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Barcelona, Mart́ı i Franqués 1, 08028 Barcelona, Spain.

Abstract

We re-analyse current single-field inflationary models related to primordial black holes

formation. We do so by taking into account recent developments on the estimations of

their abundances and the influence of non-gaussianities. We show that, for all of them,

the gaussian approximation, which is typically used to estimate the primordial black holes

abundances, fails. However, in the case in which the inflaton potential has an inflection

point, the contribution of non-gaussianities is only perturbative. Finally, we infer that only

models featuring an inflection point in the inflationary potential, might predict, with a very

good approximation, the desired abundances by the sole use of the gaussian statistics.

1 Introduction

LIGO detection of black holes mergers [1] have renewed the interest in the hypothesis that the

dark matter, or some substantial fraction of it, might be composed by primordial black holes

(PBHs) [2–6]. Within this hypothesis, PBHs can be generated, among other mechanisms, as

a consequence of high non-linear peaks in the primordial distribution of density perturbations

[7]. While at the Cosmic Microwave Background Radiation (CMB) scales the amplitudes of

the curvature perturbations are too small to generate a significant amount of PBHs, there is

currently no hard bound on their amplitudes at small scales, leaving open the possibility of

having a large fraction of the Dark Matter (DM) in the form of PBHs.

The method to determine PBH abundances has been recently extensively revisited [8, 9] (see

also, [32]). In [8, 9] it has been shown that the abundances are sensitive to the shape of the

power spectrum, and that a proper account of this might drastically change earlier predictions.

A caveat might be there though. In the work of [8], and in most of the earlier works, it

was assumed an exact gaussian distribution for the amplitudes of density perturbations. This

assumption might seem too strong as rare non-linear events (associated to the PBH production)

sit in the tail of the probability distribution of the density perturbations.
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The question of whether the gaussian estimation of abundances is correct has been raised in

[10–17] and, in [17], a method to check whether or not non-gaussianities are relevant has been

provided. Applying this method to the correct statistical variable describing the PBHs abun-

dances, we will show that the gaussian estimation receives large corrections from the inflationary

bispectrum in all current single-field models of PBH production. The models considered in this

work are all the single-field models constructed so far that are able to generate a large peak in

the power spectrum.

The earliest attempt to connect single-field models to PBHs formation appeared in [18].

However, there, the predicted CMB spectrum was ruled out just after the measurements of the

Planck satellite [19]. The first models consistent with current CMB data were designed to have

an inflection point in the inflationary potential. From this class of models we will consider the

one in Germani et al. [20], which optimises the model of Garcia-Bellido et al. [21]. These models

generate a relatively small peak in the power spectrum. A more efficient way to generate a large

peak is to consider a potential with a local maximum. There, the peak amplitude is at least an

order of magnitude larger than the one related to an inflection point. Inspired by Higgs inflation

[22], Ezquiaga et al. [23]1, Kannike et al. [25], Ballesteros et al. [26] and Räsänen et al. [27]2

considered a non-minimally coupled scalar with logarithmically running coupling constants. It

was also realised that potentials with a local maximum can be also found in UV inspired settings

such as stringy axions (Özsoy et al. [28]), alpha-attractors in supergravity (Dalianis et al. [30])

and specific settings in string theory (Cicoli et al. [29])3. In this work we will consider for each

model the parameters which predicts the smallest non-gaussian signal. We also assume that

the process of PBH formation happens during radiation era, which is the case in a ‘standard’

reheating history.

2 Abundances and the impact of non-gaussianities

2.1 The over-density and distribution

Inflation generates, at super-horizon scales, the following metric perturbations on a Friedmann-

Robertson-Walker (FRW) geometry

ds2 ' −dt2 + a(t)2e2R(~x)d~x · d~x , (2.1)

1Here, the slow-roll approximation was used in the regime in which the ultra-slow-roll one should be instead

used. For a similar analysis with realistic runnings of the Higgs parameters and within the slow-roll regime, the

authors of [24] found a negligible abundance of PBHs.
2Here, the authors assumed Planck mass remnants after the evaporation of very small PBHs. In this paper we

will not consider this case.
3On the listed models, we will only consider the parameters which predicts the smallest non-gaussian signal.
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where R is the so-called curvature perturbation, a(t) the scale factor and the horizon size

is defined as RH ≡ 1/ȧ. Initial conditions for numerical simulations of primordial black hole

formation are imposed at super-horizon scales and in real space [9]. Thus, the minimal amplitude

(threshold or critical value) that a perturbation must have to trigger gravitational collapse into

a black hole, is typically given at those scales.

It is clear from (2.1) that the curvature perturbation is defined up to an arbitrary constant,

so it is meaningless to define an absolute threshold value for R. The physical quantity is the

density contrast in real space [8, 31, 32], ∆(~x, t) ≡ δρ(~x, t)/ρ(t), where ρ(t) is the background

energy density and δρ(~x, t) its perturbation. At linear order and at super-horizon scales, ∆(~x, t)

is related to R(~x) as4

∆(~x, t) ' 4

9

1

a2H2
∇2R(~x) , (2.2)

or, in Fourier space

∆k '
4

9

k2

a2H2
Rk . (2.3)

The amplitudes of the curvature perturbations Rk are statistically distributed accordingly to

the specific inflationary model considered. Assuming Rk to be gaussian, since PBHs are rarely

formed, the over-densities related to PBHs formations are, with a very good approximation,

spherically symmetric [33]. Under this assumption, one can define the averaged energy density

∆̄ as [8]

∆̄(r, t) =
F0

a2H2
ψ(r) , (2.4)

which is parameterised by the statistically distributed central value amplitude F0. In (2.4), the

shape of the density perturbation is described by the function

ψ(r) ≡
∫
dkk2 sin(kr)

kr P∆(k, t)∫
dkk2P∆(k, t)

, (2.5)

where P∆(k, t) is given by

(2π)3 P∆(k, t) δ(k, k′) ≡ 〈∆(k, t)∆(k′, t)〉 . (2.6)

It has been shown in [33] that the number density of peaks, n, is a function of the variable

ν ≡ F0
σ̃∆

, where, at super-horizon scales,

σ̃2
∆(r) ≡ (aH)4σ2

∆(r, t) , (2.7)

with

σ2
∆(r, t) ≡

∫
k2

2π2
dkP∆(k, t) . (2.8)

4The linear approximation is good enough to make our point in this paper. In the full non-linear treatment,

the critical value for collapse changes by a factor ranging from 1 to 2 with respect to the linear case [32].
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Finally, given a threshold Fc0 determining whether an initial perturbation eventually collapses

into a black hole, the abundances of PBHs are proportional to the integral
∫∞
νc
n(ν)dν, where

νc ≡
Fc0
σ̃∆

.

2.2 Threshold

In order to find the threshold Fc0 we need to define few other quantities [9]: The over-mass

generated by the averaged curvature perturbations is, at super-horizon scales

δM

M
≡ δ(r, t) ' 3

r3

∫ r

0
∆̄(r′, t)r′2dr′ . (2.9)

From this, we can define the compaction function C ' 2δM/ (a(t)r) and the point rm in which

C(r) is maximal. The critical value δc ≡ δ(rm, tm) associated to Fc0 , where a(tm)H(tm)rm = 1,

has been found to range from 0.41 to 0.67 [34, 35]. It is easy to show [9] that δc = 3∆̄(rm, tm)

and therefore

Fc0 =
δc

3ψ(rm)r2
m

. (2.10)

In other words, apart from the mild dependence on the exact numerical evolution of the initial

density fluctuation, the critical value Fc0 can always be semi-analytically calculated given a

primordial power spectrum.

2.3 Window functions

As discussed in the previous section, the number density of PBHs depends on the point in

which the compaction function has a local maximum. Therefore, different local maxima of the

compaction function are related to different values for the threshold. Moreover, at the threshold,

only the portion of the over-density within a radius rmax . 2rm from the centre of the over-

density contributes to the PBH formation [9]. Suppose rmin
m is the smallest radius where the

compaction function has a maximum. One may ask what is the threshold such that a portion

of the over-density with radius larger than 2rmin
m participates to the PBH formation. In order

to answer this question, we need to smooth-out scales smaller than 2rmin
m and search for the

subsequent local maximum of C. This filtering process would also change the statistics of the

peaks.

As explained for example in [33], the smoothing-out of small scales can be done by applying

a window function. In particular the most convenient one is a Gaussian since it does not have

spurious oscillations neither in physical nor momentum space (see e.g. [36]). Small scales are

then smoothed-out at a scale kcut by the replacement

∆k(t)→ e
− k2

2k2
cut ∆k(t) , (2.11)
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and rm = rm(kcut).

Given a specific inflationary model, the end of inflation is the moment (tend) in which the whole

power spectrum is at super-horizon scales. Therefore, it is natural to fix the initial conditions for

the evolution of the primordial density fluctuations at tend. The power spectrum has therefore

an inherited cut-off at the scale kend = a(tend)H(tend). What we will show later on is that the

abundances of PBHs are larger when the smoothing-out momentum is smaller than kend.

2.4 Non-Gaussian contribution

Our discussion so far requires that the deviations from gaussianity of the statistical variable ∆k

are small enough to be neglected.

In [17], a criterion was given to estimate the contribution of the skewness of ∆k in the

calculation of the PBHs abundances. There, it was shown that in order to trust the gaussian

estimate, the combination

E3 ≡ 0.19 F3
0

S̃3

σ̃2
∆

, (2.12)

where

S3 ≡ a6H6 〈∆(0)3〉
σ̃4

∆

=
a6H6

σ̃4
∆

∫
d3k1

2π3

∫
d3k2

2π3

∫
d3k3

2π3
〈∆k1∆k2∆k3〉 , (2.13)

must be, in absolute value, smaller than 1.5 The reason is that the ratio of the non-gaussian

corrected PBHs density at formation over the total density (βNG), is related to the abundances

calculated by the sole use of gaussian statistics (βG) by

βNG = eE3βG . (2.14)

Note however that, in the case in which E3 is significant, the right-hand side of equation

(2.14) cannot be calculated by the gaussian statistics. The reason is that the non-gaussianities

will also generically modify the profile of the over-density.

3 Application to known single-field models related to PBHs for-

mation

For all the single-field models introduced earlier, we are going to show that the power spectrum

has a peak generated when the inflaton is very close, in field space, to the local maxima (or

inflection point) of its own potential. This will allows us to make some generic predictions for

the amplitude and shape of the non-gaussianities.

5In principle the full non-linear relation between ∆k and Rk should be used. However, assuming that the

higher order correlations of Rk are small, one can safely test the non-gaussian contributions just by using the

linear relation.

5



Models of inflation6 are mainly characterised by two (geometrical) slow-roll parameters, ε =

− Ḣ
H2 and ε2 = ε̇

Hε , where H is the Hubble constant. So far, inflationary scenarios related to

the production of PBHs are typically either a cascade of quasi-slow-roll phases (QSR), see for

example [21], where ε � 1 and −3 < ε2 < 0, or interpolate between the following three phases

of roughly constant ε2:

• 1) slow-roll phase (SR): ε, ε2 � 1 and the perturbations related to the cosmic microwave

background (CMB) are generated.

• 2) constant-roll phase (CR) or ultra-slow-roll (USR): ε � 1 and ε2 ≤ −6 (where the

equality is for USR). This is the phase in which a large peak in the power spectrum is

produced. The reason is that here curvature perturbations grow exponentially at horizon

crossing and at super-horizon scales.

• 3) graceful exit (GE): ε � 1 and ε2 � ε. In this phase super-horizon curvature perturba-

tions are frozen and inflation evolves into its end (ε ∼ 1).

The inflaton potential related to a cascade of QSR trajectory does not have any extrema. On

the contrary, in the case of trajectories interpolating from phase 1 to 3 the inflaton potential

has an inflection point if phase 2 is USR, or a false minimum if of CR type.

The scenarios of a cascade of QSR phases can only generate a small fraction of DM in terms of

PBHs7, and non-gaussianities are bound to be small [37]. On the other hand, in the interpolating

trajectory, a larger fraction can be achieved as there, curvature perturbations pass trough a phase

of exponential growth. Indeed, the main difference between the QSR and CR/USR cases is that

in the latter the curvature perturbations are not constant at super-horizon scales. Thus, here

we focus on the classes of models with an interpolating trajectory, since they optimally generate

a large peak in the power spectrum.

Generalising [38] to the constant-roll case8, we will show that there is a specific combination

of the slow-roll parameters that is kept approximately fixed during the transition from USR/CR

to GE, provided that the transition from 2) to 3) happens in a sufficiently short field range.

This combination is the mass parameter α appearing in the Mukhanov-Sasaki equation, which

describes the evolution of the variable vk ≡ zR

v′′k +

(
k2 −

(
α2 − 1

4

)
τ−2

)
vk = 0 . (3.15)

In (3.15) z = a
√

2ε, τ the conformal time and prime denotes derivative with respect to it.

6Here and for the rest of the paper we mean models of single-field inflation.
7Unless accretion mechanisms are invoked [21].
8In [38] only a transition from USR to GE was studied.
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Phase 2) is characterised by a constant value of |ε2| (and a negligible value of ε). Then one

finds that α2 ' 9
4 + 3

2ε2 + 1
4ε

2
2.

It is easy to see that, in the case in which ε � ε2 and ε2 constant, the transformation

ε2 → −6− ε2 keeps α2 invariant [39–41]. Then, because α2 is constant in the transition between

phase 2 and 3, this duality necessarily implies that the values of ε2 at the constant roll (εcr2 ) and

at the beginning of the graceful exit phase when curvatures perturbations get frozen (εge2 ), are

related trough the relation

εcr2 = −6− εge2 . (3.16)

The implications of this duality for the background and linear perturbations have been already

extensively studied in [39–41]. Extending these results to non-gaussianities, we will show that

the duality between the USR/CR and GE phases persist at the level of the (third order) non-

linear perturbations: the dominant contribution to fNL stays constant from phase 2 to phase

3 and it is of local shape. In particular fNL can be of O(1) whenever the local maxima of the

potential is steep enough.

In a FRW universe with metric ds2 = −dt2 + a2d~x2, the dynamics of a canonical scalar field

φ(t) is governed by the following equations

φ̈+ 3Hφ̇+
dV

dφ
= 0 , (3.17)

3H2 =
1

2
φ̇2 + V , (3.18)

where H = ȧ/a, dot denotes cosmic time, and the reduced Planck mass Mpl = 1. At zeroth

order approximation, the power spectrum of curvature perturbations is inversely proportional

to the inflaton velocity φ̇. Therefore, in a quasi-DeSitter space (inflation), one needs to go from

a “high” velocity (the SR phase related to CMB) to a lower one in a very short time. In other

words, one needs a large negative acceleration to form a peak in the power spectrum.

From the scalar equation we have∣∣∣ φ̈

3Hφ̇

∣∣∣ =
∣∣∣1 +

dV/dφ

3Hφ̇

∣∣∣ ≡ ∣∣∣1−∆V

∣∣∣ . (3.19)

A deceleration is given for ∆V < 1. During SR, ∆V ∼ 1 and so there is approximately no

deceleration. A QSR phase would be for 0 < ∆V < 1, a USR for ∆V = 0 and CR for ∆V < 0,

all of them will make |φ̇| to decrease. In USR the inflaton decelerates at the inflection point

thanks to the Hubble friction and then directly evolves into the graceful exit. The case in which

phase 2 is instead a CR corresponds to the case in which the sign of the potential gradient

changes. Here, the inflaton climbs up a potential barrier before reaching a maximum and then

entering into a graceful exit.

During the climb up, curvature perturbations grow exponentially due to the exponential

decrease of the field velocity. One might then naively say that the peak of the power spectrum is
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generated when the field velocity reaches its minimum (in modulus). However the dynamics are

slightly more complicated: At the crossing horizon time (t∗), perturbations get a power spectrum

inversely proportional to ε(t∗) and so exponentially grow with t∗. In addition, after horizon

crossing, the perturbations instead of being frozen as in the SR phase, grow exponentially.

In USR the combination of the two effects generates a scale invariant spectrum [42]. In CR

however the spectrum is red [43]. In other words, the prolongated secular growth that larger

scales experiences, ‘wins’ over the increasing amplitude at horizon crossing of the smaller scales.

Since the velocity of the inflaton is exponentially suppressed during CR, the peak of the power

spectrum must nevertheless lie very close (in field space) to the top of the potential. This is

necessary in order to overcome the barrier and evolve into a graceful exit phase. In the following

we will see that this feature is shared by all existing examples of single-field inflation related to

PBHs formation.

3.1 Duality in the transition between USR/CR and GE

In the upper panel of Fig. 1 we show the evolution of ε2 for two representative models featuring an

inflection point [20] and a local maximum [29] in the inflationary potential. We have numerically

checked that all the models share the same qualitative features for ε2 and α2. In the bottom

panel we show the evolution of α2 for the same models. We see that α2 is indeed invariant in

the USR/CR to GE transition (and thus for any value of ε2 in the USR/CR phase).

In all models that we have studied, the transition from CR to GE happens around and very

close to the top of the potential, and the peak of the power spectrum is related to scales that

exit the horizon during the transition (more precisely, at the beginning, when the value of |ε2| is
maximised). Thus, all the interesting dynamics are captured by expanding the potential around

the maximum or the inflection point, depending upon the nature of the potential.

If we want to describe a potential having a maximum (or an inflection point), we need at least

to expand it up to second order

V = V0 +
√

2εV V0(φ− φ0) +
ηV
2
V0(φ− φ0)2 + . . . (3.20)

where we define

εV =
1

2

(
V ′

V

)2 ∣∣∣
φ=φ0

, ηV =
V
′′

V

∣∣∣
φ=φ0

, (3.21)

and φ0 is either the position of the local maximum or the inflection point. For models having a

local maximum
√
εV = 0 and ηV 6= 0. As shown in [38], the second derivative of the potential is

related to the mass parameter of the Mukhanov-Sasaki equation α2 = 9/4 + 3
2ε2 + 1

4ε
2
2 + ε̇2

2H + ε.

Irrespective on whether the inflaton is in slow-roll or not, it holds that

α2 − 9/4 = −V
′′

H2
+O(ε) , (3.22)
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Figure 1: Top) Evolution of ε2 for the two representative models with an inflection point [20],

and with a local maximum [29]. The dashed lines are the predictions given by eq. (3.23), where

we have slightly shifted the time so that the correspondence can be better appreciated (otherwise

the two curves superimpose).Bottom) left) Evolution of the parameter α2. The shaded regions

corresponds to the time when USR/CR transitions to GE. During the transition, α2 is constant

(for all different possible values of α2). Bottom) right) detail of the left plot.

meaning that the parameter α2 is constant provided the expansion (3.20) holds. For models

passing trough a local maximum one can have V
′′

H2 ' 3ηV ∼ O(1), such that α2 is a constant

different from 9/4. For models passing through an inflection point α2 ' 9/4. There, a small

departure from 9/4 is given by the third order derivative of the potential. Interestingly, Eq.

(3.22) allows us to solve the dynamics of the background without having to solve explicitly the

equations of motion. Solving directly (3.22) for ε2 we find that (whenever ε2 is larger than ε), it

evolves according to the simple relation (at leading order in ε)

ε2 = −3 +
√

9− 12ηV tanh

[√
9− 12ηV (N −N0)

2

]
, (3.23)

where N0 is an integration constant that can be fixed by the inflationary initial conditions.

If the third derivative of the potential, in the expansion (3.20), is never important in the

trajectory from the CR to the beginning of the GE phase, the solution (3.23) interpolates
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between εcr2 = −3−
√

9− 12ηV , at the CR phase, and εge2 = −6− εcr2 = −3 +
√

9− 12ηV , at the

beginning of the GE phase9. Note that because we are near a local maximum, ηV is negative and

needs not to be small so that εge2 might be O(1) (and for non-negligible amount of efoldings).

As already mentioned, the evolution of ε2 in (3.23), from phase 2 to phase 3, is in very good

agreement with what we have numerically found in all the models that we have studied: For the

potentials related to a CR phase, (3.23) differs by less than 2 percent compared to the values of

εcr2 and εge2 that we have numerically found. In the USR case, εusr2 is very accurate also, but the

predicted value for εge2 is less. In fact, for potentials having ηV = 0, the analytical estimation

for εge2 in (3.23) would give exactly 0. However, in this case there would not be a graceful exit.

Although the expansion in (3.20) is still valid, since the second derivative of the potential is

exactly zero, the third order term of the expansion will determine the graceful exit phase. This

term contributes to the value of εge2 with a non vanishing (but still small) contribution. For

example, in the model with an inflection point that we have considered, we find εge2 ∼ 0.1 which

allows us to still approximately use (3.23), as done in [38].

Finally, we would like to point out that (3.23) is the time dependent version of the already

mentioned duality existing between CR/USR and SR models [40, 41]. This duality transforms

α into (-α), keeping α2 invariant. Under this duality, the power spectrum of the variable vk is

the same in the phase 2 and 3 (the shift α to (−α) brings an irrelevant phase factor into the

mode equations [41]). Note however that the power spectrum of R is not the same in the phases

2 and 3. The reason is that the latter is defined by an additional suppression factor of ε, which

is obviously not constant between the phases 2 and 3.

3.2 Bispectrum

In this section we show that the duality discussed previously also holds at the level of the

bispectrum, provided the background evolution is given by Eq. (3.23). This generalises the

results found for the background and linear perturbations [39–41]10.

At third order, the action for R is the one given by [37]

S3 =

∫
d4x

(
a3ε2RṘ2 + aε2(∂R)2 − 2aεṘ(∂R)(∂χ) +

a3ε

2
ε̇2R2Ṙ+

ε

2a
(∂R)(∂χ)∂2χ

+
ε

2a
(∂2R)(∂χ)2 + 2f(R)

δL
δR

)
(3.24)

where

∂2χ = a2εṘ ,
δL
δR

= a(∂2χ̇+H∂2χ− ε∂2R) (3.25)

9Afterwards ε2 might no longer follow (3.23).
10The discussion on non-gaussianities can be already found in the context of USR in [38].
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and

f(R) =
ε2
4
R2 + 2RṘ

H
+ . . . . (3.26)

In (3.26) “. . .” denote spatial gradients that can be neglected at super-horizon scales. The

terms proportional to f(R) can be removed from the third order action by performing a field

redefinition R → Rn + f(Rn).

Whenever R is frozen at super-horizon scales, as in the GE phase, the relation between the

correlation functions of Rn and R only depends on the first term of (3.26):

〈R(k1)R(k2)R(k3)〉 = 〈Rn(k1)Rn(k2)Rn(k3)〉+ ε2
2

(〈R(k1)R(k2)〉〈R(k1)R(k3)〉+ cyc. perm.) ,

(3.27)

and do not further evolve.

Having a functional form for ε2, we can easily determine the evolution of R and the time at

which a given mode freezes so to quantitatively define the beginning of the GE phase.

At super-horizon scales one has

Rk→0 = c1 + c2

∫
dN

a3ε
, (3.28)

where c1 and c2 are two constant. The functional form for ε can be obtained by integrating Eq.

(3.23) and it is

ε = ε0 exp

[∫
ε2dN

]
= ε0 e

−3(N−N0) cosh

[√
9− 12ηV (N −N0)

2

]2

, (3.29)

where ε0 is the value of ε at N0. The time dependent part of R is then∫
dN

a3ε
∝
∫

sech

[√
9− 12ηV (N −N0)

2

]2

dN

∝ tanh

[√
9− 12ηV (N −N0)

2

]
− tanh

[√
9− 12ηV (N? −N0)

2

]
∝ ε2(N)− ε2(N?) . (3.30)

where N? is the time when a particular mode exits the horizon. From here, by looking at

(3.23), we see that the curvature perturbations approach exponentially a constant. Note that

ε2 might continue to evolve afterwards, but in the graceful exit phase the integrand in (3.28)

will exponentially decay in time so that the curvature perturbations will stabilise to the value

reached at the beginning of phase 3.

Let us note that while ε2(N) in the distant past is also approaching a constant (given by εcr2 or

εusr2 ), the integral in (3.30) is actually growing exponentially: in the distant past (N? < N � N0)
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we can expand (3.30) as∫
dN

a3ε
∝ ε2(N)− ε2(N?)

∝ e
√

9−12ηV ∆N +O(e

√
9−12ηV

2
∆N )3 +O(e

√
9−12ηV ∆N?)2 , (3.31)

where ∆N = N −N0 < −1 and ∆N? = N?−N0. At the crossing horizon ∆N = ∆N? therefore,

as time evolves, the mode function grows as R ∝ e
√

9−12ηV N ∝ e(|ε2|−3)N . This growing exactly

matches the known growth of a pure USR or CR phase, as it should.

On the other hand, in the distant future (∆N? � 0 and ∆N � 0) the expansion reads∫
dN

a3ε
∝ ε2(N)− ε2(N?)

∝C + e−
√

9−12ηV ∆N +O(e−
√

9−12ηV
2

∆N )3 +O(e
√

9−12ηV ∆N?)2 (3.32)

where C is a constant. Thus at late time, the time dependent part of the mode function is, as

expected and discussed before, a constant.

Equipped by this knowledge, we can now show that the CR/USR and GE bispectra are

intimately related via the dual transformation of ε2 discussed before: during GE, R is constant

at super-horizon scales and, because ε2 � ε and the operators proportional to V ′′′ are assumed

to be negligible with respect to those proportional to ε2, the dominant contribution to the

bispectrum will be given only by the field redefinition term. The reason is that all the other

couplings are proportional to either ε or V ′′′ [38]11.

Then, the bispectrum is of the following local form

〈R(k1)R(k2)R(k3)〉 =
ε2(Nfr)

2
(〈R(k1)R(k2)〈R(k1)R(k3)〉+ cyc. perm.) +O(ε2) , (3.33)

where Nfr represents the moment (in e-foldings) in which curvature perturbations are frozen

and the O(ε2) come from the correlations of Rns.

As we have already shown, in our case, ε(Nfr) ' εge2 for all modes exiting the horizon in

the period in which the background is given by (3.23). Defining P (k1) as 〈R(k1)R(k2)〉 ≡
(2π)3δ3(k1 + k2)P (k1), the bispectrum B(k1, k2, k3) as 〈R(k1)R(k2)R(k3)〉 ≡ (2π)3δ3(k1 + k2 +

k3)B(k1, k2, k3), and fNL as

fNL(k1, k2, k3) ≡ 5

6

B(k1, k2, k3)

P (k1)P (k2) + P (k1)P (k3) + P (k2)P (k3)
, (3.34)

from (3.33) we get

fNL =
5

12
εge2 (3.35)

' 5

12

(
−3 +

√
9− 12ηV

)
. (3.36)

11The only non-explicit suppression is in the term ε̇2R2Ṙ of (3.24). In [38], it was noted that this operator can

be re-written, in the flat gauge, as V
′′′
δφ3.
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We would like here to stress that the result (3.35) is valid for all scales exiting the horizon from

phase 2 to phase 3 (and therefore also valid for the scale where the peak in the power spectrum

is). In this sense there is a duality between the (third order) perturbations generated during

the USR/CR and GE phases: although the bispectrum varies with scale in the transition, the

parameter fNL is all the way constant.

In the case of USR however, although (3.35) is still valid, the dual description of εge2 in terms

of ηV , i.e. equation (3.36), would imply fNL to vanish. This is due to the fact that V ′′ = 0.

Therefore, εge2 is fully determined by the value of V ′′′ at the maximum.

Note that 3.35 does not follow the consistency relations found in [37, 43–45]. The reason is

that in our case we need to calculate the non-gaussianities at the exit of a USR/CR phase rather

than during it.

3.3 Numerical results

In the following we will corroborate numerically the above estimations by evaluating the three-

point function using the public code PyTransport [46, 47]12. In the top panel of Fig. 2 we show

the value of fNL in the equilateral configuration as a function of wavelength of the perturbations.

For clarity of the figure we only show the USR model of Germani et al. and have selected the CR

model of Cicoli et al.. In these examples, we see, as predicted in the previous section, that during

the evolution from USR/CR to the GE (in particular during the generation of the peak of the

power spectrum) fNL is constant13 (the shaded region in Fig. 2 corresponds to the time when

the transition happens). Additionally, at those scales fNL is also independent on the triangle

configuration. In other words the three-point function at those scales, and therefore also at the

peak of the power spectrum, is of the local shape.

We also note a very large peak in fNL around the minimum of the bispectrum corresponding to

the scales leaving the horizon during the transition from SR to USR/CR. This peak corresponds

to scales where the power spectrum and the bispectrum reaches a minimum (as can be seen in the

bottom panel for the case of the bispectrum). Although one could be worried that perturbation

theory is broken at those scales, that it not actually the case. A test on how good is perturbation

theory can be done by checking whether 〈RRR〉/〈RR〉3/2 � 1 (see e.g. [48]). In the bottom

right panel of Fig. 2 we show that this bound is indeed respected.

In Fig. 3 we show the amplitude of fNL at the scale of the peak of the power spectrum as

a function of εge2 . We see that the estimation given in (3.35) works very well. As we already

12The code does not handle non-explicit functions for the inflaton potential. Therefore, we are not able to

numerically compute fNL in the model of Ballesteros et al.. However the background around the peak of the

power spectrum is also well described by eq. (3.23), so we expect fNL to follow the same qualitative behaviour of

the rest of the models.
13Or varies slightly in the model passing through a USR (inflection point potential).
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Figure 2: Top) Parameter fNL as a function of scale. A star represents the scale at which a

given model has a peak in the power spectrum. The dashed line represents the actual output

of the code if we let the very large scales evolve until the end of inflation. These modes, that

exited the horizon much before the USR phase, exhibit a grow in their mode function at that

time that we attribute to secular numerical effects. Bottom) left) The bispectrum k6B(k, k, k),

in the equilateral configuration. The peak in fNL correspond to scales where the bispectrum is

minimized. Bottom) right) 〈RRR〉/〈RR〉3/2 at the scales of the peak of fNL. The ratio is much

smaller that one, meaning that the theory is well within the perturbative regime.

mentioned, the relation between ε2 and ηV fails when ηV ∼ 0. For the inflection point model

(3.36) would predict fNL = 0, while we obtain fNL ' 0.05 for the particular model we have

studied. As we have already argued, this difference can be attributed to the presence of a

non-negligible third derivative in the inflationary potential at the infection point.

3.4 Consequences on current models of inflation

In Table 1 we show the values for F0r
2
m, νc and E3 for all the models under consideration and

taking into account the indetermination of δc.
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Figure 3: fNL at the scale of the peak of the power spectrum, for all models considered in this

paper. At this scale, the value of fNL is independent on the triangle configuration, meaning

that the shape of the three-point function is of the local shape. The data points are given by

the numerical estimates, while the dashed line is the analytical result. For Ballesteros et al., we

show where the analytical prediction lies.

We have numerically checked that the larger abundances (minimum value of νc > 1) of PBHs

are obtained by cutting-off the power spectrum at the peak (k = kpeak). In this case, kpeakrm ∼ 2.

F0r
2
m νc E3 fNL

Germani et al. [20] [1.2− 1.9] [14− 22] [4− 19] 0.05

Dalianis et al. [30] [1.1− 1.9] [6− 10] [7− 29] 0.4

Ballesteros et al. [26] [1.1− 1.9] [3− 5] [2− 7] 0.3

Öszoy et al. [28] [1.1− 1.8] [3− 4] [2− 9] 0.6

Cicoli et al. [29] [1.2− 1.9] [5− 7] [5− 21] 0.5

Table 1: The values for F0r
2
m, νc, E3 and fNL for the five different models considered.

For all models we find E3 > 1 and so all the predictions for the abundances are sensitive to

the third-order momenta, and possibly higher. However, a special attention should be given to

the USR case, where fNL is the smallest.

The fact that the non-gaussian contribution is “large” in the USR model of [20] should not

be a surprise. Indeed, it was already known that the model of [20] only generates a relatively

small amplitude of the power spectrum. Thus there, chances of producing a PBH are related

to the very far tail of the probability distribution of F0 which in turn, is extremely sensitive to
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small non-gaussianities. Nevertheless, by looking at the ratio ν2
c /(2E3), we see that the non-

gaussianities enter here only perturbatively and thus we expect that higher momenta will be

subdominant.

In addition, we also note that a hypothetical model with an inflection point and a smaller V ′′′

with respect to the one of [20], could be well able to predict the right abundances of PBHs by

the sole use of the gaussian statistics as, in this case, fNL would be smaller.

4 Analytical explanation of the results found

Close to the peak, the curvature power spectrum defined as, see e.g. [8],

P(k) ' a4H4 81

16× 2π2

P∆(k, t)

k
, (4.37)

is well described, in all models discussed so far, by the following template

P(k) =

0 for k < kpeak

P0

(
k

kpeak

)−n
, for k ≥ kpeak .

(4.38)

In (4.38), the spectral index n is standardly related, in the limit εV � ηV , to the second

derivative of the potential at the maximum via n ' −3 +
√

9− 12ηV . In particular, all power

spectrum considered in the literature so far decay at a rate that goes from n ∼ 0.15 to n ∼ 2.7.

In Fig. 4 we show two examples and corroborate that (4.38) provides an accurate description of

how the two-point function decays after the peak.

For simplicity, in this section we use a hard cutoff at small scales rather than a gaussian, and

thus compute the variance and skewness integrating from k = 0 to k = kcut.

4.1 Predictions

With the power spectrum template introduced before we find

νc =
9Fc0 r2

m

4
√
P0 (kcutrm)2

(
4− n

γn−4 − 1

)1/2

, (4.39)

where γ ≡ kpeak/kcut. By considering the non-gaussianities to be of local shape, as in all model

studied so far, E3 can be written as

E3 = f(n, γ,P0) fNL ν
3 , (4.40)

where the function f(n, γ,P0) is

f(n, γ,P0) '
√
P0

(
n− 4

n− 2

)(
γn − γ4

4− n

)1/2 (γ6 + γ2n − γ2+n − γ4+n
)

(γ4 − γn)2 . (4.41)
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Figure 4: Two typical examples of peaked power spectra. We see that the model (4.38) provides

a good description on how the power spectrum decays at large momenta.

For a given n and a fixed amplitude of the power spectrum, νc is a function of γ with a minimum

νmin at certain scale kmin
cut . Since the abundances are exponentially suppressed by νc, the desired

value of νc must be precisely νmin.

For n = 0 to n = 2, in order to have the typical range νc = [5, 10] we find 10−3 . P0 . 10−2

fNL . 10−2 , (4.42)

while the constraint gets relaxed for n = 3: 10−2 . P0 . 10−1 and fNL . 10−1.

Such bounds for fNL are respected in slow-roll inflation when the slow-roll parameters are

small. However, in transient USR/CR these parameters could be large and so the bounds on

fNL could be violated. As we have shown, this indeed happens in all current inflationary models

related to PBHs formation.

5 Conclusions

By the use of peak theory, in this paper we have re-analysed all current models of single-field

inflation able to produce large peaks in the power spectrum of curvature perturbations. In

particular, we have shown that models featuring a maximum in the potential could match the

required abundances of PBHs according to a gaussian statistics of curvature perturbations.

However, in those cases, we found that non-gaussianities are large enough to spoil the gaussian
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predictions. Whenever the peak is instead generated by a transient ultra-slow-roll trajectory,

we confirm that the current available model cannot match the necessary abundances, given the

relatively small amplitude of the power spectrum. This case is nevertheless interesting as the

value of fNL is here smaller than in the transient CR trajectory. Thus, an inflationary model with

transient USR phase might be the one to look at in order to predict the right PBHs abundances

by the sole use of gaussian statistics.

Interestingly, we have also shown that all known models producing a peak in the power

spectrum fall into a single class where the peak happens very close, in field space, to the local

maximum of the potential. In these cases, we proved that the non-gaussianity at the peak of

the power spectrum is of the local shape and its amplitude is related to the slow-roll parameters

at the beginning of the graceful exit of inflation (εge2 ) by the relation

fNL

∣∣∣
at the peak

' 5

12
εge2 .
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[28] O. Özsoy, S. Parameswaran, G. Tasinato and I. Zavala, JCAP 1807 (2018) no.07, 005

doi:10.1088/1475-7516/2018/07/005 [arXiv:1803.07626 [hep-th]].

[29] M. Cicoli, V. A. Diaz and F. G. Pedro, JCAP 1806 (2018) no.06, 034 doi:10.1088/1475-

7516/2018/06/034 [arXiv:1803.02837 [hep-th]].

[30] I. Dalianis, A. Kehagias and G. Tringas, arXiv:1805.09483 [astro-ph.CO].

[31] S. Young, C. T. Byrnes and M. Sasaki, JCAP 1407 (2014) 045 doi:10.1088/1475-

7516/2014/07/045 [arXiv:1405.7023 [gr-qc]].

[32] C. M. Yoo, T. Harada, J. Garriga and K. Kohri, arXiv:1805.03946 [astro-ph.CO].

[33] J. M. Bardeen, J. R. Bond, N. Kaiser and A. S. Szalay, Astrophys. J. 304 (1986) 15.

doi:10.1086/164143

[34] T. Harada, C. M. Yoo and K. Kohri, Phys. Rev. D 88 (2013) no.8, 084051 Erratum:

[Phys. Rev. D 89 (2014) no.2, 029903] doi:10.1103/PhysRevD.88.084051, 10.1103/Phys-

RevD.89.029903 [arXiv:1309.4201 [astro-ph.CO]].

[35] T. Harada, C. M. Yoo, T. Nakama and Y. Koga, Phys. Rev. D 91 (2015) no.8, 084057

doi:10.1103/PhysRevD.91.084057 [arXiv:1503.03934 [gr-qc]].

[36] E. W. Kolb and M. S. Turner, “The Early Universe,” Front. Phys. 69 (1990) 1.

[37] J. M. Maldacena, JHEP 0305 (2003) 013 doi:10.1088/1126-6708/2003/05/013 [astro-

ph/0210603].

20

http://arxiv.org/abs/0710.3755
http://arxiv.org/abs/1705.04861
http://arxiv.org/abs/1706.05007
http://arxiv.org/abs/1705.06225
http://arxiv.org/abs/1709.05565
http://arxiv.org/abs/1810.12608
http://arxiv.org/abs/1803.07626
http://arxiv.org/abs/1803.02837
http://arxiv.org/abs/1805.09483
http://arxiv.org/abs/1405.7023
http://arxiv.org/abs/1805.03946
http://arxiv.org/abs/1309.4201
http://arxiv.org/abs/1503.03934
http://arxiv.org/abs/astro-ph/0210603
http://arxiv.org/abs/astro-ph/0210603


[38] Y. F. Cai, X. Chen, M. H. Namjoo, M. Sasaki, D. G. Wang and Z. Wang, JCAP 1805

(2018) no.05, 012 doi:10.1088/1475-7516/2018/05/012 [arXiv:1712.09998 [astro-ph.CO]].

[39] W. H. Kinney, Phys. Rev. D 72 (2005) 023515 doi:10.1103/PhysRevD.72.023515 [gr-

qc/0503017].

[40] K. Tzirakis and W. H. Kinney, Phys. Rev. D 75 (2007) 123510

doi:10.1103/PhysRevD.75.123510 [astro-ph/0701432].

[41] M. J. P. Morse and W. H. Kinney, Phys. Rev. D 97 (2018) no.12, 123519

doi:10.1103/PhysRevD.97.123519 [arXiv:1804.01927 [astro-ph.CO]].

[42] W. H. Kinney, Phys. Rev. D 72 (2005) 023515 doi:10.1103/PhysRevD.72.023515 [gr-

qc/0503017].

[43] J. Martin, H. Motohashi and T. Suyama, Phys. Rev. D 87 (2013) no.2, 023514

doi:10.1103/PhysRevD.87.023514 [arXiv:1211.0083 [astro-ph.CO]].

[44] M. H. Namjoo, H. Firouzjahi and M. Sasaki, EPL 101 (2013) no.3, 39001 doi:10.1209/0295-

5075/101/39001 [arXiv:1210.3692 [astro-ph.CO]].

[45] R. Bravo, S. Mooij, G. A. Palma and B. Pradenas, JCAP 1805 (2018) no.05, 024

doi:10.1088/1475-7516/2018/05/024 [arXiv:1711.02680 [astro-ph.CO]].

[46] D. J. Mulryne and J. W. Ronayne, arXiv:1609.00381 [astro-ph.CO].

[47] M. Dias, J. Frazer, D. J. Mulryne and D. Seery, JCAP 1612 (2016) no.12, 033

doi:10.1088/1475-7516/2016/12/033 [arXiv:1609.00379 [astro-ph.CO]].

[48] L. Senatore and M. Zaldarriaga, JCAP 1101 (2011) 003 doi:10.1088/1475-

7516/2011/01/003 [arXiv:1004.1201 [hep-th]].

21

http://arxiv.org/abs/1712.09998
http://arxiv.org/abs/gr-qc/0503017
http://arxiv.org/abs/gr-qc/0503017
http://arxiv.org/abs/astro-ph/0701432
http://arxiv.org/abs/1804.01927
http://arxiv.org/abs/gr-qc/0503017
http://arxiv.org/abs/gr-qc/0503017
http://arxiv.org/abs/1211.0083
http://arxiv.org/abs/1210.3692
http://arxiv.org/abs/1711.02680
http://arxiv.org/abs/1609.00381
http://arxiv.org/abs/1609.00379
http://arxiv.org/abs/1004.1201

	1 Introduction
	2 Abundances and the impact of non-gaussianities
	2.1 The over-density and distribution
	2.2 Threshold
	2.3 Window functions
	2.4 Non-Gaussian contribution

	3 Application to known single-field models related to PBHs formation
	3.1 Duality in the transition between USR/CR and GE
	3.2 Bispectrum
	3.3 Numerical results
	3.4 Consequences on current models of inflation

	4 Analytical explanation of the results found
	4.1 Predictions

	5 Conclusions

