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Abstract: Background and aims. The tracing of C assimilation and the subsequent partitioning
among plant organs has been a central focus of studies utilising Free Air CO2
Enrichment (FACE) facilities. The approach makes use of the fossil origin of this
carbon, which is depleted in 13C. However, there is little data for desert environments.
The Nevada Desert FACE Facility (NDFF), located in the Mojave Desert, has been one
of the main facilities for the study of C dynamics in arid ecosystems and how they
respond to rising atmospheric CO2 concentrations. In this experiment, we studied the
incorporation of fixed CO2 during the previous two years (detectable by its lower 13C)
in the soil fraction surrounding roots.
Methods. The soil was collected monthly in direct vicinity to the roots during a complete
growth season, at two depths (5 and 15 cm). Soil samples were dried and fractionated
by size (> 50 µm and < 50 µm) by wet sieving, and both size fractions were then
analysed for the d13C of their organic matter and their carbonates.
Results. In the coarse fraction (> 50 µm), d13C values ranged between –1 and –2‰ for
carbonates and between –23 and –25‰ for soil organic matter. These values did not
significantly change throughout the experiment and were not affected by depth (5 or 15
cm). In contrast, d13C values for both organic and inorganic carbon in the fine fraction
(< 50 µm) were much more variable than in the coarse fraction (> 50 µm). The d13C
values for organic C ranged mostly between –20‰ and –27‰, and were roughly
maintained throughout the sampling period. For inorganic C, the d13C values were
mostly between 0‰ and –15‰, and tended to become less negative during the course
of the sampling period. Overall the effect of [CO2] on d13C values of either organic or
inorganic carbon was not significant for any experimental condition (plant species,
depth, fraction).
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Conclusion.  Little or no signs of recently fixed CO2 (13C-depleted) were detected in
the soils close to the roots, in the coarse fraction (> 50 µm), the fine fraction (< 50 µm),
the organic matter, or in carbonates. This indicates a slow C turnover in the studied
soils, which can result from a highly conservative use of photoassimilates by plants,
including a very low release of organic matter into the soil in the form of dead roots or
root exudates, and from a conservative use of available C reserves.

Response to Reviewers: The 'responses to reviewers' have been uploaded as a separate file.
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From:  Pere Rovira 

  Forest Sciences Centre of Catalonia (CTFC) 

  Solsona 

  Spain 

 

          June 11, 2018 

Dear Sirs, 

 

 Herewith, we send you the corrected version of our paper ‘Limited carbon inputs from 

plants into soils in arid ecosystems: a study of changes in the 13C in the soil-root interface’, which 

we want to submit for your consideration, to be published in Plant and Soil. 

 We took into consideration all criticisms of the two reviewers. Following the criticism of 

reviewer #2, somewhat surprised by our short ‘Results’ section, in this new version we give 

substantially more information. Specifically, we give data about total OC and IC, not given in the 

previous version. However, as a result of the need of properly comment all these additional results, 

the paper has suffered substantial changes: the ‘Results’ section has been almost completely 

rewritten, and the ‘Discussion’ has been notably enlarged. The main conclusions do not change, 

however.  

 We sincerely expect you will consider this second version as a substantial improvement of 

the previous one. At any rate, owing to the big changes in the manuscript, we assume that a new 

round of revision will be necessary, before you consider the paper good enough to be published in 

Plant and Soil. 

 

Yours sincerely, 

 

 

 

(on behalf of all authors) 

Covering Letter



COMMENTS FOR THE AUTHOR: 

 

Please check online for possible reviewer attachments. 

 

Editor Comments: I have received two reviews, which consider that this manuscript is an 

valuable contribution. Both reviewers have a number of suggestions to improve the manuscript 

and once these have been incorporated the manuscript will be assessed again for publication. 

 

 

GENERAL RESPONSE (for the editor and the two reviewers) 

 

Dear Sirs, 

 

We sincerely acknowledge your efforts as reviewers and your criticisms about our work. Below 

we answer all your queries. Nevertheless, there are some additional comments to do. 

 

Reviewer #2 was a bit surprised about the short ‘Results’ section. In our previous version of this 

paper we wanted to focus on the isotopic compositions, avoiding a too long description of our 

dataset. Nevertheless, eventually we agreed that it was worth to give a larger set of results, for 

some of them could be interesting for readers. 

 

Thus, we added a more detailed description of our data, more specifically the total OC and IC 

contents of the obtained fractions. Owing to the need of making our previous texts consistent 

with these new data, we decided to rewrite the ‘Results’ section, almost completely. 

 

The Tables, which in the previous version were put erroneously as ‘Supplementary material’, 

have been moved to the main corpse of the paper. In addition, all but one (table 1) have been 

changed and re-designed. 

 

Additional statistical information has been given as ‘Supplementary material’.  

 

Three new figures have been added. To compensate for this, the last figure of the old version 

(Figure 4) has been suppressed. 

 

Also, substantial additions have been made to the ‘Discussion’, in order to include the newly 

added information. Some of these data add some nuances to our previous conclusions, but they 

do not substantially alter the main ones. 

 

Thus the paper has considerably changed, and the reviewers will probably add new substantial 

comments and criticisms, not just add some comments to the previous ones. We assume that a 

new round of revision will be necessary. 

 

We acknowledge, at any rate, the detailed and extensive comments made by both reviewers, 

which helped us to substantially redesign our paper. 

 

Yours sincerely, 

Response to reviewers comments Click here to download Response to reviewers comments
Comments referees.doc
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Pere Rovira 

(on behalf of all co-authors)    

 

 

Reviewer #1: Manuscript number: PLSO-D-17-01573 

 

Title: Limited carbon inputs from plants into soils in arid ecosystems: a study of changes in the 

delta-13C in the soil-root interface 

 

General comment: 

 

This study assessed the incorporation of recent root derived C in the soil surrounding the roots, 

employing a 13C tracer approach using a FACE system. In contrast with most 13C tracer studies, 

this study considered not only the organic C pool in soil, but also carbonates in soil. In addition, 

the soil was analysed targeting root debris derived-C and exudate derived-C separately by 

studying the coarse soil fraction (>50 ?m) and the fine soil fraction (<50 ?m), respectively. In 

combination, this experimental design is novel. The findings of this study also adds to our 

understanding of the contribution of root derived-C in soil in desert plants. The article is well 

structured and well written, and is suitable for Plant and Soil. However, the authors should 

address a few issues listed in specific comments below. 

 

Specific comments: 

 

L157-164: Although both plants are shrubs, the authors should consider adding text to provide a 

brief description of their root systems (whether similar or different), such as rooting depth that 

may be important for understanding the depth data in L248-254. 

 

Unfortunately we do not have this information. For the sampling, we took advantage of an 

excavated trench and we took samples of the soil around the visible roots. Several parameters 

about the root systems were investigated (and published later: Clark et al 2010), but the rooting 

depth was not investigated then. Thus we do not have this information. We agree with you that 

having this information would be of help in our interpretations. 

 

L190-194: The article does not describe how the soil in close contact with the roots was sampled. 

I suggest this information should be included here, considering that the method of collecting the 

soil surrounding roots is crucial to account for the recent root derived C particularly exudate C. 

For instance, collecting the soil surrounding roots by washing and subsequently decanting excess 

water may lead to loss of exudate C and thus underestimation of the root derived C in soil. 

 

The soil around the roots was collected manually, with a spatula, and put immediately in a plastic 

vessel. No water leaching occurred at the sampling. This detail has been added to the text. 

 

L209-211: If the separate trials that were used to verify the effectiveness of the method for 

analysis of 13C signature of carbonates are published work, the authors should include the 

citations here. 



 

No, the trials were done in our laboratory (University of Barcelona), for a previous work (Rovira 

& Vallejo 2008, Geoderma, mentioned in the ‘References’ section) in which this problem was 

also settled, and we needed to verify that the method was fine, i.e., that calcination does not 

affect carbonate amount nor isotopic composition. We did not publish these results. 

 

L240: Change "results" to "resulted". 

 

Done. 

 

L268: Remove the comma from "was not significant, either" to read "was not significant either". 

 

Done. 

 

L291: Change "derived from" to "was derived from". 

 

Done. 

 

L376: Change "affect" to "effect". 

 

Done. Sorry, it was a stupid error. 

 

L401: Change "(Evans et al. (2014)" to "(Evans et al. 2014)". 

 

Done. 

 

L423: Change "thanks" to "thank". 

 

Done. 

 

Fig. 1 caption: "the 3d harvest" should be "the 3rd harvest". 

 

Done. 

 

Figs. 2 and 3 captions: "soil depth" should be changed to "soil depths". 

 

Done. 

 

Fig. 4 caption: "in coarse (> 50 μm) and fine fraction (< 50 μm)" should be changed to "in coarse 

(> 50 μm) and fine (< 50 μm) fractions".  

 

Done. 

 

Figs. 1 to 4: Consider indicating that 'Harvest numbers' on the horizontal axes of all four figures 

represent monthly samplings, also quoting the months (such as April-August). This information 

can be added to the captions. 



 

The months have been added to the abscissa axes. We consider that the letters ‘A M J J A’ are 

obvious enough. Note also that the design of all figures has changed (and, we expect, improved). 

 

Tables 1 to 4: It looks like all four tables have been submitted as Supplementary material, which 

is fine. However, consider making it clear in the text; for example, by writing "Table S1" instead 

of "Table 1" in L239. 

 

Putting the tables as ‘supplementary material’ was an error when uploading the files. Tables 

should be a part of the main text. In this corrected version, tables are no longer ‘supplementary 

material’. We apologize for our mistake. 

 

Note also that substantial changes in the tables have been made. And the information we give in 

them, too. Now we consider they give more relevant information. 

 

Note also, finally, that in spite of all this, we added a ‘Supplementary Material’, with additional 

statistical information. We did it like this in order to avoid an overwhelming statistical data, 

which could distract readers from the core of the paper. However, we give this information 

because we suppose that some readers may be interested in specific points about our results. 

 

We sincerely acknowledge your effort and your interest in our paper. 

 

 

Reviewer #2: Review of the ms: 

  

Limited carbon inputs from plants into soils in arid ecosystems: a study of changes in the delta-

13C in the soil-root interface submitted by Pere Rovira, Iker Aranjuelo, Robert S. Nowak, 

Salvador Nogués for Plant and Soil 

 

The ms presents an important study of the incorporation of C from roots and rhizodeposition into 

organic and inorganic C under elevated CO2 provided in FACE in an arid ecosystem. There are 

only very few FACE experiments in the arid ecosystems, and the results from them were 

published extremely seldom. So, despite the tradeoff in plants between water losses and CO2 

assimilation is especially extreme under arid conditions, we have nearly no studies in these 

ecosystems under elevated CO2. The other advantage of the study is that not only the organic C 

was investigated (as nearly in all other studies), but also incorporation of 13C from roots into 

incorganic C war traced. To my knowledge, this is the first FACE study considered the 

incorporation of C from roots into CaCO3. 

 

The authors showed that already after 2 years of FACE application it is possible to trace the root-

derived C in soil, but not in the bulk soil - only in the fine fraction.  

 

Nevertheless, I recommend very strong revision and various additional calculations that will 

strongly increase the quality and the resonance of the paper. 

 

General comments 



 

- For the papers based on d13C natural abundance or very low enrichment / depletion of 

13C, the words "increase" or "decrease" or "higher" or "lower" - are always not clear. So, write 

better: got more negative or less negative or were more / less depleted. e.g. L41: the value -15%o 

is actually more negative than the control, but you write "higher" - not really clear what you 

mean. 

 

You are right that we must be careful at this point. The text has been revised according to your 

advice. Sometimes we added small texts (‘more negative’, ‘less negative’) to avoid any 

confusion when we say ‘higher’ or ‘lower’. Nevertheless, we did not detect any error; actually 

we consider that the text was very clear at this point. 

 

- Keywords are missing 

 

Keywords added. 

 

- The authors provided nice data about the changes of d13C - all Figures present this in 

various C pools. However, - actually this are the raw data. The Authors need to make an 

important step for quantification of the amounts of SOC and SIC that was exchanges during the 2 

years of FACE. So, the Authors should multiply the d13C changes with the stocks of SOC and 

SIC and present - How much C from roots was exchanged in soil. They can also estimate the 

Turnover rate of C pools based on this data. This would bring the ms on a much higher process 

level and understanding, and surely, will attract more people to the paper! 

 

Not possible, unfortunately. As you mention in your comment, such a calculation involves 

differences in d13C values, and precisely one of our main results is that CO2 treatment did not 

affect d13C values overall. Only in a few cases we detect differences between ambient and 

elevated CO2 as to the obtained d13C values of either OC or IC, and these few moments were 

possibly spurious (see figures 5 and 6). 13C-labelling started in 2003, and our sampling was in 

2005: after only two years, not enough labelling was transferred from roots to the soil to make 

such a calculation with a minimum of confidence.  

 

- Statistics: despite a session about statistics is presented in M&M, not statistical results are 

presented on graphs. This is strange. - I recognized later - the Tables were not included in 

the main text - please check by the revision! 

 

We apologize for this. When submitting the paper, I (Pere Rovira) did not realize that tables had 

been added as ‘supplementary electronic material’, which of course was not my aim. In the 

corrected version this has been changed, and the main tables are included in the main text corpse. 

 

In the figures, some statistical results are presented, focused in (i) the presence of significant 

differences between ambient and elevated CO2, for pairs of data, and (ii) the significance of the 

‘harvest’ effect, in order to check whether significant changes with time occurred. 

 

-Further, 4-way ANOVA is surely possible, but considering huge number of interactions 

between the 4 factors, the uncertainty of the conclusions is very high. May be it make 



sense to think how to reduce the number of the factors and provide specific conclusions 

(excluding at least one of the factors). 

 

We agree with your comment. In this new version, ANOVAs have been designed in order to 

analyze data carefully, avoiding possible dilution effects. In the new ANOVAs, the harvest has 

been suppressed as a factor. And ANOVAs have been done first for the whole dataset, but next 

for each species separately. 

 

The ‘harvest’ factor has been studied further, when we studied the (possible) temporal changes 

along the sampling period, in both OC, IC, and d13C of either OC and IC (see figures 3-6). 

         

- The Results sections is very short - just one page. As mentioned above, the Authors 

should present not only their d13C data (from the IRMS), but should recalculate 

considering the pool size etc. and should try to make ecological conclusions and that to 

the exchange rates of C in soil. 

 

We added more data in our revised version, mainly about total OC and IC. The addition of all 

these new data is the reason of the substantial changes in the manuscript. We sincerely expect 

you will consider the manuscript considerably enriched, relative to the previous version.  

 

But as above mentioned, the lack of significant differences in d13C between ambient and 

elevated CO2 hampers making too much calculations about exchanges and turnovers. A main 

exigence for these calculations is that, for a given condition, the d13C values of either OC or IC 

must differ between ambient and elevated CO2 rings. And in all cases (see particularly Table 3) 

we obtained no significant differences. This is a result in itself. But it has a consequence: that we 

do not have any solid basis to calculate turnover rates nor exchange rates. Unfortunately. 

 

- The most of the literature cited to the results of FACE studies is rather old. It looks that 

there were nothing new in the last 5-10 years. 

 

We added more references in many places. Even though we gave priority to recent papers, 

sometimes the best papers to cite were older (say, 2009 or 2005). Note that the classical FACE 

facilities were all closed. New facilities, re-designed, are going to be available. But it is quite 

logical that the publication of papers about FACE experiments is in a kind of impasse: we are in 

a transition stage. 

 

Specific remarks 

 

L24 These are not very low d13C, but just a little lower than ambient. Actually, depleted is 

enough. 

The sentence ‘(very low d13C values)’ has been supressed. The word ‘highly’ has been 

supressed, too. The overall text has been revised in order to avoid words such as ‘highly’ when 

referred fo CO2 concentrations.  

 

L30 Not clear: Soil can be collected monthly - is better 

 



The sentence has been rewritten in this way: ‘The soil was collected monthly in direct vicinity... 

(etc)’. 

 

L35 Barely is not clear: were these changes significant or not? If not - write were identical or 

similar or … 

 

The sentence has been changed to ‘These values did not significantly change throughout the 

experiment and were not affected by depth (5 or 15 cm)’. We expect you will find it ok. Note, 

however, that the whole ‘Results’ section has been rewritten. 

 

L35 variable is not clear: high variation does not mean significant changes. 

 

In the next lines of the abstract we precise a bit more what do we mean. Nevertheless, when 

comparing figures 5 and 6, the word that in my view reflects better the difference between both 

is that in the fine fraction the d13C values are more variable. 

 

L41 what means higher here - it is actually lower compared to -1 … -2%o in the bulk soil 

 

It means higher (less negative) than the values for organic carbon in the fine fraction. In the fine 

fraction, the d13C values for organic carbon are between -20 and -27 per mil. Those for 

inorganic carbon are between 0 and -15 per mil, and thus are higher (i.e., less negative). 

However we corrected a bit the text in order to avoid these confusions, and we used the term 

‘more negative’ or ‘less negative’ when appropriate. We agree than in the context of delta values 

the words ‘higher’ or ‘lower’ may be confusing. 

 

Note also that this part of the abstract has been rewritten, however, in order to put more emphasis 

in the comparison of elevated- versus ambient [CO2] rings. 

 

L45 "highly conservative use …" this is not correct. May be low C amounts were allocated 

belowground, but this does not mean conservative use. Rewrite. 

 

Sorry but we do not agree. To retain the photosynthates within the plant and avoiding its release 

to the surrounding medium (e.g., soil) is to make a conservative use of them. We suppressed in 

these sentences the word ‘highly’, which is always debatable and often unnecessary. But the 

word ‘conservative’ has been maintained. 

 

L51  biocoenoses - this word will be very seldom used. Ecosystems - is much more common 

and clear for broader communities 

 

Changed as requested. 

 

L51 what is "plant structure"? Community structure or what? 

 

Plant structure refers to its anatomy at a ‘macro’ scale. Ramification, height, number and 

dimension of leaves, etc. Of course, this result also in changes in community structure (changes 

in spatial competition, for instance). Perhaps the term ‘plant structure’ was not the best for this 



concept. We replaced it by the word ‘anatomy’, taking into account that further in this sentence 

we used the term ‘tridimensional structure’. Also, we considered that adding the word ‘Elevated’ 

before [CO2] improved the sentence. 

 

L51 only one function? 

 

‘Function’ in the sense of the way a plant runs. Perhaps ‘functions’ (in plural) is better. 

 

L51-52  the sentence is not clear! IMPROVE! 

 

After replacing ‘structure’ by ‘anatomy’ the sentence is clear. 

            

L59… not clear what you mean specifically 

 

It refers to the interactions between diversity (simple versus complex micro- or mesocosms), 

increased CO2, temperature, etc. Perhaps this could be written in a different way. Because the 

main feature of these complex relationships is the presence of fauna, and its interaction with a 

plant + soil system, the sentence ‘in particular when fauna is involved’ has been added. We 

whish you find the sentence improved in this way.  

 

L66 again: it is NOT very low. Just slightly lower than ambient 

 

‘A very low 13C value’ has been replaced by ‘a lower 13C value’. The whole text has been 

revised to account for this misuse of ‘very low’. Actually the word ‘very’ has been suppressed 

almost everywhere. 

 

L76 Rasse et al has not written anything about the exudates 

 

The paper of Rasse et al is a classical citation about the relevance of roots as a source of soil 

organic matter. But it is true that he has not papers about exudates. We solved this by 

suppressing any mention to root exudates in this sentence, and also the cite of Baptist et al. 

 

L78 May be they observed slight increase of the C stocks, but surely not in ALL depths! And, 

there are very many papers in which C stocks remained unchanged. 

 

Of course this refers to the depths sampled. This depends on each study, of course. To make it 

simple, we deleted the words ‘at all depths’. Also, we added two references in which no net 

sequestration was observed. 

L119-126  the reason for the dilution should be clearly mentioned: The reason is fully correct, 

just present more clearly. 

 

Sorry, but in our opinion lines 123-126 explain this very well. But perhaps these lines were not 

perfectly connected to the previous ones. We added some small additions (‘because...’, ‘and 

thus...’) to make more obvious such a connection.  

 

L129 The aim of the study should be more clearly justified in the Introduction. 



  

We added some lines to make our aim more explicit. Also, we improved (I expect) the two 

paragraphs immediately before this one. We expect you will find ok these amendments. 

 

L131 It is not clear: the study was done 2005 - more than 10 years ago. Why it was not 

published before 2018? 

 

Leaving aside Dr. Nowak, none of us had a linear and sure career; we changed of university, we 

did post-docs, etc. Often the day-to-day imposes above everything else, and the unsure status of 

young scientists affects too. Sorry. But most particularly, we (Pere Rovira, Iker Aranjuelo and 

Salvador Nogués) were not able to put our analyses within a scientific context until the paper of 

Evans et al was published. Then we were able to properly discuss  the meaning of our results, put 

it on place (like a piece of a jigsaw) and go on with our paper. 

 

L153 why the SIC content is not presented here? 

 

We added a number (15% carbonates), which is what we obtained from our samples. But 

actually (and very surprisingly to me), throughout the studies generated in the NDFF facility I 

did not detect any paper in which the soils had been thoroughly described, including carbonate 

content. In most works the organic matter was the focus, thus carbonates are destroyed with acid 

before C or 13C analyses, but that’s all. It’s a pity, no doubt.  

 

L239 Sorry, I have not found Table 1, 2, 3 

 

As mentioned before, I put the tables (erroneously) as ‘supplementary electronic material’. Now 

tables have been added to the main core of the paper. Note however that tables have completely 

changed, and – we expect it – improved. 

 

L257 it is not a theory, but experimental conclusions! 

 

Perhaps the word ‘theory’ was not the appropriate one. We replaced it by ‘view’. We expect you 

will find this term more acceptable. 

 

L297 it could be also - extreme fast rates of decomposition! 

 

This is well explained further in the text. See ‘b) Root exudates may not be rapidly stabilised by 

SOM...’. 

L310 root exudates will be decomposed much faster than the sieving procedure come. Their 

decomposition rates are hours (see Jones DL, Gunina A, …) 

 

We understand that you refer to the fact that during our procedure (wet sieving, etc) root 

exudates remaining in the soil sample may suffer decomposition. In our view, this explanation is 

already included in our text, in lines 310-313 of the previous version. Nevertheless, to account a 

bit more for this, we added a sentence within the point a). We added ‘- and, owing to their 

lability, rapidly decomposed -‘ after the word ‘removed’. We expect you will find ok this 

solution. 



 

L319 for the phenomena of hydraulic conductivity close to the roots - see studies of Carminati 

A 

 

We knew the excellent work of Andrea Carminati about water absorption by root hairs (do you 

refer to his paper in New Phytologist, 2017?). However, we do not add it here because our 

discussion is already a bit long; we actually considered suppressing some parts, not enlarging it. 

 

L355 this is probably correct that CaCO3 has very slow "turnover" time. Nevertheless, you can 

calculate how much CaCO3 was renewed over the 2 years of FACE - based on d13C changes 

and the pool size. 

 

See our previous comments about this problem. We can not do this if the d13C values of 

carbonates in ambient and elevated CO2 rings can not be distinguished. Since we did not detect 

significant differences, we have no solid basis for such a calculation. The turnover time of 

carbonates in this experiment is below the detection limit. 

 

Fig 1 Low and high CO2 sounds very poor. Ambient and Elevated are common! It is very hard 

here to differentiate between squares and circles. 

 

The figure has been corrected. Both circles and squares are now bigger. Also, the design has 

been revised.  

 

In addition, the word ‘elevated’ has been applied everywhere in the text to account for the ‘high 

CO2' treatment. 

 

Fig 2 make separate scales for SOC and SIC, or: put separately SIC on one fig, and SOC on 

another fig. You should think how to present the differences between CO2 treatments and not 

between SOC and SIC! Put the legend on one of the figures. 

 

The legend has been added to all figures, as a part of the re-design of these figures. 

 

As to the rest of recommendations, sorry but we disagree. The way figures were setup is, in our 

view, the right one to make evident the main features of our results, including the comparison, 

for any experimental condition (organic or inorganic carbon, coarse or fine material, 5 or 15 cm 

depth) of the samples obtained from ambient CO2 with those obtained from elevated CO2 rings. 

Also, we do not agree with your request of making a separate scale for organic and inorganic 

carbon: using the same scale their comparison is much more obvious, and it is also clear to the 

eye the contrasted behaviour of coarse (> 50 µm) and fine material (< 50 µm). A difference that 

is in our view one of the most interesting results of our work. 

 

Fig 4 Check the d13C of you replications for SIC for harvest 1. It is not clear: did d13C of 

ambient SIC has any variation (SE)? 

 

All numerical data have been checked, and also the statistical study. Yes, the d13C of ambient 

SIC has standard deviation, but much lower than that observed for elevated [CO2]. Note 



however that this figure has been suppressed in the new version. 

 

 

We sincerely acknowledge your effort as a reviewer, and your detailed comment about our 

paper. We sincerely expect you will find this revised version substantially improved relative to 

the previous one. 
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Abstract 20 

Background and aims. The tracing of C assimilation and the subsequent partitioning among 21 

plant organs has been a central focus of studies utilising Free Air CO2 Enrichment (FACE) 22 

facilities. The approach makes use of the fossil origin of this carbon, which is depleted in 13C. 23 

However, there is little data for desert environments. The Nevada Desert FACE Facility 24 

(NDFF), located in the Mojave Desert, has been one of the main facilities for the study of C 25 

dynamics in arid ecosystems and how they respond to rising atmospheric CO2 concentrations. 26 

In this experiment, we studied the incorporation of fixed CO2 during the previous two years 27 

(detectable by its lower 13C) in the soil fraction surrounding roots.  28 

Methods. The soil was collected monthly in direct vicinity to the roots during a complete 29 

growth season, at two depths (5 and 15 cm). Soil samples were dried and fractionated by size 30 

(> 50 µm and < 50 µm) by wet sieving, and both size fractions were then analysed for the 13C 31 

of their organic matter and their carbonates.  32 

Results. In the coarse fraction (> 50 µm), 13C values ranged between –1 and –2‰ for 33 

carbonates and between –23 and –25‰ for soil organic matter. These values did not 34 

significantly change throughout the experiment and were not affected by depth (5 or 15 cm). 35 

In contrast, 13C values for both organic and inorganic carbon in the fine fraction (< 50 µm) 36 

were much more variable than in the coarse fraction (> 50 µm). The 13C values for organic C 37 

ranged mostly between –20‰ and –27‰, and were roughly maintained throughout the 38 

sampling period. For inorganic C, the 13C values were mostly between 0‰ and –15‰, and 39 

tended to become less negative during the course of the sampling period. Overall the effect of 40 

[CO2] on 13C values of either organic or inorganic carbon was not significant for any 41 

experimental condition (plant species, depth, fraction).  42 

Conclusion.  Little or no signs of recently fixed CO2 (
13C-depleted) were detected in the soils 43 

close to the roots, in the coarse fraction (> 50 µm), the fine fraction (< 50 µm), the organic 44 
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matter, or in carbonates. This indicates a slow C turnover in the studied soils, which can result 45 

from a highly conservative use of photoassimilates by plants, including a very low release of 46 

organic matter into the soil in the form of dead roots or root exudates, and from a conservative 47 

use of available C reserves. 48 

  49 

Introduction 50 

In addition to its well-known greenhouse effect, atmospheric CO2 ([CO2]) has direct effects on 51 

terrestrial ecosystems. Elevated [CO2] affects plant anatomy and functions to an extent that the 52 

tridimensional structure of the whole plant community may become affected (Billès et al. 1993; 53 

Moscatelli et al. 2001). Root growth is often enhanced (Yang et al 2008; Jin et al 2012). 54 

Elevated [CO2] also affects the biochemical quality of plants (Porteaus et al 2009) and the 55 

decomposability of plant debris (De Angelis et al. 2000; Gifford et al. 2000; Gorissen et al. 56 

1995; Gorissen and Cotrufo 2000), the dynamics of soil N, which is often the limiting factor 57 

for the dynamics of soil organic C (SOC) (Cannell and Thornley 1998), several aspects of soil 58 

biochemistry such as the soil solution (Hagedorn et al. 2002), the composition of the soil 59 

microbial community (O'Neill 1994; Panikov 1999; Frey et al 2008; He et al. 2010; Puissant 60 

et al 2015), and even ecological interactions whose effect on the overall C cycle may be 61 

extremely difficult to predict, in particular when fauna is involved (e.g., Barbehenn et al. 2004; 62 

Coûteaux et al. 1991, 1996; Coûteaux and Bolger 2000). 63 

 Free Air CO2 Enrichment (FACE) experiments have been the framework to assemble 64 

a substantial knowledge about the effect of CO2 enrichment on ecosystems. FACE experiments 65 

often use 13C-depleted CO2 (of fossil origin) to achieve elevated [CO2]. The carbon recently 66 

incorporated into the ecosystem should be detectable as a different isotopic signature, namely, 67 

a lower 13C value. Carbon allocation and partitioning can be studied in plants (Körner et al. 68 

2005; Kodama et al. 2010, Aranjuelo et al. 2011) and in soils. Thus, Van Kessel et al. (2000) 69 
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applied this method to the study of SOC turnover in temperate grasslands in Switzerland, 70 

Matamala et al. (2003) applied it to experimental Pinus taeda forests in Durham, NC USA, and 71 

Jastrow et al. (2005) to sweetgum plantations in Oak Ridge, TN USA. In Europe, Hagedorn et 72 

al. (2003) also detected enrichments in newly added CO2 in the dissolved organic carbon of 73 

forest soils in Switzerland, which suggested that new and recent CO2 may account for most of 74 

this compartment. 75 

Root production has been a major focus of research using FACE techniques. An 76 

increase in the production of fine roots has been observed (Matamala and Schlesinger 2000). 77 

Because roots are the main source of soil organic matter (Rasse et al. 2005), an increase in SOC 78 

storage should be expected. Thus, Jastrow et al. (2005) and Prior et al. (2008) observed 79 

increases in SOC stocks. Martens et al (2009), using a pulse-labelling technique, concluded 80 

that under elevated [CO2] the influx of C and potential sequestration in soil is enhanced, in 81 

wheat fields of Germany. Although this enhancement of the role of soils as C sinks helps 82 

ecosystems retain C, it is unclear whether this effect persists for a long time and leads to C 83 

sequestration. Examples of lack of net sequestration of C in soils can be found, too (Xie et al 84 

2005, Lenhart et al. 2016).  85 

These examples come from ecosystems where primary production may be very high, 86 

at least in some seasons, and therefore inputs of dead roots or leaf litter to the soils may be 87 

noteworthy. Environments in which plant production is severely constrained may be more 88 

difficult to study under such an approach. Desert environments cover more than one third of 89 

the Earth’s surface, and their area is increasing (Dregne 1991; Kassas 1995; Reynolds 2001). 90 

Despite the relative importance of deserts, there have been few FACE experiments undertaken 91 

in desert environments.  92 

The Nevada Desert FACE Facility (NDFF) (Jordan et al. 1999) is one of the rare 93 

examples and underscores how desert environments respond to [CO2] increases. Specifically, 94 
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no effect of [CO2] increase has been observed in the Mojave Desert on the biochemical quality 95 

of green tissues or the dead litter (Billings et al. 2003), and thus no effect was observed on the 96 

decomposition rate of the litter of any given species (Weatherly et al. 2003), which contrasts 97 

with results obtained for temperate areas. Increases in aboveground biomass and net 98 

photosynthesis due to elevated [CO2] have been observed in the NDFF (Smith et al. 2000; 99 

Housman et al. 2006), but no significant increases in root production (Phillips et al. 2006) or 100 

root respiratory activity have been recorded (Clark et al. 2010). In contrast, soil microbial 101 

activity seems enhanced (Jin and Evans 2007).  102 

The trends above refer to experimental work carried out in the first few years after 103 

starting elevated [CO2] treatments. Not all of these trends were maintained over the following 104 

years, as shown in the paper of Evans et al. (2014), which summarises the changes in total C 105 

and isotopic composition after ten years of CO2-enriched atmospheric supply. Relative to the 106 

control plots, those with elevated [CO2] supply showed an increase in C stock from 1.03 to 107 

1.17 kg C m–2 that extended down to a 1 m depth, as measured at a whole-ecosystem level 108 

(SOC + plant biomass, including above- and belowground components). This increase was 109 

entirely due to SOC; no increases in plant biomass were detected in either the above- or 110 

belowground compartments.   111 

Previous research carried out in the NDFF (Ferguson and Nowak 2011) established that 112 

elevated [CO2] enhances soil respiration just below shrubs, without any significant increase in 113 

fine root production or turnover. Thus, an increased release of dead fine roots into the soil 114 

cannot be the reason for the increased C sequestration in the soil. An enhancement in 115 

rhizodeposition might be the alternative explanation (Evans et al. 2014). Indeed, in semiarid 116 

steppes, elevated [CO2] increases aboveground production by 33%, but it doubles 117 

rhizodeposition (Pendall et al. 2004). Nevertheless, after 10 years of [CO2] enrichment in the 118 

NDFF, a reliable quantification of the new, 13C-depleted C in the total SOC was not possible 119 
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because the 13C values of SOC in CO2-enriched plots were lower than those of control plots, 120 

although the differences were very small and not significant (Evans et al. 2014). 121 

There are two main explanations for this. First, SOC turnover could be very slow: thus 122 

the lack of significant change in SOC 13C would merely reflect a true lack of relevant inputs 123 

of fresh organic matter into the soil. However, a second explanation – which does not exclude 124 

the previous one – could be a dilution effect. Evans et al. (2014) excavated pits of 0.5 × 0.5 m 125 

down to 1 m, in 20 cm- increments. The entire soil from each pit and depth increment was 126 

homogenised and sieved to 2 mm. Such an approach gives a precise measure of the average 127 

soil 13C, but it implies a strong dilution of the 13C label, because the new, 13C-depleted C 128 

released into the soil, via root exudates or root turnover, is expected to be concentrated close 129 

to the roots: thus, if root density or the amount of newly released C are low, the 13C label may 130 

become diluted enough after whole soil sampling and sieving to be undetectable.  131 

Such a dilution within the whole soil may be avoided by searching for the new, 13C-132 

labelled C where it is primarily released: in the vicinity of the fine roots, either as dead tissue 133 

fragments or organic exudates. The aim of our study was thus to see whether the lack of a 134 

detectable 13C-depletion in soil organic matter is really the consequence of (i) an extremely 135 

small input of root-derived organic matter, or (ii) a dilution effect, due to the homogenisation 136 

of the whole sampled soil in the pit. To this end, we focussed our work on two main points:  137 

A. We searched for the 13C-label in the SOC in 2005 (after 2 years of CO2 enrichment), 138 

studying the coarse soil fraction (> 50 µm) and the fine fraction (< 50 µm) separately. Dead 139 

roots and root fragments were expected in the coarse fraction as part of the particulate organic 140 

matter (POM), but root exudates were expected in the fine fraction, where fine silt and clays 141 

are found. 142 

B. We searched for the 13C-label not only in the SOC, but also in carbonates, a 143 

frequently ignored part of the C cycle. Root respiration may affect the carbonates in the root 144 
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vicinity: the carbonate dissolution-precipitation events may result in detectable shifts in its 145 

13C, which should be also taken as a sign of new C released into the soil. 146 

 147 

Materials and methods 148 

Site 149 

 The experiments were performed in the Nevada Desert FACE Facility (NDFF), located 150 

within the Nevada Test Site (36º39'N, 122º55'W, 960 m altitude). The mean annual 151 

precipitation is around 140 mm, but extremely variable; for example, annual precipitation 152 

values of just 29 mm have been recorded. Diurnal (maximum) temperature may rise above 153 

45ºC in summer months, compared to about 20ºC in winter; diurnal variation is strong, of about 154 

20ºC, so that night temperature may drop to about –10ºC in January or February (Jordan et al. 155 

1999). The soils, derived from calcareous alluvium, are classified as Aridisols (Soil Taxonomy 156 

1999). Soil texture ranges from loamy sand at soil surface (A1 horizon: uppermost 16 cm) to 157 

sandy in the subsoil, with a dominance of coarse sand. At soil surface (0 to 20 cm), where our 158 

study was performed, carbonate content was about 15% (thus, about 1.84% of inorganic 159 

carbon). No caliche layer was developed in the subsoil. Soil organic carbon varied from 1.80% 160 

at soil surface to 0.18% at 1 m depth. Soil total nitrogen ranged from 0.08% at soil surface to 161 

0.01% at 1 m depth. Soil pH was between 8 and 9 at all depths.  162 

 The vegetation of the area involves shrub species with short growing periods, 163 

concentrated to the months where water availability is enough to support primary production. 164 

Our research focussed on two shrubs, the creosote bush Larrea tridentata (Zygophilaceae) and 165 

the white burrobush, Ambrosia dumosa (Asteraceae). New leaves on Larrea at the NDFF 166 

emerge in late April or early May, with the majority of new growth occurring between mid-167 

May and mid-June (Housman et al. 2006). Ambrosia initiates a leaf canopy in early spring and 168 

then loses all its leaves during the hot, dry summer months and remains deciduous until the 169 
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next year (Ackerman et al. 1980). These shrubs are the dominant ones in the vegetation of the 170 

area and represent two distinct survival strategies as Larrea is an evergreen shrub, whereas 171 

Ambrosia is a deciduous plant that loses its leaves when water stress is at its peak.  172 

 173 

FACE experiment 174 

 Six circular plots (diameter: 23 m) were equipped with a full FACE system, including 175 

standpipes and blowers. In three of the plots, plants were continuously exposed to elevated 176 

[CO2] atmosphere (521 µmol mol–1); the other three were exposed to ambient [CO2] (380 µmol 177 

mol–1). CO2 was supplied by BOC Gases (Murray Hill, NJ, USA). The exposure to elevated 178 

[CO2] was continuous, except for brief periods in which it was interrupted, i.e. when wind 179 

speed was > 7 m s–1, or when air temperature was < 4ºC. 180 

 The source of elevated [CO2] changed during the experiment: from April 1997 until 181 

February 2003 it came from a geological source. From that date onwards, CO2 supply was from 182 

fossil origin. Thus, a strong change in isotopic composition occurred: 13C of –5.4‰ until 183 

February 2003, and –32.0‰ from that date on. When mixed with the ambient CO2, whose 13C 184 

was –8.0‰, CO2 in the CO2-elevated rings had a 13C value of –7.3‰ until 2003, but a value 185 

of –18.2‰ from February 2003 onwards (Schaeffer 2005). 186 

 187 

Sampling 188 

 Sampling was performed in 2005, two years after the shift from unlabelled- to 13C-189 

labelled CO2. Leaves, shoots and roots that had emerged during the current year were sampled 190 

monthly. Leaf and shoot samples were collected from April to August in the case of Larrea 191 

and from April to July in the case of Ambrosia (which reached its dormancy period in August, 192 

after which the plants lost all their leaves). In the case of roots, no sampling was conducted in 193 

either species during July and August because roots that had developed during the experimental 194 
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year had died by the end of June. Root samples were collected from root boxes located at the 195 

base of each shrub species (Clark et al. 2010). Roots from two plants per ring were harvested 196 

(i.e., 6 plants per species per treatment), at 5 and 15 cm depths.  197 

Using a small spatula, a portion of the soil in close contact with the roots was also 198 

sampled alongside the roots: this soil sample, owing to its direct contact with the roots, is 199 

expected to reflect the direct effect of roots on the soil biochemistry in the vicinity of the roots. 200 

Because priority was given to sampling soil in immediate contact with the roots, the amount of 201 

soil sampled was very small (2-3 g). The soil was placed immediately in polypropylene vials 202 

and air-dried. 203 

 204 

Sample treatment 205 

 Soil samples were sieved through a 2 mm mesh. Materials > 2 mm (gravel and some 206 

organic fragments, always in very small amounts) were discarded. The fine materials (< 2 mm) 207 

was used for analyses. 208 

 A sample of material < 2 mm (about 2 g) was placed in a glass beaker, and 20 ml of 209 

deionised water was added. Then the sample was dispersed by an intense agitation in an end-210 

over-end shaker for 30 minutes, and sieved through a 50 µm mesh under magnetic stirring and 211 

water flushing. Both the coarse (> 50 µm) and the fine fraction (< 50 µm) were recovered by 212 

centrifugation, dried at 60ºC to constant weight, weighed, and finely ground for analyses. 213 

 In both fractions we analysed the 13C in organic matter and in carbonates, using an 214 

elemental analyser Flash 1112 coupled to an isotope ratio mass spectrometer Delta C with 215 

CONFLO III interface (Thermofisher Scientific): 216 

 –The 13C of carbonates (henceforth, dI) was analysed in subsamples calcinated at 217 

550ºC for 6 hours. We verified in separate trials that such a treatment does not result in any 218 

loss of carbonates or in any detectable change in their dI. We verified also that after such a 219 
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treatment, organic carbon content is undetectable. 220 

 – The 13C of organic carbon (henceforth, dO) was quantified as follows. A subsample 221 

of the coarse fraction was placed in a vessel and treated with cold dilute HCl to destroy 222 

carbonates. The sample was dried at 60ºC in the same vessel to ensure that all hydrosoluble 223 

organic compounds released remained in the sample. After this treatment, the remaining 224 

sample (organic matter only) was analysed for 13C. 225 

 – In the fine fraction the above procedure was not successful because the remaining 226 

material after the HCl treatment had a doughy consistency and was impossible to transfer into 227 

standard vessels for mass spectrometry. In this case, the 13C for the whole sample (organic 228 

plus inorganic carbon) was analysed. Then dO was calculated by the following equation: 229 

 dT = f dI + (1 – f) dO        (1) 230 

which may be re-arranged in this way, 231 

 dO = (dT - f dI) / (1 – f)        (2) 232 

where dT is the 13C of the whole sample, dI the 13C of the carbonates, dO the 13C of the 233 

organic carbon, and f is the fraction (0 to 1) of the total C in the sample that is in carbonate 234 

form. 235 

 236 

Statistics 237 

 The studied variables (total OC and IC for coarse and fine fractions, and their 13C 238 

values) were analysed with ANOVAs. The factors under study were (i) plant species (Larrea 239 

of Ambrosia), (ii) [CO2] (elevated or ambient), and (iii) depth (5 or 15 cm).. This study was 240 

carried out separately for dO and dI, and for the coarse (> 50 m) and fine fractions (< 50 m). 241 

The effect of harvest (1, 3, 5) was tested for each experimental condition, to verify whether 242 

temporal changes in the studied variables were significant. All statistical analyses were 243 

performed using SPSS v. 11.0. 244 
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 245 

Results 246 

Stable isotopes in plant organs 247 

 For each of the studied organs (leaves, stems, roots), the 13C values were significantly 248 

affected by the [CO2] treatment (ambient vs. elevated [CO2]), by the species (Larrea vs. 249 

Ambrosia) and by harvest number (Table 1). As shown in Fig. 1, elevated [CO2] always 250 

resulted in lower 13C values, owing to the low 13C of the added CO2. Species effects were 251 

also obvious: 13C values of Larrea were almost always higher than those of Ambrosia. 252 

Variability among harvests was also obvious, sometimes strong (e.g., for roots), but without a 253 

clear pattern. 254 

 255 

Carbon content in the fractions 256 

The soil material is dominated by the coarse fraction: the > 50 µm material accounts on 257 

average for 86.7% of the total weight, while just 13.3% is recovered in the fine fraction. The 258 

two fractions differ in their composition. Whereas the coarse fraction has a mean OC content 259 

of 2.01 g kg--1, the fine fraction has a concentration of 11.14 g kg--1, more than five times higher. 260 

In carbonates (IC: inorganic carbon), the opposite is found: 20.18 g kg—1 in the coarse fraction, 261 

but just 4.10 in the fine fraction. As a result, the fine material, being just 13% of the total 262 

weight, stores 84.11% of the total OC, but only 3.26% of the total IC. 263 

Table 2 summarizes the results of statistical tests. We did not detect any significant 264 

effect of depth. A species effect is clear for OC, for both the coarse and the fine fraction: OC 265 

contents were higher under Larrea than under Ambrosia. None of the studied factors 266 

significantly affected OC content in the coarse fraction. In the fine fraction, in contrast, OC 267 

content was affected by [CO2], but the effect reached significance only for Ambrosia. The 268 

behaviour of IC was different. Even though we did not detect a significant effect of [CO2] on 269 
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IC content overall, the effect was clearly species-dependent, for it was significant under 270 

Ambrosia for both the coarse and the fine fraction, and null under Larrea. 271 

These results are developed in more detail in figure 2, specially focused on the effect 272 

of [CO2] on OC and IC contents in soil. As to the OC content, in the coarse fraction no pattern 273 

was detected, and the effect of [CO2] was not significant in any case. In contrast, in the fine 274 

fraction a consistent pattern was observed: elevated [CO2] increases OC content, at both depths 275 

(5 and 15 cm) and under both species (Ambrosia and Larrea), even though under Larrea the 276 

increases did not reach significance, owing to the huge variability. 277 

A different behaviour is observed for IC. Under Ambrosia, elevated CO2 consistently 278 

decreased IC contents, at both depths (5 and 15 cm) and in both fractions (coarse and fine). 279 

Thus a decarbonation is induced. Under Larrea, in contrast, no effect of elevated CO2 is 280 

detected in any case. 281 

Overall, in the vicinity of roots, elevated CO2 affected OC and IC in different ways. 282 

The effect on OC depends on the fraction: increased OC content, but only in the < 50 µm 283 

fraction. In contrast, the effect of elevated CO2 on IC is species-dependent: consistent loss of 284 

IC under Ambrosia, no effect under Larrea. 285 

 286 

Temporal changes in total OC and IC 287 

Figures 3 and 4 show how the average contents summarized in figure 2 change with 288 

time, along the sampling season (harvests 1, 3 and 5). In the coarse fraction, few changes are 289 

detected (Fig. 3). The harvest factor was significant in one case only (Ambrosia, OC, 5 cm, 290 

elevated CO2), meaning that, overall, in the coarse fraction no significant temporal changes 291 

occurred along the studied season. In the fine fraction, in contrast, both OC and IC 292 

concentrations seem very unstable (erratic dynamics) and highly variable (error bars are often 293 

noteworthy) (Fig. 4). The harvest factor was significant in 6 out of 8 experimental conditions, 294 
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meaning that in the fine fraction temporal changes are much stronger than in the coarse fraction. 295 

It is noteworthy, however, that as to the OC the harvest factor was significant in only one case 296 

(Ambrosia, 15 cm, elevated CO2), thus suggesting that the changes in OC content were actually 297 

smaller than it is suggested by Fig. 4, and in most cases not significant. However, this cannot 298 

be applied to the changes in IC content, for which the harvest factor was significant in 5 out of 299 

8 cases. The carbonate content of the fine fraction seems quite variable with time, highly erratic. 300 

 301 

Isotopic composition of the obtained fractions 302 

Coarse fraction (> 50 µm) had dO values around -24.5‰ on average, and dI values 303 

around -1.6‰. In the fine fraction (< 50 µm) the values were less negative for dO, with an 304 

average value of -22.3‰, but more negative for dI, with a mean value of -7.97‰. Table 3 gives 305 

a panoramic view of the values obtained for the several experimental conditions (fraction, 306 

species, depth, CO2 treatment). 307 

From the statistical analysis of these data relevant issues arise (Table 4). In the coarse 308 

fraction, a significant species effect was detected for dO values: −24.81‰ under Ambrosia, 309 

−24.32‰ under Larrea. This was the only significant effect detected. For the rest of cases (dO 310 

of fine fraction, dI of both coarse and fine fractions) no significant effect was detected for 311 

species or depth. 312 

Most relevant, we failed to detect any significant effect of [CO2], even though in one 313 

case (Ambrosia, fine fraction, dO) the [CO2] effect was very close to signification (p = 0.051). 314 

Same result was obtained when the comparison between ambient and elevated [CO2] was 315 

carried out for each experimental condition separately: in Table 3, none of the pairwise 316 

comparisons (ambient / elevated CO2) reached significance. 317 

 318 

Temporal dynamics of the isotopic compositions 319 
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Figures 5 and 6 summarize the changes in dO and dI in the several species (Ambrosia / 320 

Larrea), depths (5 or 15 cm) and fractions (coarse and fine). The significance of the 'harvest' 321 

factor, labelled with a cross (+) at the left of each series, was taken as indicator of the 322 

significance of the temporal changes. Also, the [CO2] treatment was evaluated for each harvest 323 

individually, and labelled with an asterisk (*) when significant. 324 

In the coarse fraction, both dO and dI values were very stable overall (Fig. 5). Only in 325 

two cases significant temporal changes were detected (Ambrosia, 5 cm, dI, ambient [CO2]; 326 

Ambrosia, 15 cm, dO, elevated [CO2]).  327 

The isotopic composition of the fine fraction was less stable than that of coarse fraction, 328 

and more variable for a given condition (Fig. 6). An overall trend to a temporal increase in 13C 329 

values (i.e., to become less negative) persistently appears, even though the trend did not always 330 

reach significance. Temporal changes were noteworthy for dI values (harvest effect significant 331 

in 6 out of 8 cases), not so for dO (significant in 2 out of 8 cases).  332 

The most relevant issue of figures 5 and 6 is the lack of significant effects of [CO2] 333 

treatment. In the coarse fraction, no effect was observed in any case. As to the fine fraction, 334 

only in one case a significant effect of [CO2] was detected (Ambrosia, 15 cm, harvest 1, dI). 335 

The effect was in the expected sense, i.e., lower 13C value (more negative) under elevated 336 

[CO2]. 337 

 338 

Discussion 339 

In summary, our data suggest that in the Mojave Desert ecosystem there is a true effect 340 

of elevated [CO2] on C dynamics, driven by roots. Such an effect is both fraction-dependent 341 

and species-dependent (Fig. 2): net increase in OC in the fine fraction under both species 342 

(Ambrosia and Larrea), net decrease in IC in both coarse and fine fractions but only under 343 

Ambrosia. Nevertheless, we failed to detect significant effects of elevated [CO2] on dO or dI. 344 
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These changes are the result of nine years of elevated [CO2], but after only two years of 13C-345 

labelling (13C-depleted CO2). Thus we were able to detect medium-term changes (shifts in total 346 

OC and IC), but not short-term ones (shifts in dO or dI). This points to a very slow C turnover, 347 

as discussed below in more detail. 348 

 349 

Methodological constraints 350 

Our primary aim was to search for 13C-depleted carbon derived from the elevated [CO2] 351 

atmosphere provided in the NDFF facility, where it should be primarily found: at the very 352 

vicinity of roots. The need of avoiding the dilution of such a label, as explained in the 353 

introduction, implies that the obtained soil samples must be very small. This may represent a 354 

handicap for some studied parameters, because soils are heterogeneous mixtures, and a too 355 

small sample could be not representative of the whole soil surrounding the roots. The risk is 356 

especially high for the fine fraction (< 50 µm), which accounts for about 13% of the total soil 357 

samples, in weight. 358 

The comparison of figures 3 and 4 illustrates this problem. For both OC and IC 359 

concentrations, we obtained a consistent pattern in the coarse fraction, but a chaotic pattern in 360 

the fine fraction. In the later, the variability is huge (large error bars). Being a small fraction, 361 

any addition/subtraction of either OC or IC may translate to a noticeable change in OC or IC 362 

concentrations. On the other hand, both OC and IC concentrations show a high small-scale 363 

heterogeneity, which may be not well reflected if the soil sample taken is very small, as in our 364 

case. 365 

These considerations suggest that complex and chaotic dynamics such as that shown in 366 

Fig. 4 for OC and IC concentrations in the fine fraction may be spurious, rather than reflecting 367 

true changes in OC and IC content in the fraction, along the sampling season. This is an obvious 368 

explanation for the erratic and inconsistent dynamics of OC in this fraction. The wide error 369 
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bars, particularly when some values are high (e.g., harvest 1, Larrea, OC under elevated CO2), 370 

are in favour of this hypothesis. In contrast, for the coarse fraction no such erratic trends appear 371 

(Fig. 3), and the error bars are comparatively smaller, a fact probably explained by the fact that 372 

the coarse fraction accounts for more than 85% of the soil samples, and thus their OC and IC 373 

concentrations are less sensitive to small inputs/outputs from dead roots or root exudates. 374 

 375 

Isotopic values for organic carbon 376 

 In contrast with classical views about soil organic matter dynamics, which proposed a 377 

dominant role for leaf litter as the main source, today it is widely assumed that soil organic 378 

matter originates mostly from roots (Rasse et al. 2005). According to this view, the amount and 379 

biochemical quality of dead roots should be determinant for SOC turnover, and 13C of the 380 

dead roots should be determinant for the 13C of soil organic matter (dO values). In the NDFF 381 

experiment, the majority of root tissue was already composed of new carbon when our 382 

sampling was performed: in both Larrea and Ambrosia roots more than 90% of the C was from 383 

new C, i.e. supplied after February 2003 (Aranjuelo et al. 2011). The presence in the soil of 384 

recent inputs of dead roots or recent root exudates should have resulted in more negative dO 385 

values in the soil samples from the elevated [CO2] rings, in both the coarse and fine fractions. 386 

 Evidence from experiments conducted across the world with 13C-labelled materials 387 

suggests that root turnover may be very active, and root-derived tissues may be quickly 388 

detectable in SOC. In Pyrenean grasslands, for instance, during the decomposition of 13C-389 

labelled roots, the 13C label was detectable in the coarse fraction (> 50 µm) at the end of the 390 

first year, and the fine fraction (< 50 µm) becomes more important as a sink for root-derived 391 

material as decomposition proceeds (Garcia-Pausas et al. 2012). In FACE experiments, Van 392 

Kessel et al. (2000) observed in Swiss grasslands that after six years of exposure to elevated 393 

[CO2], up to 25-30% of the total SOC in the uppermost 10 cm was derived from newly added 394 
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CO2, and it was up to 57% in sand-size fractions. Interestingly, below a depth of 10 cm the 395 

input of newly added CO2 was almost undetectable. In the study of Jastrow et al. (2005), after 396 

5 years of elevated [CO2] exposure, about 30% of the organic C in the soil surface was recent. 397 

 Our results differ from those observations. In the NDFF, the lack of 13C-label in soil 398 

organic matter, even very close to the roots, suggests an extremely low rate of release of root-399 

derived material into the soil. The results were particularly clear for the coarse fraction, whose 400 

dO values did not show any change related to CO2 treatment. In the fine fraction, the variability 401 

was higher than in the coarse fraction, but the CO2 treatment also had no significant effects on 402 

the dO values. Thus, recent inputs of root-derived materials in the SOM (< 2 years old) must be 403 

small, not detectable from dO values. On the medium-term (up to 8 years), however, inputs are 404 

detectable, as shown in Fig. 2.  405 

 Our results contrast with reports showing substantial increases in root production driven 406 

by elevated [CO2] (Agathokleous et al. 2016, Hao et al 2016), but agree with previous results 407 

obtained in the NDFF facility. Thus, Ferguson and Nowak (2011) did not detect, after 10 years 408 

of elevated [CO2], a significant increase in fine root biomass, nor any shift in their depth 409 

distribution, thus concluding that fine roots are unlikely to be a source of net C sequestration 410 

in soils. Of special interest in that study is the fact that this lack of a long-term effect on fine 411 

root production does not hamper sporadically detectable differences between plants grown 412 

under elevated [CO2] and ambient [CO2]; but these differences are transient and do not persist 413 

on the long-term. However, some nuance must be added to the above findings. Our results (Fig. 414 

2) suggest that under elevated [CO2] fine roots do really release extra organic matter to the soil, 415 

via root debris or exudates; but that this input accumulates in the fine fraction (< 50 µm), which 416 

in the Mojave Desert soil accounts for a small part of the soil mass (< 15%), and thus may 417 

become undetectable when the whole soil, unfractionated, is studied.    418 

Root exudates have been described to increase upon CO2 enrichment (Pendall et al 419 
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2004). Evans et al. (2014) hypothesized that enhanced rhizodeposition may be one explanation 420 

of increased SOC stock under elevated [CO2]. Our failure to detect a signal of 13C-depleted 421 

organic material in the fine fraction (< 50 µm), where root exudates should become stabilised, 422 

does not necessarily contradict Evans et al.’s hypothesis, for this failure refers to the very recent 423 

C (< 2 years), as above explained. Also, three additional reasons (or the combination of some 424 

of them) could explain why we did not detect 13C-depleted organic material in the fine fraction: 425 

a) Methodological constraints: root exudates could have been removed – and, owing to 426 

their lability, rapidly decomposed – during the fractionation between coarse and fine fractions 427 

by wet sieving. This would only affect those compounds not yet stabilised by association with 428 

fine silt and clays, i.e. water-extractable compounds, which are the most labile of all soil 429 

organic matter fractions. 430 

b) Root exudates may not be rapidly stabilised by SOM transformation or by their 431 

association with active soil mineral components such as clays or Fe or Al oxyhydroxides. A 432 

possible reason for slow stabilization rates is that in desert soils, low contact between fine roots 433 

and fine earth (< 2 mm) is likely to occur, particularly in dry periods: drought results in a 434 

retraction of soil structure, which increases the voids between roots and the soil around them, 435 

decreases hydraulic conductivity, and decreases the transfer of liquids from roots to the soil 436 

and vice-versa. The phenomenon has been studied in Opuntia (North and Nobel 1997), but 437 

likely affects many desert species. Because root exudates are highly labile per se (Hütsch et al, 438 

2002), the reduction of their stabilization by soil components then allows rapid biodegradation 439 

by the root-associated microflora.  440 

c) The quantitative relevance of root exudation may be much lower than expected. A 441 

detailed discussion of this matter is beyond the scope of our paper, but several facts must be 442 

mentioned. The review of Hütsch et al. (2002) states that root exudates account for 14-18% of 443 

the total net photosynthetically fixed C. Nevertheless, these estimates are mostly based on 444 



 19 

experiments carried out under optimal conditions, in which roots were watered intensively, 445 

precisely to avoid water stress. Root exudation under non-optimal conditions may be much 446 

lower. For example, the theoretical analysis by Luo et al. (2001) suggested that root exudates 447 

account for a very small part of the soil C budget and fluxes in the Duke Forest (North Carolina, 448 

USA). Recent work in temperate forests (Hagedorn et al. 2016) showed that drought 449 

substantially reduces rhizodeposition in beech trees. Because even moderate water stress has 450 

diverse effects on root exudation (Sanaullah et al. 2012), it is doubtful that the quantitative 451 

results obtained under optimal conditions can be extrapolated to the extremely dry conditions 452 

of the Mohave Desert. Although sound experimental data about root exudation in desert plants 453 

under field (or, at least, realistic) conditions is sorely needed, our results suggest that root 454 

exudation under natural conditions could be much lower than often assumed, and be one of the 455 

reasons of the lack of detection of new, 13C-depleted organic matter at the root vicinity. 456 

 457 

Isotopic values for inorganic carbon (carbonates) 458 

 A relevant result from our work is the lack of significant differences between controls 459 

and elevated [CO2] rings, regarding the evolution of 13C of carbonates (dI values), indicating 460 

that the input of recent C was not detectable in inorganic C. In our experiments, atmospheric 461 

CO2 (which diffuses within the soil) apparently did not play any role in the changes in dI values. 462 

We must note that, while in control rings the atmospheric CO2 had a 13C value of –8.0‰, it 463 

was –18.02‰ in elevated [CO2] rings, i.e. a difference of about 10‰. Therefore, had 464 

atmospheric CO2 played any role in the generation of the new carbonates, we should have 465 

detected differences in dI, at least in the < 50 µm fraction. To a lesser extent, this can also be 466 

applied to the root-respired C: the differences in root 13C between controls and elevated [CO2] 467 

rings were smaller than for atmospheric CO2 (between 4 and 6‰), but still enough to result in 468 

carbonate 13C values consistently lower (i.e., more negative) in elevated [CO2] rings. 469 
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 This result was expected, owing to the overall slow turnover of soil carbonates, which 470 

makes it unlikely to detect new (13C-depleted) carbon in soil carbonates after just two years of 471 

13C-labelling. The replacement rate for carbonates in the vicinity of roots increases with 472 

temperature. Gocke and Kuzyakov (2011) working with Zea mays submitted to 14C-CO2 473 

labelling, calculated that a complete replacement of old by new, 14C-labelled carbonates would 474 

occur in 5740 years at 10ºC, in 4330 years at 20ºC, and 1060 years at 30ºC. The experiments 475 

of Gocke and Kuzyakov were performed with well-watered plants, and thus the replacement 476 

rates of carbonates under real field conditions must be much slower. It is often assumed that 477 

changes in the isotopic composition of carbonates are extremely slow, and become detectable 478 

only after centuries or millennia (Pendall et al. 1994). Carbonates have been proposed as a very 479 

stable pool within the C cycle, with turnover times much longer than those of soil organic 480 

matter. The 13C values of pedogenic carbonates, for instance, have been used as indicators of 481 

ancient shifts in vegetation type (from C3 to C4 or vice-versa) (Ding and Yang 2000; Kelly et 482 

al. 1991; Wang et al. 1993).  483 

Nevertheless, fast changes in carbonate 13C values have also been observed, linked to 484 

episodes of strong CO2 production, such as in the presence of decomposing plant residues 485 

(Rovira and Vallejo 2008) or in the vicinity of highly active roots (Li and Wang 2001; Li et al. 486 

2002). If intense enough, the release into the soil of CO2 from microbial or root respiration 487 

results in solubilisation of carbonates, which may re-precipitate further, either totally or 488 

partially. Solubilisation-precipitation cycles increase the dI values (Salomons and Mook 1976, 489 

1986), and it is worth stressing that substantial changes in dI may happen without a massive 490 

effect (solubilisation + precipitation) on the overall carbonate pool. As shown in a previous 491 

paper (Rovira and Vallejo 2008), a few solubilisation-precipitation events, each one affecting 492 

a small fraction of the existing carbonates, are enough to result in substantial increases in dI. 493 

The changes we observed in dI for the fine fraction are probably of this kind, i.e., 494 
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associated with episodes of increased microbial activity (and, therefore, increased pCO2). The 495 

lack of significant effects of the [CO2] treatment on the dI values compels us to assume that the 496 

source of CO2 for these changes was neither root respiration nor atmospheric CO2 diffused 497 

down into the soil. Rather, the origin must be native soil organic matter, whose 13C was the 498 

same in control and in CO2-enriched rings. Because the changes occurred mainly in the fine 499 

fraction, the most likely driver of these changes was the microbial decomposition of the organic 500 

matter associated with microaggregates.  501 

 A detail to stress is that the observed increase in dI (2-3 ‰ in just 5 months), if sustained 502 

over time, should have resulted in much higher dI values. The NDFF was established in plots 503 

chosen for their degree of ecological conservation: rings were placed at points where the 504 

surface crust remained intact, a sign of lack of perturbation by regular human visitation (Jordan 505 

et al. 1999). In addition, the setup of the experiments specifically avoided any effect on the 506 

natural vegetation within the rings. It seems logical to assume that any process occurring in the 507 

NDFF experiments (at least in the control rings) has been happening in the soil for a long time. 508 

The dynamics shown in Fig. 3 for the dI values do not reflect the activities of a complete year. 509 

A seasonal cycle could be present: after the observed increase, a decrease may occur. However, 510 

this remains a hypothesis to be tested in future studies. 511 

 512 

An overall view 513 

 Our data confirm the very slow SOC turnover in the NDFF soils (Evans et al. 2014), 514 

but in addition our results indicate that such a slow turnover is not solely the result of a dilution 515 

effect. Furthermore, our results indicate that the release of root-derived materials into the soil 516 

is low not only on a per surface basis (i.e., per square metre), but also for a given individual 517 

root. 518 

 These observations point to an ecological adaptation of desert plants (at least, the two 519 
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studied species, Ambrosia dumosa and Larrea tridentata). Where primary production is largely 520 

constrained, a conservative management of photoassimilates is to be expected. This involves a 521 

low release of organic matter into the soil, in the form of dead roots or root exudates. 522 

 The lack of an effect of root respiration (as deduced from the lack of detectable 523 

differences due to CO2 enrichment) may be related to a conservative management of respirable 524 

C reserves. The theory of respiratory physiotypes (Nogués et al. 2014) provides a framework 525 

to understand these results. In highly productive environments, where plants may grow without 526 

drastic constraints, conservative strategies in the use of photoassimilates may not make too 527 

much sense. This is not so in environments where strong limitations to water or nutrient 528 

availability seriously limit growth. Under these constraints, a so-called parsimonious strategy 529 

for plant respiration (Nogués et al. 2014) must ensure survival: in these plants the respirable C 530 

pool has a slow turnover. This translates into a slow CO2 release, not enough to increase soil 531 

CO2 to levels capable of generating detectable shifts in soil 13C. 532 
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Table 1 Overall significance (P > F) of the several factors considered on the 13C values of plant 

organs. 

 

Factor Leaves Stems Roots 

A. CO2 (elevated / ambient) < 0.001 *** < 0.001 *** < 0.001 *** 

B. Species (Larrea / Ambrosia) < 0.001 *** < 0.001 *** < 0.001 *** 

C. Harvest (1-5) 0.003 ** 0.001 *** 0.001 *** 

A × B 0.254 0.025 * < 0.001 *** 

B × C 0.192 0.254 < 0.001 *** 

A × C 0.020 * < 0.001 *** 0.226 

A × B × C 0.377 0.003 ** < 0.001 *** 
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Table 2  Significance of the several factors on the OC and IC content of the soil samples. Data are 

the p > F values obtained in the several ANOVAs. ANOVAs were carried out (i) for all samples 

altogether, or (ii) for soil samples close to roots of either Ambrosia or Larrea, separately. The 

significance is labelled: (*) at p = 0.05; (**) at p = 0.01; (***) at p = 0.001. If no asterisk is given, 

the factor had no significant effects. 

 

 OC content IC content 

Factor All Ambrosia Larrea All Ambrosia Larrea 

a) Coarse fraction (> 50 µm) 

A. Species 0.016 *   0.386   

B. Depth 0.653 0.462 0.910 0.991 0.824 0.826 

C. CO2 0.577 0.752 0.262 0.005 ** <0.001*** 0.876 

A × B 0.543   0.754   

A × C 0.312   0.009 **   

B × C 0.063 0.224 0.158 0.782 0.464 0.763 

A × B × C 0.910   0.473   

b) Fine fraction (< 50 µm) 

A. Species 0.044 *   0.463   

B. Depth 0.387 0.180 0.657 0.782 0.667 0.993 

C. CO2 0.004 ** <0.001*** 0.085 0.212 0.010 ** 0.529 

A × B 0.995   0.771   

A × C 0.671   0.028 *   

B × C 0.759 0.334 0.523 0.853 0.257 0.459 

A × B × C 0.352   0.191   

 



Table 3  Isotopic composition (13C) of organic and inorganic carbon (carbonates), in the several 

fractions isolated in our work. Numbers are averages ± standard deviations. For a given condition 

(fraction, carbon type, species, depth), all harvests have been pooled. No significant differences 

between ambient and elevated CO2 were detected for any pair of means, in any case. 

 

    [CO2] 

Fraction 13C Species Depth Ambient Elevated All 

> 50 µm dO Ambrosia 5 -24.70 ± 0.45 -24.95 ± 0.98  -24.83 ± 0.77 

   15 -24.66 ± 0.50 -24.92 ± 0.65 -24.80 ± 0.59 

  Larrea 5 -24.30 ± 1.49 -24.28 ± 0.53 -24.29 ± 1.09 

   15 -24.37 ± 0.54 -24.34 ± 0.71 -24.35 ± 0.62 

 dI Ambrosia 5 -1.69 ± 0.41 -1.65 ± 0.31 -1.67 ± 0.36 

   15 -1.51 ± 0.39 -1.58 ± 0.56 -1.55 ± 0.48 

  Larrea 5 -1.76 ± 0.59 -1.60 ± 0.60 -1.68 ± 0.59 

   15 -1.60 ± 0.46 -1.63 ± 0.58 -1.61 ± 0.51 

 < 50 µm dO Ambrosia 5 –22.81 ± 1.97 -21.04 ± 3.21 -21.98 ± 2.73 

   15 -22.53 ± 1.87 -21.77 ± 2.97 -22.17 ± 2.44 

  Larrea 5 -22.14 ± 0.98 -23.36 ± 4.76 -22.71 ± 3.32 

   15 -21.94 ± 2.51 -22.79 ± 2.32 -22.38 ± 2.41 

 dI Ambrosia 5 -8.24 ± 6.95 -8.50 ± 7.69 -8.37 ± 7.21 

   15 -6.01 ± 3.86 -9.93 ± 7.20 -8.08 ± 6.12 

  Larrea 5 -6.04 ± 3.70 -8.13 ± 6.48 -7.08 ± 5.30 

   15 -8.47 ± 6.56 -8.20 ± 7.66 -8.34 ± 7.00 

 



Table 4  Significance of the several factors on the 13C of OC and IC of the soil samples (dO and 

dI, respectively). Data are the p > F values obtained in the several ANOVAs. ANOVAs were 

carried out (i) for all samples altogether, or (ii) for soil samples close to roots of either Ambrosia 

or Larrea, separately. Values are enhanced when significant: (*) at p = 0.05; (**) at p = 0.01; (***) 

at p = 0.001. 

 

 dO dI 

Factor All Ambrosia Larrea All Ambrosia Larrea 

a) Coarse fraction (> 50 µm) 

A. Species <0.001***   0.650   

B. Depth 0.894 0.846 0.758 0.267 0.238 0.628 

C. CO2 0.398 0.122 0.916 0.791 0.856 0.631 

A × B 0.715   0.725   

A × C 0.310   0.625   

B × C 0.999 0.981 0.985 0.377 0.595 0.480 

A × B × C 0.977   0.821   

b) Fine fraction (< 50 µm) 

A. Species 0.286   0.676   

B. Depth 0.863 0.733 0.605 0.699 0.800 0.416 

C. CO2 0.817 0.051 0.168 0.174 0.188 0.553 

A × B 0.536   0.453   

A × C 0.020*   0.592   

B × C 0.741 0.431 0.809 0.764 0.247 0.444 

A × B × C 0.484   0.173   

 

 

 

 



Figure captions 

 

Fig. 1  Carbon isotope composition (13C) of leaves, stems and roots for Ambrosia and Larrea 

plants, under control conditions or elevated CO2. Means are averages, vertical bars are standard 

deviations. In Ambrosia, no new leaves nor stems appeared in the 5th harvest. In both Ambrosia 

and Larrea, no new roots appeared beyond the 3rd harvest. 

 

Fig. 2  Organic and inorganic carbon content, in coarse (> 50 µm) and fine (< 50 µm) fractions 

of the soil samples collected at 5 and 15 cm depth, from rings under ambient and elevated [CO2]. 

Data in g per kg of the fraction. Wide bars are averages; thin lines are standard deviations. For 

each experimental condition (species × depth × size fraction) the significance of [CO2] effect has 

been tested: ns, not significant; *: significant at p = 0.05; **: significant at p = 0.01.  

 

Fig. 3  Changes with time in organic carbon (OC) and inorganic carbon (IC: carbonates) in the 

coarse fraction (> 50 µm). Data in g C per kg of the fraction. Dots are averages, vertical bars are 

standard deviations. An asterisk (*) at the top of a pair of dots indicates that the effect of [CO2] 

was significant at p = 0.05. A cross (+) at the left of a temporal series indicates a significant 

effect of harvest, and thus significant temporal changes in this series. 

 

Fig. 4  Changes with time in organic carbon (OC) and inorganic carbon (IC: carbonates) in the 

fine fraction (< 50 µm). Data in g C per kg of the fraction. Dots are averages, vertical bars are 

standard deviations. An asterisk (*) at the top of a pair of dots indicates that the effect of [CO2] 

was significant at p = 0.05. A cross (+) at the left of a temporal series indicates a significant 

effect of harvest, and thus significant temporal changes in this series. 

 

Fig. 5  Carbon isotope composition (13C) of organic carbon (OC) and inorganic carbon (IC: 

carbonates), in the coarse fraction (> 50 µm) for samples collected at 5 cm (upper panels) and 15 
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cm (lower panels) soil depths. Dots are averages, vertical bars are standard deviations. An 

asterisk (*) at the top of a pair of dots indicates that the effect of [CO2] was significant at p = 

0.05. A cross (+) at the left of a temporal series indicates a significant effect of harvest, and thus 

significant temporal changes in this series. 

 

Fig. 6  Carbon isotope composition (13C) of organic carbon (OC) and inorganic carbon (IC: 

carbonates), in the fine fraction (< 50 µm) for samples collected at 5 cm (upper panels) and 15 

cm (lower panels) soil depths. Dots are averages, vertical bars are standard deviations. An 

asterisk (*) at the top of a pair of dots indicates that the effect of [CO2] was significant at p = 

0.05. A cross (+) at the left of a temporal series indicates a significant effect of harvest, and thus 

significant temporal changes in this series. 
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ANNEX. Additional numerical and statistical information 
  
 

 

Part 1. General data about the soil samples 
 

 

Table 1.1. Weight of fine material (< 50 μm), as percent of total weight. Data are averages ± 

standard deviations.  

 

  CO2 treatment 

Species Depth Ambient [CO2] Elevated [CO2] All 

Ambrosia 5 14.62 ± 2.34 11.68 ± 3.08 13.19 ± 3.07 

 15 15.17 ± 2.31 11.80 ± 3.30 13.44 ± 3.30 

 All 14.89 ± 2.31 11.74 ± 3.15 13.32 ± 3.17 

Larrea 5 15.09 ± 2.71 11.81 ± 4.47 13.45 ± 4.01 

 15 14.20 ± 2.11 12.45 ± 4.11 13.33 ± 3.34 

 All 14.65 ± 2.44 12.13 ± 4.25 13.39 ± 3.67 

All 5 14.85 ± 2.51 11.74 ± 3.80 13.32 ± 3.55 

 15 14.69 ± 2.24 12.11 ± 3.68 13.38 ± 3.30 

 All 14.77 ± 2.36 11.93 ± 3.72 13.35 ± 3.41 

 

 

Table 1.2. ANOVA results. Relevance of the several factors in the experiment as to the above 

data. 

 

Factor p > F 

A. Species 0.890 

B. Depth 0.840 

C. CO2 < 0.001 *** 

A × B 0.665 

A × C 0.546 

B × C 0.604 

A × B × C 0.353 

Additional statistical results
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Table 1.3. Organic carbon (OC) content in fine material (< 50 μm), as percent of total OC. 

Data are averages ± standard deviations.  

 

 

  CO2 treatment 

Species Depth Ambient [CO2] Elevated [CO2] All 

Ambrosia 5 84.71 ± 6.09 86.44 ± 8.27 85.55 ± 7.16 

 15 83.20 ± 5.93 81.00 ± 22.68 82.10 ± 16.36 

 All 83.93 ± 5.96 83.55 ± 17.44 83.75 ± 12.85 

Larrea 5 87.83 ± 3.33 86.32 ± 4.21 87.13 ± 3.78 

 15 78.03 ± 21.54 85.34 ± 7.10 81.81 ± 15.95 

 All 83.26 ± 15.44 85.81 ± 5.80 84.51 ± 11.71 

All 5 86.27 ± 5.08 86.38 ± 6.52 86.33 ± 5.76 

 15 80.87 ± 15.06 83.04 ± 17.12 81.97 ± 16.05 

 All 83.61 ± 11.40 84.63 ± 13.20 84.11 ± 12.28 

 

 

Table 1.4. ANOVA results. Relevance of the several factors in the experiment as to the above 

data. 

 

 

Factor p > F 

A. Species 0.807 

B. Depth 0.047 * 

C. CO2 0.547 

A × B 0.665 

A × C 0.479 

B × C 0.581 

A × B × C 0.152 
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Table 1.5. Inorganic carbon (IC: carbonates) in fine material (< 50 μm), as percent of total IC. 

Data are averages ± standard deviations.  

 

 

  CO2 treatment 

Species Depth Ambient [CO2] Elevated [CO2] All 

Ambrosia 5 3.91 ± 2.88 2.68 ± 2.15 3.30 ± 2.58 

 15 3.81 ± 3.12 1.87 ± 1.61 2.81 ± 2.62 

 All 3.86 ± 2.96 2.26 ± 1.91 3.05 ± 2.59 

Larrea 5 3.82 ± 2.62 3.06 ± 3.09 3.45 ± 2.84 

 15 2.96 ± 2.10 4.13 ± 4.28 3.53 ± 3.34 

 All 3.39 ± 2.38 3.59 ± 3.71 3.49 ± 3.07 

All 5 3.86 ± 2.71 2.86 ± 2.61 3.37 ± 2.69 

 15 3.38 ± 2.65 2.93 ± 3.31 3.16 ± 2.99 

 All 3.62 ± 2.67 2.90 ± 2.97 3.26 ± 2.84 

 

 

Table 1.6. ANOVA results. Relevance of the several factors in the experiment as to the above 

data. 

 

Factor p > F  

A. Species 0.382 

B. Depth 0.720 

C. CO2 0.156 

A × B 0.558 

A × C 0.068 

B × C 0.530 

A × B × C 0.176 
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Part 2. Contents of total organic and inorganic carbon in the fractions 

 

 

2.1) COARSE FRACTION. Organic carbon 
 

Table 2.1.1.  Organic carbon in the coarse fraction (g / kg). Averages ± standard deviations 

for all harvests pooled. 

 

  CO2 treatment 

Species Depth Ambient [CO2] Elevated [CO2] All 

Ambrosia 5 1.84 ± 0.69 2.01 ± 1.01 1.92 ± 0.86 

 15 1.93 ± 0.88 1.64 ± 0.39 1.78 ± 0.68 

 All 1.86 ± 0.78 1.81 ± 0.76 1.85 ± 0.77 

Larrea 5 1.93 ± 0.73 2.39 ± 0.92 2.17 ± 0.85 

 15 2.21 ± 0.52 2.15 ± 0.72 2.18 ± 0.62 

 All 2.06 ± 0.64 2.27 ± 0.82 2.17 ± 0.74 

All 5 1.88 ± 0.70 2.20 ± 0.97 2.05 ± 0.86 

 15 2.06 ± 0.74 1.88 ± 0.62 1.97 ± 0.68 

 All 1.97 ± 0.72 2.04 ± 0.82 2.01 ± 0.08 

 

 

Table 2.1.2. ANOVA results for OC content in the coarse fraction: Relevance of each factor, 

either considering all samples altogether, or each species separately. 

 

 Values for p > F 

Factor All samples Ambrosia Larrea 

A. Species 0.016 *   

B. Depth 0.653 0.462 0.910 

C. CO2 0.577 0.752 0.262 

A × B 0.543   

A × C 0.312   

B × C 0.063 0.224 0.158 

A × B × C  0.910   
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Table 2.1.3. Effect of harvest (H1, H3, H5) on total OC content in the coarse fraction.  

 

Species Depth CO2 H1 H3 H5 p > F 

Ambrosia 5 Amb 1.80 ± 0.27 1.87 ± 0.44 1.84 ± 1.21 0.989 

  Elev 1.92 ± 0.54 2.68 ± 1.29 1.40 ± 0.60 0.076 

 15 Amb 2.22 ± 1.36 1.73 ± 0.31 1.83 ± 0.73 0.633 

  Elev 1.99 ± 0.41 1.47 ± 0.22 1.42 ± 0.21 0.006 ** 

Larrea 5 Amb 2.17 ± 1.18 2.05 ± 0.19 1.50 ± 0.16 0.301 

  Elev 2.97 ± 1.05 2.18 ± 0.41 2.02 ± 0.75 0.160 

 15 Amb 1.90 ± 0.34 2.46 ± 0.40 2.32 ± 0.68 0.174 

  Elev 2.45 ± 0.99 1.82 ± 0.61 2.13 ± 0.38 0.371 

 

 

Table 2.1.4. Effect of CO2 treatment (ambient /elevated) on OC content in the coarse fraction. 

Analysed per experimental condition (species, depth) and per harvest. Values are the p > F. 

 

Species Depth H1 H2 H3 All 

Ambrosia 5 0.672 0.172 0.451 0.582 

 15 0.676 0.113 0.209 0.207 

Larrea 5 0.243 0.678 0.170 0.112 

 15 0.228 0.086 0.579 0.809 
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2.2) COARSE FRACTION. Inorganic carbon (carbonates) 
 

 

Table 2.2.1. Inorganic carbon in the coarse fraction (g / kg). Averages ± standard deviations 

for all harvests pooled. 

 

  CO2 treatment 

Species Depth Ambient [CO2] Elevated [CO2] All 

Ambrosia 5 21.51 ± 2.31 19.41 ± 2.59 20.46 ± 2.64 

 15 21.84 ± 3.29 18.81 ± 2.18 20.28 ± 3.13 

 All 21.70 ± 2.80 19.10 ± 2.38 20.37 ± 2.89 

Larrea 5 20.07 ± 2.79 19.75 ± 2.26 19.91 ± 2.51 

 15 20.01 ± 3.29 20.11 ± 3.05 20.06 ± 3.13 

 All 20.04 ± 3.01 19.94 ± 2.66 19.99 ± 2.82 

All 5 20.77 ± 2.64 19.58 ± 2.40 20.18 ± 2.57 

 15 20.90 ± 3.37 19.46 ± 2.70 20.17 ± 3.11 

 All 20.83 ± 3.00 19.52 ± 2.54 20.18 ± 2.85 

 

 

 

Table 2.2.2. ANOVA results for IC content: Relevance of each factor, either considering all 

samples altogether, or each species separately. 

 

 

 Values for p > F 

Factor All samples Ambrosia Larrea 

A. Species 0.386   

B. Depth 0.991 0.824 0.826 

C. CO2 0.005 ** < 0.001 *** 0.876 

A × B 0.754   

A × C 0.009 **   

B × C 0.782 0.464 0.763 

A × B × C  0.473   
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Table 2.2.3. Effect of harvest (H1, H3, H5) on total IC content in the coarse fraction 

 

Species Depth CO2 H1 H3 H5 p > F 

Ambrosia 5 Amb 20.62 ± 1.68 21.80 ± 3.29 21.97 ± 1.70 0.616 

  Elev 19.62 ± 2.61 19.33 ± 2.35 19.32 ± 3.23 0.980 

 15 Amb 20.25 ± 2.73 23.12 ± 2.58 22.20 ± 4.37 0.325 

  Elev 18.24 ± 1.79 19.52 ± 2.50 18.87 ± 2.53 0.633 

Larrea 5 Amb 18.25 ± 2.94 21.25 ± 2.28 20.70 ± 2.56 0.140 

  Elev 19.17 ± 2.08 19.58 ± 2.79 20.60 ± 1.91 0.567 

 15 Amb 21.18 ± 3.44 18.68 ± 4.29 20.17 ± 1.69 0.443 

  Elev 19.76 ± 1.84 20.88 ± 4.65 19.68 ± 2.36 0.771 

 

 

 

Table 2.2.4. Effect of CO2 treatment (ambient /elevated) on IC content in the coarse fraction. 

Analysed per experimental condition (species, depth) and per harvest. Values are the p > F. 

 

Species Depth H1 H2 H3 All 

Ambrosia 5 0.491 0.166 0.106 0.018 * 

 15 0.140 0.044 * 0.148 0.003 ** 

Larrea 5 0.547 0.284 0.978 0.718 

 15 0.395 0.414 0.692 0.925 
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2.3) FINE FRACTION. Organic carbon. 
 

Table 2.3.1.  Organic carbon content (g / kg) in the fine fraction. Averages ± standard 

deviations for all harvests pooled. 

 

 

  CO2 treatment 

Species Depth Ambient [CO2] Elevated [CO2] All 

Ambrosia 5 8.70 ± 2.22 12.39 ± 4.39 10.43 ± 3.84 

 15 8.41 ± 1.96 10.63 ± 3.24 9.52 ± 2.87 

 All 8.55 ± 2.07 11.46 ± 3.86 9.96 ± 3.38 

Larrea 5 11.66 ± 1.48 14.17 ± 10.15 12.88 ± 7.12 

 15 9.21 ± 3.67 14.61 ± 14.28 11.91 ± 10.62 

 All 10.44 ± 3.02 14.40 ± 12.25 12.38 ± 9.01 

All 5 10.14 ± 2.40 13.28 ± 7.74 11.63 ± 5.79 

 15 8.80 ± 2.90 12.56 ± 10.24 10.68 ± 7.71 

 All 9.47 ± 2.72 12.90 ± 9.07 11.14 ± 6.83 

 

 

 

Table 2.3.2. ANOVA results for OC content in the fine fraction.  Relevance of each factor, 

either considering all samples altogether, or each species separately. 

 

 

 Values for p > F 

Factor All samples Ambrosia Larrea 

A. Species 0.044 *   

B. Depth 0.387 0.180 0.657 

C. CO2 0.004 ** < 0.001 *** 0.085 

A × B 0.995   

A × C 0.671   

B × C 0.759 0.334 0.523 

A × B × C  0.352   

 

Table 2.3.3. Effect of harvest (H1, H3, H5) on total OC content in the fine fraction. 
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Species Depth CO2 H1 H3 H5 p > F 

Ambrosia 5 Amb 8.97 ± 2.69 9.93 ± 1.64 7.24 ± 1.70 0.098 

  Elev 11.97 ± 1.40 10.84 ± 2.13 15.24 ± 7.99 0.310 

 15 Amb 8.82 ± 2.20 8.71 ± 2.37 7.77 ± 1.40 0.635 

  Elev 13.15 ± 2.27 8.73 ± 4.16 9.70 ± 1.51 0.042 * 

Larrea 5 Amb 12.68 ± 0.98 11.42 ± 1.17 10.94 ± 1.87 0.154 

  Elev 22.31 ± 16.23 11.70 ± 7.65 10.80 ± 3.24 0.175 

 15 Amb 10.20 ± 3.75 6.46 ± 4.07 10.76 ± 1.56 0.123 

  Elev 19.44 ± 23.47 12.60 ± 2.34 10.83 ± 3.61 0.599 

 

 

 

Table 2.3.4. Effect of CO2 treatment (ambient /elevated) on OC content in the fine fraction. 

Analysed per experimental condition (species, depth) and per harvest. Values are the p > F. 

 

 

Species Depth H1 H2 H3 All 

Ambrosia 5 0.058 0.428 0.040 * 0.005 ** 

 15 0.011 * 0.991 0.044 * 0.021 * 

Larrea 5 0.220 0.932 0.935 0.337 

 15 0.363 0.019 * 0.971 0.153 
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2.4)  FINE FRACTION. Inorganic carbon 
 

Table 2.4.1.  Inorganic C in the fine fraction (g / kg). Averages ± standard deviations for all 

harvests pooled. 

 

 

  CO2 treatment 

Species Depth Ambient [CO2] Elevated [CO2] All 

Ambrosia 5 4.56 ± 2.84 3.62 ± 2.39 4.10 ± 2.63 

 15 5.01 ± 3.37 2.62 ± 1.85 3.75 ± 2.90 

 All 4.78 ± 3.07 3.09 ± 2.15 3.92 ± 2.76 

Larrea 5 4.34 ± 2.53 4.26 ± 2.98 4.30 ± 2.72 

 15 3.81 ± 2.85 4.81 ± 3.51 4.29 ± 3.18 

 All 4.07 ± 2.67 4.53 ± 3.21 4.30 ± 2.93 

All 5 4.45 ± 2.66 3.94 ± 2.68 4.20 ± 2.66 

 15 4.41 ± 3.13 3.62 ± 2.91 4.01 ± 3.03 

 All 4.43 ± 2.88 3.78 ± 2.78 4.10 ± 2.84 

 

 

Table 2.4.2. ANOVA results for inorganic carbon in the fine fraction. Relevance of each 

factor, either considering all samples altogether, or each species separately. 

 

 

 Values for p > F 

Factor All samples Ambrosia Larrea 

A. Species 0.463   

B. Depth 0.782 0.667 0.993 

C. CO2 0.212 0.010 ** 0.529 

A × B 0.771   

A × C 0.028 *   

B × C 0.853 0.257 0.459 

A × B × C  0.191   

 

 

Table 2.4.3. Effect of harvest (H1, H3, H5) on total IC content in the fine fraction. 
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Species Depth CO2 H1 H3 H5 p > F 

Ambrosia 5 Amb 2.03 ± 1.16 5.77 ± 2.40 5.88 ± 2.96 0.017 * 

  Elev 1.59 ± 1.93 4.56 ± 1.65 4.35 ± 2.59 0.067 

 15 Amb 2.60 ± 1.06 7.11 ± 3.93 4.91 ± 2.98 0.077 

  Elev 1.08 ± 0.38 3.17 ± 1.26 3.87 ± 2.25 0.008 ** 

Larrea 5 Amb 2.45 ± 1.11 4.07 ± 1.00 6.19 ± 3.28 0.036 * 

  Elev 1.32 ± 0.63 5.93 ± 3.43 5.04 ± 1.89 0.016 * 

 15 Amb 2.48 ± 1.97 2.82 ± 3.43 5.96 ± 2.00 0.058 

  Elev 1.71 ± 1.20 8.03 ± 3.22 5.31 ± 2.49 0.003 ** 

 

 

 

Table 2.4.4. Effect of CO2 treatment (ambient /elevated) on IC content in the fine fraction. 

Analysed per experimental condition (species, depth) and per harvest. Values are the p > F. 

 

Species Depth H1 H2 H3 All 

Ambrosia 5 0.651 0.336 0.363 0.296 

 15 0.005 ** 0.041 * 0.508 0.012 * 

Larrea 5 0.083 0.231 0.473 0.932 

 15 0.433 0.038 * 0.642 0.373 
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Part 3. Data about the isotopic composition (13C) of the studied samples 
 

 

3.1) COARSE FRACTION: 13C of organic carbon 
 

Table 3.1.1.  Organic carbon 13C in the coarse fraction. Averages ± standard deviations for 

all harvests pooled. 

 

  CO2 treatment 

Species Depth Ambient [CO2] Elevated [CO2] All 

Ambrosia 5 -24.70 ± 0.45 -24.95 ± 0.98  -24.83 ± 0.77 

 15 -24.66 ± 0.50 -24.92 ± 0.65 24.80 ± 0.59 

 All -24.68 ± 0.47 -24.94 ± 0.81 -24.81 ± 0.68 

Larrea 5 -24.30 ± 1.49 -24.28 ± 0.53 -24.29 ± 1.09 

 15 -24.37 ± 0.54 -24.34 ± 0.71 -24.35 ± 0.62 

 All -24.33 ± 1.12 -24.31 ± 0.61 -24.32 ± 0.89 

All 5 -24.49 ± 1.12 -24.60 ± 0.84 -24.55 ± 0.98 

 15 -24.52 ± 0.53 -24.65 ± 0.73 -24.59 ± 0.64 

 All -24.51 ± 0.86 -24.63 ± 0.78 -24.57 ± 0.82 

 

 

Table 3.1.2. ANOVA results for 13C of organic carbon in the coarse fraction. Relevance of 

each factor, either considering all samples altogether, or each species separately. 

 

 

 Values for p > F 

Factor All samples Ambrosia Larrea 

A. Species < 0.001 ***   

B. Depth 0.894 0.846 0.758 

C. CO2 0.398 0.122 0.916 

A × B 0.715   

A × C 0.310   

B × C 0.999 0.981 0.985 

A × B × C  0.977   
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Table 3.1.3. Effect of harvest (H1, H3, H5) on the 13C of organic carbon in the coarse 

fraction.  

 

Species Depth CO2 H1 H3 H5 p > F 

Ambrosia 5 Amb -24.43 ± 0.57 -24.79 ± 0.34 -24.86 ± 0.41 0.286 

  Elev -24.93 ± 0.83 -25.16 ± 1.46 -24.76 ± 0.53 0.799 

 15 Amb -24.92 ± 0.68 -24.49 ± 0.29 -24.59 ± 0.42 0.314 

  Elev -25.37 ± 0.67 -24.46 ± 0.63 -24.87 ± 0.24 0.032 * 

Larrea 5 Amb -24.88 ± 0.34 -23.34 ± 2.26 -24.74 ± 0.47 0.147 

  Elev -24.36 ± 0.76 -24.34 ± 0.32 -24.13 ± 0.48 0.737 

 15 Amb -24.62 ± 0.48 -24.17 ± 0.58 -24.26 ± 0.57 0.381 

  Elev -24.41 ± 0.90 -24.34 ± 0.51 -24.27 ± 0.76 0.946 

 

 

Table 3.1.4. Effect of CO2 treatment (ambient /elevated) on the 13C of organic carbon in the 

coarse fraction. Analysed per experimental condition (species, depth) and per harvest. Values 

are the p > F. 

 

Species Depth H1 H2 H3 All 

Ambrosia 5 0.303 0.556 0.729 0.358 

 15 0.258 0.931 0.196 0.187 

Larrea 5 0.155 0.307 0.063 0.959 

 15 0.639 0.649 0.992 0.902 
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3.2) COARSE FRACTION. 13C of inorganic carbon (IC: carbonates) 
 

 

Table 3.2.1. Organic carbon 13C in the coarse fraction. Averages ± standard deviations for 

all harvests pooled. 

 

 

  CO2 treatment 

Species Depth Ambient [CO2] Elevated [CO2] All 

Ambrosia 5 -1.69 ± 0.41 -1.65 ± 0.31 -1.67 ± 0.36 

 15 -1.51 ± 0.39 -1.58 ± 0.56 -1.55 ± 0.48 

 All -1.60 ± 0.41 -1.62 ± 0.46 -1.61 ± 0.43 

Larrea 5 -1.76 ± 0.59 -1.60 ± 0.60 -1.68 ± 0.59 

 15 -1.60 ± 0.46 -1.63 ± 0.58 -1.61 ± 0.51 

 All -1.68 ± 0.53 -1.61 ± 0.58 -1.65 ± 0.55 

All 5 -1.72 ± 0.50 -1.62 ± 0.48 -1.67 ± 0.49 

 15 -1.56 ± 0.42 -1.61 ± 0.57 -1.58 ± 0.50 

 All -1.64 ± 0.47 -1.61 ± 0.52 -1.63 ± 0.49 

 

 

Table 3.2.2. ANOVA results for 13C of inorganic carbon in the coarse fraction. Relevance of 

each factor, either considering all samples altogether, or each species separately. 

 

 

 Values for p > F 

Factor All samples Ambrosia Larrea 

A. Species 0.650   

B. Depth 0.267 0.238 0.628 

C. CO2 0.791 0.856 0.631 

A × B 0.725   

A × C 0.625   

B × C 0.377 0.595 0.480 

A × B × C  0.821   
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Table 3.2.3. Effect of harvest (H1, H3, H5) on the 13C of inorganic carbon in the coarse 

fraction. 

  

Species Depth CO2 H1 H3 H5 p > F 

Ambrosia 5 Amb -2.03 ± 0.31 -1.65 ± 0.48 -1.44 ± 0.19 0.042 * 

  Elev -1.74 ± 0.18 -1.52 ± 0.22 -1.72 ± 0.45 0.444 

 15 Amb -1.66 ± 0.22 -1.30 ± 0.43 -1.59 ± 0.45 0.249 

  Elev -1.75 ± 0.41 -1.48 ± 0.82 -1.49 ± 0.46 0.629 

Larrea 5 Amb -2.07 ± 0.80 -1.59 ± 0.43 -1.62 ± 0.43 0.301 

  Elev -1.80 ± 0.46 -1.68 ± 0.52 -1.32 ± 0.77 0.380 

 15 Amb -1.42 ± 0.43 -1.91 ± 0.53 -1.47 ± 0.26 0.120 

  Elev -1.93 ± 0.74 -1.45 ± 0.50 -1.50 ± 0.40 0.300 

 

 

Table 3.2.4. Effect of CO2 treatment (ambient /elevated) on the 13C of inorganic carbon in 

the coarse fraction. Analysed per experimental condition (species, depth) and per harvest. 

Values are the p > F. 

 

Species Depth H1 H2 H3 All 

Ambrosia 5 0.102 0.548 0.194 0.771 

 15 0.608 0.634 0.718 0.652 

Larrea 5 0.490 0.741 0.434 0.434 

 15 0.172 0.158 0.869 0.864 
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3.3) FINE FRACTION:  13C of organic carbon 
 

Table 3.3.1.  Organic carbon 13C in the fine fraction. Averages ± standard deviations for all 

harvests pooled. 

 

 

  CO2 treatment 

Species Depth Ambient [CO2] Elevated [CO2] All 

Ambrosia 5 –22.81 ± 1.97 -21.04 ± 3.21 -21.98 ± 2.73 

 15 -22.53 ± 1.87 -21.77 ± 2.97 -22.17 ± 2.44 

 All -22.67 ± 1.89 -21.41 ± 3.06 -22.07 ± 2.57 

Larrea 5 -22.14 ± 0.98 -23.36 ± 4.76 -22.71 ± 3.32 

 15 -21.94 ± 2.51 -22.79 ± 2.32 -22.38 ± 2.41 

 All -22.04 ± 1.85 -23.06 ± 3.61 -22.54 ± 2.88 

All 5 -22.49 ± 1.58 -22.16 ± 4.13 -22.34 ± 3.03 

 15 -22.25 ± 2.17 -22.30 ± 2.66 -22.27 ± 2.41 

 All -22.37 ± 1.88 -22.23 ± 3.42 -22.30 ± 2.72 

 

 

Table 3.3.2. ANOVA results for 13C of organic carbon in the fine fraction. Relevance of 

each factor, either considering all samples altogether, or each species separately. 

 

 

 Values for p > F 

Factor All samples Ambrosia Larrea 

A. Species 0.286   

B. Depth 0.863 0.733 0.605 

C. CO2 0.817 0.051 0.168 

A × B 0.536   

A × C 0.020 *   

B × C 0.741 0.431 0.809 

A × B × C  0.484   
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Table 3.3.3. Effect of harvest (H1, H3, H5) on the 13C of organic carbon in the fine fraction. 

 

 

Species Depth CO2 H1 H3 H5 p > F 

Ambrosia 5 Amb -23.72 ± 0.83 -22.61 ± 2.57 -22.26 ± 1.99 0.477 

  Elev -21.13 ± 2.98 -22.25 ± 1.34 -19.12 ± 5.03 0.342 

 15 Amb -24.64 ± 0.38 -21.76 ± 1.52 -21.53 ± 1.54 0.003 ** 

  Elev -20.81 ± 5.11 -21.20 ± 1.13 -22.94 ± 0.44 0.483 

Larrea 5 Amb -23.17 ± 0.72 -21.66 ± 0.61 -21.69 ± 0.82 0.007 ** 

  Elev -26.95 ± 5.64 -22.93 ± 3.64 -21.26 ± 4.03 0.182 

 15 Amb -21.99 ± 3.68 -21.44 ± 2.41 -22.26 ± 0.62 0.900 

  Elev -24.12 ± 3.35 -22.25 ± 0.81 -21.75 ± 1.07 0.205 

 

 

Table 3.3.4. Effect of CO2 treatment (ambient /elevated) on the 13C of organic carbon in the 

fine fraction. Analysed per experimental condition (species, depth) and per harvest. Values 

are the p > F. 

 

Species Depth H1 H2 H3 All 

Ambrosia 5 0.098 0.770 0.198 0.066 

 15 0.134 0.549 0.057 0.386 

Larrea 5 0.175 0.413 0.819 0.325 

 15 0.320 0.499 0.379 0.331 
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3.4) FINE FRACTION:  13C of inorganic carbon (IC: carbonates) 
 

 

Table 3.4.1. Inorganic carbon 13C in the fine fraction. Averages ± standard deviations for all 

harvests pooled. 

 

 

  CO2 treatment 

Species Depth Ambient [CO2] Elevated [CO2] All 

Ambrosia 5 -8.24 ± 6.95 -8.50 ± 7.69 -8.37 ± 7.21 

 15 -6.01 ± 3.86 -9.93 ± 7.20 -8.08 ± 6.12 

 All -7.16 ± 5.70 -9.26 ± 7.36 -8.22 ± 6.63 

Larrea 5 -6.04 ± 3.70 8.13 ± 6.48 -7.08 ± 5.30 

 15 -8.47 ± 6.56 -8.20 ± 7.66 -8.34 ± 7.00 

 All -7.25 ± 5.38 -8.16 ± 6.97 -7.70 ± 6.18 

All 5 -7.17 ± 5.64 -8.31 ± 7.00 -7.73 ± 6.33 

 15 -7.24 ± 5.45 -9.14 ± 7.36 -8.20 ± 6.51 

 All -7.20 ± 5.51 -8.73 ± 7.14 -7.97 ± 6.40 

 

 

Table 3.4.2. ANOVA results for 13C of inorganic carbon in the fine fraction. Relevance of 

each factor, either considering all samples altogether, or each species separately. 

 

 

 Values for p > F 

Factor All samples Ambrosia Larrea 

A. Species 0.676   

B. Depth 0.699 0.800 0.416 

C. CO2 0.174 0.188 0.553 

A × B 0.453   

A × C 0.592   

B × C 0.764 0.247 0.444 

A × B × C  0.173   
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Table 3.4.3. Effect of harvest (H1, H3, H5) on 13C of inorganic carbon in the fine fraction. 

 

 

Species Depth CO2 H1 H3 H5 p > F 

Ambrosia 5 Amb -15.13 ± 6.90 -4.44 ± 2.34 -5.16 ± 5.06 0.004 ** 

  Elev -17.14 ± 8.97 -4.85 ± 3.44 -4.94 ± 2.70 0.003 ** 

 15 Amb -7.02 ± 3.09 -5.16 ± 3.07 -6.00 ± 5.37 0.754 

  Elev -16.36 ± 6.50 -5.66 ± 3.03 -6.72 ± 5.88 0.004 ** 

Larrea 5 Amb -9.26 ± 4.81 -4.31 ± 1.71 -5.09 ± 2.68 0.052 

  Elev -14.71 ± 6.92 -6.44 ± 4.74 -4.33 ± 3.07 0.011 * 

 15 Amb -11.53 ± 6.05 -10.97 ± 7.75 -3.32 ± 1.92 0.045 * 

  Elev -15.25 ± 8.61 -3.25 ± 0.99 -4.70 ± 2.48 0.006 ** 

 

 

 

Table 3.4.4. Effect of CO2 treatment (ambient /elevated) on 13C of inorganic carbon in the 

fine fraction. Analysed per experimental condition (species, depth) and per harvest. Values 

are the p > F. 

 

 

Species Depth H1 H2 H3 All 

Ambrosia 5 0.683 0.816 0.929 0.919 

 15 0.014 * 0.784 0.831 0.053 

Larrea 5 0.186 0.324 0.657 0.257 

 15 0.407 0.058 0.327 0.915 

 



Review	of	Rovira	et	al.	(2017)	
 

The manuscript of Rovira et al., assesses soil carbon cycling in arid environments by tracing 

the 13CO2 signal from a Free Air CO2 Enrichment Experiment in organic and inorganic C. My 

general comments are: 

1. The study makes an important contribution to our knowledge due to the following 

reasons: 

i. While there are a number of studies in temperate and humid environments, there is a 

clear lack of studies in dry ecosystems especially 13C tracer studies. The results show a very 

small (non‐detectable) input of C from recent assimilates into soils. Although the result is not 

very surprising, it is still important to quantify the dynamics of new C in soils (and hence C 

cycling rates) under these conditions for both: understanding the functioning of arid 

ecosystems and interpreting other results of the desert FACE experiment.   

 ii. The study also assesses the dynamics in inorganic C. Most studies focus on soil organic matter but 

especially in arid environments carbonate dynamics may be equally important. However, data is 

rather scarce.   

2. The study is conducted within a highly sophisticated set‐up the Nevada FACE experiment adding 

13C depleted CO2 on relative large plots. It applies novel soil fractionation methods and uses stable 

isotopes as a powerful technique 

3. The interpretation of the data is very good and reflects our current knowledge and the existing 

literature 

In summary, I am recommending the manuscript to be reviewed by Plant and Soil and as it examines 

and provides data on an important process, I am confident that it becomes accepted. 
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