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ABSTRACT

Ototoxicity is a major cause of the loss of hearing and balance in humans. Ototoxic compounds include
pharmaceuticals such as aminoglycoside antibiotics, anti-malarial drugs, loop diuretics and
chemotherapeutic platinum agents, and industrial chemicals including several solvents and nitriles.
Human and rodent data indicate that the main target of toxicity is hair cells (HCs), which are the
mechanosensory cells responsible for sensory transduction in both the auditory and the vestibular
system. Nevertheless, the compounds may also affect the auditory and vestibular ganglion neurons.
Exposure to ototoxic compounds has been found to cause HC apoptosis, HC necrosis, and damage to the
afferent terminals, of differing severity depending on the ototoxicity model. One major pathway
frequently involved in HC apoptosis is the c-jun N-terminal kinase (JNK) signaling pathway activated by
reactive oxygen species, but other apoptotic pathways can also play a role in ototoxicity. Moreover, little
is known about the effects of chronic low-dose exposure. In rodent vestibular epithelia, extrusion of live
HCs from the sensory epithelium may be the predominant form of cell demise during chronic ototoxicity.
In addition, greater involvement of the afferent terminals may occur, particularly the calyx units
contacting type I vestibular HCs. As glutamate is the neurotransmitter in this synapse, excitotoxic
phenomena may participate in afferent and ganglion neuron damage. Better knowledge of the events
that take place in chronic ototoxicity is of great interest, as it will increase understanding of the sensory

loss associated with chronic exposure and aging.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Impaired function of the vestibular system causes vertigo, loss
of balance and loss of gaze fixation during movement, often
accompanied by dizziness and nausea. In humans, one cause is the
toxicity of some pharmaceuticals, including aminoglycoside
antibiotics, anti-malarial drugs, loop diuretics, and the chemo-
therapeutic agent cisplatin (Rybak (2007); Rybak and Whitworth,
2005; Schacht et al., 2012; Yorgason et al., 2006). Workplace
chemicals with potential inner ear toxicity include several solvents
such as toluene, styrene and trichlorethylene and synthetic
intermediates such as cis-2-pentenenitrile (Fechter et al., 1998;
Hoet and Lison, 2008; Perrine and Dominique (2008); Pouyatos
et al., 2002; Saldafia-Ruiz et al., 2012; Campo et al., 2013). These
and other compounds are ototoxic, that is, toxic to both the
vestibular and auditory sensory systems. The main targets of
toxicity are the hair cells (HCs), which are the mechanosensory
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cells responsible for the transduction of sound waves and of head
accelerations, including gravity and those resulting from linear and
rotational movements of the head. Their name refers to the apical
bundles of specialized microvilli, known as stereocilia, that contain
the molecular machinery for mechano-electrical transduction.
Mature vestibular HCs also have one single cilium, named a
kinocilium, while auditory HCs lose their kinocilium during
maturation.

Animal studies with acute or short-term repeated exposure
models have clearly demonstrated that ototoxic compounds may
cause permanent disability due to degeneration of most or all of
the HCs, because these cells cannot regenerate, or do so to a very
limited extent in most mammalian species (Forge and Schacht,
2000; Groves, 2010; Llorens et al., 1993; Rubel et al., 2013).
However, on many occasions, vestibular dysfunction appears
progressively as a result of a mild but persistent stress to the
system, as may occur in chronic aminoglycoside treatment. If the
stress is removed, as for instance by halting drug use, the
symptoms may fully persist, or decrease up to either complete or
incomplete recovery (Black et al., 2001, 2004). The events taking
place during the progressive injury that causes slowly appearing
symptoms of ototoxicity, which may be partly or fully reversible,
are scarcely established. A deep understanding of these processes
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is of great interest for several reasons. First, the slow damage
process may be a target for therapeutic intervention aimed at
blocking its progression before irreversible events take place.
Second, the recovery process may be a target for therapeutic
intervention aimed at shortening the time of recovery or at
ameliorating the final outcome of the process, i.e., turning partial
recovery into better or full recovery. Third, knowledge of the
events that take place during damage and repair will undoubtedly
shed light on the basic processes involved in the physiology and
homeostasis of the system. Fourth, slow damage mechanisms are
probably involved in the sensory loss commonly associated with
aging. While presbycusis (age-related hearing loss) is a widely
recognized phenomenon, age-related loss of vestibular function is
much less known, but has a similar high incidence. It may affect as
much as 65% and 85% of people over 60 and 80 years respectively,
and it constitutes a significant risk factor for falls (Agrawal et al.,
2009; Ishiyama, 2009). Loss of sensory functions is one major
determinant of the deterioration of quality of life during aging, and
to what extent chronic neurotoxicity is responsible for this
functional decline is an important open question. As in neurode-
generative diseases, sensory decline was once assumed to be an
unavoidable consequence of natural aging. However, it is
increasingly accepted that it is the end result of null or limited
capacity for regeneration combined with the damaging conse-
quences of different insults, including toxic insults, which may be
avoidable, at least in part.

The main purpose of the present paper is to review the scarce
data available on the cellular and molecular events that operate in
slowly progressing damage in the mammalian vestibular system
resulting from chronic toxic exposure. To give a more comprehen-
sive view of the field, the data on HC degeneration from other
exposure models and in other related epithelia are also briefly
reviewed, but an extensive presentation of these aspects is beyond
the scope of the present review. Other recent reviews are available
that cover the best-known aspects of HC degeneration following
ototoxic exposure (Cheng et al., 2005; Forge and Schacht, 2000;
Guthrie, 2008; Li and Steyger, 2009; Op de Beeck et al., 2011;
Schachtetal., 2012; Warchol, 2010; Xie et al.,2011; Yorgason et al.,
2011).

2. Vestibular sensory epithelia

There are five vestibular sensory epithelia in each ear: three
cristas, one utricle and one saccule. All of them contain two
morphological types of HCs, known as type I (HCI) and type Il (HCII)
(Fig. 1). In the auditory system, a single sensory epithelium, known
as the organ of Corti, contains two types of HCs, outer HCs (OHCs)
and inner HCs (IHCs). In all HCs, deflection of the stereocilia opens
the mechano-electrical transduction channels at the tips of the
stereocilia, allowing a cation current to flow and depolarize the
cell. Vestibular HCs are presynaptic to afferent terminals of the
vestibular ganglion neurons, and depolarization leads to neuro-
transmitter release at the basolateral membrane of the cell. The
neurotransmitter is glutamate and this makes the post-synaptic
afferent terminals a candidate target for excitotoxic damage. HCII
are contacted by button afferent terminals, and these synapses are
surrounded by supporting cells that express EAAT1 (excitatory
amino acid transporter 1, also known as GLAST) for glutamate
clearance (Takumi et al., 1997). The contact between the HCI and
their afferent terminals is a very unique structure. The cell has an
amphora-like shape, and the terminal has a calyx shape that
envelope the cell up to its neck. Growth of the calyx afferents
during development depends on trophic signals secreted by the
HCs, including BDNF acting through TrkB/PLCy (tyrosine kinase
receptor B/phospholipase C gamma) signaling in the nerve
terminals (Sciarretta et al., 2010). Scaffolding, cell adhesion,

extracellular matrix proteins, and ion channels have now been
identified and shown to form several microdomains within the
calyx membrane (Lysakowski et al., 2011). The HCI-calyx ending
contact is a very unique setting with regard to excitotoxicity
potential, because the calyx separates the synaptic cleft from the
neighboring supporting cells, and this makes it impossible to
remove glutamate by EAAT1. Recent data (Dalet et al., 2012)
indicate that HCs express the excitatory aminoacid transporters
EAAT4 and EAAT5, whose particular kinetics may match the
exceptional arrangement of this synaptic contact with regard to
the regulation of glutamate concentrations in the synaptic cleft.

3. Experimental models in ototoxicity research

Experimental research into ototoxic damage has largely focused
on clinically important drugs, such as the aminoglycosides and the
chemotherapeutic drug cisplatin. Data from the temporal bones of
patients exposed to these drugs indicated that HCs are the main
target and that persistent hearing or balance loss after exposure to
these compounds is usually associated with loss of HCs. However,
other effects, such as damage to the stria vascularis and loss of the
spiral and vestibular ganglia neurons, have also been observed.
Animal studies in a variety of species have corroborated these
findings (reviewed by Guthrie, 2008; Schacht et al., 2012).

In many species, ototoxic drugs have other toxic effects that
compromise survival, such as renal toxicity, and this makes it
difficult to establish good animal models to study ototoxicity. Rats
and mice are comparatively resilient to aminoglycoside-induced
HC toxicity, whereas guinea pigs are more susceptible to this
toxicity and have the advantage of a large inner ear; so this last
species has frequently been chosen for this research (Forge and
Schacht, 2000; Li et al.,, 1995). Another particularly sensitive
species is the chinchilla, and a number of studies have been carried
out on this species (see McFadden et al., 2002; Yorgason et al.,
2011). As well as some studies in other mammalian species (see
Yorgason et al., 2011), many studies of avian species have also been
published (Mangiardi et al., 2004), as have studies of the zebrafish
more recently (Chiu et al.,, 2008). Since the work by Wu et al.
(2001), significant efforts have been devoted to establishing
systemic rat and particularly mouse models of ototoxicity with the
twofold aim of reaching a better understanding of ototoxicity in
vivo, and easily causing reproducible lesions to develop protection,
repair and regeneration strategies. Using repeated administration
of selected aminoglycosides in selected strains, cochlear and
vestibular toxicity are achieved (Wu et al., 2001; Murillo-Cuesta
et al.,, 2009, 2010). Alternatively, partial lesions of the cochlea,
usually sparing the vestibular epithelia, are obtained by acute co-
administration of an aminoglycoside and a loop diuretic (Oesterle
et al., 2008; Taylor et al., 2008). A similar model has been
developed by co-administering cisplatin and furosemide to mice
(Li et al., 2011). Other compounds, notably the nitriles, have been
discovered to cause ototoxic effects in a variety of species including
rats and mice with no or limited associated mortality (Balbuena
and Llorens, 2001; Llorens et al., 1993; Llorens and Rodriguez-
Farré, 1997; Saldafa-Ruiz et al., 2013; Soler-Martin et al., 2007).

As discussed below, repeated exposure models have provided
some new information on the molecular events that may be
involved in ototoxicity, although these models remain sub-optimal
in terms of ease of use, flexibility and the presence of other toxic
effects. Although many studies have been published that provide
data on ototoxicity, few canonical toxicological studies are
available that use a range of doses that produce from no effect
to complete lesions, or that compare different time exposure
conditions (acute, sub-acute, sub-chronic and chronic).

To circumvent the systemic toxicity problem, ototoxins have on
many occasions been studied by local application to the middle ear
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Fig. 1. Organization of the mammalian vestibular epithelia (A and B) and modes of demise of sensory hair cells (HCs) (C-E). (A and B) Vestibular epithelia from control rats.
These contain two types of HCs, which extend their bundles of cilia (C) into the endolymphatic cavity (EC). Supporting cells (SC) surround the HCs. Tight junctions (arrows)
between HCs and SCs and among SCs close the apical part of the epithelium to exclude the potassium-rich endolymph from the epithelium. Type I HCs (HCI) are contacted by
calyx afferents (arrowheads in A) that envelope the cell, while type Il HCs (HCII) are contacted by button afferents (* in B). (C) A degenerating HCI in a vestibular epithelium
from a rat acutely exposed to 3,3’-iminodipropionitrile (IDPN), showing features of cell necrosis, nuclear swelling and cytoplasm vacuolization and swelling. (D) A
degenerating HCI showing features of apoptosis, cell shrinkage, and cytoplasm and chromatin condensation, in a vestibular epithelium from a rat sub-acutely exposed to
IDPN. (E) Extruding HC (type undetermined) in a vestibular epithelium from a rat chronically exposed to IDPN. The integrity of the epithelium, which is located toward the
bottom of the image, is preserved by the SCs that keep their tight junctions (arrows) among them and with the HC, until the extrusion of the cell into the EC is completed. In
this chronic ototoxicity model, there is a striking scarcity of major signs of damage in the cytoplasm, nucleus or mitochondria of the extruding HCs. Scale bars: 2 pm.

of rodents, from where they diffuse into the inner ear causing
auditory and vestibular toxicity with little systemic toxicity (Bauer
and Brozoski, 2005; Dupont et al., 1993; Heydt et al., 2004; Lyford-
Pike et al., 2007; Sera et al., 1987). Using this approach, rats and
mice are as susceptible to aminoglycoside and cisplatin ototoxi-
cities as guinea pigs are. All these studies correspond to acute
toxicity.

Ototoxicity has also been studied in vitro, in explant cultures of
the organ of Corti or the vestibular epithelia (Cunningham, 2006;
Forge and Li, 2000; Kotecha and Richardson, 1994; Matsui et al.,
2004). Those studies provide valuable information on the response
of the HCs to ototoxic stress, but have many important limitations
with regard to the understanding of chronic ototoxicity. Among
other differences, the explanted epithelia lack the endolymphatic
compartment and innervation.

Ototoxic drugs typically damage both the vestibular and the
auditory system. However, it is important to keep in mind that
research findings in one of the systems may or may not be valid in

the other. While many cellular and molecular components are
similar in both systems, important differences also exist. The
amount of data available on auditory toxicity is far greater than
that available on vestibular toxicity, and many questions that have
been investigated in the cochlea remain unexplored in the
vestibular system.

4. Apoptosis and necrosis of HCs in ototoxic damage

The mechanisms responsible for the HC loss caused by ototoxic
exposure have been studied in a variety of experimental models. In
several acute or repeated exposure in vivo studies (Lenoir et al.,
1999; Li et al., 1995; Llorens and Demémes, 1994; Seoane et al.,
2001a; Vago et al., 1998) transmission electron microscopy data
identified mostly apoptotic, but also necrotic, patterns of HC
degeneration. Ultrastructural evidence of HC apoptosis was also
obtained from utricular explant cultures (Forge and Li, 2000). One
specific feature of HC degeneration, which seems to be part of
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the apoptosis program of the cells, is the severing of its neck and
the release of its apical end, including the cuticular plate and ciliary
bundle, toward the endolymphatic space. Simultaneously, sup-
porting cells close the forming gap and preserve epithelial integrity
by forming characteristic scars that impede the exposure of the
basolateral membranes of the epithelial cells to the potassium rich
endolymph (Forge, 1985; Leonova and Raphael, 1997).

The molecular pathways involved in the apoptosis of mamma-
lian HCs induced by ototoxic insults have mainly been studied in
the organ of Corti and utricular explants exposed to either
aminoglycosides or cisplatin. The data available (reviewed by
Casares et al., 2012; Cheng et al., 2005; Guthrie, 2008; Op de Beeck
et al,, 2011; Schacht et al., 2012; Warchol, 2010) support the
hypothesis that generation of reactive oxygen species in the HC
mitochondria is the key event that precipitates apoptosis. In the
case of the antibiotics, the formation of iron-aminoglycoside
complexes which are redox-active seems to be the main factor
contributing to the oxidative stress, although enzymatic pathways
may also participate. The way by which cisplatin generates
reactive oxygen species is less clear but may involve their
generation by NOX3 (a superoxide-generating isoform of NADPH
oxidase) and by xanthine oxidase. For both cisplatin and
aminoglycosides, apoptosis depends on activation of the effector
caspase-3 preceded by activation of the upstream caspase-9. One
major link between oxidative stress and caspase activation that has
been identified in the aminoglycoside studies is the c-jun N-
terminal kinase (JNK) signaling pathway. For cisplatin, it has been
suggested that JNK activation participates in HC repair rather than
HC death, while activation of the p53 tumor suppressor has been
identified as a major upstream pathway for caspase activation.
Nevertheless, multiple signaling pathways for apoptosis may
activate simultaneously.

Molecular evidence of a role of apoptosis in ototoxic HC loss in
vivo is also abundant, but the emerging picture is a complex one,
and it is quite clear that the modes of HC demise may vary from one
exposure model to another, and that they may include non-
apoptotic modes. That HC apoptosis occurs in both the cochlea and
the vestibular epithelia during ototoxic damage was indicated
early on by biochemical evidence, such as DNA fragmentation
(Lenoir et al., 1999; Nakagawa et al., 1997; Seoane et al., 2001a;
Usami et al., 1997). As found in vitro, several different pathways
have been identified in in vivo studies. For instance, in chinchilla,
activation of the initiator caspase-9 has been identified as a
mediator of the ototoxicity caused by co-exposure to gentamicin
and ethacrynic acid (Ding et al., 2010) while activation of the
initiator caspase-8 has been identified instead for the cisplatin/
ethacrynic acid combination (Ding et al., 2007). However, caspase-
independent pathways of HC cell death have been found to
predominate in other models. Thus, following kanamycin admin-
istration, mouse auditory hair cells showed EndoG translocation
and activation of -calpain and cathepsin D, but no markers for
classic apoptotic pathways (cytochrome c, caspase-9, caspase-3,
JNK and TUNEL) (Jiang et al., 2006). In that study, ultrastructural
features of HC necrosis were observed along with apoptotic HC
figures; the results suggest that chronic aminoglycoside treatment
may trigger multiple cell death pathways, including those leading
to necrosis (Jiang et al., 2006). This would be in contrast to the
predominant role of apoptosis found in vitro and in acute models
(see above).

From the data reviewed in the previous paragraph, one may be
tempted to conclude that HC apoptosis is associated with acute
modes of ototoxicity while necrosis predominates in more chronic
models. However, this hypothesis is not supported by the data
obtained using the 3,3’-iminodipropionitrile (IDPN) model in the
rat vestibular system (Seoane et al., 2001a). In that model, necrosis
predominates according to ultrastructural criteria after high acute

doses, while apoptosis predominates following more progressive
repeated exposure. This observation is in agreement with data
from the field of neuronal degeneration, which show necrosis at
high intensities of damaging stimuli that cause apoptosis at lower
intensities (Nicotera et al., 1999). One factor that may be involved
in the differential response of HCs to ototoxic chemicals is their
pharmacokinetics. It is well known that aminoglycosides readily
enter HCs and then undergo biphasic clearance with a second half-
life of longer than 30 days (Schacht et al., 2012). This probably
accounts for the progression of ototoxicity events even long after
the end of the exposure period. It could also facilitate higher HC
concentrations being reached following chronic dosing, which in
turn may condition the cell death pathways being activated. In the
cochlea, the interaction with noise may also be a conditioning
factor (Li and Steyger, 2009).

5. HC extrusion in ototoxic damage

In epithelia, cell demise can proceed by extrusion of the cell
from the luminal surface. The best-known example is the extrusion
of cells from the intestinal mucosa, which is part of the continuous
renewal of this epithelium. The extrusion of cells in the apical parts
of the villi balances the generation of new epithelial cells in the
deep parts of the intestinal crypts (Stappenbeck et al., 1998).
Although there are data indicating that HCs extrusion can occur in
the mammalian cochlea (Seoane and Llorens, 2005; Whitworth
et al,, 1999), this phenomenon is not well-documented in this
epithelium and the common finding is apoptotic intraepithelial
degeneration (Forge, 1985). In contrast, there is no doubt that
extrusion operates in the mammalian vestibular epithelia and in
the auditory and vestibular epithelia of non-mammalian verte-
brates following ototoxic exposure. In one of the first studies that
specifically addressed this question, two patterns of HC demise
were identified by scanning and transmission electron microscopy
in the vestibular sensory epithelia of guinea pigs exposed to
gentamicin (Li et al., 1995). These were apoptosis of HCs within the
sensory epithelia and extrusion of apparently live cells toward the
endolymphatic cavity. Evidence of this form of HC demise was
already available in mammals (e.g., Wérsall et al., 1973) and had
long been recognized as the main form of HC loss in non-
mammalian vertebrates following a variety of insults (Corwin
et al, 1991; Cotanche, 1987). In some particular intoxication
models, HC extrusion is the only observed form of cell demise in
the mammalian vestibular epithelia (Seoane et al., 2001a,b).
Despite this prominent occurrence of HC extrusion, its physiologi-
cal significance and the molecular mechanisms involved remain
insufficiently characterized. One widely accepted hypothesis is
that HC extrusion and apoptosis both allow the preservation of
tissue integrity by minimizing damage and inflammation in the
local environment (Hirose et al., 2004; Hordichok and Steyger,
2007; Li et al., 1995; Mangiardi et al., 2004; Seoane et al., 2001a).
One less clear aspect is the relationship with the intoxication rate.
It is well known that many toxic compounds may cause cell
necrosis or apoptosis depending on the concentrations, with
necrosis observed at higher concentrations (Ankarcrona et al.,
1995; Bonfoco et al., 1995; Gwag et al., 1999; Nicotera et al., 1999).
In a comparison of acute, sub-acute and sub-chronic exposure to
IDPN, Seoane et al. (2001a) observed that necrosis predominated
following acute high-dose exposure, while apoptosis predomi-
nated following sub-acute exposure, and sub-chronic low-dose
exposure caused extrusion of most HCs. It was concluded that the
predominant mode of HC demise depends on the intensity of the
damaging stimulus and that extrusion is the predominant form
associated with the low intensity, persistent insult caused by
chronic low-dose ototoxic exposure. Thus, extrusion would be a
finely controlled way of eliminating damaged HCs, and would be
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caused by the more progressive forms of HC damage. Although
there is no independent confirmation of these statements, some
data support the conclusion that HC extrusion is a major factor in
chronic ototoxicity (Granados and Meza, 2005), in contrast to acute
ototoxicity (Llorens and Demémes, 1994).

The relationship between HC apoptosis and extrusion remains
to be better understood. In the auditory system of chicks exposed
to gentamicin, Mangiardi et al. (2004) found expression of
molecular markers of apoptosis, including activated caspase-3,
in the extruding HCs. The observation that extruding cells undergo
apoptosis at the same time had been reported in the intestinal
epithelia (Rosenblatt et al., 2001). However, no evident ultrastruc-
tural or biochemical signs of apoptosis were observed in the
extruding mammalian vestibular HCs (Li et al., 1995; Seoane et al.,
2001a). Interestingly, live cell extrusion, rather than apoptotic cell
extrusion, has recently been characterized as a major mechanism
operating in a number of mammalian and non-mammalian
epithelia to maintain cell numbers (Eisenhoffer et al., 2012). To
our knowledge, the molecular events triggering HC extrusion in
ototoxically damaged mammalian vestibular epithelia have not
been studied.

6. Ganglion cells and afferent terminals in ototoxic damage

Although there is ample consensus that ototoxic compounds
are defined by their toxicity upon the HCs, it is also well known
that afferent dendrite terminals and the corresponding ganglion
neurons may also be damaged (Dau and Wenthold, 1989;
Koitchev et al.,, 1982; Ylikoski et al., 1974). In fact, several
reports have found that the terminals are damaged before the
HCs. These include studies of human auditory systems that
apparently show primary loss of auditory neurons following
ototoxic exposure (Hinojosa and Lerner, 1987; Sone et al., 1998).
These results differ from the more common finding of auditory
HC degeneration preceding neuronal degeneration, which is
usually interpreted as secondary degeneration of the ganglion
neurons due to loss of trophic support after the HC degeneration
that would be the primary ototoxic event (e.g. Ernfors et al.,
1996; reviewed by Schacht et al., 2012). In animal studies, the
common view of primary HC loss followed by secondary
neuronal degeneration (Ladrech et al., 2004; Schacht et al.,
2012) is nevertheless accompanied by evidence that direct
damage to the terminals may also occur (e.g. Ruan et al., in
press). Little data is available on the molecular mechanism
involved in spiral ganglion neuron degeneration, but calpain and
protein kinase C activation have been reported to occur and may
have damage-mediating and protective roles, respectively
(Ladrech et al.,, 2004). In both the auditory and vestibular
ganglia, aminoglycosides increased the expression of transient
receptor potential cation channel superfamily V (TRPV) and of
mitochondrial uncoupling proteins 2 and 3, and this was
interpreted as activation of defense mechanisms against the
ototoxic insult (Kitahara et al., 2005a,b).

In the vestibular system, a decrease in the number of vestibular
ganglion neurons has been recorded in specimens from humans
affected by aminoglycoside ototoxicity (Ishiyama et al., 2005).
According to the authors, the findings were compatible both with a
secondary consequence of HC loss and with a direct toxic effect of
the antibiotics on the vestibular neurons. In animal studies,
vestibular ganglion neurons have been found to survive longer
than spiral ganglion neurons after HC loss (Dupont et al., 1993;
Jensen, 1983), but available data also support the hypothesis that
ototoxic compounds may have a direct toxic effect on the ganglion
neurons in addition to their HC effect (Sera et al., 1987). One
particular view is offered by studies with IDPN in the rat, as this
ototoxic compound offers unique flexibility in dosing regimes.

Following acute high-dose exposure, exquisite preservation of the
vestibular afferent terminals was observed at short times after
exposure when the HCs were degenerating through necrotic and
apoptotic patterns (Llorens and Demémes, 1994). In contrast, in
the chronic IDPN model that predominantly causes HC extrusion
(Seoane et al., 2001a), the initial evidence for HCI extrusion was
preceded by calyx afferent detachment, and this was followed by
retraction and fragmentation of the calyces (Seoane et al., 2001b).
The known effects of IDPN on neurofilaments (Chou and
Hartmann, 1964; Griffin et al., 1978; Llorens and Rodriguez-Farré,
1997), leading to loss of NF in the vestibular afferents (Seoane et al.,
2003) as in the motor endplates (Soler-Martin et al., 2012), may
have a role in the pathology of the afferents after chronic exposure
(Seoane et al., 2003). However, this may be a common response to
chronic ototoxicity.

As indicated above, the HC synapses on the ganglion neurons
are glutamatergic, so these neurons are exposed to excitotoxi-
city. This has been investigated through trans-tympanic injec-
tion of glutamate agonists, which results in acute excitotoxic
damage to the cochlear and vestibular afferents that in mild
conditions can involve reversible swelling only (Brugeaud et al.,
2007), while stronger stimuli will cause complete degeneration
(Raymond et al., 1988). Acute excitotoxic damage to the afferent
terminals is also a key event in ischemia-induced inner ear
damage (Pujol et al., 1992), and is believed to have a major role
in noise-induced auditory neuron damage (Kujawa and Liber-
man, 2009). In the case of reversible damage to the terminals,
functional evidence indicates the temporary loss of synaptic
transmission, known as “synaptic uncoupling” (Brugeaud et al.,
2007; Puel et al., 1995). The occurrence of excitotoxicity in the
inner ear synapses may explain the observations of primary
afferent or neuronal damage by ototoxic compounds that in
other experimental settings show high selectivity for the HCs.
The explanatory hypothesis would be that HCs under toxic
stress have a limited capacity for regulating glutamate release
and reuptake, which leads to chronic excitotoxic aggression to
the afferents. If this is true, slowly evolving afferent damage
would be the most relevant event in the early stages of any
chronic ototoxic exposure. As noted above, the synapse between
calyx afferents and HCIs may be particularly sensitive to
deregulation of glutamate homeostasis.

7. Conclusion

Ototoxic compounds that cause HC loss in both the vestibular
and auditory systems are probably quite selective for these cells,
where they often activate apoptotic pathways, although they also
activate other cell demise pathways, including necrosis. The
ganglion neurons are also a target of this toxicity and the extent to
which ganglion neuron damage is due to direct toxicity or a
secondary consequence of HC loss may depend on the particular
exposure model. The data available from chronic low-dose
exposure models indicate that more complex patterns of HC
demise and afferent neuron damage may occur, and these are
scarcely understood. The effects of chronic low-dose exposure are
more relevant to human populations and to the possible role of
ototoxic exposure on the sensory loss observed in aging. Thus,
research efforts are required to understand the physiological role
and molecular mechanism of HC extrusion and the role of
excitotoxic processes in chronic ototoxicity.
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