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Abstract

SETD1B is a component of a histone methyltransferase complex that specifically methylates Lys-4 of histone H3
(H3K4) and is responsible for the epigenetic control of chromatin structure and gene expression. De novo
microdeletions encompassing this gene as well as de novo missense mutations were previously linked to
syndromic intellectual disability (ID). Here, we identify a specific hypermethylation signature associated with loss of
function mutations in the SETD1B gene which may be used as an epigenetic marker supporting the diagnosis of
syndromic SETD1B-related diseases. We demonstrate the clinical utility of this unique epi-signature by reclassifying
previously identified SETD1B VUS (variant of uncertain significance) in two patients.

Introduction
Currently, five patients have been described with a micro-
deletion 12q31.24 and comparable phenotypes [1–5]. The
lost fragment of chromosome 12 varied in size and
included multiple genes. Labonne et al. [5] identified the
smallest overlapping region and proposed two histone
modifiers, KDM2B and SETD1B, as the most probable
candidates to be responsible for the microdeletion
12q24.31 syndrome. SETD1B encodes a SET domain-
containing protein, which is a part of a histone methyl-
transferase complex. The key role of this complex is
methylation of histone 3 on lysine 4 (H3K4), which is
enriched in gene promoters and is seen to be highly corre-
lated to gene expression [6]. KDM2B is a member of the
F-protein family and encodes an enzyme that demethy-
lates H3K36me2/3 and H3K4me3 [7]. Labonne et al. [5]
showed that the genetic organization of 12q24.31 is con-
served between zebrafish and humans and that KDM2B
and SETD1B were expressed in the brain tissue of both
zebrafish and human, suggesting evolutionary

conservation of the regulation of these genes [5]. More re-
cently, three patients with de novo point mutations in
SETD1B have been described [8, 9]. Their phenotypes
were similar to patients with a 12q24.31 microdeletion.
Since it has been shown that there is a strong relation-

ship between the methylation of H3K4 and DNA methy-
lation [10–13], we set out to determine whether the
SETD1B and KDM2B aberrations can manifest with a
specific DNA methylation signature. For this, a genome
wide-methylation analysis was performed on DNA sam-
ples from 13 patients with either aberrations of 12q24
(including or not including KDM2B and/or SETD1B
genes) or mutations in SETD1B (Table 1). This set of
patients included previously described patients and
additional cases identified in our laboratory or through
GeneMatcher [14].

Results
Identification of a SETD1B-related specific methylation
signature
Genomic DNA was obtained from whole blood samples
(13 patients and 60 controls), and genome methylation
status was analyzed using the Infinium MethylationEPIC
BeadChip. The determination of DNAm signature based
on HumanMethylation array was previously validated
and described in various studies [13, 15–19].
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The principal component analysis (PCA) of the data
obtained showed two outliers in our cohort: a patient
with a microdeletion including SETD1B and KDM2B (3_

del12q; Batch1) and a healthy control (4 days old, batch
2). Estimation of the blood cell types in patient 3_del12q
showed an unexpected distribution of cell types (99% of

Table 1 Cohort—molecular characteristics

Patient
no.

Patient
ID

Aberrations Pathogenicity Inheritance SETD1B
aberrations/
variations

KDM2B
aberration

SETD1B DNAm
signature

Batch Previously
reported

1 1_mut p.Arg1301* Pathogenic de novo Yes No Yes 1 No;

2 2_mut p.Arg1902Cys Pathogenic de novo Yes No Yes 1 No

3 3_mut p.Arg1902Cys Pathogenic de novo Yes No Yes 2 Yes; Hiraide
et al. [8]

4 4_mut p.Arg1885Trp Pathogenic de novo Yes No Yes 2 Yes; Hiraide
et al. [8]

5 5_mut p.Arg1885Trp Pathogenic unknown Yes No Yes 2 No

6 6_mut p.Glu1692del VUS unknown Yes No No 1 No

7 7_mut p.Glu1160Lys VUS de novo Yes No No 2 No

8 1_
del12q

The minimal deletion: VUS Pat.
inheritance

No Yes No 1 Yes; Chouery
et al. [2]

12q24.3(121150820-
122120257)

The maximal deletion:

12q24.3(121139660-
122135589)

9 2_
del12q

The minimal deletion: Pathogenic de novo Yes Yes Yes 2 No

12q24.31(121838818-
122405204)

The maximal deletion:

12q24.31(121814901-
122423659)

10 3_
del12q

The minimal deletion: Pathogenic de novo Yes Yes Yes 1 Yes; Labonne
et al. [5]

12q24.31(121895610-
122271171)

The maximal deletion:

12q24.31(121882128-
122294222)

11 4_
del12q

The minimal deletion: Pathogenic de novo Yes No Yes 1 Yes; Qiao
et al. [4]

12q24.31(122255880-
123758046)

The maximal deletion:

12q24.31(122234178-
123780094)

12 5_
del12q

The minimal deletion: VUS unknown No No No 2 No

12q24.31q-
12q24.32(122844745-
127838399)

The maximal deletion:

12q24.31q-12q24.32(12:
122825331-127854607)

13 dup12q The minimal duplication: VUS Mat.
inheritance

No No No 1 No

12q24.12(12:112169989-
112313658)

*Mutations are reported according to NM_001353345.1; Hg19
The minimal deletion/duplication within the given start and end position
The maximal deletion—without the given start and end position (between)
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B lymphocytes). Both outliers were excluded from fur-
ther group analysis. Quality control (QC) of the data,
PCA analysis, and estimation of the blood cell type dis-
tribution are described in detail in the supplemental in-
formation and listed in Additional file 1: Table S1.
Next, a group-based differential methylation analysis

was carried out, comparing the DNAm of five patients
with pathogenic variants in SETD1B to that in controls
(n = 59). Variants were considered pathogenic if the
following was observed: (i) variants were de novo and
occurred in more than one patient or (ii) variants re-
sulted in a premature stop codon. The patients included
in the group analysis were patient 1_mut (p.Arg1301*),
patients 2_mut and 3_mut (p.Arg1902Cys), and patients
4_mut and 5_mut (p.Arg1885Trp).
A shift of the genome-wide methylation toward hyperme-

thylation was observed (Fig. 1), which is reflected in the
selected significant differentially methylated CpGs (adj. P-
value_M< 0.05, absolute beta difference > 0.1). This analysis
identified 3340 significant differentially methylated CpGs,
out of which more than 82% had a positive beta difference.
All significant differentially methylated CpGs identified in
this analysis are listed in Additional file 2: Table S2. To fur-
ther calculate the probability that we would have identified
that these 3340 CpGs as significant by chance, we per-
formed an additional permutation analysis on the group la-
bels. 99.6% of 3340 significant differentially methylated
CpGs displayed P value less than or equal to 0.05. Details
of this analysis are described in the additional information
and listed in the Additional file 6: Table S6.

Next, unsupervised hierarchical clustering of beta values
of the identified significant CpG sites (3340 CpGs) for each
individual of our cohort was created; 13 patients and 60
controls (Fig. 2). Eight of the 13 patients were clustered in
a separate group. All five patients with pathogenic variants
in SETD1B (patients included in the “SETD1B-related”
group analysis); two patients with a deletion including
KDM2B and SETD1B (2_del12q, 3_del12q) and one with a
deletion including only SETD1B (4_del12q) fell into this
cluster. Note that although patient 3_del12q had an aber-
rant blood cell composition, the methylation signature was
detectable in this sample. These results demonstrate the
robustness of the specific DNAm of the SETD1B aberra-
tions/variations. Despite the many variables in the cohort
that may have had an impact on the DNAm (different eth-
nicity, different aberrations/variations, a different method
of DNA isolation small sample size, batch, age, and distri-
bution of the cell types), there is a distinct SETD1B specific
methylation signature. The methylation profile of the pa-
tients with a deletion excluding SETD1B (1_del12q and 5_
del12q_a), a patient that carried a duplication of the 12q
region, and two patients with a variant of uncertain signifi-
cance, in SETD1B (6_mut and 7_mut), did not show the
SETD1B-specific signature.

Examination of the specificity of the SETD1B-related
DNAm signature
We examined whether the DNA methylation signature
of SETD1B-related syndrome overlaps with that of other
neurodevelopmental disorders or syndromes, which in

Fig. 1 The volcano plot of the methylation difference between patients with certain pathogenic variation in SETD1B and healthy individuals
(group analysis). The y-axis represents a negative log10 of adj. P-values_M; the x-axis represents the different beta values between patients and
controls. Each dot on the plot represents a single CpG site. The horizontal, dotted line represents the statistical significance threshold (adj. P-
values_M = 0.05). The vertical, dotted lines show the effect-size threshold (− 0.1 and 0.1). CpGs with adj. P-value_M lesser than 0.05 and an
absolute beta difference higher than 0.1 are highlighted in green
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some cases, are caused by mutations in the members of the
epigenetic machinery. Using a multidimensional scaling of
the methylation values across the CpGs differentially methyl-
ated in the SETD1B-related syndrome, we examined the
methylation profile of a total of 502 individuals with a con-
firmed diagnosis of various syndromes with previously de-
scribed epi-signatures including imprinting defect disorders
[16, 17, 20] (Angelman syndrome, Prader–Willi syndrome,
Silver–Russell syndrome, and Beckwith–Wiedemann syn-
drome), BAFopathies (Coffin-Siris and Nicolaides-Baraitser

syndromes), Autosomal dominant cerebellar ataxia, deafness,
and narcolepsy, Floating–Harbor syndrome, Cornelia de
Lang syndrome, Claes–Jensen syndrome, ADNP syndrome,
ATRX syndrome, Kabuki syndrome, CHARGE syndrome,
Fragile X syndrome, trisomy 21, Williams syndrome, and
Chr7 duplication syndrome (Fig. 3). All of these patients
showed a DNA methylation pattern different from the
SETD1B-related syndrome and were clustered with controls,
indicating that the identified epi-signature is highly specific
to SETD1B loss of function.

Fig. 2 SETD1B-related DNAm signature. Unsupervised hierarchical clustering of 3340 CpG sites identified in the SETD1B group analysis (DNAm of
patients with certain pathogenic aberration/variation in SETD1B compared to that in healthy controls). C represents controls; aberrations/variations
are annotated to patients. Note that the data was obtained from two batches

Fig. 3 Multidimensional scaling (MDS) of 502 individuals with neurodevelopmental disorders. Red dots represent eight patients with SETD1B-
related DNAm signature of the current study, blue dots represent controls of the current study, and green dots represent patients with
other disorders
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Identification of the SETD1B-related differentially
methylated regions
Using the “bumphunter” R-package, four genomic regions
differentially methylated between patients with pathogenic
variants in SETD1B (as defined above) and controls were
identified (minimum three differentially methylated CpGs
in a region; family-wise error rate (Fwer) < 0.05) (Table 2).
All four regions were hypermethylated in patients and
located in the regulatory clusters of active promoters,
enhancers, and DNAse hypersensitivity (UCSC Genome
Browser on Human; GRCh37/hg19 [21]), three of which
were annotated to genes (i) KLHL28, FAM179B; (ii)
RUNX1; and (iii) BRD2.

Analysis of the genomic distribution of the CpG sites in
the SETD1B DNAm signature
An analysis of the genomic distribution of the CpG sites
identified in the group analysis was conducted. This
showed an over-representation of CpGs in the gene body,
DNase hypersensitivity sites (DHS), CpG island S-shore,
reprogramming differentially methylated regions (RDMR),
and in promoter-associated sites (Fig. 4). These results
demonstrate that the disrupted methylation related to the
SETD1B function is enriched in the regulatory parts of the
genome.

Over-representation analysis (ORA) of CPGs in the SETD1B
DNAm signature
To identify the processes involved in the development of
the phenotype, ORA analysis based on gene names associ-
ated with the 3340 identified significant methylated CpGs
using WEB-based GEne SeT AnaLysis Toolkit [22] was
performed. The analysis for biological processes displayed
enrichment for genes with a function in chromosome
organization, regulation of organelle organization, cell
cycle, and regulation of cell death. ORA for molecular
function demonstrates enrichment for genes with a role in
the regulation of gene activity, such as RNA binding, pro-
tein domain-specific binding, regulatory region nucleic
acid binding, and transcription regulatory region DNA
binding. ORA for the human phenotype (top 10 highest
ranked features) showed enrichment in genes related to
facial and posture abnormalities. The results of ORA are

summarized in Table 3. Note that ORA analysis is very
general and the results should be interpreted with caution.

Analysis of a KDM2B-related specific methylation
signature
Only three patients in this cohort had a deletion of
KDM2B (1_del12q, 2_del12q, 3_del12q), one of whom
presented with a deletion excluding SETD1B (1_del12q).
Furthermore, of these, patient 3_del12q was excluded
from the group analysis due to the heavily disturbed
blood cell-type distribution. Despite these limitations, an
attempt was made to identify a KDM2B-specific signa-
ture, running the group analysis of only two patients (1_
del12q, 2_del12q) compared to 59 controls. This identi-
fied 697 significant differently methylated CpG sites (adj.
P-value_M < 0.05 and absolute beta difference > 0.1).
Nevertheless, the unsupervised hierarchical clustering
(Fig. 5) of the 697 identified CpGs did not show any spe-
cific methylation signature related to KDM2B. The two
patients (1_del12q and 2_del12q) were clustered separ-
ately from each other, other patients, and healthy con-
trols. Moreover, the SETD1B-related specific signature
was still strongly marked. All significant differentially
methylated CpGs identified in this analysis are listed in
Additional file 3: Table S3.

Identification of the KDM2B-related differentially
methylated regions
The DMR analysis did not show any significant DMR
(minimum of three differentially methylated CpGs in a
region; Fwer < 0.05).

Clinical features
All patients with a SETD1B signature-positive methyla-
tion profile presented with an intellectual disability.
Common features included language delay, epilepsy, and
behavioral problems such as autism spectrum disorder
and anxiety. Dysmorphisms included full cheeks, full
lower lip, macroglossia, and tapering fingers. Delay in
motor development was primarily present in patients
with a deletion and absent in patients with a point muta-
tion in SETD1B (Table 4).

Table 2 DMRs identified in the group analysis of certain pathogenic aberrations/variants in SETD1B

Chr Start End Value L ClusterL Fwer Gene_Name

chr6 26195488 26195995 0,45 5 5 0,002

chr14 45431885 45432516 0,40 4 21 0,014 KLHL28;FAM179B

chr21 36258423 36259797 0,21 13 13 0,02 RUNX1

chr6 32942063 32943025 0,26 11 128 0,026 BRD2

Value –represents the difference between patient end controls
L– number of differentially methylated CpGs in the detected region, Cluster L– number of CpGs in the genomic cluster, Fwer– family-wise error rate
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Discussion
Pathogenic changes within the SETD1B gene were found
to have an associated specific DNAm signature. This spe-
cific DNAm was not substantially affected by differences
in blood cell distribution and other variables such as tech-
nical differences and chromosomal aberrations. The speci-
ficity of the DNAm signature was highlighted by the lack
of signature in patients carrying a deletion that did not in-
clude SETD1B or in a patient carrying a duplication of the
region or patients with other neurodevelopmental disor-
ders or syndromes. Moreover, we were able to assess the
pathogenicity of two variants of unknown clinical signifi-
cance: p.(Glu1692del) and p.(Glu1160Lys) in patients 6_
mut and 7_mut, respectively.
The inheritance of variant p.(Glu1692del) in patient 6_

mut was unknown. This variant results in the loss of resi-
due Glu1692. The p.(Glu1160Lys) variant in the 7_mut
patient occurred de novo. It is a missense variant present
at very low frequencies in the general population (5/
187386 alleles in the GnomAD database [23]; MAF < 0.01;
rs959370052) and affects a weakly conserved amino acid.
The methylation profile of both patients did not display a
specific SETD1B signature, suggesting both variants do
not result in a loss of SETD1B function and are probably
not pathogenic. While patients 6_mut and 7_mut display
clinical features compatible with the phenotype caused by
SETD1B mutations, this is not related to the specific
SETD1B methylation pattern, indicating that they do not
have a SETD1B-related disorder.

We detected the specific SETD1B-related DNAm sig-
nature based on the methylation status of three different
pathogenic variants in five patients. An increased sample
size would lead to the possibility of detecting differences
in DNAm between variants.
Four hypermethylated DMRs were found to be associated

with SETD1B. The region located on chromosome 6 (chr6:
26195488-26195995; hg19) was not assigned to any gene
and was found to be characterized by high DNase hyper-
sensitivity with promoter activity and located in Homo
sapiens histone cluster 1. Histone 1 (H1) is responsible for
chromatin condensation and DNA fragmentation during
apoptosis [24, 25]. Note that the apoptotic process, regula-
tion of cell death, and chromatin condensation were
enriched in ORA (biological processes) of CpG sites of the
SETD1B-related DNAm-specific signature. Another hyper-
methylated region on chromosome 6 (chr6: 32942063-
32943025; hg19) was assigned to the BRD2 gene. It displays
promoter and enhancer activity and overlaps exon 3 of
BRD2. Pathak et al. [26] reported hypermethylation in
another locus (CPG75) near the promoter of BRD2 as
implicated in juvenile myoclonic epilepsy (JME) [26].
Hypermethylation of this locus was found to be associated
with a single nucleotide polymorphism (rs3918149). Schultz
et al. [27] could not confirm this association in the German
population. However, in 2007, Cavalleri et al. published the
results of genotyping rs3918149 variant across five inde-
pendent JME cohorts, observing a significant effect of this
SNP on epilepsy in the British and the Irish cohorts, but

Fig. 4 Genomic distribution of the significant differentially methylated CpG sites identified in group analysis according to the genomic
annotations of the epic array. The light blue bars (EPIC) represent all the informative probes included in the data (777,148 CpGs) and the dark
blue bars the CpGs identified in the group analysis (TOP; 3340 CpGs). The numbers on the top of the bars represent the percentage distribution
of CpGs for each category. All categories are listed in the supplemental information—Infinium Methylation EPIC Manifest Column Headings®. This
comparison demonstrates the enrichment in the body (between the ATG and stop codon), DHS–DNase I hypersensitivity site, RDMR–
reprogramming-specific differentially methylated region, promoter-associated, and promoter-associated cell-type specific
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not in those of the German, Australian, and Indian [28]. Al-
though the association of BRD2 and epilepsy is not clear,
we tentatively speculate that the hypermethylation detected
in BRD2 in our cohort may play a role in the occurrence of
epilepsy in these patients. Two other hypermethylated
DMRs detected in the SETD1B-related group analysis were
found to be located on chromosomes 14 and 21 (chr14:

45431885-45432516; chr21:36258423-36259797; hg19) and
assigned to genes KLHL28, FAM179B, and RUNX1. The
former covers a CpG island with promoter activity and a
DNAse hypersensitivity cluster (exon 1 of FAM179B) while
the latter corresponds to a CpG island with promoter activ-
ity at exon 4 of RUNX1 and a DNAse hypersensitivity clus-
ter. The biological function of these genes could not be

Table 3 Summary of the ORA

Gene ontology: biological processes

Description C O E R pValue FDR

GO:0051276 Chromosome organization 1143 165 97.67 1.69 5.59E−12 5.08E−08

GO:0033043 Regulation of organelle organization 1245 175 106.39 1.64 1.16E−11 5.26E−08

GO:0007049 Cell cycle 1739 223 148.60 1.50 1.15E−10 3.48E−07

GO:0006915 Apoptotic process 1911 239 163.30 1.46 2.52E−10 5.74E−07

GO:0010941 Regulation of cell death 1648 210 140.83 1.49 7.83E−10 1.42E−06

GO:0006325 Chromatin organization 741 112 63.32 1.77 1.35E−09 1.90E−06

GO:0033554 Cellular response to stress 1867 231 159.54 1.45 1.47E−09 1.90E−06

GO:0010942 Positive regulation of cell death 660 102 56.40 1.81 2.28E−09 2.60E−06

GO:0010629 Negative regulation of gene expression 1733 216 148.09 1.46 3.00E−09 2.87E−06

GO:0034613 Cellular protein localization 1815 224 155.10 1.44 3.44E−09 2.87E−06

Gene ontology: molecular function

GO:0003723 RNA binding 1603 203 131.47 1.54 7.52E−11 8.28E−08

GO:0019904 Protein domain specific binding 684 106 56.10 1.89 8.82E−11 8.28E−08

GO:0001067 Regulatory region nucleic acid binding 898 129 73.65 1.75 1.39E−10 8.70E−08

GO:0044212 Transcription regulatory region DNA binding 896 128 73.48 1.74 2.38E−10 1.12E−07

GO:0043565 Sequence-specific DNA binding 1097 146 89.97 1.62 1.87E−09 7.02E−07

GO:0003690 Double-stranded DNA binding 915 126 75.04 1.68 3.41E−09 1.07E−06

GO:0000976 Transcription regulatory region sequence-
specific DNA binding

781 111 64.05 1.73 5.41E−09 1.45E−06

GO:1990837 Sequence-specific double-stranded
DNA binding

823 115 67.50 1.70 7.55E−09 1.77E−06

GO:0000977 RNA polymerase II regulatory region
sequence-specific DNA binding

729 103 59.79 1.72 2.69E−08 5.62E−06

GO:0001012 RNA polymerase II regulatory region
DNA binding

735 103 60.28 1.71 4.11E−08 7.72E−06

Human Phenotype Ontology

HP:0002346 Head tremor 20 10 1.87 5.36 3.48E−06 0.016253

HP:0011337 Abnormality of mouth size 269 43 25.09 1.71 2.13E−04 0.167774

HP:0004097 Deviation of finger 320 49 29.85 1.64 2.23E−04 0.167774

HP:0000311 Round face 73 17 6.81 2.50 2.80E−04 0.167774

HP:0000219 Thin upper lip vermilion 137 26 12.78 2.03 2.84E−04 0.167774

HP:0011228 Horizontal eyebrow 8 5 0.75 6.70 3.04E−04 0.167774

HP:0005306 Capillary hemangioma 26 9 2.43 3.71 3.59E−04 0.167774

HP:0001894 Thrombocytosis 21 8 1.96 4.08 3.63E−04 0.167774

HP:0100559 Lower limb asymmetry 21 8 1.96 4.08 3.63E−04 0.167774

HP:0000107 Renal cyst 203 34 18.93 1.80 4.21E−04 0.167774

C reference genes in the category, O observed number of genes in the category, E expected number of genes in the category, R ratio of enrichment, pValue p
value from hypergeometric test, FDR false discovery rate
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related to clinical features in our cohort; however, their
localization in genomic regulatory regions suggests a role in
SETD1B-related disorders.
A comparison of phenotypes of patients with a SETD1B

DNAm signature showed overlapping clinical features
such as intellectual disability, language delay, autism, sei-
zures, full cheeks, and tapering fingers (Table 4). Interest-
ingly, two patients presenting with the microdeletion,
involving also KDM2B, were initially diagnosed with Beck-
with Wiedemann syndrome (BWS) because of overgrowth
and macroglossia, which are typical for BWS (MIM
130650). Hiraide et al. (2018) suggested that the deletion
of KDM2B could be a possible reason for an overgrowth
phenotype in these two patients [8]. Moreover, a KDM2B
missense mutation (c.2503G > A) was identified to be
associated with “paunch calf syndrome” [29]. The charac-
teristic features of this syndrome include abdominal dis-
tension and tongue protrusion that are comparable with
abdominal wall defects and macroglossia, features that are
characteristics for BWS [30].
The results of this study show a strong effect of SETD1B

function on DNA methylation. SETD1B is a known his-
tone modifier that produces trimethylated histone H3 at
Lys4 (H3K4me3), which may play a role in blocking of the
de novo DNA methylation in some genomic regions.
DNMT3L ((cytosine-5)-methyltransferase 3-like), which
stimulates de novo DNA methylation, interacts only with
unmodified H3K4. The methylation of H3K4 disables this
interaction [31]. The loss of the function of SETD1B may
lead to the insufficient production of H3K4me3 and,
thereby, hypermethylation of the DNA in specific loci. In-
deed, 82% of differentially methylated CpGs in patients
with a SETD1B pathogenic variant were hypermethylated.
The 18% of differentially methylated CpGs that were

hypomethylated remain unexplained by this mechanism,
but these may be secondary effects, caused by altered ex-
pression of target genes of SETD1B.
Syndromic disorders have often similar clinical features.

Genetic testing has multiple limitations. For instance, the
resolution often prevents it from detecting low-frequency
mosaicism. Moreover, the reason underlying the clinical
features can occasionally not easily be inferred from the
variants if variant occurs in non-coding regions, contiguous
genes are deleted, or if they have been annotated as VUS.
Examination of specific DNAm signatures was previously
described as a powerful solution in the classification of
various unresolved cases including syndromic Mendelian
disorders, imprinting disorders, repeat expansion disorders,
and uncertain clinical diagnosis with VUS [16, 17] and has
therefore been proposed as a novel molecular diagnostic
test. Our results reinforce this observation indicating that
the specific DNAm signature has a diagnostic value and
can be used as an additional diagnostic test to resolve vari-
ants of unknown significance in SETD1B.
Due to the small sample, we were unable to determine

whether the loss of the KDM2B caused a specific DNAm sig-
nature. Studies including a sufficient number of patients are
needed to solve this. The other limitation of our study was
the technical differences between samples. Different DNA iso-
lation methods between samples may influence the results.

Methods
Patients
Whole blood DNA samples from 13 individuals were
collected for the methylation study. Seven patients had
point mutations in SETD1B, which were identified by
whole-exome sequencing (WES), and five chromosomal
12q24.12-32 aberrations. One of the five patients had

Fig. 5 Unsuperviesed hierarchical clustering of the 697 CpG sites identified in KDM2B group analysis. C–represents controls, aberrations/variations
annotated to patients. The data was obtained from two batches
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the deletion involving KDM2B (1_del12q), two the
deletion of both KDM2B and SETD1B (2-del12q, 3_
del12q), one the deletion on SETD1B (4_del12q), one
the deletion not involving KDM2B and SETD1B, and
one the duplication of 12q24.12 not involving KDM2B
and SETD1B. Table 1 shows the genetic aberrations and
inheritance of the patients included in the analysis.
Figure 6 depicts the comparison between the deleted
regions and genes in patients with microdeletions of
12q24.31 from the cohort (according to Hg19). Informed
consent was obtained for each patient.

Healthy controls
Whole blood DNA samples were collected from 60 healthy
individuals.
Cohort details are listed in Additional file 4: Table S4.

Methylation EPIC array
The samples were divided into two batches: the first
contained seven DNA samples from the patients (two fe-
males and five males) and 40 samples from the healthy
controls (20 females and 20 males) and the second con-
tained six DNA samples from the patients (two females

Fig. 6 Comparison between deleted regions in patients with a microdeletion of 12q24.31. The light blue bars represent the deleted regions for
individual patients. Numbers 1, 2, 3, 4, and 5 represent patients 1_del12q24.31, 2_del12q24.31, 3_del12q24.31, 4_del12q24.31, and 5_del12q24.31,
respectively. The red frames highlight genes SETD1B and KDM2B. Note: microdeletion of patient 5_del12q24.31 has not been fully displayed on
the plot and does not overlap KDM2B and SETD1B
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and four males) and 20 from the healthy controls (ten
females and ten males). The samples were randomized
and sent to GenomeScan in Leiden (ISO/IEC 17025
approved), where the bisulfite treatment and the
hybridization to the Infinium Methylation EPIC array
(Illumina) were processed. The raw methylation data
were obtained and the quality (QC) of the data assessed
using the MethylAid script in R. (GenomeScan’s Guide-
lines for Successful Methylation Experiments Using the
Illumina Infinium® HumanMethylation BeadChip).

Normalization and data analysis
The EPIC array data was loaded onto the R software and
normalized using the preprocessFunnorm function of
“minfi” R package [32]. All probes containing SNPs
(MAF > 0.01), cross-hybridization probes, and probes lo-
cated on the sex chromosomes were excluded; 776,920
probes remained for analysis. The beta values (ratio of
the methylated probe intensity ranging from 0 to 1) were
obtained for all the patients from the cohort. Row beta
values were normalized and PCA carried out.

Estimation of the blood cell type distribution
White blood cell type was estimated for each patient using
estimateCellCounts function in R “FlowSorted.Blood.E-
PIC” package [33]. The counts were calculated for CD8T
(cytotoxische T cell), CD4T(T helper cells), NK (natural
killer cells), B cell (B lymphocytes), mono (monocytes),
and gran (granulocytes). The P value was calculated for
each patient of our cohort (13 patients), for each cell type
(Crawford-Howell t test; R software). Subsequently, the
Bonferroni correction was applied for 78 tests (six cell
types × 13 patients). We assume that the distribution of
the cell types was significantly disturbed if the Bonferroni-
corrected P value for the cell types was less than 0.05.

Group analysis and identification of CpG sites for the
DNAm-specific signature
DNA methylation of patients in the groups (five patients
in the SETD1B-related group and two in the KDM2B-re-
lated group) were compared with methylation in a group
of 59 healthy controls using the “minfi” R-package. The
design model was corrected for age, gender, batch, and
cell distribution. The beta values were obtained and logit
transformed into M values. The adjusted P values for the
M values were calculated, and the significance threshold
was 0.05. Finally, to avoid false-positive results, CpG sites
with an effect size of at least 10% difference in an average
of DNAm between patient groups and the control group
were selected. In this way, we identified 3340 and 697 dif-
ferentially methylated CpGs in the SETD1B-related group
and KDM2B-related group, respectively.

Analysis of a specific methylation signature
Beta values of CpGs selected in the group analyses were
used to perform the unsupervised hierarchical clustering
(“pheatmap” R-package). Two heatmaps were created,
one for the SETD1B-related group and the other for the
KDM2B-related group. Each heatmap was created for all
individuals in the cohort (13 patients and 60 controls).

Examination of the specificity of the SETD1B-related
DNAm signature
Whole blood DNA samples were collected from 502 pa-
tients with various neurodevelopmental syndromes. To
compare the methylation values of our cohort with these
additional samples, we performed re-normalization, accord-
ing to the Illumina normalization method, with background
correction using the “minfi” R-package. To select significant
differentially methylated SETD1B-related CpGs, we used
similar filtering steps for these in the SETD1B-related group
analysis namely, a corrected P value less than 0.05 and an
effect size of at least 10% difference. Correlated probes with
r2 higher than 0.8 were removed from this analysis. Multidi-
mensional scaling (MDS) was used to examine the DNA
methylation profiles. All samples used in this analysis and
the details of the method were fully described by Aref-
Eshghi et al. [16, 17]. The list of 502 samples used in this
specific analysis is listed in Additional file 5: Table S5.

Identification of differentially methylated regions
To identify the DMRs between patient and control groups,
a “bumphunter” R-package was used. The design model
was corrected for age, gender, batch, and cell distribution.
The P value for each region was calculated and mul-

tiple testing applied according to the family-wise error
rate. The significant DMRs were selected based on the
two filter steps: (i) Fwer < 0.05 and (ii) at least three dif-
ferentially methylated CpGs within the region (L > 2).

ORA—WEB-based Gene Set Analysis Toolkit
ORA were carried out for the first and unique gene symbol
annotated to the CpGs identified during group analysis
(according to the Infinium MethylationEPIC v1.0 B4 Mani-
fest File). Basic parameters were as follows: organism–hu-
man, method–ORA, functional database–gene ontology
(biological process and molecular function), and reference
set for enrichment analysis–genome protein-coding. Ad-
vanced parameters were as follows: minimum number of
genes for a category–5, maximum number of genes for cat-
egory–2000, multiple test adjustment–Benjamini-Hochberg
(BH), significant level–top 10, number of categories ex-
pected from set cover–10, number of categories visualized
in the report–40, and color in DAG–continuous.
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