
0

10
4

10
8

10
12

10
16

10
20

t (yr)

0

6×10
-17

1×10
-16

2×10
-16

10
0

10
4

10
8

10
12

10
16

10
20

t (yr)

0

6×10
-17

1×10
-16

2×10
-16

10
0

10
2

10
4

t (yr)

0

1

2

10
0

10
2

10
4

t (yr)

0

1

2

10
0

10
2

10
4

t (yr)

0

1

2

10
0

10
2

10
4

t (yr)

0

1

2

γ=1/2, 1.4 M
o

α=1

γ=2/3, 1.4 M
o γ=2/3, 1.8 M

o

γ=1/2, 1.4 M
o γ=2/3, 1.4 M

o
γ=1/2, 1.8 M

o
γ=2/3, 1.8 M

o

α=10
-8

α=1

α=10
-8 α=10

-8 α=10
-8

| d
ν/

dt
 |

| d
ν/

dt
 |

| d
ν/

dt
 |

| d
ν/

dt
 |

| d
ν/

dt
 |

| d
ν/

dt
 |

| d
ν/

dt
 |

| d
ν/

dt
 |

(H
z 

s-1
)

(H
z 

s-1
)

(H
z 

s-1
)

(H
z 

s-1
)

(H
z 

s-1
)

(H
z 

s-1
)

(H
z 

s-1
)

(H
z 

s-1
)

(a) (b) (c) (d)

(e) (f) (g) (h)

γ=1/2, 1.8 M
o

α=1 α=1

Figure 7. (upper panel) The spin-down rate as a function of time (yr) for 1.4 M⊙
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110 MeV in each case calculated from equation (14) where α= 10−8 is used. (lower

panel)(b) Same as upper panel but for α= 1. Legends used for the curves in all panels

are the same.

for EOSs γ =1/2 and 2/3 with their characteristic L values 76.26 MeV and 77.31 MeV

are given in Table 4 for NS masses of 1.4 M⊙ and 1.8 M⊙. The results obtained with

1.4 M⊙ can be directly compared with the corresponding results in table 2 of Ref. [14]

computed using the microscopic EOS of Akmal, Pandharipande and Ravenhall (APR)

[64]. Our predictions for α in this work are in the range 10−7, which is in close agreement

with the values found in Ref. [14]. From the results for 1.4 M⊙ and 1.8 M⊙ in table

4, it can be seen that α decreases with increasing NS mass as well as with increasing

incompressibility of the EOS. In order to see the influence of the L value, we have

calculated α from equation (41) for L = 70 MeV and 110 MeV in 1.4 M⊙ and 1.8 M⊙

stars, and it is found that α decreases with an increase in L.

We now compute the amplitude α from the thermal equilibrium condition. The

thermal steady state during the spin down of the NS is a rigorous result when the mode

is saturated and, in particular, it is independent of the cooling mechanism [13]. In a
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Table 4. Upper bound on r-mode amplitude αsp.eq from the spin equilibrium (sp.eq)

condition for the EOSs γ =1/2 and 2/3 with characteristic L values 76.26 MeV and

77.31 MeV. The data for ∆ and ν̇su are taken from Ref. [14].

Source ∆ = t0
tr

ν̇su αsp.eq αsp.eq αsp.eq αsp.eq

Hz s−1 1.4 M⊙ 1.8 M⊙ 1.4 M⊙ 1.8 M⊙

for γ = 1/2 for γ = 1/2 for γ = 2/3 for γ = 2/3

IGR J00291+5934 13
1363

5.0× 10−13 1.2980× 10−7 1.2764× 10−7 1.2292× 10−7 1.1589× 10−7

SAX J1808-3658 40
2×365

2.5× 10−14 2.8622× 10−7 2.8145× 10−7 2.7105× 10−7 2.5554× 10−7

XTE J1814-338 40
19×365

1.5× 10−14 1.8742× 10−7 1.8430× 10−7 1.7749× 10−7 1.6734× 10−7

steady state the gravitational radiation pumps energy into the r-mode at a rate given

by [14]

Wd =
1

3
ΩJc = −2

Ẽ

τGR

, (42)

from where, by taking into account the explicit expression for Jc given before, one can

write the amplitude α in thermal equilibrium as

α =

[−τGRWd

J̃M

]1/2
1

ΩR
. (43)

Hence, in the thermal steady state all the energy emitted from the star during the

quiescence is due to the r-mode dissipation inside the star. The thermal equilibrium

condition implies that Wd = Lν + Lγ , where Lν and Lγ are, respectively, the

neutrino luminosity and the thermal photon luminosity at the surface of the star.

Assuming standard neutrino cooling, the thermal equilibrium condition for a NS can

be approximated by Wd ≃ Lγ , since the luminosity due to the neutrino cooling can be

neglected compared to the surface photon luminosity in not too heavy NSs (M < 2M⊙)

[14]. Thus the amplitude α is computed using Lγ = 4πR2σT 4
eff , where σ is the

Stefan’s constant and Teff is the effective surface temperature of the star. Under this

approximation, we obtain

α = 7.9494× 10−17

[−τGR

J̃

]1/2 σ1/2T 2
eff

Ω

[
M⊙

M

]1/2
, (44)

for the r-mode amplitude in the case of the thermal equilibrium consideration.

For the EOS γ =1/2 and L in the range 70-110 MeV, α is calculated from equation

(44) for the pulsar NSs, which are predicted to lie in the unstable region in figure 3,

using the data for Teff taken from table 2 of Refs. [66, 68]. The results are given

in Table 5. The predicted α values derived in this work from the consideration of

thermal equilibrium, lie in the range of 10−8 - 10−7, which is in agreement with the

results obtained in table 4 of Ref.[14]. The spin-down rates of these stars are now

calculated from equation (14), which depends on the value of Q, the mass and radius
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Table 5. r-mode amplitude αth.eq from the thermal equilibrium (th.eq) condition for

the EOSs, γ =1/2 with L values 70 MeV and 110 MeV.

Source αth.eq αth.eq ν̇ Hz s−1 ν̇ Hz s−1 ν̇ Hz s−1

1.4 M⊙ 1.8 M⊙ 1.4 M⊙ 1.8 M⊙ Observation

γ = 1/2, L = 70 MeV

4U1608-522 7.3144×10−8 6.6442 ×10−8 -1.0969×10−14 -8.4609×10−15

IGR J00291+5934 1.4644×10−8 1.3302 ×10−8 -3.4542 ×10−16 -2.6645×10−16 −3 × 10−15

MXB 1659-29 1.1838×10−8 1.0753 ×10−8 -1.3401 ×10−16 -1.0336×10−16

Aql X-1 3.6112×10−8 3.2803 ×10−8 -1.1558 ×10−15 -8.9158×10−16

KS 1731-260 2.4306×10−8 2.2079 ×10−8 -3.7308 ×10−16 -2.8778×10−16

XTE J1751-305 5.2651×10−8 4.7827 ×10−8 -4.7565 ×10−16 -3.6690×10−16 −5.5 × 10−15

SAX J1808-3658 1.3017×10−8 1.1824 ×10−8 -1.6447 ×10−17 -1.2686×10−17 −5.5 × 10−16

XTE J1814-338 1.8316×10−7 1.6638 ×10−7 -5.8778 ×10−16 -4.5339×10−16

NGC 6440 1.6028×10−6 1.4559 ×10−6 -2.2755 ×10−15 -1.7552×10−15

γ = 1/2, L = 110 MeV

4U1608-522 5.8984×10−8 5.0093 ×10−8 -1.1091 ×10−14 -8.4892×10−15

IGR J00291+5934 1.1809×10−8 1.0029 ×10−8 -3.4930 ×10−16 -2.6734×10−16 −3 × 10−15

MXB 1659-29 9.5462×10−9 8.1072 ×10−9 -1.3551 ×10−16 -1.0371×10−16

Aql X-1 2.9121×10−8 2.4731 ×10−8 -1.1688 ×10−15 -8.9457×10−16

KS 1731-260 1.9600×10−8 1.6646 ×10−8 -3.7727 ×10−16 -2.8875×10−16

XTE J1751-305 4.2458×10−8 3.6058 ×10−8 -4.8099 ×10−16 -3.6814×10−16 −5.5 × 10−15

SAX J1808-3658 1.0497×10−8 8.9147 ×10−9 -1.6631 ×10−17 -1.2729×10−17 −5.5 × 10−16

XTE J1814-338 1.4770×10−7 1.2543 ×10−7 -5.9437 ×10−16 -4.5491×10−16

NGC 6440 1.2924×10−6 1.0976 ×10−6 -2.3010 ×10−15 -1.7611×10−15

of the NS and the r-mode amplitude α. The Q-value is not sensitive to the slope of

the symmetry energy L. For example, using the EOS with γ =1/2 the value of Q

varies from 0.09411 to 0.09341 (0.09670 to 0.09602) for a NS with mass 1.4 M⊙ (1.8

M⊙) as L changes from 70MeV to 110 MeV. The L dependence of Q shows a similar

behaviour in the case of the EOS with γ =2/3. Thus, ν̇ is sensitive to the mass and

radius of the NS and r-mode amplitude α. The results of ν̇ calculated from equation

(14) using the respective α obtained from thermal equilibrium condition for 1.4 M⊙ and

1.8 M⊙ mass NSs and their predicted radii are also given in table 5. The spin down

rate obtained in the present case for 1.4 M⊙ mass NSs is closer to the data for the three

NS pulsars, IGR J00291+5934, XTE J1751-305 and SAX J1808-3658, in comparison

to the corresponding results obtained in Ref.[14] for APR EOS. From Table 5 it can
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be seen that α decreases with an increase in L as well as with an increase in the mass

of the NS. The ν̇ depends on L in a similar manner as in α. The L dependence of ν̇

in the case of the EOS γ = 2/3, for both 1.4 M⊙ and 1.8 M⊙, has been verified to

be similar to the one obtained for γ =1/2. The ν̇ values for γ =2/3 are found to be

almost the same to their γ =1/2 counterparts given in table 5. Since in all of the three

NS pulsars, whose spin-down rates are measured, the predicted results lie below the

measured values, the mass measurement of these NSs become essential before going for

exploring other possible modifications.

4. Summary and conclusions

The characteristic features of the r-mode oscillation in rotating neutron stars are

outlined. The EOS of pulsar NSs is constructed under the consideration of a core

composition of normal neutron, proton, electron and muon matter in charge neutral

β-equilibrium condition. The theoretical EOS based on the finite range simple effective

interaction is used to this end. The r-mode instability window for the pulsar NS is

computed by taking into account dissipation by shear and bulk viscosities and by

the viscous layer at the crust-core boundary. The influence of the slope parameter

of the symmetry energy L(ρ0) and the nuclear matter incompressibility K(ρ0) on the

r-mode window have been studied. In the rigid crust-core model (S=1) the viscous

layer dissipation at the crust-core boundary is the dominant mechanism to decide the

critical frequency in the temperature range T ≤ 1010 K. In this range of T the instability

window lowers for higher L values. This has been illustrated in figure 4 as due to the

effect of L on the time-scales associated to the viscous dissipation at the crust-core

boundary layer and to the gravitational radiation, τV E and τGR, respectively. In the

temperature range T > 1010 K, the time-scale associated to the bulk viscosity (τBV )

is dominant and remains almost insensitive to the L-value. Therefore the region of

instability increases with increasing L, primarily due to its influence on τV E and τGR.

Under the consideration of a rigid-crust core, none of the neutron stars of LMXBs and

MSRPs displayed in Figure 3 are predicted to be unstable. However, if the penetration

of the core into the crust is taken into account in terms of a slippage factor with realistic

value, S=0.05, many NS pulsars (14 shown in figure 3) are predicted to be unstable.

This result is quite a similar to the one found in Ref [57]. The upper bound of the r-mode

amplitude is estimated from the spin-equlibrioum condition for acreting NSs based on

the assumption that the acreting torque is balanced by the r-mode gravitational torque.

Using the data of three pulsar NSs, the upper bound of the of the r-mode amplitude α is

found to be of the order 10−7 for the NSs masses 1.4M⊙ to 1.8M⊙. However the quiscent

luminosity in some of the NSs contradict these results. The calculated luminosity with

the α obtained from spin equilibrium condition predicts larger value. The upper bound

on α is therefore calculated from the thermal equilibrium condition. Since spin down

occurs in thermal steady state, the heat generated by the r-mode processes equals to

the energy radiated from the NS. Under the approximation that the energy radiated
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by modified URCA process in not too heavy NS is small in comparison to the thermal

radiation from the surface of the NS, the upper bound of α is found in the range 10−8

to10−6 for the stars in the unstable region. The spin-down rate of these stars are also

calculated. Our predictions in case of three pulsar stars, for which data on spin-down

rate exist, are closer to the data as compared to the similar results reported in earlier

literature. The α value decreases when the slope of the symmetry energy increases as

well as for larger NS mass. The spin-down rate also crucially depends on the mass

and radius of the NS pulsar, apart from the α value. All these facts warrant the mass

measurement of the NSs.

In the study of thermal equilibrium, only the conventional thermoluminosity process

is considered as the mechanism for radiation of heat energy produced inside the star. It

is necessary to include the energy radiation by the modified URCA cooling and also by

the direct URCA cooling, wherever the later process is physically allowed. The effects

due to the superfluidity of neutrons and superconducting protons also need to be taken

into account. Without these considerations the results on α and ν̇ obtained here are only

qualitative. The influence of the presence of hyperons and a possible phase transition to

quark matter in the NS core also need to be examined. Uncertainties on these aspects

and possible processes that might be taking place are mainly concerned with our poor

knowledge on the composition of the core of NSs. The mass measurements of LMXB NSs

together with the observational data can be of paramount importance in the direction

of resolving the uncertainty on the core composition. This will, in turn, also help in

answering at least some of the existing queries on the EOS of highly neutron-rich dense

nuclear matter.
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