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We address the question of how interacting active systems in a nonequilibrium steady state respond to an
external perturbation. We establish an extended fluctuation-dissipation theorem for active Brownian
particles (ABP), which highlights the role played by the local violation of detailed balance due to activity.
By making use of a Markovian approximation we derive closed Green-Kubo expressions for the diffusivity
and mobility of ABP and quantify the deviations from the Stokes-Einstein relation. We compute the linear
response function to an external force using unperturbed simulations of ABP and compare the results with
the analytical predictions of the transport coefficients. Our results show the importance of the interplay
between activity and interactions in the departure from equilibrium linear response.
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Linear response theory describes how a (small) external
perturbation affects the macroscopic properties of a system
[1]. If the unperturbed system is initially in equilibrium, its
response to perturbations is generically related to equilibrium
fluctuations through the fluctuation-dissipation theorem
(FDT). In this situation, one can derive exact expressions
for the transport coefficients in terms of equilibrium corre-
lations, the so-calledGreen-Kubo relations,which are among
the very rare general results in nonequilibrium statistical
mechanics [2]. However, intrinsically nonequilibrium sys-
tems, such as active matter, lie beyond the scope of this
framework. Indeed, active matter stands for systemsmade of
components which typically convert energy from their
environment into motion in a way that breaks detailed
balance [3–6]. Therefore, equilibrium states cannot be
considered as the reference unperturbed states in that case.
Extensions of the FDT to nonequilibrium states have

been recently derived [7–12]. However, these approaches
have not been applied to locally driven active systems and
general Green-Kubo-like expressions, relating their trans-
port coefficients with nonequilibrium steady-state correla-
tions, have not been established yet. Establishing the nature
of these relationships has deep consequences, because of
the insight they provide in the nature of nonequilibrium
response in active matter. For example, experiments on
microswimmer suspensions have revealed interesting rheo-
logical behavior [13,14] and rectification phenomena in the
presence of asymmetric boundaries [15–17], opening up
the possibility to exploit the nonequilibrium character of
active matter to control transport at the microscale and
extract energy from it. Harvesting the potential of these
systems thus needs the development of an extended
response theory: This is the overall aim of the present work.

We start by considering a generic time evolution of the
probability density ΨðΓ; tÞ to find the system in a certain
configuration Γ of the phase space:

∂tΨ ¼ ΩΨ: ð1Þ

At t ¼ 0 we perturb the system and follow its evolution.
The generator of the dynamics Ω ¼ Ω0 þ Ωext can be split
into an unperturbed Ω0 and perturbed Ωext part. For t < 0
the system is in its steady state Ψ0, defined by Ω0Ψ0 ¼ 0

[18]. Using the operator identity eΩt ¼ 1þ R
t
0 dt

0eΩtΩ, we
can derive the following expression of the average of an
observable A at any time t ≥ 0, hAit ¼

R
dΓΨðΓ; tÞAðΓÞ, as

hAit − hAi0 ¼
Z

t

0

ds

�
ΩextΨ0

Ψ0

AðsÞ
�

0

: ð2Þ

Here h�i0 denotes averages overΨ0, whileAðsÞ ¼ eΩ
†sAð0Þ,

where Ω† is the adjoint (backwards) Smoluchowski oper-
ator [20] (in the Heisenberg representation of the ensemble
average). Note that while the former expression is com-
pletely general and does not rely on any perturbation
expansion (therefore also valid in the non linear regime),
its application demands some knowledge of the distribution
Ψ0, or at least the action of Ωext on it [8,12,21,22].
For the sake of clarity, let us focus first on an equilibrium

system of (N þ 1) overdamped Brownian particles, inter-
acting by means of potential forces Fi ¼ −∂iU (∂i denotes
the spatial gradient ∂=∂ri) with diffusion coefficient D0,
mobility μ0, and inverse temperature β ¼ μ0=D0. In that
case, Eq. (1) corresponds to the Smoluchowski equation
describing the time evolution of the probability density of a
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point in configuration space Γ≡ ðr1;…; rN; rnÞ, with
Ω0 ≡Ωeq ¼

P
i ½∂i · ðD0∂i − μ0FiÞ�. We perturb an ini-

tially equilibrated system (Ψ0 ≡Ψeq ∼ e−βU) by applying a
constant force f ¼ fux to a tracer particle described by rn;
thus, Ωext ¼ −μ0f · ∂n and

ΩextΨeq ¼ −βμ0f · FnΨeq: ð3Þ

From Eq. (2) we find

hAit − hAi0 ¼ −βμ0f
Z

t

0

dshFneΩ
†sAi0: ð4Þ

This equation constitutes a generalized nonlinear Green-
Kubo expression, relating a nonequilibrium average at time
t with an equilibrium time correlation. Such an approach,
originally introduced in the context of glassy rheology, is
usually referred to as integration through transients (ITT)
[23–29]. If we now choose A≡ Fx

n ¼ Fn · ux in Eq. (4),
and define the tracer mobility μ≡ limt→∞h_rni=f, we
find, in the linear regime f → 0, the standard Green-
Kubo relation: μ ¼ β

R
t
0 dt

0h_xnðt0Þ_xnð0Þi0 ¼ βD (see the
Supplemental Material [30]).
We consider now active Brownian particles (ABP) [31],

self-propelled with a constant velocity v0 in the 2D plane
along their orientation ni ¼ ðcos θi; sin θiÞ. The dynamic
equations read

_riðtÞ ¼ μ0Fi þ v0niðtÞ þ ξiðtÞ; _θiðtÞ ¼ ζiðtÞ; ð5Þ

where Fi accounts for all interparticle potential forces
(typically short-range repulsions) and μ0 is the mobility.
The noise terms, ξi and ζi are Gaussian and white, with zero
mean and variance 2D0 and 2Dθ, with D0 ¼ μ0=β the
thermal Brownian diffusivity and Dθ the rotational diffu-
sion coefficient, introducing the persistence time τ ¼ 1=Dθ.
Equilibrium is recovered both in the limit of v0 → 0 or
τ → 0. The ABP system above is one of the reference
models for active matter, and it has been studied exten-
sively. ABP has been characterized in terms of thermody-
namic quantities such as pressure and chemical potential
[32–37], and its phase behavior analyzed in great detail
[38–43]. Several recent works have studied its linear
response (and of similar active particles modeled in terms
of an Ornstein-Uhlenbeck process) from different view-
points: (i) introducing an effective temperature character-
izing FDT violations [44–47]; (ii) taking equilibrium as the
reference state and considering activity as a perturbation of
it [28,29,48]; (iii) deriving expressions of linear response
functions in terms of weighted averages over the unper-
turbed dynamics [47,49,50], in the same spirit as the
Malliavin weights sampling [51]. In the present Letter,
we first characterize the violations of the FDT in ABP,
showing how the nonequilibrium character of activity
comes into play in an extended FDT that we establish,

and then derive Green-Kubo expressions for its transport
coefficients in terms of its nonequilibrium fluctuations.
We first analyze how ABP (in a nonequilibrium steady

state) respond to an external perturbation. Our starting point
is the Smoluchowski operator corresponding to Eq. (5),

Ω0 ¼
X
i

�
∂i · ðD0∂i − μ0Fi − v0niÞ þDθ

∂2

∂θ2i
�
; ð6Þ

with a perturbation due to an external force f ¼ −∂nV,
where V ¼ −fxn, applied to a tagged particle located in
rn ¼ ðxn; ynÞ. A salient feature of ABP is the absence of
zero-flux steady-state solutions of the Smoluchowski equa-
tion (which can be seen from the impossibility to simulta-
neously satisfy the zero-current conditions for the angular
and positional degrees of freedom). In the absence of odd
variables under time reversal, as is the case for this over-
damped dynamics, the absence of a zero-flux solution is a
necessary and sufficient condition for the violation of
detailed balance [52]. Even free ABP have nonzero fluxes
in the steady state (corresponding to their self-propulsion
velocity, see Ref. [30]). This is in contrast with continuum
descriptions of active matter which can recover detailed
balance after coarse-graining [53–55] and to activeOrnstein-
Uhlenbeck particles (AOUP), which fulfill detailed balance
in the presence of potentials with zero third derivatives
[48,56] (see the Supplemental Material [30]).
Since the stationary probability density must be positive,

normalizable and differentiable, we may write

Ψ0ðΓÞ ∼ e−β½UðfrigÞþv0τΞðfri;θigÞ� ð7Þ

in terms of a generalized potential v0τΞðfrj; θjgÞ [57]
encoding deviations from Boltzmann statistics. The steady
state condition Ω0Ψ0 ¼ 0 leads to

v0∂i · ð−μ0τ∂iΞ − niÞΨ0 þ τ−1∂2
θi
Ψ0 ¼ −∇i · ji; ð8Þ

where ∇i ¼ ð∂i; ∂θiÞ, introducing the steady-state local
velocity

νi ≡ ji=Ψ0 ¼ v0½ðni þ μ0τ∂iΞÞ; β∂θiΞ�: ð9Þ

In order to make the connection between the steady-state
current and the local violation of detailed balance explicit,
we consider the time-reversed adjoint operator Ω̄†

0 [defined

as Að−tÞ ¼ eΩ̄
†
0
tAð0Þ] and find [30]

Ω†
0 − Ω̄†

0 ¼ 2V · ∇; ð10Þ

where V ¼ fνig and ∇ ¼ f∂i; ∂θig. Equation (10) shows
that violations of detailed balance and nonzero steady
current are two faces of the same coin. Note that violations
of detailed balance can be quantified using time-reversed
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trajectories [22,48,58]. In the passive limit v0 → 0 detailed
balance is recovered and νi → 0.
Inserting Eq. (7) into Eq. (2) yields

hAit−hAi0
¼β

�Z
t

0

dsh _Vð0ÞAðsÞi0−
Z

t

0

dshV ·∇Vð0ÞAðsÞi0
�
: ð11Þ

In the linear regime, the latter expression constitutes an
extension of the FDT far from equilibrium [7,8]. When
V ¼ 0 one easily recovers the standard FDT. Activity is
responsible for the second term ∝ V in Eq. (11), which
quantifies the local dissipation of energy required to
maintain the nonequilibrium steady state [59]. For free
ABP (for which νi ¼ v0ni), the correction to the FDT can
be recast in terms of an effective temperature (see the
Supplemental Material [30]).
As opposed to the equilibrium FDT, the response of an

active system is not completely determined by its fluctua-
tions, but depends on the specific form of its steady-state
distribution [12,20,48]. Our aim being to derive explicit
Green-Kubo relations for ABP (which do not depend on an
unknown generalized potential), we forbid ourselves to
make any assumption about steady-state properties but only
rely on the dynamics. Our starting point should thus be
Eq. (5), although for this dynamics we cannot derive an
analog of Eq. (3). Thus, the ITT construction that leads us
to Eq. (4) cannot be readily followed. To overcome this
difficulty we integrate out the angular variables and work
with the following reduced dynamics [38,41]:

_riðtÞ ¼ μ0Fi þ ηiðtÞ; ð12Þ

where the noise ηi is approximately Gaussian [60] with
zero mean and variance hηiðtÞηjðsÞi ¼ ½2D0δðt − sÞ þ
v20e

−jt−sj=τ=2�δij1 [61]. As usual, by integrating away some
degrees of freedom one generates memory, here with a time
correlation τ≡ 1=Dθ. Even if in the noninteracting limit
particles described by Eq. (12) diffuse at long times with a
diffusivity Da ¼ D0 þ v20τ=2, the difficulty resides on the
non-Markovianity of the evolution, which cannot be for-
mulated in terms of a Smoluchowski operator; a long-
standing problem in statistical mechanics [62–65]. Fox
developed a first order in τ expansion [65,66] that leads to
an effective Smoluchowski equation and which has proven
useful in the context of ABP and AOUP [41,67].
Equation (12) then reduces to [41,65,66]

ΩM
0 ¼

XN
i¼1

∂i ·DiðΓÞ½∂i − βFeff
i ðΓÞ�; ð13Þ

where we have introduced an effective diffusivity and
interaction force

DiðΓÞ ¼ D0 þ
v20τ
2

�
1þ τμ0∂i · Fi

1 − τμ0∂i · Fi

�
; ð14Þ

Feff
i ðΓÞ ¼ ðD0Fi − β−1∂iDiÞ=Di: ð15Þ

(Note that τμ0∂i · Fi < 1 must be ensured.) The dynamics
encoded in Eq. (13) fulfills detailed balance. The non-
equilibrium character of the problem is now encoded in the
effective diffusivity (which now depends on the relative
positions of all the particles) [68–70] and forces (which do
not derive from a potential) rather than on the (lack of)
symmetries of the dynamics. Equation (13) corresponds to
an effective equilibrium description, for which the steady-
state distribution is non-Boltzmann but has zero current. As
we show below, such first-order expansion provides rel-
evant and systematic deviations to equilibrium linear
response. A higher order expansion would not improve
the present approximation, as an effective Smoluchowski-
like description [such as Eq. (13)] for a non-Markovian
dynamics can only exist to first order in τ [62,71]. For a
constant force perturbation we find

ΩMΨ0 ¼ ðΩM
0 þΩextÞΨ0 ¼ −βμ0f · Feff

n Ψ0; ð16Þ

which allows us to derive an analog of Eq. (4),

hAit − hAi0 ¼ −μ0βf ·
Z

t

0

dshFeff
n eðΩMÞ†sAi0: ð17Þ

Equation (17) allows us to derive Green-Kubo expres-
sions of the diffusivity and mobility which do not rely of
the Stokes-Einstein relation, but only on the time evolution
of the system under the Markovian approximation Eq. (14).
By choosing A≡ Fx

n in Eq. (17) we get the following
Green-Kubo relation for the mobility

μ ¼ μ0

�
1 − μ0β

Z
∞

0

dshFeff;x
n ð0ÞFx

nðsÞi0
�
; ð18Þ

which is identical to what one would get in the passive case
by replacing Feff

n by Fn. To first order in τμ0∂i · Fi, it reads

μ

μ0
¼ 1 −

μ20
Da

Z
∞

0

dshFx
nð0ÞFx

nðsÞi0

þ v20τ
2μ30

2D2
a

Z
∞

0

dshFx
nð0Þ∂n · Fnð0ÞFx

nðsÞi0

þ v20τ
2μ20

2Da

Z
∞

0

dsh∂x
n∂n · Fnð0ÞFx

nðsÞi0: ð19Þ

For passive systems, only the terms in the first line survive,
capturing how interactions affect the ideal gas mobility.
Here, activity plays a role in the statistics of collisions, thus
the force self-correlation function, and in the value of the
prefactor via the single particle diffusivity. The remaining
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two terms ∝ ðv0τÞ2 correspond to subdominant higher-
order correlations involving many-body interactions.
To characterize the departure from equilibrium linear

response in terms of the Stokes-Einstein relation, we use
(see Ref. [30] for a proof)

μ20hFx
nð0Þ · Fx

nðtÞi0 ¼ hDni0δðtÞ − h_xnð0Þ_xnðtÞi0; ð20Þ

which relates the force and the velocity autocorrelation
functions, and whose functional form depends only on the
properties of the evolution operator (for equilibrium
Brownian dynamics it was derived in Ref. [72]). Once
we identify the diffusivity with the velocity self-correlation
function, we get the Green-Kubo expression

D ¼ Da þ
μ0v20τ

2

2
h∂n · Fni0

− μ20

Z
∞

0

dshFx
nð0ÞFx

nðsÞi0; ð21Þ

which allows us to express Eq. (19) as

μ

μ0
¼ D

Da
−
μ0v20τ

2

2Da
h∂n · Fni0 þ h:o:t:; ð22Þ

where h.o.t. refers to higher order terms. Equation (22)
reduces to the usual Stokes-Einstein relation in the passive
limit. If ∂n · Fn ¼ 0, a modified Stokes-Einstein relation
holds, μ ¼ βeffD, with an effective temperature kBTeff ¼
Da=μ0 [45–47,73]. Indeed, genuine nonequilibrium behav-
ior results from the combined effect of interactions and
activity, as observed in active colloidal suspensions [74]
and proven for AOUP [48,56,58] (among other examples).
To illustrate our results and put them into test, we run

particle-based simulations of ABP Eq. (5) with periodic
boundary conditions. We consider the pair potential
UðrÞ ¼ ðσ=rÞ12 and the following set of parameters:
τ ¼ 0.02, μ0 ¼ 1, and β ¼ 1. We vary the Peclet number
Pe ¼ v0τ=σ and the mean density ϕ ¼ ðπσ2N=4L2Þ in a
range for which the system remains homogeneous
[Pe ∈ ð0∶10Þ and ϕ ∈ ð0.01∶0.2Þ].
We analyze the integrated response χðtÞ ¼

N−1limf→0

P
N
i ½hxiðtÞ − xið0Þi�=f of the particles’ positions

due to a constant force applied to all of them f i ¼ ϵifux,
where ϵi ¼ �1 with equal probability [45]. We compute χ
using two different strategies: (i) we explicitly apply a small
force and measure the particle displacements it induces;
(ii) we track the appropriate stochastic variables needed to
compute the response function of interest using simulations
of the unperturbed dynamics. The first “direct method”
involves computing displacements generated by a small
perturbation that guarantees the linear regime. The second
“Malliavin weight (MW) method” overcomes the consid-
erable numerical uncertainties (and cost) related to the
control of a small perturbation parameter in Brownian

dynamics simulations; we thus make an extensive use of
it in the following. This method, originally introduced in the
context ofMonte Carlo simulations of spin systems [75], and
then generalized to Brownian dynamics [51,76], was
recently extended to active particles [47,49].
We compute D ¼ N−1limt→∞

P
ih½riðtÞ − rið0Þ�2i=ð4tÞ

from the long-time behavior of the mean-square displace-
ment (MSD). According to the MW method, the response
function of interest can be expressed as [47,51]

χðtÞ ¼ N−1
X
i

hxiðtÞqiðtÞi; ð23Þ

where qi is a Malliavin weight that evolves accordingly to
_qiðtÞ ¼

ffiffiffiffiffiffiffiffi
β=2

p P
i ξ

x
i ðtÞ, and averages are taken over inde-

pendent realizations of the unperturbed dynamics. We thus
compute χ using Eq. (23) and extract μ ¼ limt→∞ χðtÞ=t
(after checking consistency with the direct method, see the
Supplemental Material [30]). We also compute D and μ
using our Green-Kubo expressions. To be concrete we
compute, from simulations of ABP, the different terms
involving correlations and gradients of the potential that
appear in Eq. (21) and Eq. (19). The results obtained are
shown in Fig. 1. The diffusion coefficient follows the same
growth ∼Pe2 as the ideal gas in the parameter range
explored, but decreases with ϕ. Equation (21) underesti-
mates the value of D obtained from the MSD but retains its
functional dependence. Mobility is not affected by activity
in the dilute regime but decreases as the density increases,
as expected from Eq. (19) and Refs. [45,47]. At finite
density and Pe, μ decreases with density but remains
roughly constant for Pe≳ 2. Such behavior is reproduced
by Eq. (19), although it overestimates the numerical
value. Our Green-Kubo expressions predict the qualitative
behavior of D and μ, despite we cannot reach a precise
quantitative agreement at high Pe and ϕ. Although such
mismatch, expected from the basic assumptions behind the
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FIG. 1. Transport coefficients for ABP at ϕ ¼ 0.01, 0.1, and 0.2
as a function of Pe. Left: Diffusion coefficient obtained from the
long-time behavior of the mean-squared displacement (MSD,
with points) compared to the Green-Kubo expression Eq. (21)
(GK, with line points). Right: Mobility obtained from simulations
of unperturbed ABP using Malliavin weights (MW, with error
bars) compared to the Green-Kubo prediction Eq. (19) (GK, with
point lines).
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approximations made (small values of τ and τμ0∂i · Fi;
neither too active nor too dense), prevents quantitative
agreement, the derived Green-Kubo expressions provide a
general understanding on how the interplay between
activity and interactions affects the transport properties
of active particle systems.
The response of nonequilibrium systems is typically

sensitive to details of the unperturbed initial state, hence the
difficulty in establishing a general theory. Such lack of
universality is encoded in the presence of the generalized
potential in extended fluctuation-dissipation relations,
arising from the breakdown of detailed balance at the
microscopic level. In this Letter we set the stage for a
systematic response theory of active systems obtained on
pure dynamical grounds. Via a Markovian approximation
scheme, valid in the limit of small persistence time and
moderate density, we overcome the aforementioned diffi-
culty and we put forward a closed Green-Kubo expression
for the mobility and diffusivity. This allows us to quantify
the breakdown of the Stokes-Einstein relation due to the
interplay between activity and interparticle interactions.
Extending the present approach to deal with different self-
propulsion or interaction mechanisms and other transport
coefficients such as the shear viscosity [77] will then
provide a theoretical framework to gain insights on the
rheological properties of active matter [13,14].
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