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Capillary jumps of fluid-fluid fronts across an elementary constriction in a
model open fracture
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We study experimentally the quasistatic displacement of an oil-air front across a
localized constriction in a model open fracture. The front experiences capillary jumps
at one end of the constriction in both imbibition and drainage, leading to a microscale
pressure-saturation hysteresis cycle. At the other end the front is reversibly pinned. A
condition of local mechanical equilibrium between the restoring elasticity of the front
and the distortion produced by the local change in aperture captures all we measure
quantitatively, in terms of material and geometrical properties only.
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I. INTRODUCTION

Two-phase flows in porous and fractured media proceed by the fluid invasion or withdrawal of
individual pores and openings [1], which ultimately control the large-scale behavior of environmen-
tally relevant processes such as secondary oil recovery, soil irrigation, and CO2 sequestration [2,3].
Observations in micromodels and natural porous media using state-of-the-art imaging techniques,
with optimized temporal and spatial resolution [4–12], show that local bursts at individual pores may
give rise cooperatively to spatially extended, rapid fluid invasions known as Haines jumps [13].
The complexity of porous and fractured materials, however, makes the analysis of these rapid
events highly challenging. Thus, even though Haines jumps are acknowledged to be the leading
contribution to the energy dissipated in immiscible fluid-fluid displacements [6,14,15], their impact
on imbibition-drainage hysteresis is still poorly understood and remains a subject of active
research [5,16–19].

Immiscible fluid-fluid displacements through fractured and porous media are controlled at
continuum scales by the relative importance of viscous to capillary forces and by the displacement
direction. This leads to distinguishing drainage (the displacement direction in which the less wetting
fluid displaces the most wetting fluid) from imbibition (the opposite) [1,2]. The viscosity contrast
also plays a very important role: it makes the front unstable against viscous fingering when the
displacing fluid is the less viscous, and stable in the opposite direction [20,21]. These two governing
effects, combined, give rise to a very rich phenomenology of two-phase patterns and interfacial
dynamics [22–31].

No less important, but less well understood, is the physics of local fluid motions driven by
capillary forces at the scale of individual pores and throats [32–36]. Models based on capillaries
of sharply varying cross section (ink bottles) show that fluid motion between consecutive stable
interfacial configurations can be either smooth and reversible or abrupt and irreversible, depending
on cross-section gradients and wettability contrast [5,13,19,37,38]. Here we extend these ideas to
the motion of an oil-air interface in a Hele-Shaw cell with a localized constriction or expansion. In
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FIG. 1. (a) Top view of the Hele-Shaw cell, showing the rectangular constriction (w × �) and the distorted
interface between oil (1) and air (2). Oil is injected or withdrawn from the left end (inlet), and the coordinates
are h0 (distance to inlet of the flat portions of the interface), yd (distance from h0 to the left end of the
constriction), and η(0) (maximum height of the front with respect to h0). (b) Lateral view of the cell. The
gap thickness is everywhere uniform, b0, except at the localized mesa defect, where it is b0 − δb. Sketches of
the curved meniscus for the two different gap thicknesses are shown for zero contact angle.

contrast to the ink-bottle models, the interface here is strongly confined in one lateral dimension
and spatially extended in the other. The motion in this case mimics the displacement of a two-phase
fluid front in an open fracture of variable aperture. The stability of the displacement is determined
by the sign of the difference Bo − Ca, where Ca and Bo are the capillary and Bond numbers, i.e.,
the ratio of viscous to capillary forces and of gravitational to capillary forces, respectively [39].
By tilting the cell we introduce an effective gravitational field ge such that Bo > 0, and consider
quasistatic displacements for which Ca � Bo. In this way we prevent viscous fingering in drainage
and in imbibition. We aim at understanding the basic physics behind the motion of an extended
front induced by a localized constriction or expansion. We will see that a local pressure balance at
the interface accurately reproduces all the configurations observed experimentally, without having
to account in detail for the complex structure of the extended meniscus. This sets the basis to later
understand how localized fluid front motions give rise to large cooperative displacements (Haines
jumps) in two-phase fluid displacements in disordered media.

II. EXPERIMENTS

Our experiments were conducted in a Hele-Shaw cell consisting of two closely spaced parallel
plates of size 190 × 500 mm2 (x × y). The top one was a 10-mm-thick glass plate and the bottom
one a fiberglass plate with a thin (0.060 ± 0.010 mm) copper layer, sitting on a sturdy steel platform
15 mm thick. The plates were separated by a PVC frame which imposed controlled gap spacings
b0 = 0.46, 0.56, and 0.66 ± 0.02 mm. The steel platform and the cell on top were inclined by
angles α = 2◦21′, 3◦19′, 4◦9′, and 5◦3′ ± 2′, so that an effective gravity ge = g sin α prevented the
formation of viscous fingers in drainage. Mesa-shaped defects were produced by carefully etching
the copper layer of the fiberglass plate using standard printed circuit techniques. Constrictions were
thus rectangular copper patches of thickness δb = 0.060 ± 0.010 mm, and expansions were copper-
free rectangular depressions of thickness δb = −0.060 ± 0.010 mm. In either case their length was
� = 60.00 ± 0.02 mm and their width w = 3.00, 9.00, and 27.00 ± 0.02 mm (Fig. 1). In a complete
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FIG. 2. Sequence of fronts recorded in oil-air displacements across a mesa-shaped constriction (δb > 0),
for imbibition (a) and drainage (b). Panel (c) shows the front deformation η(0) vs the relative front position
yd , in imbibition (blue dots) and drainage (red dots). Close-ups of this graph at the left and right ends of the
constriction are shown in panels (d) and (e). The arrows highlight the gradual slowing down of the deformation
caused by viscous dissipation at the end of each irreversible jump, as discussed in the text. Experimental
parameters: b0 = 0.46 ± 0.02 mm, δb = 0.060 ± 0.010 mm, w = 3.00 ± 0.02 mm, � = 60.00 ± 0.02 mm,
α = 4◦9′ ± 2′.

imbibition-drainage cycle the cell was initially filled with air. A silicone oil [surface tension γ =
20.7 mN/m, kinematic viscosity ν = 50 mm2/s, density ρ = 998 kg/m3, and equilibrium contact
angle with all exposed surfaces (glass, copper, and fiberglass) θ � 0◦ at RT] was removed from or
injected to the cell through its left end (inlet), and air entered or left the cell through its right end
(outlet) which was open to the atmosphere. The lateral sides were sealed. Oil injection (imbibition)
and withdrawal (drainage) were carried out quasistatically by changing the inlet pressure externally
in very small increments and allowing the system to equilibrate after each step. Front motion was
recorded with a MotionBLITZ cube6 CMOS camera with a spatial resolution of 0.24 mm/pixel.
The camera was inclined by the same angle as the cell to avoid a parallax in the recorded images.
Interface positions were extracted by image analysis, using classical edge detection techniques.

A sequence of front configurations recorded in an imbibition-drainage cycle across a constriction
(δb > 0) is shown in Fig. 2 [movie S1 of the Supplemental Material (SM) [40]). In imbibition [panel
(a)] we observed first a capillary instability right at the moment that the initially flat interface reached
the left end of the constriction (yd = 0 in Fig. 1). The deformation at the centerline jumped abruptly
from η(0) = 0 to a maximum value ηc. The Reynolds number corresponding to the fast advancement
observed in this abrupt jump was Re � 0.4. Despite the large acceleration, inertial effects were
negligible because of the fluid confinement and its high viscosity, as is typically the case for
Hele-Shaw flows.

Following this forward jump in imbibition, the front moved with pistonlike motion and constant
deformation ηc until the tip reached the right end of the constriction. The sequence of front

044002-3



PLANET, DÍAZ-PIOLA, AND ORTÍN

configurations that followed was strikingly different from the sequence observed at the left end.
The interface progressively flattened, but the tip of the front remained pinned to the constriction
until the whole front was flat, and only then did it leave the constriction.

In the reverse displacement [drainage, panel (b)] the front reached first the right end of the
constriction. Its central point remained pinned there until the deformation was maximum, practically
equal to the maximum deformation ηc reached in imbibition. This maximally deformed front then
moved unchanged in a pistonlike motion across the whole constriction, until the tip reached the
left end. At this stage the front depinned abruptly from the constriction and recovered its original
flatness, closing the cycle.

A plot of the centerline deformation η(0) against the distance to the left end of the mesa defect yd

in the whole imbibition-drainage cycle [panel (c)] reveals that the two irreversible capillary events at
the left end gave rise to a hysteresis cycle [panel (d)]. In contrast, front pinning at the right end was
reversible, with identical deformation paths in the two directions [panel (e)]. Remarkably, analogous
displacements across an expansion (δb < 0) instead of a constriction displayed identical behavior
with left and right ends interchanged (movie S2 of the SM [40]).

III. THEORY

Our theoretical approach builds on the Joanny and de Gennes pioneering approach to the defor-
mation of a contact line in the presence of wettability defects [41–43]. In the present case, however,
the fluids are confined between the two close plates of a Hele-Shaw cell in one lateral dimension, so
that instead of a contact line plus a free surface we have two contact lines tied together by a menis-
cus [44]. This changes the functional form of the propagator of the deformation, as shown below.

For a viscous fluid in a Hele-Shaw cell inertial forces are negligible, and the flow is governed
by the Stokes equation. The gap-averaged, two-dimensional velocity field in each fluid satisfies
Darcy’s law,

�ui(x, y) = − κ

μi
[∇pi(x, y) − ρi�ge], (1)

where κ is the hydraulic permeability of the cell (κ = b2
0/12 for uniform plate spacing b0), μi and

ρi are the dynamic viscosity and density of fluid i = 1, 2, and pi is the corresponding pressure
field. Ordinary liquids are incompressible, ∇ · �ui = 0, and the pressure field then obeys Laplace’s
equation ∇2 pi = 0. Gaseous phases have negligible viscosity, μi � 0, and for them the pressure
field pi is constant.

In the base state the fluid-fluid interface is flat, h(x, t ) = h0, and the two fluids move with the
same velocity �u0

i = V∞ĵ . Taking the pressure origin at the interface (y = h0 = V∞t) the pressure
distribution takes the form

p0
i = −

(
ρige + μiV∞

κ

)
(y − V∞t ), (2)

where ge is the magnitude of the effective gravitational acceleration. If the interface is now slightly
distorted from flatness (Fig. 1) such that h(x, t ) = V∞t + η(x), pressure field and velocity field are
modified correspondingly:

pi = p0
i + pd

i and �ui = �u0
i + �ud

i . (3)

Darcy’s law and the condition of fluid incompressibility apply also to these perturbed fields. The
local pressure jump across a curved interface is given by the Young-Laplace equation

�p� = γ (κ‖ + κ⊥), (4)

where γ is the interfacial tension between the two fluids and κ‖, κ⊥ are in-plane and perpendicular
curvatures of the meniscus, respectively. The strongest curvature of the meniscus in a Hele-Shaw
cell is κ⊥, but in a cell of uniform gap spacing, b0, and for a constant (static) contact angle, θ , it can
be approximated by the constant value 2 cos θ/b0. This approximation disregards the eventuality
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that the more wetting fluid may leave coating films on the cell plates when it is displaced [45].
Since we assume that |∂η/∂x| � 1, we can approximate the in-plane curvature by κ‖ � ∂2η/∂x2 to
first order in η. The extra pressure jump across the distorted interface due to the perturbation of the
front shape is thus given by

�pd (x)� ≡ pd
1 (x) − pd

2 (x) � γ
∂2η(x)

∂x2
− μ1 − μ2

κ
V∞η(x) − (ρ1 − ρ2)geη(x) (5)

to linear order in η. The terms on the right-hand side of the equation account, respectively, for the
capillary, viscous, and hydrostatic pressure contributions to the difference in pressure jump.

The difference �pd (x)� may be restoring or destabilizing. When V∞ < −κ�ρge/�μ, where
�ρ ≡ ρ1 − ρ2 and �μ ≡ μ1 − μ2, i.e., when Bo − Ca < 0, �pd (x)� is destabilizing: it leads
to the formation of incipient Saffman-Taylor fingers [20,21]. Very quickly, however, the linear
approximation fails in this unstable case. Contrarily, for V∞ > −κ�ρge/�μ, i.e., Bo − Ca > 0,
�pd (x)� is restoring: it tends to bring the interface back to the flat configuration η(x) = 0. In this
case the interface between two immiscible fluids in a Hele-Shaw cell of constant gap thickness can
be regarded as an elastic line, which opposes a local deformation η with a Hookean elastic force
kη (Fig. 1). The elastic response originates from the combined action of interfacial tension, viscous
damping, and effective gravity.

In order to determine the spring constant associated with the “elastic” restoring force of the
interface in the stable case, Bo − Ca > 0, we write Eq. (5) as �pd (x)� � −Lη(x), where L is a
linear differential operator. When a local perturbation corresponding to a pressure field pa(x, y)
produces an in-plane distortion of the interface y = h(x), the corresponding equilibrium condition
reads

pa[x, h(x)] − Lη(x) = 0. (6)

Since L is a linear differential operator,

η(x) =
∫
R

dx′ G(x − x′) pa[x′, h(x′)], (7)

where G(x) is the propagator of the elastic response of the interface to a localized disturbance. The
explicit form of the propagator is obtained by solving LG(x) = δ(x), where δ(x) is Dirac’s delta
function. In our case this equation reads

[γ q2 + (�μ/κ )V∞ + �ρge]Ĝ(q) = 1, (8)

in Fourier space, where q is the conjugate variable of x and Ĝ(q) is the Green’s function in Fourier
space. The result of inverting this equation depends on the sign of �2

g ≡ κγ /(�μV∞ + κ�ρge).
Here �2

g is the (squared) lateral length scale in which capillary forces prevail. For unstable fluid
displacements (�2

g < 0, i.e., Bo − Ca < 0) the propagator in real space takes the form

G(x) = − �g

2γ
sin

|x|
�g

. (9)

For marginally stable ones (�2
g = ∞, i.e., Bo − Ca = 0) it takes the form

G(x) = − |x|
2γ

. (10)

Finally, for stable displacements (�2
g > 0, i.e., Bo − Ca > 0, the case of interest here) it reads

G(x) = �g

2γ
e−|x|/�g. (11)

This novel propagator describes the linear “elasticity” of the interface between two immiscible
fluids in a Hele-Shaw cell. Remarkably it is qualitatively different from the propagators of the
restoring force of a contact line [41] or a fracture front [46,47], which depend logarithmically on
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the reciprocal of the distance. We write the distorting pressure in the form pa[x, h(x)] = pa f (x),
where pa is the strength of the defect and f (x) a dimensionless function 0 � f (x) � 1, symmetric
around x = 0. Then a Hookean (linear) relation pa = kη(0) holds, where k = 1/

∫
dx′G(x′) f (x′) is

the corresponding spring constant. For a mesa defect of width w the spring constant reads

k = γ /�2
g

1 − e−w/2�g
. (12)

In the particular case Ca → 0, i.e., for quasistatic displacements, the term of viscous pressure
damping in Eq. (5) vanishes. In this limit the elastic response of the interface is provided only
by surface tension and gravity.

In our experiment the distorting pressure is produced by a constriction (expansion), which locally
reduces (increases) by δb the gap thickness of the Hele-Shaw cell. As a result, the curvature of the
fluid-fluid meniscus across the gap of the cell changes abruptly from 2 cos θ/b0 to 2 cos θ/(b0 − δb)
on the defect (Fig. 1). In quasistatic conditions θ can be assumed to take its static (equilibrium)
value. This abrupt change in curvature produces a distorting pressure

pa(x, y) � 2γ cos θ
δb(x, y)

b2
0

at y = h(x), (13)

which is responsible for pulling the wetting phase towards the defect when δb > 0 (constriction) and
for pushing it away when δb < 0 (expansion). The local change in gap thickness changes locally
also the hydraulic permeability of the cell (which in turn would change the viscous pressure drop in
the oil phase), but these changes are irrelevant for quasistatic displacements. Similarly, the condition
of continuity is always satisfied in quasistatic displacements.

From the Hookean relation pa = kη(0), the stationary deformation experienced by the front reads

ηc = 2(1 − e−w/2�g ) cos θδb

(
�g

b0

)2

. (14)

Figure 3 shows that this prediction is in excellent agreement with our experimental results; we
emphasize that no fitting parameters are used in this comparison.
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FIG. 3. Data collapse of maximum front deformations. Symbols correspond to drainage experiments with
δb = 0.060 mm, b0 = 0.46, 0.56, and 0.66 mm (orange, green, and purple), α = 2◦21′, 3◦19′, 4◦9′, and
5◦3′ (circles, squares, up-pointing triangles, and down-pointing triangles), and w = 3, 9, and 27 mm (small,
medium, and large symbol sizes). The values of ηc have been obtained from averages over more than 100
images recorded in the same experiment. The dashed line is the theoretical prediction of Eq. (14) for θ = 0◦.
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FIG. 4. Qualitative behavior of the energy density function of the two-fluid system in the presence of a
positive mesa defect (pa > 0) as a function of the centerline front deformation η0. In both panels the system
follows the downward sequence in imbibition and the upward sequence in drainage; the vertical dashed line
shows the maximum front deformation, ηc; and the equilibrium configurations are shown as solid blue dots in
imbibition and open red dots in drainage. (a) Left end of the defect. (b) Right end of the defect.

Further physical insight can be gained from energy considerations [41]. Firstly, the fluid
front behaves as an elastic spring whose elastic energy density is uel = kη2

0/2, where η0 ≡ η(0).
Secondly, the work done by the localized expansion or constriction in deforming the front is
uW = −pa(η0 − yd ). The energy density of the fluid-fluid interface can then be built as a piecewise
function of its distance to the mesa defect, yd , which is controlled externally by the applied pressure:

u(η0, yd ) =

⎧⎪⎪⎨
⎪⎪⎩

1
2 kη2

0, η0 < yd

1
2 kη2

0 − pa(η0 − yd ), yd < η0 < yd + �

1
2 kη2

0 − pa�, η0 > yd + �.

(15)

The shape of u(η0, yd ) for a constriction (δb > 0) is shown in Fig. 4 for different values of yd . In
panel (a) we see that the two irreversible capillary events at the left end of the constriction, in the
absence of external fluctuations, arise from the disappearance of the energy barrier separating the
equilibrium states η0 = 0 and ηc = pa/k. These two nonequilibrium jumps involved in the drainage-
imbibition hysteresis cycle of Fig. 2 give rise therefore to large and abrupt dissipations of elastic
energy. Indeed, the corresponding elastic waves have been measured as acoustic emissions in the
passage of fluid fronts within assemblies of glass beads [48]. Panel (b), in contrast, shows the reason
why the front pinning observed at the right end of the constriction is reversible: the stable minima
at pinning are located now at the crossing points of the last two pieces of Eq. (15), which are the
same in imbibition and drainage, and correspond to smoothly varying deformations of the front. An
equivalent analysis in terms of pressures instead of energies is provided in the SM [40].

IV. DISCUSSION AND CONCLUSIONS

We have studied the interfacial dynamics of two-phase fluid displacements across a localized
constriction or expansion in a Hele-Shaw cell. Our results highlight the rich phenomenology of the
motion of interfaces over defects. Specifically, our problem lies between the ink bottle, where a
completely confined interface moves through a tube of variable cross section, and the contact line,
where a completely unconfined interface moves over a solid surface. In the present case the interface
is extended in one lateral dimension and confined in the other, mimicking the passage of a fluid front
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through an open fracture with a localized change in aperture. For stable displacements (Bo − Ca >

0), the lateral extension of the front in one dimension has the advantage that a differential equation—
the linearized Saffman-Taylor equation of motion in a Hele-Shaw cell—governs the dynamics, in
contrast with the ink-bottle problem. The confinement of the interface between the two plates of the
cell—quantified by the local out-of-plane curvature of the meniscus—introduces, on the other hand,
the nonlinearities responsible for the variety of equilibrium and nonequilibrium behaviors observed
experimentally, even in the quasistatic limit.

Our approach identifies the consecutive equilibrium states of the fluid-fluid front and their relative
stability. This reveals already the hysteretic nature of imbibition-drainage cycles at the scale of
individual heterogeneities. However, as the pressure balance on which it is based is valid only in
quasistatic conditions, the present approach cannot account for the front dynamics during abrupt
changes of η(x). Not surprisingly, viscous effects become very important in those jumps, as shown
by the arrows in Fig. 2(d). Departure from the quasistatic limit to account for finite flow rates leads
to new research avenues that will be pursued in the future.

The model predicts also that the front should adopt the same stationary deformation, ηc, in
both imbibition and drainage. We observe, however, in Figs. 2(d) and 2(e), a small but systematic
difference. We attribute the larger deformation in drainage to the influence of the coating layers
of oil left on the cell plates [45], which formed in spite of the extremely low velocity of the front
during pistonlike motion. These layers might have effectively reduced the cell gap thickness, and
thus increased slightly the distorting pressure in drainage, revealing ultimately the importance of
wetting layers in two-phase fluid displacements.

To conclude, an analysis of the local pressure balance at a fluid-fluid front confined in a Hele-
Shaw cell explains both qualitatively and quantitatively the sequence of equilibrium configurations
reached when the front is driven quasistatically across a localized heterogeneity in the form of
a mesa defect. This approach accounts for all the features observed experimentally, including
metastability, multivaluedness, hysteresis, and pinning in cyclic drainage-imbibition displacements.
Its local character makes us think that it may be extended to more realistic disordered media,
featuring multiple and randomly distributed constrictions and expansions, thus paving the way to
understand the physics behind cooperative fluid displacements (Haines jumps) and their contribution
to macroscale pressure-saturation hysteresis in imbibition-drainage cycles.
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