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Introduction

The development of Galois theory was a key turning point in the history of mathematics. It
began the study of fields that are still active and solved one of the most important problems
in mathematics at the time.

The Inverse Galois Problem asks whether given a finite group G and a field K, if it
is possible to find a Galois extension L/K such that G ∼= Gal(L/K). The answer to this
problem depends, of course, on the properties of the group G and on the properties of the
field K. For instance, the solution to this problem is positive only for cyclic groups when
K is a finite field, whereas the solution is always positive when K = C(t). It remains an
open problem to show whether all groups are Galois groups over K = Q, although some
partial solutions have been given. For example, in 1937 Scholz [Sch37] and Reichardt [Rei37]
simultaneously but independently proved that p-groups can be realised as Galois groups over
Q for any odd prime p. Taking this as a starting point, later on Šafarevič proved that all
solvable groups are Galois groups over Q in [Š54].

This work will study one of the main methods developed to partially solve the problem,
the Rigidity Method. These techniques first appeared in the work of Belyi [Bel79], Matzat
[Mat84] and Thompson [Tho84c]. The Rigidity Method takes as starting point the solution
in C(t). What we attempt is to bring down the solution to Q, ideally achieving the following
descent:

Q

Q(t)

Q(t)

C(t)

In §1 we explain how the problem is solved over C(t) and how this solution is also
valid with no restrictions at all in Q(t), using a result by Grothendieck. In 1892, Hilbert
showed that any Galois group over K(t) is also a Galois group over K whenever K is a
number field. This result is called Hilbert’s irreducibility theorem, and was first proved in
[Hil92]. The only descent remaining to make is from Q(t) to Q(t). The Rigidity Method
achieves precisely this descent, but this descent comes with a price: we have to ask for
some restrictive conditions on the group. On the other hand, these conditions turn out to
be satisfied by many simple groups, which, in a way, are the complete opposite to solvable
groups, so this solution and the one given by Šafarevič somewhat complement each other.

We devote §2 to the introduction of one of the key concepts of this work, the concept of
characters of finite groups. Characters are the map defined as the trace of an homomorphism
of a finite group G into a general linear group over the complex numbers.
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A connection between characters and Galois theory arises from the existence of an
action of (Z/nZ)× ∼= Gal(Q(ζn)/Q) on the set of characters of a finite group G whenever
(n, |G|) = 1. It is precisely in the nature of this action that we find one of the conditions we
will impose on G to apply the Rigidity Method: the rationality of conjugacy classes. This
is explained in §3 along with the second condition: rigidity condition, which gives name to
the method. We finish §3 by proving character-theoretic criterion for rigidity due to John
Thompson.

In §4 we prove the main result of the work: the Basic Rigidity Theorem. We show that
whenever these rationality and rigidity conditions are met in a group with trivial center, we
are able to find a Galois extension L/Q(t) such that

G ∼= Gal(L/Q(t)).

However, it is sometimes the case that the rationality condition is too strict for some groups.
To solve this problem, we explain a generalization of the Basic Rigidity Theorem which gets
rid of the rationality condition on a finite group G and finds an abelian extension K/Q of
finite degree such that G occurs as Galois group of a Galois extension of K(t).

Finally in §5 we see applications of the Basic Rigidity Theorem and some generalizations
to some relevant groups. We apply the result to the symmetric and alternating groups, for
which a Galois realization had already been done in [Hil92]. We also apply our findings to
some of the projective special linear groups of dimension 2 over odd-characteristic fields.
After the applications of the method to families of groups, we work with particular examples,
which are the special linear group SL2(F8), the Tits group 2F4(2)′ and the sporadic groups
M11, M22 and J2.

The main reference of this work is [MM99], which constitutes an encyclopedic book
on the topic. Moreover, a series of lectures given by J. P. Serre and written down by
H. Darmon in [Ser92] were found particularly useful by the student as a complementary
resource to Malle and Matzat’s book.
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§1 The Inverse Galois Problem over Q(t)

We begin by showing that the problem always has positive solution over Q(t). With this
goal in mind we begin by working on C(t) and finding that its solution here is always
positive as well, and the descent to Q(t) will not be restricting at all so the same result will
be valid. We do not go into details during this section and rather explain the results more
superficially.

1.1 Solving the problem over C(t)

The Riemann sphere is a model of the extended complex plane. A point at infinity is added
to C and what we get is in fact the projective line P1(C). From P1(C) we remove a set
of points, S = {P1, . . . , Ps}. For any P0 ∈ P1(C) \ S, let {γ1, . . . , γs} be a collection of
homotopy classes of nonintersecting loops from P0 counterclockwise around Pi.

We have that the fundamental group π1(P1(C) \ S;P0) can be presented as

π1(P1(C) \ S, P0) = 〈γ1, . . . , γs | γ1 · · · γs = 1〉 (1)

(see [ST80], §47).
The function field of P1(C) is isomorphic to the field of rational functions C(t). The set

S ⊂ P1(C) is bijective to the subset of primes S of C[t] with valuation ideal having common
zero at one of the points Pi.

Let π̂1(P1(C) \ S, P0) be the profinite completion of the fundamental group π1(P1(C) \
S, P0). Let NS be the set of all finite Galois extensions of C(t) unramified outside of S.
Then the maximal extension of C(t) unramified outside of S is exactly

C(t)S =
⋃

N∈NS

N

and we have
Gal(C(t)S/C(t)) = lim←−Gal(N/C(t))N∈NS .

Now the key result here is the famous Riemann Existence Theorem. It involves elements
of complex analysis, topology, algebraic geometry and number theory in its statement and
multiple proofs. It is in fact in the intersectional nature of the result where its strength is.

Theorem 1.1 (Profinite Riemann Existence Theorem). There is an isomorphism

Gal(C(t)S/C(t)) ∼= π̂1(P1(C) \ S, P0).

Proof. This result is Theorem 1.3 of Chapter I of [MM99]. Chapter 6 of [Ser92] also proves
this result.

Let G be any finite group, and consider a set of generators g1, . . . , gs−1. For this particu-
lar s we can make the construction of S as before and consider the following homomorphism

ψ : Gal(C(t)S/C(t))→ G

5



mapping

ψ(γi) =

{
gi 1 ≤ i ≤ s− 1

g−1
s−1 · · · g

−1
1 i = s

Observe that we have given a presentation of G in the same way as the presentation we
gave for π1(P1(C)\S, P0). The fixed field N = (C(t)S)kerψ is a Galois extension of C(t) and
we have

Gal(N/C(t)) ∼= Gal(C(t)S/C(t))/ kerψ ∼= G.

This proves the following result.

Theorem 1.2. Every finite group occurs as Galois group over C(t).

In section 1.3 of Chapter I of [MM99] it is shown that in fact all finite groups occur as
Galois groups over R(t), however we omit the explanation since this is not necessary for the
solution over Q(t).

1.2 Descending to Q(t)

As can be seen in [Gro61], page 290, Corollary 2.12, we have that the result explained
above can be extended to any algebraically closed subfield K ⊂ C. Repeating the same
argument as before, if we remove a set of points S = {P1, . . . , Ps} from P1(K) then it turns
out that identically, there is a set S = {P1, . . . ,Ps} of valuation ideals of the function field
of P1(K) ∼= K(t) are in correspondence with the points in S.

Now with this set S we construct the maximal algebraic extension MS/K(t) unramified
outside S as we did earlier in C(t). What Grothendieck’s result shows is that

π̂1(P1(K) \ S, P0) = Gal(MS/K(t)).

Again by §47 of [ST80], given a base point P0 6∈ S, this fundamental group can be presented
as

π(P1(K) \ S, P0) = 〈γ1, . . . , γs | γ1 · · · γs = 1〉.
Hence we have the following result.

Theorem 1.3. With the notation used in the previous paragraphs, we have

Gal(MS/K(t)) ∼= 〈γ1, . . . , γs | γ1 · · · γs = 1〉̂.

And identically as in the previous section, for any finite group G which can be presented
with s− 1 generators we have that the map

φ : Gal(MS/K(t))→ G

defined by

φ(γi) =

{
gi 1 ≤ i ≤ s− 1

g−1
s−1 · · · g

−1
1 i = s

(2)

is a surjective homomorphism and then the fixed field Mkerφ
S has Galois group isomorphic

to G. This proves the following result.
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Theorem 1.4. Every finite group occurs as Galois group over Q(t).

During the rest of the work we denote by MS the maximal extension of Q(t) unramified
outside a certain set S constructed as before. We have constructed the following field
diagram

Q(t)

Mkerφ
S

Q(t)

MS

G

To understand the descent to Q(t) it is key to study some of the other Galois groups
involved in the above diagram. We now display a key result on the structure of the Galois
group Gal(MS/Q(t)). Let

Γs = Gal(MS/Q(t)) = 〈γ1, . . . , γs | γ1 · · · γs = 1〉ˆ.

We have

Theorem 1.5 (Splitting theorem). If the set S is invariant under the absolute Galois group
GQ = Gal(Q/Q), then MS is Galois over Q(t) and in fact

Γ = Gal(MS/Q(t)) ∼= Γs oGQ.

In particular Γs E Γ.

Proof. See [MM99], Theorem 2.4 of Chapter I.

From now on we assume the set of ideals S is invariant under the action of GQ.

Remark 1.1. We consider the Galois group Gal(Q(t)/Q(t)). Since tn ∈ Q(t) for any
n ∈ N we have that the automorphisms in Gal(Q(t)/Q(t)) only move coefficients. Clearly
the coefficients in Q must remain fixed since Q ⊂ Q(t). In fact one has that

GQ ∼= Gal(Q(t)/Q(t)) = GQ(t).

In this work we identify GQ = GQ(t).

Now that we have named the important groups involved, our current situation is the
following.
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Q(t)

Mkerφ
S

Q(t)

MS

Γ

GQ

G

Γs

1.3 The group Γs

Although there is no complete description of the absolute Galois group GQ we can find some

information by exploring its actions on certain sets. For instance, if we let ζn = e
2πi
n then

it is clear that an element σ ∈ GQ sends ζn to another primitive root of unity, ζkn for any
integer k with (n, k) = 1. This defines the homomorphism

c : GQ → Ẑ× = lim←−(Z/nZ)×

σ → c(σ) = (cn(σ))

where σ(ζn) = ζ
cn(σ)
n .

Definition 1.1. The homomorphism c : GQ → Ẑ× described above is called the cyclotomic
character of GQ.

By the Kronecker-Weber theorem (see pages 324-325 of [Neu13]) we have that the max-
imal abelian extension field Qab is generated by the roots of unity. This has as Galois group
the abelianization of GQ, and we have that the cyclotomic character induces an isomorphism

Gab
Q = Gal(Qab/Q) ∼= Ẑ×.

The following is a result due to Abhyankar.

Proposition 1.1. Each generator γi of Γs generates a procyclic inertia group 〈γi〉ˆ at a
valuation ideal in MS above Pi ∈ S.

Proof. This is Theorem 1.4 of Chapter I of [MM99].

Since we are considering S = {P1, . . . ,Ps} to be invariant under GQ then each σ ∈ GQ
permutes the Pi’s in S so we may view σ as a permutation of the indices {1, 2, ..., s}. Let σ̃
denote a lifting of σ to Γ. Then, conjugation by σ̃ ∈ Γ works as displayed in the following
result.

Proposition 1.2. In Γs the element (γi)
σ̃ is conjugate to γ

c(σ)
σ(i) .

Proof. This is theorem 2.6 of Chapter I of [MM99].
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§2 Character theory

For certain algebraic objects, a classical way of having a better understanding of their
behavior is to represent these objects inside better understood objects, with hopes of using
structural information of the latter to understand the former. In the case of groups, we
work with homomorphisms into linear groups, which turn out to have very nice properties
for finite groups. However, a nonlinear object arises from these homomorphisms, which has
even nicer properties and eases computations. These objects are called characters. This
section will explain the properties of characters which will be necessary for our work. The
usefulness (and necessity) of these characters will appear in §3 and §4.

2.1 Group representations and characters

Definition 2.1. Let G be a finite group. A representation of G is an homomorphism

Φ : G→ GLn(C).

Definition 2.2. Let G be a finite group and Φ be a representation of G. We say the
character χ afforded by Φ is the map defined as the trace of the image of Φ, i.e.

χ : G→ C
g 7→ tr(Φ(g)).

Representations and characters can be defined over any arbitrary fieldK and will have all
the following desired properties as long as char(K) does not divide |G|. We limit ourselves
to representations over C.

Lemma 2.1. Let G be a group. The characters of G are constant on the conjugacy classes
of G.

Proof. Recall that for square matrices A and B of the same dimension, one has that
tr(AB) = tr(BA). For a representation Φ and g, h ∈ G one has

Φ(h−1gh) = Φ(h)−1Φ(g)Φ(h)

and hence

tr(Φ(h−1gh)) = tr(Φ(h)−1Φ(g)Φ(h)) = tr(Φ(g)Φ(h)Φ(h)−1) = tr(Φ(g))

and we are done.

Definition 2.3. We say two representations Φ and Ψ are similar if there is a regular
matrix A such that Φ(g) = A−1Ψ(g)A for all g ∈ G.

Lemma 2.2. Similar representations afford equal characters.

Proof. For regular matrices A and B, one has that tr(A−1BA) = tr(BAA−1) = tr(B).
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Observe that for two representations Φ,Ψ of a group G one can define

Θ(g) =

(
Φ(g) 0

0 Ψ(g)

)
and Θ is also a representation of G. Since tr(Θ(g)) = tr(Φ(g)) + tr(Ψ(g)) we have that
characters are closed under addition. The set of characters that cannot be written as sum
of other characters is the set of irreducible characters, and will be denoted by Irr(G).

2.2 Some properties of characters

We now state some properties of characters that we will need.

Proposition 2.1. Let G be a group. Then the number of irreducible characters of G equals
the number of conjugacy classes of G and in fact one has∑

χ∈Irr(G)

χ(1)2 = |G|.

Proof. See [Isa94], Corollary 2.7.

Since there are exactly the same number of irreducible characters as there are conjugacy
classes, we display the values of irreducible characters of a group in character tables, having
conjugacy classes in the columns and the values of irreducible characters in the rows.

Lemma 2.3. Let Φ be a representation of G affording the character χ. Let g ∈ G and let
n be the order of g. Then

1. Φ(g) is similar to a diagonal matrix diag(ε1, . . . , εj).

2. εni = 1 for all 1 ≤ i ≤ j.

3. χ(g) =
∑j

i=1 εi.

4. χ(g−1) = χ(g).

Proof. See [Isa94], Lemma 2.15.

Corollary 2.1. Let ζn denote a primitive nth root of unity. The values of all irreducible
characters of a finite group G are in Z[ζ|G|] ⊂ Q(ζ|G|) ⊂ Qab.

Theorem 2.1 (Second orthogonality relation). Let g, h ∈ G. Then∑
χ∈Irr(G)

χ(g)χ(h) = 0

if g is not conjugate to h in G. Otherwise, the sum equals |CG(g)| (this denotes the size of
the centralizer of g in G).
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Proof. See [Isa94], Theorem 2.18.

As the name of the previous theorem suggests, there is a first orthogonality relation. In
fact using these relations one can define an inner product on the set of functions that are
constant on conjugacy classes of G, and this endows the set with the structure of a finite
dimensional complex Hilbert space, having Irr(G) as orthonormal basis. This inner product
is defined as follows.

Definition 2.4. Let θ1, θ2 be two class functions of G (functions that are constant on the
conjugacy classes of G). The inner product of θ1 and θ2 is

[θ1, θ2] =
1

|G|
∑
g∈G

θ1(g)θ2(g).

Remark 2.1. Observe that the dimension of Φ(g) is exactly χ(1) (in particular χ(1) is
always an integer). Let Iχ(1) denote the identity matrix of dimension χ(1).

Proposition 2.2. Let Φ be an irreducible representation of G affording the character χ.
Let g ∈ G. Then

1

|G|
∑
h∈G

Φ(h−1gh) =
χ(g)

χ(1)
Iχ(1).

Proof. This is a particular case of Corollary 1 of §2.2 of [Ser71] by observing that the matrix
Φ(g) defines a linear map Cχ(1) → Cχ(1).

§3 Rationality and rigidity

3.1 Rationality of conjugacy classes

Definition 3.1. Let G be a finite group and Cl(G) be the set of its conjugacy classes. We
say a class C ∈ Cl(G) is rational if any irreducible character of G takes rational (and
hence integer) values on C i.e. χ(C ) ∈ Z for all χ ∈ Irr(G).

Example 3.1. As displyed by [GAP19], the character table of the symmetric group S5 is

1A 2A 2B 3A 6A 4A 5A

χ1 1 1 1 1 1 1 1

χ2 1 -1 1 1 -1 -1 1

χ3 4 -2 0 1 1 0 -1

χ4 5 -1 1 -1 -1 1 0

χ5 6 0 -2 0 0 0 -1

χ6 5 1 1 -1 1 -1 0

χ7 4 2 0 1 -1 0 -1

It is very easy now to check visually that S5 has all conjugacy classes rational. This is
in fact true for all symmetric groups Sn (see Proposition 5.3).
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Remark 3.1. Let ζm be a primitive mth root of unity. For any element σ ∈ Gal(Q(ζm)/Q)
we have that, if Φ is an irreducible representation of G then σ ◦ Φ is too an irreducible
representation, and if the irreducible character afforded by Φ is χ, then σ ◦ Φ affords σ ◦
χ and this is also an irreducible character of G. This defines an action of (Z/mZ)× ∼=
Gal(Q(ζm)/Q) on the set Irr(G).

Proposition 3.1. Let m be the order of G. A conjugacy class C ∈ Cl(G) is rational if and
only if C n = C whenever (n,m) = 1.

Proof. Let ζm be a primitive mth root of unity. Let n ∈ (Z/mZ)×. Then g 7→ gn is a group
action of (Z/mZ)× on G. Let σn ∈ Gal(Q(ζm)/Q) be the field automorphism defined by
σn(ζm) = ζnm.

Now by Lemma 2.3 we have that if Φ is an irreducible representation affording the
character χ, then for any g ∈ G, Φ(g) is similar to a diagonal matrix. This matrix is of the
form diag(ε1, . . . , εj) where j is the size of Φ(g). Moreover, if k is the order of g in G, then
the ε’s are kth roots of unity. Since Φ is an homomorphism we have Φ(gn) = Φ(g)n, and
Φ(g)n is similar to diag(εn1 , . . . , ε

n
j ). Hence

χ(gn) = εn1 + · · ·+ εnj

and since k divides m = |G| we find that for any conjugacy class C ∈ Cl(G) we have

σn ◦ χ(C ) = χ(C n).

Now suppose that C = C n. Then σn ◦ χ(C ) = χ(C ). Since all automorphisms in
Gal(Q(ζm)/Q) are of the form σn for (n,m) = 1 we have that χ(C ) remains fixed for all
Galois automorphisms, and then χ(C ) ∈ Q.

Now suppose that C is rational. Then we have

χ(C ) = σn ◦ χ(C ) = χ(C n) (3)

for all characters χ ∈ Irr(G). By Theorem 2.1 and equality 3 we have that for g ∈ C∑
χ∈Irr(G)

χ(g)χ(gn) =
∑

χ∈Irr(G)

|χ(g)|2 6= 0

and then g and gn are conjugate, so C = C n.

3.2 The rigidity condition

Let v = (C1, . . . ,Cs) be a s-tuple of conjugacy classes of a finite group G, with s ≥ 3. We
denote

A(v) = A(C1, . . . ,Cs) = {(g1, . . . , gs) ∈ C1 × · · · × Cs | g1 · · · gs = 1}.

We define
A(v) = {(g1, . . . , gs) ∈ A(v) | 〈g1, . . . , gs〉 = G}.

We have that G acts by component-wise conjugation on both A and A.
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Definition 3.2. The family (C1, . . . ,Cs) is called rigid if |A(v)| = |G|. It is strictly rigid
if it is rigid and |A(v)| = |A(v)|.

Proposition 3.2. If Z(G) = {1} then the action by conjugation of G on A(v) is free.

Proof. Suppose that for some h ∈ G and (g1, . . . , gs) ∈ A(v) that hgih
−1 = gi for all

1 ≤ i ≤ s. Since the gi’s generate G then h commutes with a set of generators of G and
then it must commute with all of G, so h ∈ Z(G) = {1} so the action is free.

Corollary 3.1. If A(v) is nonempty and Z(G) = {1} then (C1, . . . ,Cs) is rigid if and only
if G acts on A(v) transitively.

Proof. For any (g1, . . . , gs) ∈ A(v) we have that if h 6= g ∈ G then g and h move (g1, . . . , gs)
to different elements in A(v). Then |A(v)| = |G| if and only if A(v) is the only orbit under
this action.

3.3 Checking rigidity with characters

The goal of this section finding a formula for |A(v)|, where v = (C1, . . . ,Cs). This for-
mula was originally found by Thompson in [Tho84c], and is considered one of his great
contributions to the Rigidity Method. We follow section 7.2 of [Ser92].

Theorem 3.1. Let gi ∈ Ci. We have

|A(C1, . . . ,Cs)| =
|C1| · · · |Cs|
|G|

∑
χ∈Irr(G)

χ(g1) · · ·χ(gs)

χ(1)s−2
.

Proof. Let Φ be an irreducible representation of G, affording the character χ. By Proposi-
tion 2.2 we have

1

|G|
∑
h∈G

Φ(h−1gh) =
χ(g)

χ(1)
Iχ(1).

Multiplying both sides by Φ(x) for any x ∈ G we get

1

|G|
∑
h∈G

Φ(h−1ghx) =
χ(g)

χ(1)
Φ(x)

and taking traces we have

1

|G|
∑
h∈G

χ(h−1ghx) =
χ(g)χ(x)

χ(1)
.

With an inductive argument we get that for any g1, . . . , gk ∈ G,

1

|G|s
∑

h1,...,hs∈G
χ(h−1

1 g1h1 · · ·h−1
s gshsx) =

χ(g1) · · ·χ(gs)χ(x)

χ(1)s
.
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We consider now the class function defined by

θ(g) =
1

|G|
∑

χ∈Irr(G)

χ(1)χ(g).

This is indeed a class function since it is a linear combination of irreducible characters, and
in fact by Proposition 2.1

θ(1) =
1

|G|
∑

χ∈Irr(G)

χ(1)2 = 1

and by Theorem 2.1 and the fact that 1 is only conjugate to itself we have that whenever
g 6= 1,

θ(g) =
1

|G|
∑

χ∈Irr(G)

χ(1)χ(g) =
1

|G|
∑

χ∈Irr(G)

χ(g)χ(1) = 0

So θ is in fact the characteristic function of the element 1 ∈ G. If we denote by A the set
of s-tuples (h1, . . . , hs) such that h−1

1 g1h1 · · ·h−1
s gshsx = 1 we have that∑

h1,...,hs∈G
θ(h−1

1 g1h1 · · ·h−1
s gshsx) = |A|. (4)

On the other hand
1

|G|s
∑

h1,...,hs∈G
θ(h−1

1 g1h1 · · ·h−1
s gshsx) =

=
1

|G|s
∑

h1,...,hs∈G

1

|G|
∑

χ∈Irr(G)

χ(1)χ(h−1
1 g1h1 · · ·h−1

s gshsx) =

=
∑

χ∈Irr(G)

χ(1)

|G|

 1

|G|s
∑

h1,...,hs∈G
χ(h−1

1 g1h1 · · ·h−1
s gshsx)

 =

=
1

|G|
∑

χ∈Irr(G)

χ(g1) · · ·χ(gs)χ(x)

χ(1)s−1

and now applying equality 4 we finally have

|A| = |G|s−1
∑

χ∈Irr(G)

χ(g1) · · ·χ(gs)χ(x)

χ(1)s−1
. (5)

Now given the class vector v = (C1, . . . ,Cs) we have that A(v) denotes the set of s-tuples
(x1, . . . , xs) such that x1 · · ·xs = 1 and xi ∈ Ci, 1 ≤ i ≤ s.

Consider (x1, . . . , xs) ∈ A(v). Let y ∈ CG(xi) for some 1 ≤ i ≤ s. This means yxi = xiy.
Since (x1, . . . , xs) ∈ A(v) we have

x1 · · ·xi · · ·xs = 1
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and then
x1 · · ·xiyy−1 · · ·xs = 1

and since y centralizes x we have

x1 · · · yxiy−1 · · ·xs = 1

and then (1, . . . , 1, y−1, 1, . . . , 1) ∈ A. Since this can be done for any y ∈ CG(xi) and for
any 1 ≤ i ≤ s we have that for any s-tuple in A(v) we have |CG(x1)| · · · |CG(xs)| tuples in
A, and given that two conjugate elements have identical centralizers

|A(v)| = |A|
|CG(g1)| · · · |CG(gs)|

and now applying equality 5 with x = 1 we get

|A(v)| = |G|s−1

|CG(g1)| · · · |CG(gs)|
∑

χ∈Irr(G)

χ(g1) · · ·χ(gs)

χ(1)s−2

and since

|Ci| =
|G|

|CG(gi)|
we finally get

|A(v)| = |C1| · · · |Cs|
|G|

∑
χ∈Irr(G)

χ(g1) · · ·χ(gs)

χ(1)s−2
.

With this last theorem, we may proceed to prove rigidity as the following result shows.

Proposition 3.3. Let G be a group with Z(G) = {1}. A class vector v = (C1, . . . ,Cs) of
G is strictly rigid if A(v) is nonempty and

|G| = |C1| · · · |Cs|
|G|

∑
χ∈Irr(G)

χ(g1) · · ·χ(gs)

χ(1)s−2
.

Proof. Let (g1, . . . , gs) ∈ A(v) 6= ∅. We define the map

f : G→ A(v)

g 7→ (g−1g1g, . . . , g
−1gsg).

Since Z(G) = {1} we have that the action by conjugation of G on A(v) is free, and then
f is injective, showing |G| ≤ A(v). Now by hypothesis we have |G| = |A(v)| and since
A(v) ⊆ A(v) we have

|G| ≤ |A(v)| ≤ |A(v)| ≤ |G|

so all inequalities above must be equalities and v si strictly rigid.
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§4 The main result

In §1 we managed to descend from C(t) to Q(t) with no restrictions on the properties of
the group G. What the following results will achieve is the descent from Q(t) to Q(t), and
then the rationality and rigidity conditions will play a key role.

4.1 The Basic Rigidity Theorem

From now on S = {P1, . . . , Ps} ⊂ P1(Q) will denote a set of points which have associated
valuation ideal set S invariant invariant under GQ = Gal(Q/Q) ∼= Gal(Q(t)/Q(t)). Recall
that Γ = Gal(MS/Q(t)) and

Γs = Gal(MS/Q(t)) ∼= 〈γ1, . . . , γi | γ1 · · · γs = 1〉̂

and we had
Γ = Γs oGQ.

Consider v = (C1, . . . ,Cs) a vector of conjugacy classes of G. Let H ⊂ Hom(Γs, G) be
the subset of surjective maps φ that map γi inside Ci for all 1 ≤ i ≤ s. Recall that we
denoted by A(v) the set of s-tuples (g1 . . . gs) in C1 × · · · × Cs that generated G and with
the relation g1 · · · gs = 1. We have the following result.

Theorem 4.1. The sets H and A(v) are bijective.

Proof. For a s-tuple (g1, . . . , gs) ∈ A(v) consider the homomorphism

ϕ : Γs → G

γi 7→ gi.

Since 〈g1, . . . , gs〉 = G then ϕ is clearly surjective and then ϕ ∈ H.
Conversely let ϕ ∈ H and consider the s-tuple (g1, . . . , gs) = (ϕ(γ1), . . . , ϕ(γs)). By

surjectivity of ϕ we have 〈g1, . . . , gs〉 = G and

g1 · · · gs = ϕ(γ1) · · ·ϕ(γs) = ϕ(γ1 · · · γs) = 1

so (g1, . . . , gs) ∈ A(v).

This is a particular case of the much more general Hurwitz classification (Theorem 4.1
of [MM99]).

We define an action of G on H as follows. Let g ∈ G,ϕ ∈ H, γ ∈ Γs, then

(g · ϕ)(γ) = g−1ϕ(γ)g.

Since the action of G on A(v) is also by conjugation then we have

Corollary 4.1. H and A(v) are isomorphic as G-sets.
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Remark 4.1. Recall that when S was invariant (as a set) under the action of GQ we could
view automorphisms in GQ as a permutation on the indices {1, . . . , s} of elements in S.
Since we have chosen each ideal to be invariant under GQ it turns out that this permutation
is trivial. The set S is a set of valuation ideals of the ring Q[t] so it suffices to choose the
points Pi such that the corresponding ideals Pi are in Q[t].

Remark 4.2. The cyclotomic character appears in the statement of Proposition 1.2 because
of the profinite nature of the group Γs. As explained in §7.3 of [Ser92], when we construct
the surjective homomorphism Γs → G, we can interpret Proposition 1.2 as the existence of
an element n ∈ (Z/|G|Z)× such that each gi ∈ Ci is conjugate to gni for all 1 ≤ i ≤ s.

We now state and prove the main result of this work.

Theorem 4.2 (Basic Rigidity Theorem). Let G be a finite group with Z(G) = {1}. If
there exists a class vector v = (C1, . . . ,Cs) which is rigid and rational then there is a Galois
extension of Q(t) with Galois group isomorphic to G.

Proof. We define a Γ-action on Hom(Γs, G). Let γ ∈ Γ, ψ ∈ Hom(Γs, G) and define

(ψ ? γ)(x) = ψ(γ−1xγ).

This is a well defined action since Γs E Γ by Theorem 1.5. Moreover, we can extend the
G-action defined just before Corollary 4.1 to Hom(Γs, G) by

g · ψ(x) = g−1ψ(x)g

and it turns out that both actions commute. Indeed let γ ∈ Γ, g ∈ G and ψ ∈ Hom(Γs, G),
we have that for all x ∈ Γs

((g · ψ) ? γ)(x) = (g · ψ)(γ−1xγ) = g−1ψ(γ−1xγ)g = (g · (ψ ? γ))(x).

By hypothesis there exists a rigid class vector v, so by Proposition 3.2 and Corollary 3.1
we have that the action of G on A(v) is free and transitive. It follows from Corollary 4.1
that we have that the action of G on H is also free and transitive.

Our next goal is to prove that H is stable under the action of Γ on Hom(Γs, G). Let
γ ∈ Γ and ϕ ∈ H. Then

ϕ ? γ(γi) = ϕ(γ−1γiγ)

and by Proposition 1.2 and Remark 4.1 we have that

ϕ ? γ(γi) = ϕ(γ
c(σ)
i )

for some σ ∈ GQ. By Remark 4.2 we have

ϕ(γ
c(σ)
i ) = gni
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for some n coprime to |G|. By the equivalent definition of rationality given by Proposition
3.1 we have that gni ∈ C n

i = Ci and then

ϕ(γ
c(σ)
i ) ∈ Ci

or equivalently
ϕ ? γ ∈ H

and our claim is proved.
The surjective homomorphisms φ ∈ Hom(Γ, G) define extensions Mkerφ

S /Q(t) with Ga-
lois group

Gal(Mkerφ
S /Q(t)) ∼= Γ/ kerφ ∼= G

having the following situation:

Q(t)

Mkerφ
S Q(t)

MS

Γ

GQG

Γs

so what is left is to prove that at least one of such homomorphisms exist. What we will show
is that any ψ ∈ H ⊂ Hom(Γs, G) can be extended to an homomorphism φ ∈ Hom(Γ, G),
and since homomorphisms in H are surjective, φ will be one of the homomorphisms we wish
to find. Recall that by hypothesis v is rigid and then A(v) 6= ∅ and by Theorem 4.1 we have
H 6= ∅ so this will conclude the proof.

Recall that H is stable under the action of Γ. Let ψ ∈ H. For any γ ∈ Γ we have that
ψ · γ ∈ H. Now since the action of G on H is transitive we have that there exists gγ ∈ G
such that

gγ · ψ = ψ ? γ.

Since the G-action on Γ is also free we have that gγ is unique. Hence we can define

φ : Γ→ G

γ 7→ gγ

and, since the G-action and the Γ-action commute, we have

φ(αβ) · ψ = ψ ? (αβ) = (φ(α) · ψ) ? β = φ(α) · (ψ ? β) = φ(α)φ(β) · ψ,
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so φ is multiplicative and since φ(1) = 1 then φ is an homomorphism. Now let α ∈ Γs. For
all β ∈ Γs we have

(φ(α) · ψ)(β) = (ψ ? α)(β) = ψ(α−1βα) = ψ(α−1)ψ(β)ψ(α) = (ψ(α) · ψ)(β).

In other words φ(α) ∈ G acts on ψ identically as ψ(α) does. Since the G-action on H is
free we have ψ(α) = φ(α) for all α ∈ Γs and φ extends ψ. This concludes the proof.

Remark 4.3. Although the result has been proven for class vectors of arbitrary length, the
vast majority of applications of the Rigidity Theorem involve class vectors of length 3. In
fact, in general for any non cyclic group, a vector of conjugacy classes v must have size at
least 3 and it must not include the conjugacy class of 1 in order to have A(v) 6= ∅.

4.2 Generalizations of the Rigidity Theorem

Even though the Basic Rigidity Theorem allows us to realize some groups as Galois groups
over Q (as we will do in some cases in section 5), there are some generalizations.

The rationality condition is what allows us to guarantee that our group can is a Galois
group with base field Q(t). However, many interesting groups do not verify the rationality
condition for any rigid tuple of conjugacy classes.

Example 4.1. The character table of the alternating group A5 as displayed by [GAP19] is

1A 2A 3A 5A 5B

χ1 1 1 1 1 1

χ2 3 -1 0 1−
√

5
2

1+
√

5
2

χ3 3 -1 0 1+
√

5
2

1−
√

5
2

χ4 4 0 1 -1 -1

χ5 5 1 -1 0 0

We can see that the conjugacy classes denoted by 5A and 5B are not rational. The
number denoting the conjugacy class is the order of any of its representatives, so we have
that no element of order 5 in A5 is in a rational conjugacy class. Since any vector of
conjugacy classes v for which we might have |A(v)| = |An| must include either 5A or 5B we
have that our Basic Rigidity Theorem can not be applied here.

After the previous example we can now ask ourselves whether we can find a generaliza-
tion of the Rigidity Method which allows us to realize groups as Galois groups over number
fields even if we can not find a rational and rigid class vector.

Consider now the same stage as the one from Theorem 4.2 but without the rationality
condition. We go back again to using the cyclotomic character. Recall that all elements of
any conjugacy class have the exact same order. Let C be a conjugacy class of a finite group
G. By Remark 4.2, we have that for any σ ∈ GQ, there is some n coprime to |G| such that

C c(σ) = C n.
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Consider a class vector v = (C1, . . . ,Cs). We define the subgroup ∆v ≤ GQ as

∆v = {σ ∈ GQ | C
c(σ)
i = Ci, 1 ≤ i ≤ s}.

It turns out that ∆v is a normal subgroup of G. Indeed, GQ acts on the set

{vn = (C n
1 , . . . ,C

n
s ) | (n, |G|) = 1},

and this action defines a permutation representation of GQ which has ∆v as its kernel.
Hence we can define the fixed field of a class vector.

Definition 4.1. Let v = (C1, . . . ,Cs) be a class vector of G. The fixed field of v is defined

as Qv = Q∆v
.

It turns out that the quotient GQ/∆v is an abelian group. By the fundamental theorem
of Galois theory we have that

GQ/∆v
∼= Gal(Qv/Q)

and hence Qv is an abelian extension of Q.
Now let χ ∈ Irr(G) and let σ ∈ ∆v. Then By [Hup67] Section V.13.1 (c), we have that

σ(χ(C )) = χ(C c(σ)). Thus, we have that

σ(χ(Ci)) = χ(C
c(σ)
i ) = χ(Ci)

for all 1 ≤ i ≤ s. This proves that

Q({χ(Ci) | χ ∈ Irr(G), 1 ≤ i ≤ s}) ⊆ Qv.

In fact we have

Proposition 4.1. Let v = (C1, . . .Cs) be a class vector of a finite group G. Then

Qv = Q({χ(Ci) | χ ∈ Irr(G), 1 ≤ i ≤ s}).

Proof. For the proof of the result and some details omitted above, see Chapter I, Proposition
4.4 of [MM99].

With this concept of fixed field of a class vector, we can state a more general Rigidity
Theorem.

Theorem 4.3. Let G be a finite group with Z(G) = {1}. If G has a rigid class vector v
then there is a Galois extension of Qv(t) with Galois group isomorphic to G.

Proof. This is Theorem 4.8 of [MM99].
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Observe that if v = (C1, . . . ,Cs) is a rational vector of conjugacy classes, then ∆v = GQ
and then the fixed field Qv is exactly Q. However in the case that the vector is rational we
can take advantage of Proposition 3.1. Otherwise, Theorem 4.3 can be proved similarly to
our Theorem 4.2.

Moreover, since Hilbert’s irreducibilty theorem is also valid for every number field (see
[Hil92]) we have that the previous result is sufficient to realize G as Galois group over Qv.

Remark 4.4. The result mentioned above has an even more general statement. It asks
for Z(G) to have a complement in G, i.e., a subgroup H ≤ G such that H ∩ Z(G) = {1}
and HZ(G) = G. However, by Chapter IV, Corollary 1.7 of [MM99], this can be replaced
without loss of generality by the assumption that Z(G) = {1}.

Indeed, if Z(G) has a complement H in G we have that HZ(G) = G and H ∩Z(G) = 1,
so we have

G ∼= Z(G)×H.

Let h ∈ Z(H), then h commutes with all elements in H and since h ∈ G then h commutes
with all elements in Z(G). Now since G ∼= Z(G)×H we have that h ∈ Z(G) but H∩Z(G) =
{1}, proving that Z(H) = {1}. By the mentioned result, if Z(G) and H are Galois groups
over any number field K then so is G. Now Z(G) is abelian so it is Galois group over any
number field (this is a classic result, but could very well be thought of as a trivial consequence
of [Š54]). Since Z(H) = {1} we can finally see how realization of G as Galois group over
K has been reduced to the realization of a group with trivial center.

§5 Applications of the Rigidity Method

In this section we study notable families of groups and attempt to apply the strongest
possible version of the Rigidity Method.

5.1 Auxiliary results

We display some general results which greatly help us in the application of the method in
some particular cases.

Recall that the commutator subgroup [G,G] of a group G is defined by

[G,G] = 〈a−1b−1ab | a, b ∈ G〉.

This group is also known as the derived subgroup of G, and sometimes denoted by G′. It
is not true in general that all elements of [G,G] are commutators. It is straightforward to
check that [G,G] is a normal subgroup of G. A group is said to be perfect if G = [G,G].

Proposition 5.1. Let G = 〈g1, g2, g3〉 with g1g2g3 = 1 and the orders of all gi are pairwise
coprime. Then G is perfect.
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Proof. Suppose G has proper commutator subgroup. The commutator subgroup G′ is then a
proper normal subgroup of G and G/G′ is a nontrivial abelian group. By the decomposition
theorem of abelian groups we have that

G/G′ ∼= Cq1 × · · · × Cqn

where the qj ’s are prime powers and Cq denotes the cyclic group of order q. Denote by ϕ
the isomorphism above. We have that ϕ = (ϕ1, . . . , ϕn) where

ϕj : G/G′ → Cqj .

Then for example
(G/G′)/ kerϕ1

∼= Cq1 (6)

and since kerϕ1 E G/G′ there exists a normal subgroup G′ ⊆ N E G such that N/G′ ∼=
kerϕ1 and by equality 6 and the third isomorphism theorem we have

G/N ∼= (G/G′)/(N/G′) ∼= Cq1

so we have found a quotient G/N which is cyclic of prime power order.
Suppose q1 = pk for p a prime. We have that 〈g1N, g2N, g3N〉 = G/N and then either

giN = N or p divides the order of giN in G/N . Since these orders must divide the orders
of gi in G and these are pairwise coprime by assumption then p divides at most one of the
orders of giN and the rest are trivial elements. Now the condition that g1g2g3 = 1 forces
all giN to be trivial in G/N , which contradicts the fact that these elements should generate
G/N .

Recall that from basic group theory, a subgroup H of a group G whose has index is the
smallest prime dividing |G| is always normal. In particular any subgroup of index 2 is a
normal subgroup. We have the following result.

Proposition 5.2. . Let G be a finite group with trivial center and H a subgroup of index
2. If there is a rationally rigid triple of conjugacy classes in G then both G and H occur as
Galois groups over Q.

Proof. See Theorem 3.20 of [Vol96].

This result first appears in J. Thompson’s paper [Tho84a], pages 249-250. He thanks
J. P. Serre for the key idea, which uses concepts from [Tho84c]. Thompson mentions the
argument using it for a particular group, and Volklein’s proof seems more straightforward
to the author.
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5.2 The symmetric and alternating groups

The symmetric group Sn is the group of permutations of the set {1, . . . , n}. A famous result
of group theory is that any group is isomorphic to a subgroup of some symmetric group. It
has a notable subgroup, the alternating group An, which is a normal subgroup of index 2
and constitutes the first family of finite simple groups for n ≥ 5.

It is a well known fact on the symmetric group Sn that every element is conjugate to all
the elements of Sn of the same order.

Proposition 5.3. All conjugacy classes of Sn are rational.

Proof. By Proposition 3.1 it suffices to show that for any g ∈ Sn and any k ∈ Z such that
(k, |Sn|) = 1, g is conjugate to gk. By basic group theory one has that since k is coprime to
the order of g, gk has the same order as g and then g and gk are conjugate by the previous
comment. We are done.

Proposition 5.4. Let kA denote the conjugacy class of elements of order k in Sn. Then
v = (2A,nA, (n− 1)A) is a strictly rigid vector of conjugacy classes.

Proof. First of all, if we have a triple (x, y, z) ∈ A(v), we have that xy = z−1 and then
xy must have order n − 1. Observe that for any permutation (ij) ∈ 2A, having that
(ij)y ∈ (n − 1)A for y ∈ nA means that i and j occur consecutively in y, otherwise the
resulting permutation has order n−2. Since we can write permutations beginning with any
element in their expression, the resulting permutations in nA that give elements in (n−1)A
are of the form

(ij...) or (ji...).

Since they have order n, there are exactly (n−2)! different ways of filling the dots, and for any
such way, the resulting permutations are clearly different. Since we have

(
n
2

)
traspositions

in Sn, we have 2(n− 2)!
(
n
2

)
= n! elements in A(v), so |A(v)| = |Sn|.

It is well known that (12) and (12...n) generate Sn. Consider a triple ((ij), y, z) ∈ A(v).
Viewing Sn as the set of permutations fo n elements, it is clear that we can relabel the
elements {1, ..., n} by setting k 7→ y(k) 1 ≤ k ≤ n. This transforms (12) into (ij) and
(12...n) into y. Hence (ij), y, z generates the group of symmetries of these new relabeled n
elements which of course is isomorphic to Sn.

Proposition 5.5. The groups Sn have trivial center for n ≥ 3.

Proof. Suppose 1 6= x ∈ Z(Sn). Then there exist i 6= j ∈ {1, . . . , n} such that x(i) = j.
Now since n ≥ 3 there is k ∈ {1, . . . , n} \ {i, j}. Consider the permutation (ik). Recall that
permutations are injective so x(i) 6= x(k) and then

((ik) ◦ x)(i) = j 6= x(k) = (x ◦ (ik))(i)

so x does not commute with (ik), contradicting the assumption that it is a central element.
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Theorem 5.1. The group Sn occurs as Galois group over Q.

Proof. For the case n = 2 we have S2
∼= C2 so this case is trivial. For the remaining cases,

Propositions 5.3 and 5.4 together with the fact that Sn has trivial center, the hypothesis of
the Basic Rigiditiy Theorem (Theorem 4.2) are verified.

Corollary 5.1. The group An occurs as Galois group over Q.

Proof. The alternating group has index 2 in Sn so the result follows by Proposition 5.2.

It is worth mentioning that these results was proved by Hilbert in [Hil92], long before
the Rigidity Method was developed.

5.3 The projective special linear groups PSL2(Fp)

The special linear groups SL2(Fp) are the groups of 2 × 2 matrices of determinant 1 over
the finite field Fp. Its center is formed by the matrices I2,−I2. The projective special linear
group is defined by

PSL2(Fp) = SL2(Fp)/〈−I2〉.

The groups PSL2(Fp) are all simple for p ≥ 5. The order of the groups PSL2(Fp) is exactly
1
2p(p − 1)(p + 1). A complete study of these groups, their conjugacy classes and their
character tables was the object of my Bachelor thesis [MM18]. A more concise version of
this exploration and computations is done in section 3.9 of [Ree08].

As can be seen in both works, PSL2(Fp) always includes a unique conjugacy class 2A
of order 2. It is denoted by ω in [Ree08] and depends on the residue of p modulo 4. These
groups also include two different conjugacy classes of order p, denoted by pA, pB (which
are denoted by c〈z〉, d〈z〉 in [MM18] and by u, u′ in [Ree08]).

It is easy to check that

X =

(
1 −1
2 −1

)
, Y =

(
1 1
0 1

)
, Z =

(
1 0
−2 1

)
verify

XY Z = 1

in PSL2(Fp). We have that X2 = −I2 so X has order 2 in PSL2(Fp). Moreover Y has order
p in PSL2(Fp) and it belongs to the class we have denoted by pA.

Finally, by basic number theory we have that 2 is not a quadratic residue modulo p
if and only if p ≡ ±3(mod 8). In this case, −2 generates F×p and then by checking the
description of the conjugacy class pB in any of the referenced works one sees that Z ∈ pB.

The subgroup generated by X,Y, Z must have order divisible by both 2 and p. Dick-
son’s famous study of the projective linear groups included the description of its maximal
subgroups, and this is explained in modern terms in [Kin05].

By Corollary 2.2 of [Kin05] we have that the only maximal subgroups of PSL2(Fp) which

can have order dividing 2 and p are groups of order p(p−1)
2 , which stabilize a point in the
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projective plane P1(Fp). These groups are in fact called Frobenius groups and are denoted
by Gp and in fact we have

Gp ∼= Cp o (F×p )2

where Cp denotes a cyclic group of order p (see [Nac14]). Now let (a, b) be coordinates of
a point in P1(Fp). We have that a and b can not be 0 simultaneously and that (a, b) is
identified with the pairs (λa, λb), λ ∈ F×p . Now

X

(
a
b

)
=

(
a− b
2a− b

)
, Y

(
a
b

)
=

(
a+ b
b

)
, Z

(
a
b

)
=

(
a

−2a+ b

)
so if X,Y, Z were to stabilize the point of the projective plane represented by (a, b) we would
have that either

2a− b = 0 = −2a+ b

and then the second coordinate of all images is 0 so b = 0 but since 2a − b = 0 we have
a = 0, or 2a− b 6= 0 and then

X

(
a
b

)
= (−1)Z

(
a
b

)
so looking at the first coordinates we have a − b = −a so 2a = b and then 2a − b = 0,
contradicting our previous assumption. This shows that X,Y, Z can not stabilize the same
point in the projective plane P1(Fp). By the previous comments we have that X,Y, Z can
not all be in any maximal subgroup of PSL2(Fp) and then 〈X,Y, Z〉 = PSL2(Fp). This
shows

(X,Y, Z) ∈ A(2A, pA, pB)

and in particular A(2A, pA, pB) is nonempty.

Proposition 5.6. If p ≡ −3(mod 8), the class vector (2A, pA, pB) is strictly rigid.

Proof. In this case, the class 2A is what we denote in [MM18] by a
p−1
4 〈z〉. The relevant

part of the character table of PSL2(Fp) in this case is

1A pA pB 2A

1G 1 1 1 1

ξ1
1
2(p+ 1) 1

2(1 +
√
p) 1

2(1−√p) −1

ξ2
1
2(p+ 1) 1

2(1−√p) 1
2(1 +

√
p) −1

χi p+ 1 1 1 2 · (−1)i

for 1 ≤ i ≤ p−5
4 . Moreover as seen in [Ree08] we have

|2A| = 1

2
p(p+ 1), |pA| = 1

2
(p− 1)(p+ 1) = |pB|.
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We compute

|A(2A, pA, pB)| = p(p− 1)2(p+ 1)3

4p(p− 1)(p+ 1)

1 +
p− 1

p+ 1
+

2

p+ 1

p−5
4∑
i=1

(−1)i

 =

=
(p− 1)(p+ 1)2

4

(
1 +

p− 1

p+ 1
+
−1− (−1)

p−1
4

p+ 1

)
=

=
(p− 1)(p+ 1)2

4
· 2p

p+ 1
=

1

2
p(p− 1)(p+ 1) =

= |PSL2(Fp)|.

Example 5.1. In Appendix A.2 we can the character table of one of these groups, the
group PSL2(F13). The reader can find that the characters included in our character table
from Proposition 5.6 are in this case denoted by X.1, X.2, X.3, X.8 and X.9 in the GAP
table.

Proposition 5.7. If p ≡ 3(mod 8), the class vector (2A, pA, pB) is strictly rigid.

Proof. In this case, the class 2A is what we deonte by b
p+1
4 in [MM18]. The relevant part

of the character table of PSL2(Fp) in this case is

1A pA pB 2A

1G 1 1 1 1

η1
1
2(p− 1) 1

2(−1 +
√
−p) 1

2(−1−
√
−p) 1

η2
1
2(p− 1) 1

2(−1−
√
−p) 1

2(−1 +
√
−p) 1

χi p− 1 -1 -1 2 · (−1)i+1

for 1 ≤ i ≤ p−3
4 . Moreover as seen in [Ree08] we have

|2A| = 1

2
p(p− 1), |pA| = 1

2
(p− 1)(p+ 1) = |pB|,

and we have that

A(2A, pA, pB) =
p(p− 1)3(p+ 1)2

4p(p− 1)(p+ 1)

1 +
p+ 1

p− 1
− 2

p− 1

p−3
4∑
i=1

(−1)i

 =

=
(p− 1)2(p+ 1)

4

(
1 +

p+ 1

p− 1
− (−1)− (−1)

p+1
4

p− 1

)
=

=
(p− 1)2(p+ 1)

4

(
1 +

p+ 1

p− 1

)
=

(p− 1)2(p+ 1)

4
· 2p

p− 1
=

=
1

2
p(p− 1)(p+ 1) = |PSL2(Fp)|.
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Example 5.2. In Appendix A.1 we can the character table of one of these groups, the
group PSL2(F11). It is easy to see that the characters we displayed in Proposition 5.7 are
denoted by X.1, X.2, X.3, X.4 and X.5 in the GAP table.

Theorem 5.2. If p ≡ 3(mod 8), the groups PSL2(Fp) occur as Galois groups over Q(
√
−p).

If p ≡ −3(mod 8), the groups PSL2(Fp) occur as Galois groups over Q(
√
p).

Proof. We have shown that A(2A, pA, pB) is nonempty. Now Propositions 5.6, 5.7 guarantee
that the hypothesis of Proposition 3.3 are met. Now the result follows by Theorem 4.3.

With stronger refinements of the Rigidity Method, Matzat was able to prove the follow-
ing result in [Mat84].

Theorem 5.3. If p 6≡ ±1(mod 24) then the groups PSL2(Fp) occur as Galois groups over
Q.

As we mentioned some pages ago, it was Thompson who introduced the character theo-
retic criterion we proved in §3. Matzat’s proof used stronger results on the structure of the
groups PSL2(Fp). However it did allow him to show a more general statement than us. The
reader may observe that our result follows from Matzat’s. Before Matzat, Shih proved a
series of results involving linear groups as Galois groups, including Theorem 5.3. His work
is explained in Chapter 5 of [Ser92].

5.4 The group SL2(F8)

The group SL2(F8) is the group of 2 × 2 matrices over the field F8 with determinant 1. It
has exactly 504 elements. The center of any matrix group is exactly its subgroup of scalar
matrices. An element

A =

(
α 0
0 α

)
∈ Z(SL2(F8))

must verify α2 = 1, and in characteristic 2 we know that this means α = 1. This proves the
following result

Proposition 5.8. Z(SL2(F8)) = {1}.

In particular SL2(F8) ∼= PSL(F8), and since these are simple then so is SL2(F8). This
group is denoted by L2(8) in the ATLAS [CCN+85] and can be found in page 6.

The character table of SL2(F8) as displayed by [GAP19] can be seen at Appendix A.3.
We denote by 9A, 9B, 9C the conjugacy classes denoted by 9a, 9b, 9c in the GAP table.
These conjugacy classes have all representatives of order 9 and in fact we have the following
result.

Proposition 5.9. The class vector v = (9A, 9B, 9C) is strictly rigid.
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Proof. As shown in Appendix A.3, all these conjugacy classes have centralizers of size 9.
This means the size of each conjugacy class is 504

9 = 56. Thus we have all the information

we need to compute the size of A(v) using the expression of Proposition 3.1. Let ζ9 = e
2πi
9 .

The elements denoted by A, B, C in the character table (which we will denote by a, b, c)
have values

a = −ζ4
9 − ζ5

9 , b = −ζ2
9 − ζ7

9 , c = ζ2
9 + ζ4

9 + ζ5
9 + ζ7

9 .

In the expression we need to compute, the product abc appears, so we need to find its value.
We have

abc = (−ζ4
9 − ζ5

9 )(−ζ2
9 − ζ7

9 )(ζ2
9 + ζ4

9 + ζ5
9 + ζ7

9 ) =

= 2 + 2ζ9 + 2ζ2
9 + ζ3

9 + 2ζ4
9 + 2ζ5

9 + ζ6
9 + 2ζ7

9 + 2ζ8
9

and since ζ9 is a primitive root of unity, we have that 1 + ζ9 + · · ·+ ζ8
9 = 0 and then we can

simplify the above expression to
abc = −ζ3

9 − ζ6
9 .

However, ζ9 is a root of the cyclotomic polynomial Φ9(x) = x6 + x3 + 1 proving that

abc = 1.

With this value known we may proceed with our computation. We have

|A(v)| = 563

504

(
1 +

1

7
+

1

7
+

1

7
+

1

7
− 1

8
+ 0 + 0 + 0

)
= 504 = |SL2(F8)|.

What is left is to show that any triple (x, y, z) ∈ A(v) generates SL2(F8). Suppose this is
false, then there is a triple x, y, z ∈ SL2(F8) which generates a proper subgroup of SL2(F8).
As displayed in page 6 of the ATLAS [CCN+85], we have that the only maximal subgroups
of SL2(F8) which contain elements of order 9 are isomorphic to the dihedral group of 9
elements D18 (this groups are sometimes written as D2·9). Thus necessarily the subgroup
generated by x, y, z must be isomorphic to a subgroup of D18.

We abuse notation by writing D18 ≤ SL2(F8) and then x, y, z ∈ D18. Since x is of order
9 we have 〈x〉 is a subgroup of index 2 in D18 and by the structure of the dihedral groups
(see for example Chapter I, Section 6 of [Hun74]), all elements of order 9 belong to 〈x〉.
This proves y, z ∈ 〈x〉. In other words, y = xk, z = xm and since their order is 9 we have
m, k 6= 3, 6 and given that y 6= x 6= z we have

y, z ∈ {x2, x−2, x4, x−4}

and since y, z belong to distinct conjugacy classes, clearly y 6= z. In any of the possible
cases we have

xyz = x1+m+k 6= 1,

contradicting the fact that (x, y, z) ∈ A(v). This shows that all 3-tuples in A(v) generate
SL2(F8) and then |A(v)| = A(v) = |SL2(F8)| and v is strictly rigid.
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Theorem 5.4. The group SL2(F8) occurs as Galois group over the cyclotomic field Q(ζ9).

Proof. Propositions 5.8 and 5.9 ensure that SL2(F8) verifies the hypothesis of Theorem 4.3.
The base field Qv for the class vector v = (9A, 9B, 9C) is exactly Q(ζ9), as can be seen from
the character table in Appendix A.3.

5.5 The Tits group 2F4(2)′

The Tits group is a simple group of order

211 · 33 · 52 · 13 = 17971200.

In general, the Ree groups 2F4(22n+1) were constructed by Ree (see [Ree61]). Jacques Tits
proved that 2F4(2) is almost simple and that its derived subgroup, 2F4(2)′ is simple (see
[Tit64]). It is sometimes considered the 27th sporadic group and it is included in pages
74-75 of the ATLAS [CCN+85]. A common presentation of 2F4(2)′ is

2F4(2)′ ∼= 〈a, b | a2 = b3 = (ab)13 = [a, b]5 = [a, bab]4 = ((ab)4ab−1)6 = 1〉.

Its character table can be seen in Appendix A.4. We denote by 2A, 5A, 13A the conjugacy
classes denoted by 2a, 5a, 13a in the table.

Proposition 5.10. The class vector v = (2A, 5A, 13A) is rigid.

Proof. In its character table we have the size of the centralizers of each conjugacy class, so
we find the sizes of the classes

|2A| = 17971200

10240
= 1755, |5A| = 17971200

50
= 359424, |13A| = 17971200

13
= 1382400.

We compute the expression from Proposition 3.1. We have

A(v) =
1755 · 359424 · 1382400

17971200

(
1 +
−10

27
+
−10

27
+

192

1728

)
= 17971200 = |2F4(2)′|.

Now since 2, 5, 13 are pairwise coprime, by Proposition 5.1 we have that any triple
in A(v) generates a perfect subgroup H ≤ 2F4(2)′. The maximal subgroup structure of
2F4(2)′ is also shown in page 74 of the ATLAS. From all of the maximal subgroups shown,
only onehas order dividing 2, 5 and 13, which is PSL2(F25), denoted by L2(25) in ATLAS
notation. We have that either H ≤ PSL2(F25) or H = 2F4(2)′ (we abuse the notation and
view PSL2(F25) as a subgroup of 2F4(2)′).

By Corollary 2.2 of [Kin05] we have that there is no proper subgroup of PSL2(F25) with
order divisible by 2, 5 and 13 that is perfect, leaving H = PSL2(F25) and H = 2F4(2)′ as
the only options left.

The group PSL2(F25) is included in page 16 of the ATLAS, and we can see that it has
only one conjugacy class of order 2. Its centralizer has order 24. Let g ∈ 2A. We have that
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if H = PSL2(F25) then g ∈ PSL2(F25) and then g belongs to the only conjugacy class of
PSL2(F25) of elements of order 2. Then

|CPSL2(F25)(g)| = 24

and we have that
|C2F4(2)′(g)| = 10240.

Now, if an element of PSL2(F25) centralizes g in PSL2(F25) then it must also centralize g
in 2F4(2)′. Hence

CPSL2(F25)(g) ≤ C2F4(2)′(g).

However 24 does not divide 10240, which is a contradiction. This shows that necessarily
H = 2F4(2)′ and then A(v) 6= ∅ so by Proposition 3.3 we are done.

Now from the character table of 2F4(2)′ we see that 2A and 5A are rational and 13A
has two characters with values in Q(

√
13). This proves the following result

Theorem 5.5. The Tits group 2F4(2)′ occurs as Galois group over Q(
√

13).

5.6 Some sporadic groups

The sporadic groups are the 26 simple groups which appeared in the Classification of Finite
Simple Groups which were not alternating groups or groups of Lie type. Six of these are
called the Pariahs, given that they do not occur as subquotients (quotients of subgroups)
of the most notable sporadic group: the Monster group. The remaining 20 sporadic groups
were called the Happy Family by Robert Griess.

The modus operandi for these groups will be as in the previous sections. We compute
the expression given by Proposition 3.1. After checking that it coincides with the order of
the group, we try to prove that no triples in A(v) generate a proper subgroup by looking
at the structure of the maximal subgroups given by the ATLAS [CCN+85].

5.6.1 The Mathieu group M11

The sporadic group M11 is the smallest sporadic group. It has order

7920 = 24 · 32 · 5 · 11.

Mathieu studied the group M11 as a stabilizer of a point of the second Mathieu group, M12.
A straightforward presentation of M11 is

M11
∼= 〈a, b, c, | a11 = b5 = c4 = (ac)3 = 1, b−1ab = a4, c−1bc = b2〉.

It is a subquotient of the Griess-Fischer Monster group.
Its character table can be found in Appendix A.5. We see that M11 has conjugacy classes

of orders 2, 4 and 11, denoted by 2a, 4a, 11a, which we denote by 2A, 4A, 11A. Given
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the relatively small size of the table of M11, the sum of the expression of |A(2A, 4A, 11A)|
given by Theorem 3.1 is easy to compute. Since we have the values of the centralizers, we
conclude

|2A| = 165, |4A| = 990, |11A| = 720

and then

|A(2A, 4A, 11A)| = 165 · 990 · 720

7920

(
1− 2

5
− 3

45

)
= 7920 = |M11|.

This group is included in page 18 of the ATLAS [CCN+85]. Its maximal subgroups are
displayed there, and given their orders, the only one which can include an element of order
11 is isomorphic to PSL2(F11) (which the ATLAS denotes as L2(11)).

However the code Exponent(PSL(2, 11)) in [GAP19] returns 330 as the exponent of
this group, that is, the lowest common multiple of the orders of all its elements. Since 4 does
not divide 330 we conclude that the elements of 4A can not belong in any maximal subgroup
of M11 that is isomorphic to PSL2(F11), thus proving that any triple in A(2A, 4A, 11A)
generates M11.

Furthermore observe that the values of the irreducible characters of M11 for these con-
jugacy classes all live in Q(

√
−11). We have proved the following result.

Theorem 5.6 (Matzat, 1979). The group M11 occurs as Galois group over the field Q(
√
−11).

For Matzat’s proof see [Mat79]. The will to realize it as Galois group over Q led him
to find stronger versions of the Rigidity Theorem which would allow for these realizations
even if the values of the characters were not necessarily rational. It was not until 8 years
later that he would publish a realization over Q (see [MZM87]). The stronger techniques
used here are explained in [Mat87] and later sections of [MM99].

5.6.2 The Mathieu group M22

The automorphism group Aut(G) of any finite group G includes a notable normal subgroup,
the subgroup of inner automorphisms, i.e. automorphisms that can be written as conjuga-
tion by an element of G, denoted by Inn(G). This group is particularly interesting as it is
isomorphic to G/Z(G) (we map any element g to the inner automorphism defined as conju-
gation by g and the kernel turns out to be Z(G)). For simple groups we have G ∼= Inn(G).
The group

Out(G) = Aut(G)/ Inn(G)

is called the group of outer automorphisms of G.
The group M22 is the third Mathieu group. It is a group of order

27 · 32 · 5 · 7 · 11 = 443520

and it was introduced by Mathieu as a permutation group on 22 objects. It is a subquotient
of the Monster group. It is included in pages 39-41 of the ATLAS [CCN+85], where it is
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shown that |Out(M22)| = 2. In other words, Aut(M22)/ Inn(M22) is a cyclic group of order
2, so Aut(M22) is an extension of degree 2 of Inn(M22) ∼= M22. We write Aut(M22) = M22.2
to denote this. We view M22 as a subgroup of M22.2 and of course M22 has index 2 in M22.2
and in particular M22 E M22.2.

It is also seen in the atlas that all conjugacy classes of M22 are conjugacy classes of
M22.2 except the one denoted by 11B. We display the character table of Aut(M22) = M22.2
in Appendix A.6. In here, the first 11 columns correspond to the conjugacy classes of M22.2
which are also conjugacy classes of M22 (see [CCN+85]). We denote by 2B, 4C, 11A the
conjugacy classes denoted by 2b, 4c and 11a in the table and we see that only 11A is also
a conjugacy class of M22.

Proposition 5.11. The class vector (2B, 4C, 11A) of Aut(M22) is rigid.

Proof. The sizes of the centralizers of these conjugacy classes are displayed in Appendix
A.6, so we can compute the sizes of the conjugacy classes

|2B| = 2 · 443520

1344
= 660, |4C| = 2 · 443520

48
= 18480, |11A| = 2 · 443520

22
= 40320.

We compute

A(2B, 4C, 11A) =
660 · 18480 · 40320

2 · 443520

(
1 + 1 +

7

21
+

7

21
+

9

45
+

9

45
+

9

45
+

9

45
+
−28

210

)
=

= 2 · 443520 = |Aut(M22)|.

Now the maximal subgroups of Aut(M22) are listed in the ATLAS as well and we see that
the only one with order divisible by 11 is isomorphic to PSL2(F11).2 ∼= PGL2(F11) (using the
same notation for the extensions of order 2). Again we identify PSL2(F11) and PGL2(F11)
as subgroups of Aut(M22) and it is also specified in the ATLAS that

M22 ∩ PGL2(F11) = PSL2(F11).

Let H be the subgroup generated by a triple in A(2B, 4C, 11A). Since the order of H
divides 11 we have that either H ≤ PGL2(F11) or H = Aut(M22) = M22.2.

Suppose that H ≤ PGL2(F11). Let g ∈ 2B. We have that g ∈ M22.2 but g 6∈ M22.
Hence g ∈ PGL2(F11) but g 6∈ PSL2(F11).

The groups PSL2(F11) and PGL2(F11) are included in page 7 of the ATLAS and we
can see that PGL2(F11) only has one conjugacy class of elements of order 2 which is not in
PSL2(F11), and its centralizer in PGL2(F11) has order 10. Now doing the same argument
of the centralizers as we did in the proof of Proposition 5.10 we have that 10 would have to
divide the order of the centralizer of g in Aut(M22). However, the order of this centralizer
is 1344 (see Appendix A.6). This yields a contradiction, and we have that H = Aut(M22).
By Proposition 3.3 we have that (2B, 4C, 11A) is rigid.

As a corollary of the previous proposition we have the following result.
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Theorem 5.7. The groups Aut(M22) and M22 occur as Galois groups over Q.

Proof. As seen in Appendix A.6 the values of the characters of the conjugacy classes
2B, 4C, 11A are all rational, so by Proposition 5.11 we have that the hypothesis of Theorem
4.2 are met and then Aut(M22) occurs a Galois group over Q.

Now given that we found a rationally rigid triple for Aut(M22) and that the index of
M22 in Aut(M22) is 2, by Proposition 5.2 we have that M22 also occurs as Galois group over
Q.

5.6.3 The Hall-Janko group J2

The group J2 is the second of the four Janko groups, also called the Hall-Janko group and
occasionally denoted HJ. It is a sporadic group of order 604800 = 27 · 33 · 52 · 7 and it
is included in page 42 of the ATLAS [CCN+85]. It is in fact the only one of the Janko
groups which also occurs as a subquotient of the Monster group. Its most straightforward
presentation is

J2
∼= 〈a, b, u, v | u = ab, v = ab−1, a2 = b3 = u15 = (u4v2u3v3)2 = (u3v(u2v2)2)2 = 1〉.

As can be seen in its character table in Appendix A.7 it has four conjugacy classes of
order 5 and one of order 7. We consider the class vector (5A, 5B, 7A) picking the conjugacy
classes denoted by 5a, 5b, 7a in the character table.

The sum for |A(5A, 5B, 7A)| is easy given that a lot of the character values in 7A are
zero. The sizes of the conjugacy classes are

|5A| = |5B| = 604800

300
= 2016, |7A| = 604800

7
= 86400.

Then we have that

|A(5A, 5B, 7A)| = 20162 · 86400

604800

(
1 +

16

36
+
−25

90
+
−25

160
+

9

225

)
= 604800 = |J2|.

Since H contains elements of orders 5 and 7 (for instance g and k) we have that both
5 and 7 must divide the order of H. However we check the maximal subgroups of J2 in
the ATLAS and find that there is no maximal subgroup of order divisible by 5 and 7 at
the same time. This proves H = J2 and then (5A, 5B, 7A) is rigid. Since the values of the
irreducible characters in these conjugacy classes values in Q(ζ5), so we have proved that

Theorem 5.8. The group J2 occurs as Galois group over Q(ζ5).
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§6 Final comments

The Rigidity Method has proved to be a very successful solution to the inverse problem. In
fact, it attacked the problem from the perspective of a type of groups for which the problem
was far from solved: simple groups and groups with trivial center.

When the first results came to light thanks to the work of number theorists such as
Matzat, a wide number of group theorists jumped on the problem as it had somewhat
turned into a group theoretic game. As mentioned during this work, John Thompson
published in 1984 the character-theoretic criterion we explained. But that was not his only
great achievement. As a proof of the power of the method and his criterion, he realized the
Fischer-Griess Monster group, the biggest of the sporadic groups, as Galois group over the
rationals. Even more surprising is the fact that this was before any other sporadic group
had been realized as sporadic group over the rationals.

After the publication of Thompson’s paper [Tho84c], a great amount of simple groups
were proven to be Galois groups over Q. For instance, W. Feit, P. Fong and Thompson him-
self used this results for Lie type groups (see for example [FFS84] and [Tho84b]). However,
possibly one of the greatest achievements of the method was the realization of most sporadic
groups as Galois groups over Q, completed by David Hunt (see [Hun86]). He achieved a
realization for all sporadic groups except the Mathieu group M23.

And even though the method has proved greatly successful, it still has an enormous
failure: the absence of a realization of M23 over the rationals. It has been realized over
Q(
√
−23) but that is as far down as it has been possible (Chapter II, Theorem 9.9 of

[MM99]). No other method has been able to find a Galois extension of Q with Galois group
M23. Right now, the Inverse Problem of Galois Theory is in need of a great idea to be
pushed forward. Perhaps M23 is in fact the group that proves that the Inverse Problem has
a negative solution. But what is so special about M23?

The solutions given by the Rigidity Method have been used in an attempt to realize
central extensions G̃ of simple groups G. Relevant results include the realization of Ãn as
Galois group over Q (see [Vil85]) and M̃12 (see [BLV86]). Some of these techniques are
explained in the final chapters of [Ser92].

Finally, it is worth mentioning that another recent method towards the solution of the
Inverse Galois Problem over Q include the use of points of finite order of elliptic curves an
their automorphism groups, which can be naturally viewed inside Galois groups over the
field of definition of the curve.
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§A Character Tables

The character tables are too big to be included in the middle of the text and are included
in this appendix. The tables in this section are taken from [GAP19].

GAP notation

In general, GAP displays character tables very similarly to the ATLAS [CCN+85]. The ele-
ments marked by X.k denote irreducible characters, and the columns denoted by 1a, 3a, 9a, 9b...
denote conjugacy classes (the number denoting the order of any element of the conjugacy
class). Right above the conjugacy class notation, the size of the centralizer of each conju-
gacy class may be included as can be seen in the ATLAS. The actual output given by GAP
gives much more informaton, some of which was omitted to ease the comprehension of the
tables. For complex character values, GAP writes E(n) for the primitive nth root of unity

e
2πi
n , and by ER(x) the square root of x. The dots in the character table denote zeros.

A.1 Characters of PSL2(F11)

1a 5a 5b 11a 11b 2a 3a 6a

X.1 1 1 1 1 1 1 1 1

X.2 5 . . B /B 1 -1 1

X.3 5 . . /B B 1 -1 1

X.4 10 . . -1 -1 -2 1 1

X.5 10 . . -1 -1 2 1 -1

X.6 11 1 1 . . -1 -1 -1

X.7 12 A *A 1 1 . . .

X.8 12 *A A 1 1 . . .

A = E(5)^2+E(5)^3

= (-1-ER(5))/2 = -1-b5

B = E(11)+E(11)^3+E(11)^4+E(11)^5+E(11)^9

= (-1+ER(-11))/2 = b11
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A.2 Characters of PSL2(F13)

1a 2a 3a 6a 7a 7b 7c 13a 13b

X.1 1 1 1 1 1 1 1 1 1

X.2 7 -1 1 -1 . . . D *D

X.3 7 -1 1 -1 . . . *D D

X.4 12 . . . A C B -1 -1

X.5 12 . . . B A C -1 -1

X.6 12 . . . C B A -1 -1

X.7 13 1 1 1 -1 -1 -1 . .

X.8 14 2 -1 -1 . . . 1 1

X.9 14 -2 -1 1 . . . 1 1

A = -E(7)^3-E(7)^4

B = -E(7)^2-E(7)^5

C = -E(7)-E(7)^6

D = -E(13)-E(13)^3-E(13)^4-E(13)^9-E(13)^10-E(13)^12

= (1-ER(13))/2 = -b13

A.3 Characters of SL2(F8)

504 8 9 9 9 9 7 7 7

1a 2a 3a 9a 9b 9c 7a 7b 7c

X.1 1 1 1 1 1 1 1 1 1

X.2 7 -1 -2 1 1 1 . . .

X.3 7 -1 1 A C B . . .

X.4 7 -1 1 B A C . . .

X.5 7 -1 1 C B A . . .

X.6 8 . -1 -1 -1 -1 1 1 1

X.7 9 1 . . . . D F E

X.8 9 1 . . . . E D F

X.9 9 1 . . . . F E D

A = -E(9)^4-E(9)^5

B = -E(9)^2-E(9)^7

C = E(9)^2+E(9)^4+E(9)^5+E(9)^7

D = E(7)^3+E(7)^4
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E = E(7)^2+E(7)^5

F = E(7)+E(7)^6

A.4 Characters of 2F4(2)′

10 1

17971200 240 536 108 192128 64 50 12 32 32 16 16 10 12 12 13 13 16 16 16 16

1a 2a 2b 3a 4a 4b 4c 5a 6a 8a 8b 8c 8d 10a 12a 12b 13a 13b 16a 16b 16c 16d

X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

X.2 26 -6 2 -1 -2 -2 2 1 -1 . . . . -1 1 1 . . D -D -D D

X.3 26 -6 2 -1 -2 -2 2 1 -1 . . . . -1 1 1 . . -D D D -D

X.4 27 -5 3 . 3 -1 -1 2 . A /A -1 -1 . . . 1 1 E -E E -E

X.5 27 -5 3 . 3 -1 -1 2 . /A A -1 -1 . . . 1 1 -E E -E E

X.6 78 14 -2 -3 2 -2 2 3 1 2 2 . . -1 -1 -1 . . . . . .

X.7 300 -20 -4 3 -4 4 4 . -1 . . . . . -1 -1 1 1 . . . .

X.8 325 5 -11 1 1 5 1 . 1 1 1 -1 -1 . 1 1 . . -1 -1 -1 -1

X.9 351 31 15 . 3 -1 3 1 . -1 -1 1 1 1 . . . . -1 -1 -1 -1

X.10 351 -1 -9 . 3 3 -1 1 . A /A 1 1 -1 . . . . -E E -E E

X.11 351 -1 -9 . 3 3 -1 1 . /A A 1 1 -1 . . . . E -E E -E

X.12 624 -16 16 3 . . . -1 1 . . . . -1 B -B . . . . . .

X.13 624 -16 16 3 . . . -1 1 . . . . -1 -B B . . . . . .

X.14 650 10 10 2 6 2 -2 . -2 2 2 . . . . . . . . . . .

X.15 675 35 3 . 3 3 3 . . -1 -1 -1 -1 . . . -1 -1 1 1 1 1

X.16 702 30 6 . -6 2 -2 2 . . . . . . . . . . F F -F -F

X.17 702 30 6 . -6 2 -2 2 . . . . . . . . . . -F -F F F

X.18 1300 20 -12 4 . -4 . . . . . 2 -2 . . . . . . . . .

X.19 1300 20 -12 4 . -4 . . . . . -2 2 . . . . . . . . .

X.20 1728 -64 . . . . . 3 . . . . . 1 . . -1 -1 . . . .

X.21 2048 . . -4 . . . -2 . . . . . . . . C *C . . . .

X.22 2048 . . -4 . . . -2 . . . . . . . . *C C . . . .

A = -1+2*E(4)

= -1+2*ER(-1) = -1+2i

B = -E(12)^7+E(12)^11

= ER(3) = r3

C = -E(13)-E(13)^3-E(13)^4-E(13)^9-E(13)^10-E(13)^12

= (1-ER(13))/2 = -b13

D = E(8)+E(8)^3

= ER(-2) = i2

E = -E(4)

= -ER(-1) = -i

F = E(8)-E(8)^3

= ER(2) = r2
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A.5 Characters of M11

7920 48 18 8 5 6 8 8 11 11

1a 2a 3a 4a 5a 6a 8a 8b 11a 11b

X.1 1 1 1 1 1 1 1 1 1 1

X.2 10 2 1 2 . -1 . . -1 -1

X.3 10 -2 1 . . 1 A -A -1 -1

X.4 10 -2 1 . . 1 -A A -1 -1

X.5 11 3 2 -1 1 . -1 -1 . .

X.6 16 . -2 . 1 . . . B /B

X.7 16 . -2 . 1 . . . /B B

X.8 44 4 -1 . -1 1 . . . .

X.9 45 -3 . 1 . . -1 -1 1 1

X.10 55 -1 1 -1 . -1 1 1 . .

A = E(8)+E(8)^3

= ER(-2) = i2

B = E(11)+E(11)^3+E(11)^4+E(11)^5+E(11)^9

= (-1+ER(-11))/2 = b11

A.6 Characters of Aut(M22)

Remark A.1. We only include the relevant centralizer sizes in this case.

22 1344 48

1a 2a 3a 4a 4b 5a 6a 7a 7b 8a 11a 2b 2c 4c 4d 6b 8b 10a 12a 14a 14b

X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

X.2 1 1 1 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

X.3 21 5 3 1 1 1 -1 . . -1 -1 7 -1 -1 3 1 1 -1 -1 . .

X.4 21 5 3 1 1 1 -1 . . -1 -1 -7 1 1 -3 -1 -1 1 1 . .

X.5 45 -3 . 1 1 . . A /A -1 1 3 -5 3 -1 . 1 . . A /A

X.6 45 -3 . 1 1 . . A /A -1 1 -3 5 -3 1 . -1 . . -A -/A

X.7 45 -3 . 1 1 . . /A A -1 1 3 -5 3 -1 . 1 . . /A A

X.8 45 -3 . 1 1 . . /A A -1 1 -3 5 -3 1 . -1 . . -/A -A

X.9 55 7 1 3 -1 . 1 -1 -1 1 . 13 5 1 1 1 -1 . 1 -1 -1

X.10 55 7 1 3 -1 . 1 -1 -1 1 . -13 -5 -1 -1 -1 1 . -1 1 1

X.11 99 3 . 3 -1 -1 . 1 1 -1 . 15 -1 3 -1 . -1 -1 . 1 1

X.12 99 3 . 3 -1 -1 . 1 1 -1 . -15 1 -3 1 . 1 1 . -1 -1

X.13 154 10 1 -2 2 -1 1 . . . . 14 6 2 2 -1 . 1 -1 . .

X.14 154 10 1 -2 2 -1 1 . . . . -14 -6 -2 -2 1 . -1 1 . .

X.15 210 2 3 -2 -2 . -1 . . . 1 14 -10 -2 2 -1 . . 1 . .

X.16 210 2 3 -2 -2 . -1 . . . 1 -14 10 2 -2 1 . . -1 . .

X.17 231 7 -3 -1 -1 1 1 . . -1 . 7 -9 -1 -1 1 -1 1 -1 . .
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X.18 231 7 -3 -1 -1 1 1 . . -1 . -7 9 1 1 -1 1 -1 1 . .

X.19 560 -16 2 . . . 2 . . . -1 . . . . . . . . . .

X.20 385 1 -2 1 1 . -2 . . 1 . 21 5 -3 -3 . 1 . . . .

X.21 385 1 -2 1 1 . -2 . . 1 . -21 -5 3 3 . -1 . . . .

A = E(7)+E(7)^2+E(7)^4

= (-1+ER(-7))/2 = b7

A.7 Characters of J2

604800 920 240 80 36 96 300 300 50 50 24 12 7 8 20 20 10 10 12 15 15

1a 2a 2b 3a 3b 4a 5a 5b 5c 5d 6a 6b 7a 8a 10a 10b 10c 10d 12a 15a 15b

X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

X.2 14 -2 2 5 -1 2 A *A E *E 1 -1 . . G *G -G -*G -1 . .

X.3 14 -2 2 5 -1 2 *A A *E E 1 -1 . . *G G -*G -G -1 . .

X.4 21 5 -3 3 . 1 B *B F *F -1 . . -1 G *G . . 1 -*G -G

X.5 21 5 -3 3 . 1 *B B *F F -1 . . -1 *G G . . 1 -G -*G

X.6 36 4 . 9 . 4 -4 -4 1 1 1 . 1 . . . -1 -1 1 -1 -1

X.7 63 15 -1 . 3 3 3 3 -2 -2 . -1 . 1 -1 -1 . . . . .

X.8 70 -10 -2 7 1 2 C *C . . -1 1 . . -G -*G . . -1 G *G

X.9 70 -10 -2 7 1 2 *C C . . -1 1 . . -*G -G . . -1 *G G

X.10 90 10 6 9 . -2 5 5 . . 1 . -1 . 1 1 . . 1 -1 -1

X.11 126 14 6 -9 . 2 1 1 1 1 -1 . . . 1 1 -1 -1 -1 1 1

X.12 160 . 4 16 1 . -5 -5 . . . 1 -1 . -1 -1 . . . 1 1

X.13 175 15 -5 -5 1 -1 . . . . 3 1 . -1 . . . . -1 . .

X.14 189 -3 -3 . . -3 A *A E *E . . . 1 G *G G *G . . .

X.15 189 -3 -3 . . -3 *A A *E E . . . 1 *G G *G G . . .

X.16 224 . -4 8 -1 . D *D -F -*F . -1 . . 1 1 . . . -*G -G

X.17 224 . -4 8 -1 . *D D -*F -F . -1 . . 1 1 . . . -G -*G

X.18 225 -15 5 . 3 -3 . . . . . -1 1 -1 . . . . . . .

X.19 288 . 4 . -3 . 3 3 -2 -2 . 1 1 . -1 -1 . . . . .

X.20 300 -20 . -15 . 4 . . . . 1 . -1 . . . . . 1 . .

X.21 336 16 . -6 . . -4 -4 1 1 -2 . . . . . 1 1 . -1 -1

A = -3*E(5)-3*E(5)^4

= (3-3*ER(5))/2 = -3b5

B = -3*E(5)-4*E(5)^2-4*E(5)^3-3*E(5)^4

= (7+ER(5))/2 = 4+b5

C = -5*E(5)-5*E(5)^4

= (5-5*ER(5))/2 = -5b5

D = 3*E(5)-E(5)^2-E(5)^3+3*E(5)^4

= -1+2*ER(5) = 1+4b5

E = -E(5)-2*E(5)^2-2*E(5)^3-E(5)^4

= (3+ER(5))/2 = 2+b5

F = -2*E(5)-2*E(5)^4
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= 1-ER(5) = 1-r5

G = E(5)+E(5)^4

= (-1+ER(5))/2 = b5

40



References

[Bel79] G. V. Belyi. On Galois extensions of a maximal cyclotomic field. Izvestiya
Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 43(2):267–276, 1979. 3

[BLV86] P. Bayer, P. Llorente, and N. Vila. M̃12 comme groupe de Galois sur Q. C. R.
Acad. Sc. Paris, 303:277–280, 1986. 34

[CCN+85] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson. Atlas
of Finite Groups. Clarendon Press, Oxford, 1985. 27, 28, 29, 30, 31, 32, 33, 35

[FFS84] W. Feit, P. Fong, and B Srinivasan. Rigidity of SLn(q) and certain subgroups
for (n, q − 1) = 1 and n > 2. Proceedings of the Rutgers Group Theory Year,
1983-84, pages 303–308, 1984. 34

[GAP19] The GAP Group. GAP – Groups, Algorithms, and Programming, Version 4.10.1,
2019. 11, 19, 27, 31, 35

[Gro61] A. Grothendieck. Revêtements étales et groupe fondamental. Lecture Notes in
Mathematics, 1961. 6
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