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Abstract 21 

Gut microbiota plays a fundamental role in maintaining host’s health by controlling a wide range of 22 

physiological processes. Administration of probiotics and manipulation of photoperiod have been 23 

suggested as modulators of microbial composition and are currently undergoing an extensive research 24 

in aquaculture as a way to improve health and quality of farmed fish. However, our understanding 25 

regarding their effects on physiological processes is still limited. In the present study we investigated 26 

whether manipulation of photoperiod and/or probiotic administration was able to alter microbial 27 

composition in zebrafish larvae at hatching stage. Our findings show that probiotic does not elicit 28 

effects while photoperiod manipulation has a significant impact on microbiota composition. 29 

Moreover, we successfully predicted lipid biosynthesis and apoptosis to be modulated by microbial 30 

communities undergoing continuous darkness. Interestingly, expression levels of caspase 3 gene 31 

(casp3) and lipid-related genes (hnf4a, npc1l1, ppar, srebf1, agpat4 and fitm2) were found to be 32 

significantly overexpressed in dark-exposed larvae, suggesting an increase in the occurrence of 33 

apoptotic processes and a lipid metabolism impairment, respectively (p<0.05). Our results provide the 34 

evidence that microbial communities in zebrafish at early-life stages are not modulated by a short 35 

administration of probiotics and highlight the significant effect that the dark photoperiod elicits on 36 

zebrafish microbiota and potentially on health.   37 
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Introduction 38 

The collection of microorganisms including bacteria, archaea, virus, fungi and protozoa living in 39 

different districts of the body as the gastrointestinal tract, skin and mouth give rise to a complex and 40 

interconnected ecosystem called microbiota[1]. The vast majority of these microorganisms live in the 41 

gastrointestinal tract in a mutually beneficial relationship with the host and their concentration 42 

increases moving from the gastric lumen up to the colon/rectum. Gut microbiota plays a key role in 43 

maintaining host’s health and preventing the insurgence of diseases[2–4] and recent studies suggest 44 

this role is played via the gut-brain axis[5, 6], brain-gut-kidney axis[7], gut-lung axis[8] and others by 45 

the production of microbial metabolites that the body would not be able to produce otherwise[9]. 46 

Composition of the gut microbiota is usually similar at the phylum level between individuals of the 47 

same species but diversity and richness of the microbial species may differ as a result of environmental 48 

factors, diet, stress, genetics and other factors[10]. In the last few years, there has been growing 49 

evidence that circadian rhythm disorganization, due to environmental cues, has the ability to alter 50 

microbiota composition[11, 12]. Circadian rhythms are endogenous 24 h rhythmic patterns exhibited 51 

by a wide number of organisms, whose main role is to regulate and optimize the functions of cells, 52 

organs, systems as well as the animal behaviour[13–15]. Thaiss et al., demonstrated that humans and 53 

mice intestinal microbiota follows diurnal oscillation in relation to feeding rhythms leading to time-54 

specific compositional and functional profiles across the day[16]. Moreover, humans and mice 55 

dysbiosis driven by impaired feeding rhythmicity, as it happens in shift workers and frequent flyers, 56 

leads to the disruption of metabolic homeostasis by promoting glucose intolerance and obesity. 57 

Recently, Deaver et al., observed Ruminococcus torques, a bacterial species known to negatively affect 58 

gut barrier integrity, and Lactobacillus johnsonii, known to help maintaining the intestinal epithelial 59 

cell layer, to respectively increase and decrease their abundance in mice undergoing a 4-week period 60 

of constant 24 h light[17]. Thus, it is of paramount importance for the microbiota to follow regular 61 

diurnal oscillation in order to protect against homeostasis impairment and, consequently, diseases. 62 
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The use of probiotic food has been widely studied since the beginning of the 20th century for its ability 63 

to modulate microbiota composition and preserve host’s health[18]. According to Merrifield, “a 64 

probiotic organism can be regarded as a live, dead or component of a microbial cell, which is 65 

administered via the feed or to the rearing water, benefiting the host by improving disease resistance, 66 

health status, growth performance, feed utilization, stress response or general vigour, which is 67 

achieved at least in part via improving the hosts microbial balance or the microbial balance of the 68 

ambient environment”[19]. Probiotic species are able to change the microbial composition of the gut 69 

microbiota influencing a wide number of biological processes hence serving as a mean of disease 70 

control in aquaculture[20, 21]. Among the most widely studied and used microorganisms in probiotic 71 

research we found those belonging to the Bifidobacteria and Lactobacilli genera[22].  72 

In aquaculture, a great effort has focused on identifying ways to ameliorate fish health by both, 73 

administration of probiotics and modulation of photoperiod. For instance, Ziu et al., fed tilapias with 74 

the probiotic Lactobacillus plantarum for 14 days followed by a three days suspension and then 75 

challenged with Aeromonas hydrophila and found out that suspension of probiotic administration 76 

increased susceptibility of the host to A. hydrophila by inducing gut dysbiosis[23]. On the other hand, 77 

despite studies investigating photoperiod manipulation have demonstrated its effect on reproductive 78 

behaviour and physiology in different fish species[24–26], knowledge about microbiota composition 79 

following changes in lighting regimes and the underlying biological activity is still poorly known. 80 

Moreover, while most of the studies have focused on long-term manipulation of photoperiod, and 81 

mainly in adult fish, there is currently a lack of knowledge on whether short-term changes in circadian 82 

rhythmicity may affect the physiology of fish at early developmental stages.  83 

The aim of the present study was to establish whether fish microbiota could be modulated by 84 

photoperiod manipulation, during the first 24 h since their mouth opening, and whether 85 

contemporary administration of beneficial bacteria (probiotics) might be able to affect photoperiod-86 

induced alteration. To this extent, the zebrafish model was used to conduct an in-depth 87 

characterization of microbiota composition following disruption of circadian rhythmicity alone or in 88 
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combination with early-administration of the probiotic. By leveraging the power of marker gene-based 89 

analysis, we successfully characterized the microbial communities of zebrafish larvae under the 90 

different experimental conditions. Moreover, we predicted the functional profile of bacterial 91 

communities undergoing different light regimes and validated the findings by qPCR. The results 92 

obtained provide new insights about the ability of photoperiod to modulate microbiota composition 93 

highlighting the potential effects elicited by exposure to continuous darkness. 94 

 95 

Materials and methods 96 

Experimental design  97 

Adult female and male zebrafish (Danio rerio) were purchased from Bologna aquarium (Italy) and 98 

acclimatized to the laboratory conditions (27.0  0.5°C under a 12:12 h light:dark cycle). Pairs (seven 99 

per tank) were spawned and embryos placed in 10L plastic tanks under the same laboratory 100 

conditions. Temperature was controlled by placing the 10L tanks within bigger plastic tanks containing 101 

the 50 W magictherm heater (©PRO.D.AC. INTERNATIONAL S.r.l.). At hatching (about 72 h post 102 

fertilization, hpf) larvae were divided into 3 groups within the same type of tanks used for the 103 

embryos: one group was exposed to a 12:12 h light:dark cycle (LD), one group to 24 h of continuous 104 

light (LL) and one group to 24 h of continuous darkness (DD). Illumination was provided by means of 105 

fluorescent light with 36 W intensity and 4000 K of color temperature (©Osram, Germany). In 106 

addition, each group received two different treatments: control (C) or probiotic (P), which consisted 107 

on the administration of L. rhamnosus IMC 501 (C025396A; Synbiotec, Camerino, Italy) via the 108 

rearing water at a concentration of 106 colony-forming units (CFU) according to previous studies[27, 109 

28]. The experiment was set up in triplicates for each condition. After 24 h of exposure, at the same 110 

time in the morning, different pools of larvae were euthanised using MS222 (100 mg L-1) (Sigma-111 

Aldrich) and stored at -80°C for high-throughput sequence analysis and gene expression. All 112 

procedures involving animals were conducted in accordance with the EU and Italian law on animal 113 
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experimentation (Directive 2010/63/EU) with no need of requesting ethical approval when larvae 114 

within 5 days post fertilization are used.  115 

DNA extraction, PCR and marker gene (16s) amplicon sequencing  116 

Total DNA was extracted from pools of 100-125 larvae per sample (100  20 mg) using the DNeasy 117 

Blood & Tissue Kit (Qiagen) according to manufacturer’s instructions. A PCR amplification step was 118 

performed to amplify the V4 and V3 variable regions of the 16S rRNA gene using Illumina adapted 119 

primer 341F (CCTACGGGNGGCWGCAG) and Illumina adapted barcoded 805R primer 120 

(GACTACHVGGGTATCTAATCC) following 16S Metagenomic Sequencing Library Preparation protocol 121 

(Illumina, San Diego, CA). Samples and final libraries were quantified and quality tested using the Qubit 122 

2.0 Fluorometer (Invitrogen, Carlsbad, CA). Additionally, libraries were quality checked on Agilent 123 

2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA). Finally, amplicons were sequenced on the 124 

Illumina MiSeq platform run in paired-end mode with 300-bp read length by IGA Technology Services 125 

(www.igatechnology.com). 126 

Reads pre-processing and OTU assignments 127 

Demultiplexing was performed with CASAVA v. 1.8 and reads not matching indexes or representing 128 

the PhiX were removed. Raw sequence reads were processed with the Python package Cutadapt[29] 129 

v1.4.2 to remove any residual adapter contamination and quality trimming of paired-end reads were 130 

performed using the erne-filter command (Erne v1.4.6, default parameters except --min-131 

size=200)[30]. Reads with a minimum length of 200 bp were retained and analysed with QIIME v1. 132 

Briefly, The USEARCH (v8.1.1756, 32-bit) quality filter pipeline was employed to filter chimeric reads, 133 

to group replicate sequences, to sort sequences per decreasing abundance and to finally identify 134 

OTUs. OTU picking was achieved applying a minimum pairwise identity threshold of 97%. The most 135 

abundant sequence in each OTU was selected to assign a taxonomic classification based on the 136 

Greengenes database (v 2013_5) using the RDP classifier (v2.2), clustering the sequences at 97% 137 

similarity with a 0.50 confidence threshold. Outliers and singletons were then removed before running 138 

downstream analysis. 139 

http://www.igatechnology.com/
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Microbiota Statistical analysis 140 

Data analysis was performed within the R statistical environment. Samples were rarefied to the 141 

sample with the least reads only for diversity analyses. This choice was driven by the fact that 142 

normalizing the samples to account for uneven sampling depth by using rarefaction, still represents 143 

one of the most promising approaches[31]. The choice of using the sample with the least reads to 144 

rarefy the samples was supported by rarefaction curves (Supplementary Material 1).  Diversity 145 

estimates, rarefaction and principal coordinate analysis (PCoA) were performed using the R package 146 

Phyloseq[32]. Statistical differences in alpha diversity were assessed using the ANOVA followed by 147 

TukeyHSD post-hoc test with the Benjamini-Hochberg FDR correction. Community composition was 148 

analysed using the ADONIS function based on Bray-Curtis distances (R vegan package)[33]. Bar-plots 149 

of microbial abundances were drawn firstly taking the average of replicates and then considering taxa 150 

whose total abundance across all samples was at least 1%. Differential analysis was performed using 151 

raw counts as input into DESeq2[34, 35] and considering a 1% FDR threshold. Functional profiles for 152 

16S rRNA gene sequence data were predicted using the phylogenetic Investigation of Communities by 153 

Reconstruction of Unobserved States (PICRUSt)[36] and analysed using a multi-factorial ANOVA 154 

followed by a TukeyHSD post-hoc test within STAMP[37] with a 1% FDR threshold. 155 

qPCR validation 156 

Functional predictions were validated by means of qPCR. A pool of approximately 40 larvae per sample 157 

were homogenized with Precellys Evolution 24 homogenizer coupled to a Cryolis cooler and total RNAs 158 

were extracted using TriReagent (Ambion, Alcobendas, Spain), according to the manufacturer's 159 

recommendations. RNA was reverse transcribed with the Transcriptor First Strand cDNA synthesis Kit 160 

(Roche, Sant Cugat del Valles, Spain) and the cDNA obtained was stored at -20°C. The mRNA transcript 161 

levels of key genes drivers of apoptosis (caspases: casp3, casp8 and casp9), circadian rhythm (clocka, 162 

clockb and per1a) and lipid biosynthesis and accumulation (hepatocyte nuclear factor 4 alpha, hnf4a, 163 

Lanosterol 14a-demethylase, cyp51, Niemann-Pick C1-like 1, npc1l1, fatty acid synthase, fasn, sterol 164 

regulatory element-binding transcription factor 1, srebf1, peroxisome proliferator-activated receptor 165 
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gamma, ppary, 1-acylglycerol-3-phosphate O-acyltransferase 4, agpat4 and fat storage-inducing 166 

transmembrane protein 2, fitm2) plus two reference genes (beta actin, bactin and acidic ribosomal 167 

protein, arp) were examined with a CFX384TM Real-Time System (Bio-Rad, El Prat de Llobregat, Spain). 168 

All analyses were performed in triplicate wells using 384-well plates with 2.5 μL itaq SYBR Green 169 

Supermix (Bio-Rad, El Prat de Llobregat, Spain), 250 nM forward and reverse specific primers 170 

(Supplementary Material 2), and 1 μL diluted cDNA for each sample, in a final volume of 5 μL. The 171 

mRNA levels of each target gene analyzed were calculated using the Pfaffl method[38], relative to the 172 

geometric mean of the two reference genes once demonstrated they were stably expressed by the 173 

geNorm algorithm, both implemented in the BioRad CFX manager 3.1. software. Statistical analysis 174 

was initially performed by a two-way ANOVA to assess significance of both photoperiod and probiotic 175 

and, for those genes for which probiotic did not elicit any effect, we applied a one-way ANOVA within 176 

the control and probiotic conditions alone followed by a Tukey post-hoc test (p value<0.05). Normality 177 

of data was assessed by the Shapiro-Wilk test. 178 

 179 

Results 180 

The overarching goal of the present study was to investigate both the ability of probiotic and 181 

photoperiod manipulation to modulate the microbiota of zebrafish larvae within the first 24 h after 182 

hatching, considered the most sensible window as it represents the time of first opening of the mouth. 183 

High-throughput sequencing following the 16S metagenomic protocol produced 5.75 million paired-184 

end reads 300 bp long, obtaining on average 287,520 reads (min 151,818, max 602,796) for each 185 

sample. Average phred quality score per read was 35. One of the C-LL sample was lost because of the 186 

low DNA quality, while data exploratory analysis revealed the presence of two outliers (C-LD and P-187 

LD) that were also removed before running downstream analysis (Supplementary Material 3). 188 
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Effects of both photoperiod manipulation and probiotic administration on zebrafish larvae 189 

microbiota composition 190 

The ability of either probiotic or photoperiod to affect microbial species richness and evenness was 191 

assessed computing alpha diversity using Shannon and Inverse Simpson indexes. Interestingly, a 24 h 192 

administration of probiotic occurring straight after hatching was not able to affect any of the indexes 193 

while photoperiod affected both metrics (P < 0.01) (fig. 1). 194 

In order to evaluate relationships among samples and the ability of both probiotic and photoperiod 195 

to modulate bacterial composition, a two-dimensional principal coordinate analysis (PCoA) based on 196 

Bray-Curtis[39] distances was performed (fig. 2). Both, LL and DD samples clustered away from LD 197 

samples suggesting alteration of lighting regimen may represent a key factor in shaping microbial 198 

communities. Moreover, separation between C and P samples within the different photoperiods was 199 

not detectable. This finding was also statistically supported by a permanova analysis, as the 200 

photoperiod was the only factor able to affect the beta diversity (P < 0.001).  201 

Overall, the bacterial communities of all treatments were dominated by three main phyla, 202 

Proteobacteria, Bacteroidetes and Firmicutes. Moreover, microbial composition of LD samples, 203 

regardless of probiotic administration, was made almost entirely of Proteobacteria (98%).  The clear 204 

separation between LD cycle and DD or LL conditions identified by the PCoA was supported by 205 

differences in microbial composition. DD and LL samples were both characterized by a significant 206 

reduction of Proteobacteria (fig. 3). Moreover, the phylum Armatimonadetes, although accounting 207 

less than 1% of total abundance, was detected in the LL samples with a 19-fold increase respect to LD 208 

samples, in which was not detected at all (1% FDR). 209 

Most of the OTUs were resolved to either class, order or family level but for some of them, genus and 210 

species taxonomy could be also assigned. At class, order and family level, DD and LL samples showed 211 

a more diversified microbial community compared with LD samples, while differences between P and 212 

C samples were less pronounced (Supplementary Material 4-6). 213 
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A generalized linear model (GLM) was employed to identify genera and species abundance between 214 

the different light regimes and as a result of probiotic administration. A considerable number of 215 

genera were identified to be differentially abundant between DD, LL and LD treated larvae (fig. 4A-216 

4B).  Interestingly, a core microbiota of genera whose abundance was significantly different in both 217 

DD and LL samples compared with LD ones, was identified.  218 

Genera belonging to this core microbiota whose abundance was increased were Lactobacillus, 219 

Segetibacter, Methylobacterium, Mycoplana, Stenotrophomonas, Shinella, Hydrogenophaga, 220 

Hypnomicrobium and Ancylobacter, while genera Plesiomonas, Azohydromonas, Limnohabitans and 221 

Phascolarctobacterium were found to be less abundant. Moreover, in DD samples, OTUs belonging to 222 

the genera Rheinheimera, Pimelobacter, Acidovorax and Brevundimonas were found to be more 223 

abundant than in LD samples, while the genera Variovorax, Rikenella, Parabacteroides and Clostridium 224 

were significantly less abundant. On the other hand, in LL samples, OTUs belonging to the genera 225 

Pirellula, Collinsella, Dorea, Desulforhopalus, Desulfotalea, Desulfosarcina, Paraprevotella, 226 

Desulfobacter, Desulfobulbus, Rikenella, Coprococcus, Fimbriimonas, Tepidimonas, Tepidibacter, 227 

Clostridium, Rhodobacter, Haliscomenobacter and Methylotenera were found to increase their 228 

abundance compared with LD samples, while abundance of the genera Prostechobacter, Neisseria and 229 

Emticicia was significantly reduced. The microbial composition between DD and LL samples was also 230 

compared and a total of 22 genera differentially abundant were identified (Supplementary Material 231 

7). Surprisingly, when investigating differences in microbial composition between C and P samples we 232 

only identified the genera Candidatus Protochlamydia amoebophila, which could not be accurately 233 

identified at the species level, to significantly decrease its abundance in P treated larvae. 234 

We then set to investigate whether these differences could be observed at the species level. Although 235 

we could assign taxonomy at the species level only for a small number of OTUs, we successfully 236 

identified species whose abundance was influenced by the different photoperiod exposures 237 

regardless of probiotic administration (Table 1).  238 

239 
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In DD samples we identified Methylobacterium organophilum, Pimelobacter simplex, 240 

Novosphingobium subterraneum and Acidovorax delafieldii to significantly increase their abundance 241 

compared with LD samples while Variovorax paradoxus, Hydrocarboniphaga daqingensis, Rikenella 242 

microfusus and Shewanella oneidensis were significantly less abundant. On the contrary, we identified 243 

Collinsella aerofaciens, Methylobacterium organophilum, Desulforhopalus singaporensis, Rikenella 244 

microfusus, 4 species belonging to the Bacteroides genus (B. massiliensis, B. ovatus, B. uniformis and 245 

B. acidifaciens) and 2 species of the Ruminococcus genus (R. bromii and R. gnavus), whose abundance 246 

significantly increased in LL samples when compared to larvae exposed to the LD regime. Moreover, 247 

Lactobacillus rhamnosus and Shinella granuli were found to increase their abundance in both DD and 248 

LL, while Rikenella microfusus abundance increased in LL samples but decreased in the DD ones when 249 

compared to LD samples. Differences in microbial species between DD and LL exposed larvae were 250 

also investigated and species belonging to the Bacteroides (B. uniformis, B. massiliensi, B. ovatus and 251 

B. acidifaciens) and Ruminococcus (R. gnavus and R. bromii) genera were found to have a significant 252 

greater abundance in LL samples (Supplementary Material 8). 253 

Prediction of bacterial functional activity 254 

PICRUSt was employed to predict bacterial functions from the phylogenetic profiles observed. 255 

Accuracy of the prediction for each sample was assessed by computing the Weighted Nearest 256 

Sequenced Taxon Index (Weighted NSTI) (Supplementary Material 9).  257 

All samples except two had a NSTI value <0.06 which indicates the good quality of the prediction. The 258 

resulting metagenome predictions were categorized in KEGG pathways to identify biological functions 259 

potentially modulated by microbial communities of zebrafish larvae exposed to the different 260 

photoperiods or administered with probiotic. A total of 23 KEGG pathways were predicted to be 261 

modulated by photoperiod-shaped bacterial communities, while none of the KEGG pathways was 262 

found to be affected by probiotic administration (Supplementary Material 10).  263 

Interestingly, although significant differences in microbial composition at different taxa levels were 264 

identified for both DD and LL samples compared to the LD samples, regardless of probiotic 265 
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administration, biological activity predictions were only successful for DD samples. DD samples were 266 

predicted to be characterized by a greater metabolic potential for lipid biosynthesis, apoptosis and 267 

circadian rhythm (fig. 5).  268 

Experimental validation of predicted biological activity 269 

Ability of microbial communities arising from different lighting regimes to modulate the predicted 270 

biological functions was assessed by investigating expression levels of key target genes (fig. 6). First, 271 

both circadian clock genes analysed clocka and clockb were found to have a significant greater 272 

expression level in DD samples compared to the other two regimes regardless of probiotic 273 

administration, while another clock gene per1a did not show significant differences among any of the 274 

conditions. Apoptosis was investigated by quantification of caspase genes (casp3, casp8 and casp9). 275 

Casp3 was found to significantly increase its expression in DD samples of larvae not administered with 276 

probiotic, while casp8 and casp9 gene expression followed the same trend but was not statistically 277 

significant.  278 

Next, ability of DD microbial communities to modulate lipid biosynthetic processes was assessed by 279 

quantifying expression levels of key genes involved in lipid metabolism, transport and storage (hnf4a, 280 

cyp51, npc1l1, fas, ppar, srebf1, agpat4 and fitm2). This goal was achieved by initially performing a 281 

two-way ANOVA analysis to investigate effects of both probiotic and photoperiod. Since probiotic was 282 

found unable to elicit effects except for the fas gene, we decided to investigate photoperiod effects 283 

within each of the treatments (P and C) by a one-way ANOVA. Expression levels of hnf4a, npc1l1 and 284 

srebf1 were found to be significantly increased in DD fish compared to those under the other light 285 

regimes both, in the presence and absence of probiotic. In addition, cyp51, fas, pparg, agpat4, ppary 286 

and fitm2 were found to significantly increase in DD samples when compared with either LD or LL ones 287 

but only in samples not administered with probiotic. Interestingly, fas was the only gene for which a 288 

significant effect elicited by the probiotic could be detected. Surprisingly, in the LL samples none of 289 

the genes here examined was found to significantly change its expression level when compared with 290 

LD samples regardless of probiotic administration.  291 
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Discussion 292 

In the present study, we investigated the microbial changes occurring in zebrafish larvae undergoing 293 

different lighting regimes and/or administered with beneficial bacteria (probiotics) within the first 24 294 

h since their mouth opening (72 hpf), considered the most sensible window for microbial 295 

colonization[40, 41]. We identified that the administration of the probiotic L. rhamnosus does not 296 

significantly affect microbiota composition at the condition tested, while manipulation of photoperiod 297 

strongly shapes microbial communities in zebrafish larvae. Moreover, microbial communities 298 

undergoing different lighting regimes were successfully predicted to affect the metabolic potential of 299 

a wide range of biological pathways. Finally, qPCR analysis demonstrated expression levels of key 300 

genes involved in the circadian rhythms, apoptosis and lipid biosynthetic processes to be significantly 301 

modulated by the DD regime. 302 

According to Stephens et al., zebrafish larval stage starts at hatching (2-3 dpf) and gut colonization by 303 

microbial communities takes place straight after, when the larvae first encounters microbes in the 304 

surrounding environment[42]. More specifically, the zebrafish larval mouth opens at approximately 305 

72 hpf  and the digestive tract is a continuous tube in connection with the external environment, 306 

containing most of the microbiota of the individual[40, 41]. We investigated the sensitivity of the 307 

zebrafish larvae to probiotics and/or to environmental factors (photoperiod) within the first 24 h since 308 

their opening of the mouth. Probiotic administration in 72 hpf zebrafish larvae for 24 h was not able 309 

to affect alpha or beta diversity. Moreover, the only genera found to be significantly less abundant in 310 

probiotic-administered samples was the Candidatus Protochlamydia, whose species-level taxonomy 311 

could not be accurately identified. Despite the role of Chlamidyae in fish has not been investigated 312 

yet, in mammals they are associated with the insurgence of a wide range of pathologies, especially 313 

genital infections[43] and pneumonia[44].  314 

The reason why in the current study we have not been able to identify microbial changes in response 315 

to probiotic administration could be due to different reasons. Previously, Falcinelli et al., successfully 316 

characterized microbial communities changes due to probiotic treatments in 6 days post fertilization 317 
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(dpf) larvae after 3 days of treatment[27]; whereas in the present study 24 h administration of probiotic 318 

to 72 hpf (3 dpf) larvae might not have covered a sufficient window of time for the L. rhamnosus to 319 

shape the gut microbial community. However, our inability to capture changes in microbial 320 

composition following probiotic administration could be also associated with differences in the gut 321 

mucosal composition as previously demonstrated in sea bream (Sparus aurata) by Carnevali and 322 

collaborators[45]. In that study, two different probiotic species were administered to sea bream at 323 

different developmental stages and found out that the gastro-intestinal tract offers variable conditions 324 

depending on the stage of development resulting in a diverse microbiota composition. Thus, one 325 

possible explanaition would be that in the window between 72-96 h after fertilization, the zebrafish 326 

gut mucosa does not offer favorable conditions for L. rhamnosus to modulate microbial composition. 327 

Altogether, these findings suggest that early life stages do not seem to be good targets for acute 328 

modulations of gut microbiota by administration of probiotics, to potentially pose benefits to fish 329 

health. 330 

Studies investigating the ability of different photoperiod regimes to shape microbiota have already 331 

been reported[16, 17]. However, to our knowledge, studies focusing on microbial communities’ 332 

modulation by 24 h dark or light regimes have not been performed. Moreover, we focused on the 24 333 

h post hatching, when microbes first start to colonize the gut. We identified microbiota composition 334 

changes at different levels of taxonomy that have been linked to biological activity.  335 

According to Stephens et al.[42], proteobacteria are the most abundant phylum in the microbiota of 336 

zebrafish larvae and juveniles, but differences in class composition arise during the different 337 

developmental stages. More specifically, -proteobacteria are the most abundant class particularly in 338 

zebrafish larvae. Our findings are in agreement with Stephens et al., as Proteobacteria was the most 339 

abundant phylum across all the experimental conditions and its abundance was found to significantly 340 

decrease following either 24 h of LL or DD conditions. However, Proteobacteria were mainly 341 

dominated by -proteobacteria and, in smaller quantity, by -proteobacteria in larvae undergoing 342 

regular LD cycle. -proteobacteria are usually more abundant in freshwater species[46], howeverthey 343 
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have been shown to be also important in marine species[47, 48]. This difference is not surprising as 344 

the microbiome’s structure may be affected by a wide range of factors and there is evidence that 345 

microbial composition within individuals belonging to the same species may significantly differ[49, 346 

50].  347 

Significant differences at both genus and species level were observed but the lack of knowledge about 348 

the role that each of these taxa play in the maintenance of physiological homeostasis, in human and 349 

to a greater extent in fish, limits our understanding to just a small number. Interestingly, a 22-fold 350 

increase in the abundance of Ruminococcus species in LL samples compared with LD ones was 351 

detected. Despite its role in fish is currently unknown, in humans R. gnavus has been found to cause 352 

septic arthritis[51] as well as to correlate with the levels of triglycerides in blood serum[52]. In DD 353 

samples, we found species belonging to the Brevundimonas genus to have a 6-fold increase compared 354 

to LD samples. This genus has been shown to be one of the most prevalent cause of nosocomial 355 

infections[53]. Interestingly, increased abundance of Mycoplana genus was detected in both DD and 356 

LL samples in comparison to samples undergoing LD regime. Despite the functional role played by this 357 

genus still needs to be investigated, its increased abundance in humans has been associated with 358 

multiple sclerosis[54]. These findings suggest that modulation of photoperiod significantly alter 359 

microbial communities’ composition by creating potentially favourable conditions for species known 360 

to be pathogenic in humans. 361 

Alterations of circadian rhythmicity has the ability to affect physiological homeostasis leading to the 362 

insurgence of a wide range of diseases[55–59]. In addition, microbial communities play a pivotal role 363 

in physiological homeostasis and disruption of microbiome has been associated with the increased 364 

occurrence of several diseases as cystic fibrosis, obesity, diabetes, inflammatory bowel disease and 365 

chronic obstructive pulmonary disease[60–63]. In this context, we predicted the metabolic potential 366 

of microbial communities arising from the manipulation of normal circadian rhythm and identified 367 

lipid biosynthesis, apoptosis and circadian rhythm pathways as the best candidates to be further 368 

assessed by qPCR given their association with human diseases. PICRUSt represent a powerful tool to 369 
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estimate bacterial and archaeal genes present in a microbial community metagenome. However, it 370 

does present some disadvantages that include: 1) its ability to only predict the portion of the full 371 

metagenome targeted by the primers used since the input data is 16S rRNA and eukaryotic or viral 372 

contributions to the metagenome cannot be taken into account, 2) its ability to only predict gene 373 

families already known and included in the orthology reference used (KEGG in this case) and 3) the 374 

fact it is based on evolutionary modelling the gene content of known reference genome; hence, the 375 

accuracy of the prediction will depend on the availability of the appropriate references. Despite these 376 

limitations, PICRUSt has been widely and successfully used to predict the functional capabilities of a 377 

microbial community and here we took advantage of this tool for the same purpose.  378 

Circadian rhythms are endogenous oscillations of about 24 h that regulate organism’s physiology and 379 

behavior[64]. Although circadian rhythms are endogenous, they can be entrained by environmental 380 

cues called zeitgebers (i.e. light and temperature cycles and periodic food availability)[65]. At a 381 

molecular level, the circadian clock mechanism is conserved in vertebrates[15]. Briefly, clock and 382 

bmal1 genes form the CLOCK:BMAL1 heterodimer in the cytoplasm that, after translocation into the 383 

nucleus, trigger the transcription of target genes as per and cry[66]. Then, a negative feedback is 384 

achieved by PER and CRY by forming a heterodimer complex that, once translocated back into the 385 

nucleus, inhibits their own transcription by blocking the CLOCK:BMAL1 complex. Our results suggest 386 

an alteration of the circadian rhythmicity in animals undergoing DD photoperiod according to the 387 

significant increase induced in the expression level of both clocka and clockb, while the expression of 388 

per1a, which plays a key role in the generation of the circadian rhythm, was not found to be affected. 389 

LD cycles are needed for the correct onset of behavioral rhythmicity in zebrafish larvae[67]. Moreover, 390 

Villamizar and collaborators[68] demonstrated that alteration of those normal LD cycles in this species 391 

affect survival and growth, while zebrafish larvae kept under DD conditions died before 18 days post 392 

hatching[68], highlighting the detrimental effect of constant darkness.  Dekens and Whitmore 393 

investigated the expression level of zebrafish clock genes under different light regimes and found out 394 

that the expression of per1 loses its rhythmicity in DD conditions, while clock1 (clocka) expression in 395 
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both LD and DD was similar from 1 to 4 dpf[69]. Contrarily to that study, our findings provide evidence 396 

that a 24 h exposure to constant darkness in zebrafish larvae at 3 dpf following normal LD cycles is 397 

able to significantly alter the expression of clock genes, and to our knowledge this is the first study 398 

investigating the effects of such a short-term alteration of normal LD cycles in this species.  399 

Recently, the progress in circadian rhythms research shed light on the circadian regulation of lipid 400 

metabolism in mammals[70] and in fish[71]. Clock-controlled genes involved in lipid metabolism, as 401 

well as other metabolic pathways, are rhythmically enhanced or repressed by the molecular circadian 402 

clock and the loss of clock function is associated with the insurgence of abnormal metabolic 403 

phenotypes[72]. 404 

Our results revealed hnf4a, cyp51, npc1l, srebf1, fasn, ppar, agpat4 and fit2, genes involved in lipid 405 

metabolism[73–78], transport[79] and storage[80, 81], to significantly increase their expression in DD 406 

samples in comparison to samples undergoing DL and LL photoperiods, suggesting a disruption on 407 

lipid turnover and metabolism that could potentially lead to a total body increase of cholesterol and 408 

triglycerides. As the role of the gut microbiota in lipid metabolism is now well documented[82, 83], 409 

these findings suggest that microbial communities associated with a dark regimen could be able to 410 

disrupt normal biosynthetic processes affecting organism’s health since lipid homeostasis impairment 411 

has been associated with the insurgence of a wide range of pathologies[84, 85]. Our findings are in 412 

agreement with the study of Xie and collaborators[86] and the one of Casado and collaborators[87] 413 

where lipid metabolism impairment was observed in rats undergoing different lighting regimes.  414 

Apoptosis, a programmed cell death that involves the genetically determined elimination of cells, is a 415 

natural homeostatic mechanism normally occurring during development, aging and different 416 

pathologies[88]. Our results show the expression levels of casp3 to significantly increase in DD samples 417 

compared to the other regimes suggesting that microbial communities may increase the occurrence 418 

of apoptosis. This finding is in agreement with Carballada et al., which identified the presence of 419 

apoptotic cells in the epithelium of the epididymis, seminal vesicles, prostate and coagulating gland 420 

of the golden hamster (Mesocricetus auratus) following a short-day light regimen (8:16 LD cycle)[89]. 421 
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A similar study was also performed by Moffatt-Blue and collaborators[90], who observed that a short-422 

day light regimen increased the occurrence of apoptotic follicles in the ovary of Siberian hamsters 423 

(Phodopus sungorus). In both studies, the presence of active casp3 was identified by 424 

immunodetection. Despite the fact we only analyzed gene expression, the changes observed support 425 

similar effects in fish. In fact, Dezawa et al. reported increased apoptosis (determined by TUNEL 426 

staining) in retinal ganglion cells of carp following exposure to darkness[91]. 427 

Overall, the circadian rhythm, lipid metabolism and apoptotic pathways were successfully predicted 428 

to be modulated by the microbiota and changes in the expression of key genes driver of the 429 

aforementioned biological processes were identified. However, these findings taken together are not 430 

conclusive to demonstrate that these abnormal biological outcomes are truly mediated by the 431 

microbiota. Indeed, these outcomes could be the result of a direct effect of circadian disruption 432 

secondary to the observed changes in microbiota composition. In this context, the results obtained 433 

suggest that the alteration of lipid metabolism and the signal of apoptosis might work through 434 

microbial manipulation induced by different light regimes. 435 

Future directions 436 

Marker gene-based analysis represents a powerful tool to characterize bacterial communities in a 437 

given experimental condition. As 16S is shared by all the microorganisms it is possible to target a wide 438 

variety of bacteria. Moreover, given the presence of conserved regions in its sequence, it is possible 439 

to easily design primers targeting these regions. Also, since the 16S is one of the most studied and 440 

characterized genes, phylogenetic trees are well developed and taxonomic information are easily 441 

accessible through public databases. However, this approach just gives indication based on the 442 

presence/absence of a given taxa and lacks the ability to put the findings into a functional context. 443 

Recently, a few tools with the ability to predict biological activity triggered by microbial communities 444 

have been developed (PICRUSt, PAPRICA, tax4fun). Although marker gene-based analysis in 445 

combination with these tools give the opportunity to partially explore the functional capability of a 446 
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given microbiota, it still lacks the ability to provide a clear understanding of the association between 447 

a specific taxon (mainly genera and species) and the observed biological activity. More specifically, 448 

mechanistic information on how genera and species modulate biological functions cannot be 449 

investigated. In this context, metatranscriptomic approaches represent a more comprehensive 450 

methodology to investigate microbial communities and how they modulate an organism’s physiology 451 

and homeostasis. However, the elevated cost associated with this approach along with the complexity 452 

of the data analysis still represent a barrier to the advancement of this field. Our findings represent a 453 

very important first step in the characterization of microbial communities arising from different 454 

lighting regimes as they provide an overview of specific genera and species in the different conditions. 455 

However, we envisage that metatranscriptomic, in addition to studies employing germ-free animals, 456 

have the potential to further improve our understanding on the effects of photoperiod manipulation 457 

on the organism’s health providing the link of the association between microbial communities and 458 

organism’s physiology.  459 
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Figure 1: Alpha diversity. The plot shows sample species richness according to both the Shannon and the Inverse 722 
Simpson indexes of 72 hpf zebrafish larvae treated for 24 h with probiotic (P) or not (Control, C) while exposed 723 
to different photoperiods, 12:12 h light:dark cycle (LD), continuous light (LL) or continuous darkness (DD). It is 724 
possible to visually detect an increase of alpha diversity measure in LL and DD samples compared to LD samples 725 
while discrimination between C and P samples cannot be inferred. 726 

 727 

Figure 2: Beta diversity. Principal coordinate analysis (PCoA) of 72 hpf zebrafish larvae treated for 24 h with 728 
probiotic (P) or not (Control, C) while exposed to different photoperiods, 12:12 h light:dark cycle (LD), continuous 729 
light (LL) or continuous darkness (DD). The PCoA analysis shows a clear separation between LD photoperiod and 730 
DD and LL photoperiods suggesting the presence of significant changes in the microbial composition. In 731 
agreement with the Alpha diversity, differences between C and P were not detectable. The PCoA analysis is 732 
based on bray-Curtis distances. 733 

 734 

Figure 3: Phyla abundances. The stacked barplot shows the phyla abundances of 72 hpf zebrafish larvae treated 735 
for 24 h with probiotic (P) or not (Control, C) while exposed to different photoperiods, 12:12 h light:dark cycle 736 
(LD), continuous light (LL) or continuous darkness (DD). Replicates were averaged and taxa whose total 737 
abundance across all samples was at least 1% were considered. 738 

 739 

Figure 4: Genus level analysis. Differential abundance analysis at genus level of 72 hpf zebrafish larvae exposed 740 
to different photoperiods, 12:12 h light:dark cycle (LD), continuous light (LL) or continuous darkness (DD). The 741 
plot shows genera differentially abundant between A) DD and DL samples and B) LL and DL samples, regardless 742 
of probiotic administration, along with their fold change. Color coding shows the phyla taxonomic level. 743 

 744 
Table 1: Species level analysis. Differential abundance analysis at species level of 72 hpf zebrafish larvae exposed 745 
to different photoperiods, 12:12 h light:dark cycle (LD), continuous light (LL) or continuous darkness (DD). The 746 
table shows species differentially abundant between DD and DL samples and between LL and LD samples, 747 
regardless of probiotic administration, along with their fold change and FDR. 748 

 749 
Figure 5: PICRUSt predictions. The plots show the post-hoc results of the ANOVA analysis along with the 95% 750 
confidence intervals of 72 hpf zebrafish larvae exposed to different photoperiods, 12:12 h light:dark cycle (LD), 751 
continuous light (LL) or continuous darkness (DD). Blue, green and orange bar refer to DD, LD and LL 752 
photoperiod, respectively. 753 

 754 

Figure 6: qPCR validation. The boxplots show the expression values of the circadian rhythm, apoptosis and lipid 755 
metabolism-related genes analysed in samples of 72 hpf zebrafish larvae treated for 24 h with probiotic (P) while 756 
exposed to different photoperiods, 12:12 h light:dark cycle (LD), continuous light (LL) or continuous darkness 757 
(DD). Significant differences among fish under different light regimes are indicated by uppercase and lowercase 758 
letters for probiotic and control, respectively. 759 


