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ABSTRACT: Partition coefficients define how a solute is distributed
between two immiscible phases at equilibrium. The experimental
estimation of partition coefficients in a complex system can be an
expensive, difficult, and time-consuming process. Here a computa-
tional strategy to predict the distributions of a set of solutes in two
relevant phase equilibria is presented. The octanol/water and
octanol/air partition coefficients are predicted for a group of polar
solvents using density functional theory (DFT) calculations in
combination with a solvation model based on density (SMD) and are
in excellent agreement with experimental data. Thus, the use of
quantum-chemical calculations to predict partition coefficients from
free energies should be a valuable alternative for unknown solvents.
The obtained results indicate that the SMD continuum model in
conjunction with any of the three DFT functionals (B3LYP, M06-2X,
and M11) agrees with the observed experimental values. The highest correlation to experimental data for the octanol/water
partition coefficients was reached by the M11 functional; for the octanol/air partition coefficient, the M06-2X functional yielded
the best performance. To the best of our knowledge, this is the first computational approach for the prediction of octanol/air
partition coefficients by DFT calculations, which has remarkable accuracy and precision.

■ INTRODUCTION

Physical properties of molecules can be used, for example, to
make predictions about the environmental fate of unknown
solvents. The lack of physical property data may be resolved by
the development of different computational methodologies for
the prediction of the appropriate physicochemical properties.
In particular, a variety of methods have been developed to
predict partition coefficients from a chemical structure.1−9 One
of the most important prediction methods is based on
quantitative structure−property relationships (QSPRs).10−12

Various algorithms and online platforms based on QSPRs, such
as AlogPs, ADMET predictor, and ACD/logD, have been
developed. The main approach of these methods is based on
finding the appropriate set of molecular descriptors that allow
the precise reproduction of a given physical property using a
large database of available experimental data. Accurate QSPR
models are obtained when this method is applied to molecules
that resemble the ones in the database used to build the model.
Thus, the weakness of QSPR models is related to the
prediction of properties of molecules that vary slightly from
those used in the database.13−15

Alternatively, partition coefficients can be predicted by
taking into account the fact that this property is related to the
free energy difference of a solute in different solvents. In the
work of Bannan et al.,16 the computational scheme that was
used consisted of molecular dynamics simulations with explicit
solvent molecules to obtain transfer free energies between the
solvents, which in turn were used to calculate their partition
coefficients. The octanol/water and cyclohexane/water parti-
tion coefficients were obtained using the generalized AMBER
force field (GAFF) and the dielectric-corrected GAFF (GAFF-
DC).
Jones et al. used ab initio calculations to predict the

cyclohexane/water partition coefficients for a set of 53
compounds. The free energy of transfer was calculated with
several density functionals in combination with the solvation
model based on density (SMD) implicit-solvent model, and a
good estimation was obtained.17 Rayne and Forest computed
air−water partition coefficients for a data set of 86 large
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Figure 1. continued
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polycyclic aromatic hydrocarbons and their unsaturated
relatives by means of high-level G4(MP2) gas- and aqueous-
phase calculations with the SMD, integral equation formalism
variant (IEFPCM-UFF), and conductor-like polarizable
continuum model (CPCM) solvation models.18 The results
obtained using the three solvation models for a range of neutral
and ionic compounds showed accurate air/water partition
coefficients (Kaw). Better accuracy is obtained when higher
levels of theory are used.
In the work of Michalik and Lukes,̌19 the octanol/water

partition coefficients for 27 alkane alcohols were predicted by
quantum-chemical calculations with three solvation models.
The results were in rather good agreement with the
corresponding experimental values. When comparing their
results with those obtained using other implicit-solvent models

(IEFPCM or CPCM), the authors observed deviations from
linearity. This mixed quantum (DFT)−QSPR analysis has
recently been implemented successfully in the prediction of
pKa values for carboxylic acids.

20

In the present work, the prediction of octanol/water and air/
water partition coefficients for a set of 55 organic solvents was
carried out by means of density functional theory (DFT)
calculations. Solvation free energies were computed with
various density functionals to estimate the partition coef-
ficients. Good correlation coefficients between the calculated
and experimentally measured values were obtained.

■ DATA SET
The data set consisted of 55 molecules that were selected by a
previous study.21 In that study, 150 solvents were clustered on

Figure 1. Chemical structures of the solvents.
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the basis of physicochemical propertiesmelting and boiling
points, density, water solubility, vapor pressure, Henry’s law
constant, logP, logKoa, and surface tension. Molecules included
in the present study belong to polar or nonpolar groups. The
experimental values for the octanol/water and air/water
partition coefficients are presented in Table S1. The majority
of these 55 molecules have been considered to be green
solvents in various literature reports.21 Some of the included
molecules, such as ether−alcohols, are poorly characterized in
terms of their hazards or physicochemical properties.22

■ COMPUTATIONAL METHODS
All of the calculations presented in this work were performed
using the Gaussian 16 quantum chemistry package.23

Molecular structures were generated in the more extended
conformation using GaussView 5.0.24

The geometries of all 55 molecules were optimized using the
three density functionals M06-2X,25 M11,26 and B3LYP27 with
the 6-311+G** basis set using the continuum solvation model
based on density (SMD).28 Hessian analysis indicated no
existence of imaginary frequencies, proving that all of the
optimized structures were true minima. SMD can be used as a
universal solvation model because it can be applied to any
charged or uncharged solute in any type of solvent.29 The
parameters required for the solvent are the dielectric constant,
refractive index, bulk surface tension, and acidity and basicity
parameters. This model divides the solvation free energy into
two main contributionsthe bulk electrostatic contribution
and the cavity dispersion contribution.
To calculate the octanol/water partition coefficient, the

SMD free energies obtained in the two solvents at 298.15 K
were used to calculate the standard free energy associated with
the transfer of the solute from the aqueous phase (w) to
octanol (o):

Δ ° = Δ ° − Δ °G G Go/w o w (1)

The octanol/water partition coefficient was then calculated
according to

= −
Δ °G

RT
logP

2.303
o/w

(2)

To calculate the octanol/air partition coefficient, the SMD
solvation free energy in octanol was obtained from the free
energies of the molecule in the gas phase and in octanol:

Δ ° = Δ ° − Δ °G G Gsolv,o o gas (3)

The octanol/air partition coefficient was then calculated
according to

= −
Δ °

K
G

RT
log

2.303oa
solv,o

(4)

■ RESULTS
The structures of the 55 solvents under study are shown in
Figure 1. All of the correlation coefficients, slopes, and
intercepts for all of the molecules are collected in Tables 1 and
2. The linear correlations between the experimental and
calculated values for the octanol/water and octanol/air
partition coefficients for the observed organic solvent data
set are presented graphically in Figures 2 and 3.
Notably, a good linear correlation was obtained for the logP

values with the M11 functional. As shown in Tables 1 and 2, a
variety of statistical error metrics were calculated to compare
the calculated logP and logKoa values to the experimentally
determined values: root-mean-square error (RMSE), Pearson
correlation coefficient (R), mean absolute deviation (MAD),
mean square error (MSE), mean absolute percentage error
(MAPE), and standard error. The assumed outliers observed in
the first data assessment (Figures S1−S3) were eliminated in
the next level of linear regression by applying the 4σ rule30 for
the detection of outliers. Extremely large and extremely small
values for both coefficients were observed in our data. The 4σ
region represents 99.99% of the values for a normal
distribution and 97% for symmetric unimodal distributions.
In our case, the outliers were adequately identified and
excluded from further statistical treatment of the data set. New
plots were established and are presented in Figures 2 and 3.
These metrics allow us to make meaningful comparisons

between experimental and calculated data with the SMD
solvent model and the three functionals. As previously
mentioned, the best results were obtained with the M11
functional, with RMSE = 0.72 and R = 0.99.
The obtained statistics show good accuracy of the computed

partition coefficients with the M11 functional. In general, the
signs of the calculated and experimental data were in
agreement. Positive values indicate a preference for the organic
phase, and negative values indicate a preference for the
aqueous phase. For DFT-based SMD solvation models, this
approach appears to be appropriate for obtaining good
correlations with the experimental measurements in the
calculation of logP. Presumably, the accuracy of the results is
due to the appropriate parametrization of the SMD solvation
model to yield accurate solvation free energies.

Table 1. Linear Regression Parameters Obtained for the Calculated LogP with Respect to the Experimental Data and
Statistical Error Assessment of the Linear Regression Terms Based on Applied Computational Models

density functional slope intercept R2 R MAD MSE RMSE MAPE standard error

M06-2X 0.9498 0.02 0.9726 0.9879 0.29 0.41 0.48 0.56 0.65
M11 0.9816 0.5398 0.9841 0.992 0.75 0.96 0.72 0.57 0.72
B3LYP 1.022 0.8597 0.9609 0.9802 0.86 0.96 0.9 0.58 0.86

Table 2. Linear Regression Parameters Obtained for the Calculated LogKoa with Respect to the Experimental Data and
Statistical Error Assessment of the Linear Regression Terms Based on Applied Computational Models

density functional slope intercept R2 R MAD MSE RMSE MAPE standard error

M06-2X 1.0111 0.1806 0.978 0.9889 0.4 0.39 0.59 0.95 0.3
M11 0.9816 0.5398 0.8891 0.9428 2.18 1.45 1.2 0.9 0.6
B3LYP 0.841 0.9527 0.8618 0.9339 1.78 1.92 1.33 0.63 0.75
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The predicted values for logKoa allowed us to evaluate the
solvation free energies obtained with the SMD model. The
various statistical error metrics were calculated and are
depicted in Table 2. The best agreement between the
calculated and experimental partition coefficients was obtained
with the M06-2X functional, indicating a good estimation of
the solvation free energy using the M06-2X functional. These
findings provide useful information for understanding the
partitioning, and the proposed computational scheme can be
applied to other unknown solvents. For the other functionals,
the obtained results also indicate that the approach is valid.
In all of the calculations, a single conformation (the more

extended conformation) was used for each molecule in each
phase. Although this conformation was verified to be a
minimum in the gas phase and in both solvents, it is possible
that multiple conformations in the gas phase and/or the
solvent should be taken into account to obtain accurate
descriptions.

■ CONCLUSIONS

Octanol/water and octanol/air partition coefficients were
predicted within the framework of DFT using three density
functionals (B3LYP and two popular (but different) Minnesota
meta-GGA functionals, M06-2X and M11), and their
accuracies were assessed. The best correlations with the
experimental data were achieved with the M11 and M06-2X
functionals, respectively. The quality of the regression models
was significantly improved after exclusion of points that were
determined to be outliers using the 4σ rule. Thus, this
computational protocol could be used as a tool for newly
synthesized solvents where there is a lack of data regarding the
octanol/water and octanol/air partition coefficients. The
methodology should be useful for predicting missing data for
envirometrics data interpretation and modeling.

Figure 2. Comparison of the calculated and experimental logP values.
The top graph shows the B3LYP model results, the middle graph
shows the M11 results, and the bottom graph shows the M06-2X
results.

Figure 3. Comparison of the calculated and experimental logKoa
values. The top graph shows the B3LYP model results, the middle
graph shows the M11 results, and the bottom graph shows the M06-
2X results.
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