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ABSTRACT

In the present communication, we describe how to produce long light distributions in the focal area of a high
numerical aperture optical system using a custom modulation function with spiral charge. This analysis expands
our previous developments in the field. We analyze the effect of this new element on the behavior of light along
the optical axis.
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1. INTRODUCTION

Recently, multiple publications on shaping subwavelength needles with long focal length using polarized light
have been published.1–5 In a previous publication,6 we introduced a set of modulation functions able to produce
tunable-length vector light needles in the focal domain of a high numerical aperture lenses. These distributions
display interesting mathematical properties such as radial symmetry and large derivative values. Moreover, the
modulation function has a zero value jump at the entrance pupil of the focusing system. Taking into account the
region of the propagation axis that encloses the 75% of the on-axis irradiance, we derived a formula that provides
a fair a-priori estimation of the length of the needle. Our approach was experimentally tested and verified in the
laboratory. The modulation distribution was optically implemented using spatial light modulators and digital
holography techniques.7,8 A variety of optical needles of different lengths were produced. In particular, we
reported optical needles with lengths larger than 80λ.9,10 In the present communication, we describe how to
produce azimuthally polarized long light distributions in the focal area of a high numerical aperture optical
system by using our proposed modulation function with spiral charge.

2. THEORETICAL APPROACH

The Richards-Wolf formula describes the propagation and behavior of the electric field at the focal area of a high
NA (numerical aperture) objective lens11

E(r, φ, z) ∝
∫ θ0

0

∫ 2π

0

E0(θ, ϕ)eikr sin θ cos(φ−ϕ)e−ikz cos θ sin θ dθ dϕ (1)

where k = 2π/λ is the wave number and (r, φ, z) are the coordinates at the focal area. The numerical aperture
(NA) is related to the maximum θ angle, namely θ0: NA=sin θ0. The plane waves angular spectrum E0 reads

E0 =
√

cos θ ((Es · e1) e1 + (Es · e′2) e2) . (2)
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E0 is described in terms of unit vectors e1 = (− sinϕ, cosϕ, 0), e2 = (cos θ cosϕ , cos θ sinϕ , sin θ ), e′2 =
(cosϕ , sinϕ , 0) and the input field Es. An sketch of the optical system with information of the ccordinates and
variables used can be found elsewhere.12,13

The objective of this communication is to describe the behavior of light needles in the focal area of a high
NA system using an azimuthally polarized input field Es with spiral charge:

Es(θ, ϕ) ∝
(

2

f0 sin θ0

)m
sinm θ exp

(
− sin2 θ

f20 sin2 θ0

)
eimϕ h(θ)p(ϕ) , (3)

where f0 is the filling factor, m is the topological charge, and p(ϕ) = (− sinϕ, cosϕ, 0) is the polarization vector.
In order to produce a long focused field, we use the following modulation function h(θ):6

h(θ) = N sinc

(
2πN

cos θ − (1 + cos θ0) /2

1− cos θ0

)
sin θ ; (4)

sinc(x) = sin(x)/x is the unnormalized cardinal sine function. Interestingly, the length of the needle is determined
by tunning the value of paramater N . Other interesting mathematical properties associated to this modulating
function are discussed in.6 A detailed descripton on how holographic needles are degraded as a consequence
of the use of actual optical equipment can be found in.9 Finally, it is worth to point out that the proposed
modulation function h(θ) is related with the proposed in14 intended to be used in paraxial conditions.

3. RESULTS

Using function h(θ) described in Eq. (4), we calculated several needles for N = 10. Cases m = 0, m = 1
and m = 2 are depicted in Figs 1, 2, and 3 respectively. In the three cases considered, we show the following
information:

(a) Light distributions I(r, z). Since |E(r, φz)|2 presents circular symmetry with respect to the propagation axis
z, I(r, z) = |E(r, φ = 0, z)|2. Note that the selected value φ is arbitrary.

(b) Plot I(r, z = 0). As expected, for m = 0 and m = 2 pipe-like distributions are obtained. Nevertheless,
normal needles are generated for m = 1.

(c) The transverse irradiance at plane z = 0 (normal to the direction of propagation.)

The length of the generated light distributions (both pipes and needle) are around 80λ long. Since optical
needles generated with input beams with topological charge m 6= 1 produce pipe-like light distributions, we
analyzed the dependence of the pipe inner radius as a function of the topological charge m (see Fig. 4).
Interestingly, this curve displays a linear behavior.

4. CONCLUDING REMARKS

In the present communication we discussed the behavior of a modulation function able to produce tunable long
light needles in the focal area of a high NA objective lens system. In particular, we analyzed how the needle
is modified if the modulation function includes spiral charge. Moreover, we showed how the radius of the pipe
inner radius depends on the topological charge m.
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Figure 1. Azimuthal polarization with topological charge m = 0: (a) Light distribution in the plane rz. Note that the
scale of the horizontal and vertical axes is not the same; (b) Irradiance I(r,z=0); (c) Irradiance I(x, y, 0).

Figure 2. Azimuthal polarization with topological charge m = 1: (a) Light distribution in the plane rz. Note that the
scale of the horizontal and vertical axes is not the same; (b) Irradiance I(r,z=0); (c) Irradiance I(x, y, 0).

Figure 3. Azimuthal polarization with topological charge m = 2: (a) Light distribution in the plane rz. Note that the
scale of the horizontal and vertical axes is not the same; (b) Irradiance I(r,z=0); (c) Irradiance I(x, y, 0).

Figure 4. Light-pipe inner radius as a function of the topological charge m.
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