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Abstract: We report the first DNA-based origami technique that can print addressable patterns on 

surfaces with sub-10 nm resolution. Specifically, we have used a two-dimensional DNA origami as 

a template (DNA origami stamp) to transfer DNA with pre-programmed patterns (DNA ink) on 

gold surfaces. The DNA ink is composed of thiol-modified staple strands incorporated at specific 

positions of the DNA origami stamp to create patterns upon thiol-gold bond formation on the 

surface (DNA ink). The DNA pattern formed is composed of unique oligonucleotide sequences, 

each of which is individually addressable. As a proof-of-concept, we created a linear pattern of 

oligonucleotide-modified gold nanoparticles complementary to the DNA ink pattern. We have 

developed an in silico model to identify key elements in the formation of our DNA origami-driven 

lithography and nanoparticle patterning as well as simulate more complex nanoparticle patterns on 

surfaces. 
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1. Introduction 

The programmability [1] and self-assembly properties of DNA provides means of precise 

organization of matter at nanoscale. For the past decade, researchers have used a method named 

“DNA origami” [2] by which a long, circular single stranded DNA scaffold (the genome of the M13 

virus) is folded to a specific shape using hundreds of short oligonucleotides (staple strands) that have 

been rationally designed. DNA origami allows the folding of DNA into two-dimensional and three-

dimensional nanostructures. This property has been utilized here to organize biomolecules, 

nanophotonic and electronic components with a resolution of 6 nm/pixel; surpassing the limitations 

of top-down methodologies [3]. 

Specifically, two-dimensional DNA origami has been placed on technologically relevant 

substrates and used as a platform to organize other chemical species [4]. However, to the best of our 

knowledge, DNA origami methodology has not been utilized to transfer and covalently bind the 

patterns on surfaces with sub-10 nm resolution. Herein we report on the use of a two-dimensional 

DNA origami as a template that bears pre-programmed patterns that can be lithographically 

transferred to a surface [5] (Figure 1).  
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2. The Method 

Our printing method (or stamping method) utilizes DNA origami “tall rectangle” containing 

modified staple strands in the programmed positions (DNA origami stamp) acting as DNA ink 

(Figure 1). After adsorption, the modified staples can then react with the surface printing the DNA 

pattern (Stamping step). Then, the lithographed DNA pattern is exposed after denaturation of the 

DNA origami stamp frame (Unmasking step). Once the DNA ink pattern is exposed, can be utilised 

to organise other chemical species over the surface via hybridisation with the printed DNA ink 

pattern (Development step, Figure 1 step 3). 

 

Figure 1. DNA-origami stamping process of a linear DNA ink programmed pattern on gold surfaces. 

The protocol describes the three basic steps of the stamping (1), unmasking (2), and development (3). 

(1) DNA-origami stamp is adsorbed on a gold surface. Then the DNA stamp is left over the surface 

until the thiol groups of the ink and anchor staples react with the gold surface; (2) The frame of the 

DNA stamp is denatured with NaOH and rinsed out to expose the DNA ink pattern. The DNA bridge 

was annealed directly to the OGNP; (3) Finally, the pattern is developed with the annealing of the 

OGNP-bridge sequence to the surface. 

3. Results and Discussion 

As proof-of-principle, we have created a linear pattern of thiol-modified staples on gold surfaces, 

a simple geometry that can be statistically analyzed in our experimental setup. Here, 12 staple strands 

were replaced by 5′-thiol-modified staples. Figure 1 shows the programmed positions for the ink 

staples within the DNA origami to print a line on the gold surface. 

The formation of the linear pattern is revealed by the formation of bead-on-a-string-like 

structures after addition of gold nanoparticles conjugated with oligonucleotides (OGNP) that are 

complementary to the DNA ink pattern on the surface (Development step). OGNP-chain formation 

was determined by SEM imaging (Figure 2a,b). The DNA ink pattern was developed using OGNPs 

of 5 nm and 10 nm in diameter to investigate size-dependent effects on chain formation. The insets 

in Figure 2b show selected chain images corresponding to each class of number of OGNP in a chain 

observed by SEM. Some of the chains do not contain straight OGNP alignments having zigzag-like 

shapes. 

Statistical analysis of the distribution of nanoparticle alignment showed a decay of the frequency 

upon increment of number of OGNP in a chain and that the apparent, statistically significant 

maximum number of particles in a chain was significantly below to the 12 DNA ink programmed on 

the printed pattern [5]. The statistical analysis and Monte Carlo simulations were used to create a 

computational model. This model has provided insight into the key elements governing the stamping 

method, such as that the maximum apparent number of OGNP in a chain that a single DNA ink 

pattern can hold is due to geometrical factors affecting mainly the development step. These combined 

studies have also allowed to explain the zigzag behavior of some chain classes. Finally, our 

computational model was utilized to simulate formation of more complex patterns (Figure 2c,d) that 

could be used for future implementation of our method with tailored properties. Future studies could 
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lead to the integration of this methodology within multiplexed microfluidic [6] and multipurpose 

read out systems [4], for the systematic analysis of biochemical assays. 

 

Figure 2. Experimental data and Monte Carlo simulations after Development step. (a) SEM image of 

10 nm OGNP aligned with the DNA-origami stamp method. The yellow rectangles depict the DNA-

origami stamp frame domain (100 nm × 70 nm). The red arrowheads point some OGNP chain 

alignment. Scale bar: 100 nm. (b) SEM images corresponding to different chain classes (i.e., different 

numbers of OGNP aligned in a chain using 5 and 10 nm particles. 2r indicates the diameter of the 

gold nanoparticles. Scale bars: 20 nm (c) Selected results of CFS using 5 and 10 nm OGNP. The centres 

of the OGNP have been linked with a violet line to highlight the chain paths formed. The figures in 

red indicate the number of OGNP contained in the chain. (d) Monte Carlo PFS simulations of the 

development of the indicated DNA ink patterns using 4 nm (hash 50%) and 3 nm (space invader) 

OGNPs. 

4. Conclusions 

We have demonstrated for the first time, that using DNA origami with chemically-modified 

staples in programmed positions, it is possible to print patterns with sub-10 nm precession on 

technologically relevant surfaces. Thereby, the DNA origami stamping method brings the 

opportunity for a more versatile and robust functionalization and patterning of surfaces for the 

creation of metamaterials [7] with applications in nanoelectronics and photonics, and the 

development of next generation biosensors. 
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