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Matemàtiques i Informàtica
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Abstract

Let Sk = {x ∈ Rk+1; ‖x‖ = 1} be the unit sphere in Rk+1 and consider the normal-
ized surface area measure σ∗. It is well known that a set of n points x1, . . . , xn ∈ Sk
is asymptotically uniformly distributed, i.e., the probability measure 1

n

∑n
j=1 δxj con-

verges in the weak-* topology to σ∗, if and only if the spherical cap discrepancy of
the set P = {x1, . . . , xn}, defined as

Dn(P ) = sup
C(x,t)⊂Sk

∣∣card(P ∩ C(x, t))− nσ∗(C(x, t))
∣∣,

where
C(x, t) = {y ∈ Sk; 〈x, y〉 ≤ t}

is a spherical cap on Sk with x ∈ Sk and −1 ≤ t ≤ 1, converges to zero when n→∞.
It is therefore natural to consider the velocity of this convergence as a measure of
the distribution of the sets P .

In a couple of papers from 1984, J. Beck established the following results, which
give the best bounds known up to now, [5, 6]:

• There exist n-element sets of points P ⊂ Sk such that

Dn(P ) . n
1
2
− 1

2k

√
log n.

• For any n-element set of points P ⊂ Sk

Dn(P ) & n
1
2
− 1

2k .

It is not known if any of these bounds is sharp.
The lower bound uses Fourier analysis and the upper bound some random config-

urations in regular area partitions of the sphere. The main objective of this master
thesis is to study J. Beck’s work and the “almost tight” examples obtained through
determinantal point processes [9].

2010 Mathematics Subject Classification. 11K36, 11K38, 60G55.
Keywords: spherical cap discrepancy, L2-discrepancy, jittered sampling, determinantal point

process, spherical ensemble.
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Chapter 1

Introduction

Consider the following problem: which set of n points on the k-dimensional unit
sphere Sk is better distributed? It seems to be clear that, in S1, it can be the set of
vertices of a regular n-gon, but what happens if k > 1?

One way to study the distribution is to study the spherical cap discrepancy
function, defined as follows: given an n-element set of points P on Sk, its spherical
cap discrepancy is defined as

Dn(P ) = sup
C(x,t)⊂Sk

∣∣Z(P, x, t)− nσ∗(C(x, t))
∣∣,

where

C(x, t) = {y ∈ Sk; 〈x, y〉 ≤ t}

is a spherical cap on Sk, σ∗ the normalized surface area on Sk and Z(P, x, t) denotes
the number of points of P that lie in C(x, t). So, to solve the problem, we must find
the set of points P on Sk with minimum spherical cap discrepancy. Unfortunately,
this is not possible in practice so one alternative is to study the asymptotic behaviour
of this function as we increase the number of points.

In 1984, the Hungarian mathematician Jószef Beck, in a couple of papers, [5, 6],
gave the best bounds known up to now for the spherical cap discrepancy of an
n-element set of points on Sk:

• There exist n-element sets of points P ⊂ Sk such that

Dn(P ) . n
1
2
− 1

2k

√
log n.

• For any n-element set of points P ⊂ Sk

Dn(P ) & n
1
2
− 1

2k .

It is not known if any of these bounds is sharp. These results are presented in the text
as Theorem 3.2.1 and Theorem 2.2.4. The lower bound result is an immediate con-
sequence of another result, due to J. Beck, concerning the so-called L2-discrepancy
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2

of an n-element set of points on Sk, defined by: given an n-element set of points P
on Sk, its L2-discrepancy is defined as

Dn(P )2 =

∫ 1

−1

(
1

σ(Sk)

∫
Sk

(
Z(P, x, t)− nσ∗(C(x, t))

)2
dσ(x)

)
dt.

We will study also an upper bound concerning the L2-discrepancy of an n-element
set of points on Sk, due to K. B. Stolarsky, proved in 1973. The results are the
following:

• There exist n-element sets of points P ⊂ Sk such that

Dn(P )2 . n1− 1
k .

• For any n-element set of points P ⊂ Sk

Dn(P )2 & n1− 1
k .

It is known that the sets of minimal spherical cap discrepancy have L2-discrepancy
of order n1− 1

k . These results are presented in the text as Theorem 3.2.2 and Theorem
2.2.3. To prove these results we will use Stolarky’s Invariance Principle:

• For any n-element set of points P ⊂ Sk∑
1≤i<j≤n
xi,xj∈P

‖xi − xj‖+ Dn(P )2 =
n2

2σ(Sk)

∫
Sk
‖x0 − x‖ dσ(x),

where x0 = (1, 0, . . . , 0) ∈ Rk+1.

From this formula we deduce that the problem of minimising the L2-discrepancy of
an n-element set of points on Sk is equivalent to the problem of maximising the sum
of all Euclidean distances between the points of an n-element set on Sk.

These are the main results of the thesis. The main objective is to study J. Beck’s
work, to study the proofs of these results and the techniques used in them, and to
get upper bounds for the ”almost tight” examples obtained through determinantal
point processes.

Chapter 2 is entirely dedicated to study the lower bound. The proof uses Fourier
analysis techniques. It is based on what is called J. Beck’s amplification method.
Basically, the discrepancy of an n-element set of points on Sk can we written as a con-
volution of two functions, a geometric part and a measure part. Using Plancherel’s
identity, we can separate the geometric part of this convolution from the measure
part, and study them separately. To study all this in detail, we will recall some basic
notions on Fourier analysis and special function to provide the necessary background.



3 Chapter 1. Introduction

Chapter 3 is entirely dedicated to study the upper bound. The proof is based in
a technique called jittered sampling. Jittered sampling is a way of producing well-
separated semi-random sets of points. It applies in many different geometric settings
but we will use it on spheres. Independent and uniformly distributed random sets
behave very bad, in terms of well-distribution, while constructing sets with good
properties is a very difficult task. Jittered sampling consists on taking a partition
of our space into pieces with equal volume and almost equal diameter and then
taking a point uniformly random in each of the pieces, independently of the others.
In our setting, we will use regular area partitions of Sk. This type of partitions
were used by K. B. Stolarsky in 1973, but he only affirmed the existence, without
giving a construction nor a proof. In 1984, J. Beck quote K. B. Stolarsky and since
then many other mathematicians keep quoting them without having the existence
ensured. It was not until 2002 that U. Feige and G. Schechtman gave a complete
construction.

To get upper bounds for the discrepancy one needs to construct examples. J.
Beck used the jittered sampling but it has been recently proved that one can use
other random configurations, [9], given by the so-called determinantal point pro-
cesses. In Chapter 4 we will introduce the concept of determinantal point process.
We will follow [4]. The notion of determinantal point process was first introduced
by Odile Macchi, a French physicist and mathematician, in 1975, as a way to model
fermions in quantum mechanics. This type of point processes also arise surprisingly
often in random matrix theory and combinatorics. We will see, following [2], that
jittered sampling is a special case of determinantal point process. This means that
J. Beck’s approach on the proof of the upper bound can also be understood as the
new approaches that use determinantal point process. These new methodologies
open the problem of finding the optimal determinantal point process to try to ob-
tain better upper bounds that the ones given by J. Beck. Finally, we will study the
spherical ensemble, an example of determinantal point process in S2, and we will
see that the behaviour of its spherical cap discrepancy attains the best upper bound
known up to now studied in the previous chapters.
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Chapter 2

Lower bounds

In this chapter we will present the best lower bounds known up to now for the spher-
ical cap discrepancy of an n-element set of points on Sk and for the L2-discrepancy
of an n-element set of points on Sk. Both results, due to J. Beck, are presented in [7].
The main result is Theorem 2.2.3, which is a result concerning the L2-discrepancy of
an n-element set of points on Sk. For this result we will follow the proof presented in
[6]. Theorem 2.2.4, which is the result concerning the spherical cap discrepancy of an
n-element set of points on Sk, is an immediate consequence of Theorem 2.2.3. The
main techniques used in the proof of Theorem 2.2.3 are results on Fourier analysis
and asymptotic properties of special functions, so before starting we will introduce
some basic notions on Fourier analysis and some background on special functions:
Gamma function, Beta function and Bessel function.

Let Sk = {x ∈ Rk+1; ‖x‖ = 1} be the k-dimensional unit sphere, with ‖ · ‖ the
usual Euclidean distance. Given x ∈ Sk and −1 ≤ t ≤ 1, we denote as C(x, t) the
spherical cap {y ∈ Sk; 〈x, y〉 ≤ t}, where 〈·, ·〉 denotes the standard scalar product,
and given an n-element set of points P on Sk, we denote by Z(P, x, t) the number
of points of P that lie in the spherical cap C(x, t). We denote by σ the surface
area measure on Sk and by σ∗ the normalized surface area measure on Sk. Given a
spherical cap C(x, t) we denote its normalized surface area σ∗(C(x, t)) by σ∗(t).

Definition 2.0.1. Let P be an n-element set of points on Sk. We define the spherical
cap discrepancy of P by

Dn(P ) = sup
C(x,t)⊂Sk

∣∣Z(P, x, t)− nσ∗(t)
∣∣.

We define the L2-discrepancy of P by

Dn(P )2 =

∫ 1

−1

(
1

σ(Sk)

∫
Sk

(
Z(P, x, t)− nσ∗(t)

)2
dσ(x)

)
dt.

Given an n-element set of points P on Sk, the objective is to prove the existence
of functions f(n) and g(n) such that f(n) . Dn(P ) . g(n) (also Dn(P )2), where .
(&) denote smaller (bigger) than something times a constant only depending on k.

5



2.1. Preliminaries 6

2.1 Preliminaries

2.1.1 Basic notions on Fourier analysis

Let us start this section by introducing some basic notions and results on Fourier
analysis that will be very useful in the proof of Theorem 2.2.3. We will present all
these results without proofs.

Definition 2.1.1. Given a function f ∈ L1(RN), the Fourier transform of f is

f̂(t) =
1

(
√

2π)N

∫
RN
e−i〈x,t〉f(x) dx, t ∈ RN .

Definition 2.1.2. Given two functions f, g ∈ L1(RN), the convolution of f and g
is the function

(f ∗ g)(x) =

∫
RN
f(x− y)g(y) dy, x ∈ RN .

Basic properties concerning the Fourier transform and the convolution operators
are the following:

Proposition 2.1.3. Given two functions f, g ∈ L1(RN) we have that

(i) f̂ ∗ g = f̂ ĝ,

(ii) f̂ g = f̂ ∗ ĝ.

An important result on this field is the well-known Plancherel’s identity.

Theorem 2.1.4. (Plancherel’s identity). Given a function f ∈ L1(RN) ∩ L2(RN)
we have that ∫

RN
|f(x)|2dx =

∫
RN
|f̂(t)|2 dt.

The proofs of these results can be found in any introductory book in Fourier
analysis.

2.1.2 The Gamma function and the Beta function

The Gamma function and its relation with the Beta function will appear in the proof
of Theorem 2.2.3, so now we will present these functions and their most important
properties.

Definition 2.1.5. Given z ∈ C with Re(z) > 0 we define the Gamma function by

Γ(z) =

∫ ∞
0

xz−1e−x dx.
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The Gamma function is one of the extensions of the factorial function and this
integral converges absolutely under the hypothesis Re(z) > 0.

It is easy to see that Γ(1) = 1 and using integration by parts one can see that
Γ(z + 1) = zΓ(z), therefore, Γ(n) = (n − 1)! for all non-negative integers. One
interesting value of this function is Γ(1

2
) =
√
π.

Definition 2.1.6. Given x, y ∈ C with Re(x) > 0, Re(y) > 0, we define the Beta
function by

B(x, y) =

∫ 1

0

tx−1(1− t)y−1 dt.

The Beta function, also known as Euler integral of the first type, is a symmetric
function, and one of its most important properties is its relation with the Gamma
function.

Property 2.1.7. (Relation between the Beta function and the Gamma function).
Given x, y ∈ C with Re(x) > 0, Re(y) > 0, we have the identity

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
.

Proof. We have that

Γ(x)Γ(y) =

(∫ ∞
0

e−uux−1 du

)(∫ ∞
0

e−vvy−1 dv

)
=

∫ ∞
0

∫ ∞
0

e−u−vux−1vy−1 dudv.

Now, using the change of variables u = zt, v = z(1 − t), we get that the absolute
value of the Jacobian is z, therefore

Γ(x)Γ(y) =

∫ ∞
0

∫ 1

0

e−z(zt)x−1(z(1− t))y−1|J(z, t)| dtdz

=

(∫ ∞
0

e−zzx+y−1 dz

)(∫ 1

0

tx−1(1− t)y−1 dt

)
= Γ(x+ y)B(x, y),

as we wanted to see.

With these results one can prove the following important property of the Gamma
function, due to Legendre, which is called Legendre’s duplication formula.

Property 2.1.8. (Legendre’s duplication formula). If z ∈ C with Re(z) > 0, then

Γ(2z) =
1√
2π

22z− 1
2 Γ(z)Γ

(
z +

1

2

)
.
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Proof. By Property 2.1.7 applied to x = y = z, we have that

Γ(z)Γ(z)

Γ(2z)
= B(z, z)

=

∫ 1

0

tz−1(1− t)z−1 dt.

Using the change t = 1+u
2

,

Γ(z)Γ(z)

Γ(2z)
=

1

2

∫ 1

−1

(
1 + u

2

)z−1(
1− u

2

)z−1

du

=
1

22z−1

∫ 1

−1

(1− u2)z−1 du.

On the other hand, using the change t = u2 in the Beta function, we obtain

B(x, y) =

∫ 1

0

u2x−2(1− u2)y−12u du.

Taking x = 1
2

and y = z,

B

(
1

2
, z

)
= 2

∫ 1

0

(1− u2)z−1 du.

Hence,

22z−1Γ(z)Γ(z) = Γ(2z)B

(
1

2
, z

)
= Γ(2z)

Γ(z)Γ
(

1
2

)
Γ
(
z + 1

2

) ,
and using that Γ

(
1
2

)
=
√
π we obtain the desired identity.

2.1.3 The Bessel function

We are going to introduce the Bessel function, different expressions of it and an
asymptotic expansion, due to Hankel (1869), that will be crucial in the proof of
Theorem 2.2.3.

Definition 2.1.9. Given a real or complex variable ν and z ∈ C we define the
Bessel function Jν(z) by the series

Jν(z) =

(
z

2

)ν ∞∑
s=0

(−1)s

s!Γ(ν + s+ 1)

(
z

2

)2s

.
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Using the M -test one can see that this series converges uniformly on compact
sets in the planes of ν and z. Next result provides us the expression of the Bessel
function that we are going to use.

Proposition 2.1.10. If Re(ν) > −1
2
, then

Jν(z) =
1

√
πΓ
(
ν + 1

2

)(z
2

)ν ∫ 1

−1

eizt(1− t2)ν−
1
2 dt.

From this expression, using Euler’s formula and some easy computations, we
obtain

Jν(z) =
1

√
πΓ
(
ν + 1

2

)(z
2

)ν ∫ 1

−1

cos(zt)(1− t2)ν−
1
2 dt, Re(ν) > −1

2
. (2.1.1)

Proof. Let us start by manipulating the integral in the formula:∫ 1

−1

eizt(1− t2)ν−
1
2 dt =

∫ 1

−1

∞∑
n=0

(iz)ntn

n!
(1− t2)ν−

1
2 dt

=
∞∑
n=0

(iz)n

n!

∫ 1

−1

tn(1− t2)ν−
1
2 dt

=
∞∑
k=0

(iz)2k

(2k)!

∫ 1

−1

t2k(1− t2)ν−
1
2 dt,

using the well-known Dominated Convergence Theorem and∫ 1

−1

t2k+1(1− t2)ν−
1
2 dt = 0.

Now, using the change u = t2,∫ 1

−1

eizt(1− t2)ν−
1
2 dt =

∞∑
k=0

(−1)kz2k

(2k)!

(
2

∫ 1

0

uk(1− u)ν−
1
2
du

2
√
u

)
=
∞∑
k=0

(−1)kz2k

(2k)!

(∫ 1

0

uk−
1
2 (1− u)ν−

1
2 du

)
=
∞∑
k=0

(−1)kz2k

(2k)!
B

(
k +

1

2
, ν +

1

2

)
,

since Re(ν) > −1
2
, where B is the Beta function. By Property 2.1.7,∫ 1

−1

eizt(1− t2)ν−
1
2 dt =

∞∑
k=0

(−1)kz2k

(2k)!

Γ
(
k + 1

2

)
Γ
(
ν + 1

2

)
Γ(ν + k + 1)

. (2.1.2)
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Now, using Legendre’s duplication formula, Property 2.1.8, we can write

Γ

(
k +

1

2

)
=

√
π Γ(2k)

22k−1 Γ(k)

=

√
π Γ(2k + 1)

22k Γ(k + 1)

=

√
π(2k)!

22kk!
.

The result follows combining last expression and (2.1.2).

The next result is an asymptotic expansion of the Bessel function. We will
present it without proof, since it is quite involve and the methods used are out of
the scope of this thesis. The proof can be found in [8], page 133.

Given two functions f and g, the notation f(x) ∼ g(x) means that the quotient
f(x)
g(x)

goes to 1, as x goes to infinity. In this case we say that g is an asymptotic
expansion of f .

Proposition 2.1.11. (Hankel). If x→∞, then

Jν(x) ∼
(

2

πx

)1/2(
cos
(
x− 1

2
νπ − 1

4
π
) ∞∑
j=0

(−1)j
A2j(ν)

x2j

− sin
(
x− 1

2
νπ − 1

4
π
) ∞∑
j=0

(−1)j
A2j+1(ν)

x2j+1

)
,

where

Aj(ν) =
(4ν2 − 12)(4ν2 − 32) · . . . · (4ν2 − (2j − 1)2)

j!8j
.

2.2 Main results

We are going to study J. Beck’s paper about discrepancies on the sphere, [6]. This
paper starts with some historical background and results on the area and then
focuses on proving our Theorem 2.2.3, which establishes a lower bound for the L2-
discrepancy of an n-element set of points on Sk. First we are going to use this result
to prove Theorem 2.2.4 and then we are going to study in detail the proof of the
main result in this section, Theorem 2.2.3. The techniques used in the proof are
basically Fourier analysis. We are going to follow also [7], J. Beck’s and W. W. L.
Chen’s book to see different approaches at some parts of the proof of Theorem 2.2.3.
We will start by Stolarsky’s invariance principle (1973), Theorem 2.2.1, due to K.
B. Stolarsky, which asserts that the sum of Euclidean distances between points on
Sk plus the its L2-discrepancy is a constant times the square of the number of points.
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Let U(r) denote the surface of the (k + 1)-dimensional Euclidean ball centered
at 0 and of radius r ≥ 0, i.e., U(r) = {x ∈ Rk+1; ‖x‖ = r} and denote by Sk the
case r = 1. Let P be a set of n points z1, . . . , zn ∈ Sk, with n ≥ 2. We define

S(n, k, P ) =
∑

1≤i<j≤n

‖zi − zj‖,

and
S(n, k) = max

card(P )=n
S(n, k, P ),

where card(P ) denotes the cardinality of P . Observe that this maximum is achieved
since S(n, k, ·) is a continuous function defined on a compact domain. We denote
the set of points on Sk that attains the maximum as P ∗.

The next result due to K. B. Stolarsky is the starting point of this thesis.

Theorem 2.2.1. (Stolarsky’s invariance principle).

S(n, k, P )+

∫ 1

−1

(
1

σ(Sk)

∫
Sk

(
Z(P, x, t)−nσ∗(t)

)2
dσ(x)

)
dt =

n2

2σ(Sk)

∫
Sk
‖x0−x‖ dσ(x),

where x0 = (1, 0, . . . , 0) ∈ Rk+1.

Observe that the right hand-side of Theorem 2.2.1 is a constant times n2, i.e., if
we set

c0(k) =
1

2σ(Sk)

∫
Sk
‖x0 − x‖ dσ(x),

the right hand-side of Theorem 2.2.1 is c0(k)n2. These constants can be explicitly
calculated, for example, c0(1) = 2

π
or c0(2) = 3

2
.

Observe also that c0(k)n2 − S(n, k) is strictly positive. This is an immediate
consequence of Theorem 2.2.1, for P ∗, and the fact that we can enlarge a little bit
a given spherical cap preserving the number of points of P ∗ that are in it.

Remark 2.2.2. As a consequence of Stolarky’s invariance principle, the set of points
on Sk that maximizes the sum of the Euclidean distances between them is a set of
minimal L2-discrepancy, and thus, is a set of minimal spherical cap discrepancy.

Let us state the main result of this section, Theorem 2.2.3, and let us use it
to prove the result concerning the spherical cap discrepancy of an n-element set of
points on Sk, Theorem 2.2.4.

Theorem 2.2.3. (J. Beck).

c1(k)n1− 1
k < c0(k)n2 − S(n, k).

Theorem 2.2.4. (J. Beck). Given an n-element set of points P on the unit sphere
Sk, there exists a spherical cap C(x, t) = {y ∈ Sk; 〈x, y〉 ≤ t} ⊂ Sk, with x ∈ Sk and
−1 ≤ t ≤ 1, such that ∣∣Z(P, x, t)− nσ∗(t)

∣∣ > c2(k)n
1
2
− 1

2k .
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Proof. (Theorem 2.2.4). Let P be an n-element set of points on Sk. By Theorem
2.2.3, we have that∫ 1

−1

(
1

σ(Sk)

∫
Sk

(
Z(P, x, t)− nσ∗(t)

)2
dσ(x)

)
dt ≥ c0(k)n2 − S(n, k)

> c1(k)n1− 1
k .

Now, there exist x ∈ Sk and −1 ≤ t ≤ 1 such that(
Z(P, x, t)− nσ∗(t)

)2
> c1(k)n1− 1

k ,

and therefore, ∣∣Z(P, x, t)− nσ∗(t)
∣∣ > c2(k)n

1
2
− 1

2k ,

because if (
Z(P, x, t)− nσ∗(t)

)2 ≤ c1(k)n1− 1
k

for all x ∈ Sk and −1 ≤ t ≤ 1, then we get

c0(k)n2 − S(n, k) ≤ c1(k)n1− 1
k ,

and this contradicts Theorem 2.2.3.

Once we know that, given an n-element set of points P on Sk, there exists a
spherical cap satisfying such an inequality, taking the supremum over all spherical
caps on Sk we get

Dn(P ) & n
1
2
− 1

2k ,

which is the best lower bound, known up to know, for the spherical cap discrepancy
of an n-element set of points P on Sk.

Proof. (Theorem 2.2.3). Let r be such that σ
(
U(r)

)
is equal to n, i.e.,

r =

(
Γ
(
k+1

2

)
(2π)

k+1
2

) 1
k

n
1
k = c3(k)

1
kn

1
k = c4(k)n

1
k .

Let P = {z1, . . . , zn} be an n-element set of points on Sk and let P̃ = {z̃1, . . . , z̃n}
be an n-element set of points on U(r). Let us introduce the following measures. For
any H ⊂ Rk+1 denote by

Z0(H) =
∑
zj∈H

1

and
Zr

0(H) =
∑
z̃j∈H

1

the number of points of P (and P̃ , respectively) that lie in H. We can write also
these measures in terms of the characteristic function of H,

Z0(H) =
n∑
j=1

χH(zj), Zr
0(H) =

n∑
j=1

χH(z̃j).
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For any Lebesgue measurable set H ⊂ Rk+1 denote by σ0 the normalized surface
area of the intersection H ∩ Sk, i.e.,

σ0(H) = nσ∗(H ∩ Sk) = n
σ(H ∩ Sk)
σ(Sk)

,

and for σr0 the surface area of the intersection H ∩ U(r), i.e.,

σr0(H) = σ(H ∩ U(r)).

It is not difficult to see that the conditions of the definition of measure are satisfied:
non-negativity, null empty set and countable additivity.

Let Bq = {x ∈ Rk+1; ‖x‖ ≤ q} be the (k + 1)-dimensional ball of radius q.
Consider the functions

Fq = χBq ∗ (dZ0 − dσ0)

and
F̃q = χBq ∗ (dZr

0 − dσr0)

where ∗ denotes the convolution operator. We can rewrite these functions as

Fq(x) =

∫
Rk+1

χBq(x− y)(dZ0 − dσ0)(y)

=

∫
x+Bq

(dZ0 − dσ0)(y)

= (Z0 − σ0)(x+Bq)

=
∑

zj∈x+Bq

1− nσ∗((x+Bq) ∩ Sk)

and

F̃q =

∫
Rk+1

χBq(x− y)(dZr
0 − dσr0)(y)

=

∫
x+Bq

(dZr
0 − dσr0)(y)

= (Zr
0 − σr0)(x+Bq)

=
∑

z̃j∈x+Bq

1− σ((x+Bq) ∩ U(r)),

since Bq = −Bq, where x + Bq denotes the translated image of the ball Bq by the
vector x.

The next step is a key step in this proof. We are going to see that∫ 1
2

δ(k)

(
1

rk+1

∫
Rk+1

F̃ 2
αr(x) dx

)
dα .

∫ 1

−1

(
1

σ(Sk)

∫
Sk

(
Z(P, x, t)− nσ∗(t)

)2
dσ(x)

)
dt,

(2.2.1)
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where δ(k) > 0 is a small constant depending only on k that we will specify later,
at the end of the proof. In fact, what we are going to see is that∫ 2

1

∫
Rk+1

F 2
s (x) dxds .

∫ 1

−1

(
1

σ(Sk)

∫
Sk

(
Z(P, x, t)− nσ∗(t)

)2
dσ(x)

)
dt, (2.2.2)

and then we are going to pass from the left hand-side of (2.2.1) to the left hand-side
of (2.2.2). Recall that

Fs(x) =
∑

zj∈x+Bs

1− nσ∗((x+Bs) ∩ Sk).

Observe that (x + Bs) ∩ Sk is a spherical cap C(v, t) ⊂ Sk with t = t(‖x‖, s) given
by the expression

t = t(‖x‖, s) = −〈x, y〉
‖x‖

,

where y ∈ Sk such that ‖x− y‖ = s, and

v = − x

‖x‖
,

whenever −1 + s < ‖x‖ < 1 + s (draw the case k = 1 to clarify). We have to see
that t is well-defined. If we take another y′ ∈ Sk with ‖x− y′‖ = s, then

‖x− y‖ = ‖x− y′‖ ⇒ 〈x− y, x− y〉 = 〈x− y′, x− y′〉
⇒ 〈x, y〉 = 〈x, y′〉,

so t does not depend on the choice of y.
We are going to restrict all possible radius to 1 < s < 2 because it is what we

need in (2.2.2). Given x ∈ Rk+1 we can write x = ρw with ρ ≥ 0 and w ∈ Sk, so
ρ = ‖x‖. With this notation, t = t(ρ, s) and y = −w, we get

Fs(ρw) = Z(P,−w, t(ρ, s))− nσ∗(t(ρ, s)).

Now,∫ 2

1

∫
Rk+1

F 2
s (x) dxds =

∫ 2

1

∫ s+1

s−1

ρk
∫
Sk
F 2
s (ρw) dσ(w)dρds

=

∫ 2

1

∫ s+1

s−1

ρk
∫
Sk

(
Z(P,−w, t(ρ, s))− nσ∗(t(ρ, s))

)2
dσ(w)dρds

=

∫ 2

1

∫ s+1

s−1

ρk
∫
Sk

(
Z(P,w, t(ρ, s))− nσ∗(t(ρ, s))

)2
dσ(w)dρds.

(2.2.3)
Let us see the form of t = t(ρ, s). Since

C(v, t) = {y ∈ Sk; 〈v, y〉 ≤ t}
= {y ∈ Sk; ‖v − y‖ ≥ arccos t},
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and by some geometrical arguments, we get(√
1− t2

)2
+ (ρ+ t2)2 = s2,

i.e.,

t = t(ρ, s) =
s2 − 1− ρ2

2ρ
.

Recall that we have the restrictions 1 < s < 2 and s− 1 < ρ < s+ 1. We are going
to see that the function

∂t

∂ρ
(ρ, s) =

1− s2 − ρ2

2ρ2

has no extreme points in the region A defined as

A = {(ρ, s); 1 < s < 2, s− 1 < ρ < s+ 1}.

To simplify the notation, we write f = ∂t
∂ρ

. Since s > 1, we can easily chech that

∂f

∂s
(ρ, s) = − s

ρ2
6= 0,

f(ρ, 1) = −1

2
6= 0, f(ρ, 2) = −3 + ρ2

2ρ2
< 0,

f(s− 1, s) =
s(1− s)
(s− 1)2

< 0, f(s+ 1, s) = − s

s+ 1
< 0.

Hence, we conclude that
∂t

∂ρ
(ρ, s) < 0 in A,

therefore

inf
1<s<2

s−1<ρ<s+1

∣∣∣∣ ∂t∂ρ(ρ, s)

∣∣∣∣ ≥ c > 0,

for some constant c. Going back to (2.2.3),∫ 2

1

∫
Rk+1

F 2
s (x) dxds ≤

∫ 2

1

(s+ 1)k
∫ s+1

s−1

∫
Sk

(
Z(P,w, t(ρ, s)− nσ∗(t(ρ, s)))

)2
dσ(w)dρds

≤ 3k
∫ 2

1

∫ s+1

s−1

∫
Sk

(
Z(P,w, t(ρ, s)− nσ∗(t(ρ, s)))

)2
∂t
∂ρ

(ρ, s)
∂t
∂ρ

(ρ, s)
dσ(w)dρds.

Applying the change of variables t(ρ, s) = T with

t(s+ 1, s) = −1, t(s− 1, s) = 1,
∂t

∂ρ
dρ = dT

and that ∂t
∂ρ

(ρ, s) = Ψ(T, s) < 0 with

inf
1<s<2
−1<T<1

|Ψ(T, s)| ≥ c > 0,
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we obtain∫ 2

1

∫
Rk+1

F 2
s (x) dxds ≤ 3k

∫ 2

1

∫ −1

1

∫
Sk

(
Z(P,w, T )− nσ∗(T )

)2 1

Ψ(T, s)
dσ(w)dTds

≤ 3kσ(Sk)
c

∫ 1

−1

(
1

σ(Sk)

∫
Sk

(
Z(P,w, T )− nσ(T )

)2
dσ(w)

)
dT

so we have seen (2.2.2). Using that for all q ≥ 0,

Fs(x) = F̃sq(qx), (2.2.4)

we can get∫ 1
2

δ(k)

(
1

rk+1

∫
Rk+1

F̃ 2
αr(x) dx

)
dα = δ(k)

∫ 1
2δ(k)

1

(
1

rk+1

∫
Rk+1

F̃ 2
δ(k)rs(x) dx

)
ds

= δ(k)k+2

∫ 1
2δ(k)

1

(∫
Rk+1

F̃δ(k)rs(δ(k)ry) dy

)
ds

= δ(k)k+2

∫ 1
2δ(k)

1

∫
Rk+1

F 2
s (y) dyds,

where in the first equality we have done the change of variables α = δ(k)s and in
the second one we have done the change of variables δ(k)ry = x.

Since δ(k) > 0 is going to be a very small constant depending only k, and since
we have some freedom to adjust it, if δ(k) < 1

4
, then we have that all the spherical

caps that can be formed as an intersection of balls of radius in
(
1, 1

2δ(k)

)
with Sk can

be also formed with balls of radius in (1, 2), so the integrals∫ 2

1

∫
Rk+1

F 2
s (y) dyds and

∫ 1
2δ(k)

1

∫
Rk+1

F 2
s (y) dyds

are essentially the same. So, we have seen (2.2.1).

Recall that now we only have to see that∫ 1
2

δ(k)

(∫
Rk+1

F̃ 2
αr(x) dx

)
dα & n1− 1

k rk+1 = c5(k)n2, (2.2.5)

because of the choice of r. We are going to use the Fourier transform techniques
studied before. From this point on, we are only going to use F̃ , Zr

0 and σr0, so to
simplify the notation we are not going to write the r nor the ∼ in the notation. By
Proposition 2.1.3

F̂q =

∧
χBq ∗ (dZ0 − dσ0) = χ̂Bq(

∧
dZ0 − dσ0), (2.2.6)
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and by Plancherel’s identity, Theorem 2.1.4,∫
Rk+1

F 2
q (x) dx =

∫
Rk+1

|F̂q(t)|2 dt, (2.2.7)

hence, ∫
Rk+1

F 2
q (x) dx =

∫
Rk+1

|χ̂Bq(t)|2|(
∧
dZ0 − dσ0)(t)|2 dt. (2.2.8)

We will denote Φ(t) = (

∧
dZ0 − dσ0)(t) to simplify the notation.

We want to, somehow, split (2.2.8) into two parts, one involving χ̂Bq (geometric
part) and the other Φ (measure part). Let us start proving that for a large enough
constant c6(k) > 0, that we will determine later,∫

‖t‖<c6(k)

|Φ(t)|2 dt & n. (2.2.9)

The geometric background of (2.2.9) is the apparently trivial fact that any spherical
cap on U(r) with area 1

2
has discrepancy ≥ 1

2
. Let

h(x) =
1

(2π)k+1

k+1∏
j=1

(
2

sin(bxj)

xj

)2

=

(
1

(
√

2π)k+1

k+1∏
j=1

(
2

sin(bxj)

xj

))2

,

where the parameter b will be fixed later. By Proposition 2.1.3 we know that ĥ will
be the convolution of the Fourier transform of

1

(
√

2π)k+1

k+1∏
j=1

(
2

sin(bxj)

xj

)
with itself. Observe that

∧
χ[−b,b]k+1(t) =

1

(
√

2π)k+1

∫
Rk+1

e−i〈x,t〉χ[−b,b]k+1(x) dx

=
1

(
√

2π)k+1

k+1∏
j=1

(∫ b

−b
e−ixjtj dxj

)

=
1

(
√

2π)k+1

k+1∏
j=1

(
2

sin(btj)

tj

)
,
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using Euler’s formula and that cos(x) is an even function. Hence, the Fourier trans-

form ĥ of h is the convolution of the characteristic function of the cube [−b, b]k+1

with itself, i.e.,

ĥ(t) = (χ[−b,b]k+1 ∗ χ[−b,b]k+1)(t)

=
k+1∏
j=1

(∫
R
χ[−b+tj ,b+tj ]∩[−b,b](xj) dxj

)

=
k+1∏
j=1

(
2b− |tj|

)+
,

where (y)+ = y if y > 0 and 0 otherwise. Let H(x) be the convolution defined by

H(x) = (h ∗ (dZ0 − dσ0))(x).

By (2.1.3),

Ĥ(t) = ĥ(t)(

∧
dZ0 − dσ0)(t)

= ĥ(t)Φ(t),

and by Plancherel’s identity, Theorem 2.1.4, and the expression above∫
Rk+1

H2(x) dx =

∫
Rk+1

|Ĥ(t)|2 dt

=

∫
Rk+1

|ĥ(t)|2|Φ(t)|2 dt

=

∫
Rk+1

( k+1∏
j=1

(
2b− |tj|

)+
)2

|Φ(t)|2 dt,

and hence ∫
Rk+1

H2(x) dx ≤ (2b)2(k+1)

∫
‖t‖<2b

√
k+1

|Φ(t)|2 dt, (2.2.10)

because the product inside the integral is different from zero if and only if |tj| < 2b

for all j, hence ‖t‖ =
√
t21 + . . . t2k+1 < 2b

√
k + 1, and

(
2b− |tj|

)+ ≤ 2b for all j.

On the other hand, since 4 sin2(x) > x2 whenever x ∈ [−1, 1], we have that

h(x) =
1

(2π)k+1

k+1∏
j=1

(
2

sin(bxj)

xj

)2

>
1

(2π)k+1
b2(k+1)

whenever x ∈
[
− 1

b
, 1
b

]k+1
.
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Given a point x ∈
[
− 1

b
, 1
b

]k+1
and y ∈ Sk we have that

h(x− y) =
1

(2π)k+1

k+1∏
j=1

(
2

sin(b(xj − yj))
xj − yj

)2

.

Observe that the difference in the denominator may cancel. In this case there is no
problem because the sine in the numerator fixes it. However, since we have to take
bounds, we need to control de differences xj − yj for all j, and there are a lot of
differences cases. We are going to cover the case where only one of the differences
xj − yj is very small (can be 0). Observe,∫

U(r)

h(x− y) dσ(y) =

∫
U(r)

1

(2π)k+1

k+1∏
j=1

(
2

sin(b(xj − yj))
xj − yj

)2

dσ(y)

≤
∫
U(r)

4k+1b2(k+1)

(2π)k+1

k+1∏
j=1

(
sin(b|xj − yj|)
b|xj − yj|

)2

dσ(y)

≤
(

2

π

)k+1

b2(k+1)

∫
U(r)

k∏
j=1

(
1

b
∣∣1
b
− r√

k+1

∣∣
)2

dσ(y)

=

(
2

π

)k+1

b2(k+1)

∫
U(r)

k∏
j=1

(
1(

1− br√
k+1

)2

)
dσ(y).

The small difference is the one that we remove using the sine in the numerator,
bounding the fraction by 1. Then, we have k terms remaining and we use that the

nearest point on U(r) to a point in
[
− 1

b
, 1
b

]k+1
satisfies

|xj − yj| =
∣∣∣∣1b − r√

k + 1

∣∣∣∣,
for all j = 1, . . . , k + 1. For b > 2

r
we have that

(1− br)2 ≥ 1− 2br + b2r2 ≥ b2r2 − br > 0.

We can make this assumption because r goes to infinity as n goes to infinity so,
since b is going to be a number like 60, this condition is satisfied. Therefore,∫

U(r)

h(x− y) dσ(y) ≤
(

2

π

)k+1

b2(k+1)

∫
U(r)

k∏
j=1

(
1(

1− br√
k+1

)2

)
dσ(y)

≤
(

2

π

)k+1

b2(k+1)

∫
U(r)

k∏
j=1

(
1

br(br − 1)

)
dσ(y)

=

(
2

π

)k+1

b2(k+1)

(
1

br

)k ∫
U(r)

dσ(y)

≤ 2k+1

π
b2(k+1)

(
1

b

)k
= c7(k)bk+2.
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because σ(U(r)) = 1 and r ≥ 1
π
. In all the other cases, taking into account the

number of small differences, we get similar bounds. Taking b large enough satisfying
all the required properties (b = 60, for example), we get

h(x− zj)−
∫
U(r)

h(x− y) dσ(y) ≥ 1

(2π)k+1
b2(k+1) − c7(k)bk+1 ≥ 1, (2.2.11)

whenever

zj ∈ x+

[
− 1

60
,

1

60

]k+1

,

in all the cases. Now, since clearly h(x) is a positive function and using (2.2.11),

|H(x)| = |(h ∗ (dP0 − dσ0))(x)|

=

∣∣∣∣ ∫
Rk+1

h(x− y)(dP0 − dσ0)(y)

∣∣∣∣
=

∣∣∣∣ ∫
Rk+1

h(x− y) dP0(y)−
∫
Rk+1

h(x− y) dσ0(y)

∣∣∣∣
=

∣∣∣∣ ∑
zj∈P

h(x− zj)−
∫
U(r)

h(x− y) dσ(y)

∣∣∣∣
≥

∑
zj∈x+

[
− 1

60
, 1
60

]k+1

h(x− zj)−
∫
U(r)

h(x− y) dσ(y)

≥
∑

zj∈x+
[
− 1

60
, 1
60

]k+1

1 =
n∑
j=1

χ
x+
[
− 1

60
, 1
60

]k+1(zj) = v(x),

where v(x) denotes the number of points zj ∈ P that lie in the translated cube

x+
[
− 1

60
, 1

60

]k+1
. Finally, since H2(x) ≥ v2(x) ≥ v(x), we have∫
Rk+1

H2(x) dx ≥
∫
Rk+1

v(x) dx &
∑
zj∈P

1 = c8(k)n, (2.2.12)

because ∫
Rk+1

v(x) dx =

∫
Rk+1

n∑
j=1

χ
x+
[
− 1

60
, 1
60

]k+1(zj) dx

=
n∑
j=1

∫[
− 1

60
, 1
60

]k+1
dy

= n

(
2

60

)k+1

.
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Taking b = 60, and c6(k) = 120
√
k + 1, and using (2.2.10) and (2.2.12), (2.2.9)

follows: ∫
‖t‖<120

√
k+1

|Φ̂(t)|2 dt ≥ 1

1202(k+1)

∫
Rk+1

H2(x) dx

≥ 1

1202(k+1)

(
2

60

)k+1

n

= c9(k)n,

as we wanted to see.
Up to this point we have studied one of the two integrands in (2.2.8). Now, we

will also study the other, χ̂Bq(t), in the ball ‖t‖ < c6(k) = 120
√
k + 1. Let τ = ‖t‖

and g(τ, q) = χ̂Bq(t) to make the notation lighter. So,

g(τ, q) =
1

(
√

2π)k+1

∫
Rk+1

e−i〈x,t〉χBq(x) dx

=
1

(
√

2π)k+1

∫
Bq

e−i〈x,t〉 dx.

Doing the linear change of variables given by the orthogonal matrix taking t to
(0, . . . , 0, τ) (it exists because the two vectors have same modulus), and using that

for x ∈ Bq,
√
x2

1 + . . .+ x2
k ≤

√
q2 − x2

k+1, we have

g(τ, q) =
1

(
√

2π)k+1

∫
Bq

e−iτxk+1 dx1 . . . dxkdxk+1

=
1

(
√

2π)k+1

∫ q

−q
e−iτy

(∫
Bk√

q2−y2

dx1 . . . dxk

)
dy

=
1

(
√

2π)k+1

√
π
k

Γ
(
k
2

+ 1
) ∫ q

−q
e−iτy(q2 − y2)

k
2 dy

= c10(k)

∫ q

−q
e−iτy(q2 − y2)

k
2 dy.

Applying the change of variables y = qu and making some easy computations we
get

g(τ, q) = c10(k)qk+1

∫ 1

−1

(
cos(τqu)

)
(1− u2)

k
2 du. (2.2.13)

By (2.1.1), and continuing in (2.2.13), since k+1
2
> −1

2
because k ≥ 1, we have that

g(τ, q) = c10(k)qk+1

√
π Γ
(
k
2

+ 1
)

(qτ)
k+1
2

2
k+1
2 J 1

2
(k+1)(qτ)

= c11(k)

(
q

τ

) k+1
2

J 1
2

(k+1)(qτ). (2.2.14)
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By Hankel’s expansion, Proposition 2.1.11, we see that if x is big enough J 1
2

(k+1)(x)

has essentially the form of x−1/2 cos
(
x− 1

4
kπ− 1

2
π
)
. Also, if x is small enough, then∫ 1

−1

cos(xu)(1− u2)
k
2 du

almost equals ∫ 1

−1

(1− u2)
k
2 du =

∫ 1

0

t−
1
2 (1− t)

k
2 dt

= B

(
1

2
,
k

2
+ 1

)
=

√
π Γ
(
k
2

+ 1
)

Γ
(
k+3

2

)
=

2
√
π Γ
(
k
2

+ 1
)

(k + 1)Γ
(
k+1

2

) ,
using Property 2.1.7. Therefore, if x is small enough, then by (2.1.1), J 1

2
(k+1)(x)

almost equals
x

1
2

(k+1)

2
1
2

(k−1)(k + 1)Γ
(
k+1

2

) = c12(k)x
1
2

(k+1).

Now, using (2.2.14), given ε > 0, there exists c13(k, ε) > 0 such that∣∣∣∣∣
1

c11(k)

(
τ
q

) 1
2

(k+1)
g(τ, q)

1

(qτ)
1
2

cos
(
qτ − 1

4
kπ − 1

2
π
) − 1

∣∣∣∣∣ < ε, whenever qτ > c13(k, ε),

therefore,∣∣∣g(τ, q)− c14(k)
q
k
2

τ
k
2

+1
cos
(
qτ − 1

4
kπ − 1

2
π
)∣∣∣ < εc14(k)

q
k
2

τ
k
2

+1
, (2.2.15)

whenever qτ > c13(k, ε). Also, there exists c15(k, ε) > 0 such that∣∣∣∣∣
1

c11(k)

(
τ
q

) 1
2

(k+1)
g(τ, q)

c12(k)(qτ)
1
2

(k+1)
− 1

∣∣∣∣∣ < ε whenever 0 < qτ < c15(k, ε),

hence, ∣∣∣g(τ, q)− c16(k)qk+1
∣∣∣ < εc16(k)qk+1, (2.2.16)

whenever 0 < qτ < c15(k, ε). We are going to use this bounds to see that the
quadratic average ∫ 1

2

δ(k)

g2(τ, αr) dα
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is uniformly large in the following sense: if δ(k) > 0 is small enough, depending only
on k, then ∫ 1

2

δ(k)

g2(τ, αr) dα & min

{
rk

τ k+2
, r2k+2

}
& rk = c17(k)n, (2.2.17)

for all 0 ≤ τ = |t| < c6(k).
By (2.2.15), for qτ > c13(k, ε), we have that

g(τ, q) >
(

cos
(
qτ − 1

4
kπ − 1

2
π
)
− ε
)
c14(k)

q
k
2

τ
k
2

+1
,

therefore, for qτ > c13(k, ε),

g2(τ, q) > c18(k)
qk

τ k+2
. (2.2.18)

By (2.2.16), for 0 < qτ < c15(k, ε), we have that

g(τ, q) > (1− ε)c16(k)qk+1,

therefore, for 0 < qτ < c15(k, ε),

g2(τ, q) > c19(k)q2k+2. (2.2.19)

In the integral (2.2.17) we have g2(τ, αr), where α ∈ (δ(k), 1
2
), r = c4(k)n

1
k and

0 ≤ τ < c6(k), thus

αrτ ∈
(
δ(k)rτ,

rτ

2

)
when τ 6= 0 or αrτ = 0 when τ = 0. Now we have different cases:

1. αrτ = 0.

2.
(
δ(k)rτ, rτ

2

)
⊂ (0, c15(k, ε)).

3.
(
δ(k)rτ, rτ

2

)
⊂ (c13(k, ε),∞).

4.
(
δ(k)rτ, rτ

2

)
⊂ (c15(k, ε), c13(k, ε)).

Let us start by case 1. We are going to use that

lim
x→0+

Jν(x)

xν
= c(ν),

where c(ν) > 0 is a constant depending only on ν. By (2.2.14),

lim
τ→0

g(τ, q) = lim
τ→0

c11(k)

(
q

τ

) k+1
2

J 1
2

(k+1)(qτ)

= c11(k) lim
τ→0

(
q

τ

) k+1
2 J 1

2
(k+1)(qτ)

(qτ)
k+1
2

(qτ)
k+1
2

= c11(k)qk+1 lim
τ→0

J 1
2

(k+1)(qτ)

(qτ)
k+1
2

= c20(k)qk+1.
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So, ∫ 1
2

δ(k)

g2(0, αr) dα =

∫ 1
2

δ(k)

c20(k)2(αr)2k+2 dα

= c20(k)2r2k+2

((1
2

)2k+3 − (δ(k))2k+3

2k + 3

)
= c21(k)r2k+2.

Cases 2 and 3 are direct applications of (2.2.19) and (2.2.18). Let us see them.∫ 1
2

δ(k)

g2(τ, αr) dα >

∫ 1
2

δ(k)

c19(k)(αr)2k+2 dα

= c19(k)r2k+2

((1
2

)2k+3 − (δ(k))2k+3

2k + 3

)
= c22(k)r2k+2,

and ∫ 1
2

δ(k)

g2(τ, αr) dα >

∫ 1
2

δ(k)

c18(k)
(αr)k

τ k+2
dα

= c18(k)
rk

τ k+2

((1
2

)k+1 − (δ(k))k+1

k + 1

)
= c23(k)

rk

τ k+2
,

Finally, let us study case 4. We have that

c15(k, ε) < αrτ < c13(k, ε),

thus
c15(k, ε)

αc4(k)
< n

1
k τ <

c13(k, ε)

αc4(k)
,

and from this we conclude that n
1
k τ behaves like a constant depending on k. Hence,

τ behaves like c24(k)n−
1
k . Therefore,∫ 1

2

δ(k)

g2
(
c24(k)n−

1
k , c4(k)n

1
kα
)
dα =

∫ 1
2

δ(k)

(
c4(k)n

1
kα

c24(k)n−
1
k

)k+1

J2
1
2

(k+1)
(c4(k)c24(k)α) dα

≥ n
2k+2
k J2

1
2

(k+1)
(c4(k)c24(k)δ(k))

(
c4(k)

c24(k)

)k+1((1
2

)k+2 − (δ(k))k+2

k + 2

)
= c25(k)n

2k+2
k = c26(k)r2k+2,

and we have covered all cases, so we get the first inequality in (2.2.17). To second
inequality in (2.2.17) follows immediately using that τ < c6(k) and r ≥ c4(k).
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If the interval
(
δ(k)rτ, rτ

2

)
is not entirely contained in one of the intervals (0, c15(k, ε)),

(c15(k, ε), c13(k, ε)) or (c13(k, ε,∞), we integrate in the contained region to obtain
the desired inequality as in the other cases.

We are in position to finish the proof. Recall that by (2.2.1), it is enough to see
(2.2.5). By Plancherel’s identity (Theorem 2.1.4), (2.2.8) and Tonelli’s Theorem,∫ 1

2

δ(k)

∫
Rk+1

F 2
αr(x) dxdα =

∫ 1
2

δ(k)

∫
Rk+1

|F̂ 2
αr(t)|2 dtdα

=

∫ 1
2

δ(k)

∫
Rk+1

|χ̂Bαr(t)|2|Φ(t)|2 dtdα

=

∫
Rk+1

|Φ(t)|2
(∫ 1

2

δ(k)

|χ̂Bαr(t)|2 dα
)
dt.

Since g(τ, αr) = χ̂Bαr(t), with τ = ‖t‖, and using (2.2.9) and (2.2.17),∫ 1
2

δ(k)

∫
Rk+1

F 2
αr(x) dxdα =

∫
Rk+1

|Φ(t)|2
(∫ 1

2

δ(k)

g2(τ, αr) dα

)
dt

≥
∫
τ<c6(k)

|Φ(t)|2
(∫ 1

2

δ(k)

g2(τ, αr) dα

)
dt

≥
(∫

τ<c6(k)

|Φ(t)|2 dt
)

min
0≤τ<c6(k)

∫ 1
2

δ(k)

g2(τ, αr) dα & n2,

and (2.2.5) follows, so we have proved the desired lower bound.

As we have seen, this proof is based on the fact that we can write the spherical cap
discrepancy of an n-element set of points P on Sk as a convolution of two functions.
This method is called Beck’s amplification method. Thanks to this, using Fourier
analysis seems a good idea since, by Plancherel’s identity, Theorem 2.1.4, we can
separate the geometric component and the measure component of this convolution,
as we have done in (2.2.6), and we can study them separately. In [1], there is an
extensive overview of this method in full generality.



2.2. Main results 26



Chapter 3

Upper bounds

In this chapter we will present the best upper bound known up to now for the
spherical cap discrepancy of an n-element set of points on Sk and a sharp upper
bound for the L2-discrepancy of an n-element set of points on Sk. Both results,
the first due to J. Beck and the second due to K. B. Stolarsky, are presented in
[7]. Unlike what happens with the lower bounds, the result concerning the spherical
cap discrepancy of an n-element set of points on Sk, Theorem 3.2.1 (1984), is not a
consequence of a result concerning the L2-discrepancy of an n-element set of points
on Sk. Theorem 3.2.2, due to K. B. Stolarsky, was proved in 1973, some years
earlier than the work of J. Beck, but the strategies and techniques used in their
proofs are almost the same. We will study the proof of Theorem 3.2.1 presented in
[7] complementing it with a more general proof presented in [5].

The techniques we use are probabilistic. The first one, called jittered sampling,
will be presented in Subsection 3.1.3 and, roughly speaking, it allows us to take an
n-element set of points on Sk in a semi-random way. Independent and uniformly
distributed random sets behave really bad, in terms of well-distribution, while trying
to construct sets of points is extremely hard. On the other hand, the sets taken
using this technique have reasonable good properties related with the spherical cap
discrepancy. Jittered sampling is based on regular area partitions, presented in
Subsection 3.1.1. Basically, these are partitions of Sk into pieces that have equal
surface area and their diameter is uniformly controlled. This technique can also be
applied in cubes, balls, rectangles, etc. The second one is the combination of the
Bernstein-Chernoff’s inequality, Lemma 3.1.7, and an approximation of the family
of all spherical caps on Sk by a finite subfamily with certain controlled cardinality.

3.1 Preliminaries

3.1.1 Regular area partitions

We start the section studying regular area partitions of Sk. We are going to see the
main definitions and a result concerning the existence of such partitions.

27
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Definition 3.1.1. We say that {Si}ni=1 ⊂ Sk is a partition of Sk if

Sk =
n⋃
i=1

Si,

with σ(Si ∩ Sj) = 0 for all i 6= j.

Definition 3.1.2. Let {Si}ni=1 ⊂ Sk be a partition of Sk. We call it an equal-area
partition of Sk if

σ(Si) =
σ(Sk)
n

,

for all i = 1, . . . , n.

Definition 3.1.3. Let {Si}ni=1 ⊂ Sk be an equal-area partition of Sk. We call it a
regular area partition, with constant c(k) > 0, if

diam(Si) ≤ c(k)n−
1
k

for all i = 1, . . . , n,

It is clear that in the k-dimensional unit cube there exist regular area partitions,
for example, take disjoint squares of side-length n−

1
k , but it is not so clear in the

case of Sk.

Remark 3.1.4. The isodiametric inequality tells us that spherical caps have the
biggest surface area among all the sets on Sk of a given diameter. Hence, for a set
A ⊂ Sk with

diam(A) = diam(C(x, t)),

where C(x, t) is a certain spherical cap on Sk, with x ∈ Sk and −1 ≤ t ≤ 1, we have
that

σ(A) ≤ σ(C(x, t)) = c(k) diam(C(x, t))k = c(k)diam(A)k,

with c(k) > 0 a constant depending on k. As a consequence, for the sets {Si}ni=1 ⊂ Sk
of a regular area partition we have

σ(Sk)
n

= σ(Si) ≤ c(k)diam(Si)
k,

i.e.,
diam(Si) ≥ c′(k)n−

1
k .

We have seen that for these type of partitions the diameter of the sets is not only
controlled by above by n−

1
k but we know that is of order n−

1
k . So the sets of this

partition are quite regular (we may even thing that too regular to exist).

The next result, due to P. Leopardi, ensures the existence of regular area parti-
tions of Sk and gives an explicit value for the constant. The proof can be found in
[11].



29 Chapter 3. Upper bounds

Theorem 3.1.5. (P. Leopardi). For all n ∈ N there exist regular area partitions
{Si}ni=1 of Sk with constant c27(k) given by

c27(k) = 8

(
k
σ(Sk)
σ(Sk−1)

) 1
k

.

The history of these partitions, as D. Bilyk and M. T. Lacey comment in [2], is
curious. In 1973, in one of his works, Stolarsky asserts that for k ≥ 2, there exist
regular area partitions of Sk, without giving a construction nor a proof. Later, in
1984, J. Beck and W. W. L. Chen, in [7], quote Stolarsky. Bourgain and Linden-
strauss that worked also on these problems, quote J. Beck and W. W. L. Chen in
1988. Finally, in 2002 U. Feige and G. Schechtman gave a complete construction of
a regular area partition of Sk. In 2009, P. Leopardi found the value for the constant
stated in Theorem 3.1.5.

3.1.2 Concentration inequalities

Unlike the lower bound results, which use Fourier transform techniques, the tech-
niques used in the upper bound results are probabilistic. In this preliminary sub-
section we are going to study an inequality, due to Bernstein and Chernoff, that
plays a key role in the proof of Theorem 3.2.1 and also in the proof of Theorem 4.3.2
in Section 4.3. The word concentration points out the fact that these inequalities
measure the probability of a random variable to be far from its expectation, i.e.,
measure its concentration.

Lemma 3.1.6. (Markov’s inequality). If X is a non-negative random variable and
a > 0, then

P(X ≥ a) ≤ E(X)

a
.

Proof. Consider the event {X ≥ a}. Clearly, since E(·) is a monotone increasing
function, whenever X ≥ a,

E
(
a1{X≥a}

)
= E(a) ≤ E(X),

and
E
(
a1{X≥a}

)
= aP(X ≥ a).

Since a > 0, we can divide by a on both sides and we obtain the desired inequality.

With this result we can now study the important concentration inequality.

Lemma 3.1.7. (Bernstein-Chernoff’s inequality). Let ξ1, . . . , ξm be independent
random variables with |ξi| ≤ 1 for i = 1, . . . ,m. Let

β =
m∑
i=1

E
(
(ξi − E(ξi))

2
)
.
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Then,

P
(∣∣∣∣ m∑

i=1

(ξi − E(ξi))

∣∣∣∣ ≥ γ

)
≤

{
2e−

γ
4 if γ ≥ β,

2e−
γ2

4β if γ ≤ β.

Proof. Without loss of generality we can assume that the random variables are
centered, i.e., E(ξi) = 0 for i = 1, . . . ,m. This is because of the linearity of the
expectation. Set

X =
m∑
i=1

ξi.

We are only going to prove that P(X ≥ γ) is as stated because following the same
steps we can prove that P(X ≤ −γ) also satisfies the required inequalities.

Using Lemma 3.1.6,

P(X ≥ γ) = P(eyX ≥ eyγ) ≤ e−yγE(eyX), (3.1.1)

with y satisfying 0 < y ≤ 1 that we will determine later. Since X is a finite sum of
independent random variables

E(eyX) =
m∏
i=1

E(eyξi). (3.1.2)

Let us study the term E(eyξi) separately. By the exponential’s series expansion, and
since |ξi| ≤ 1, we have

E(eyξi) = E
( ∞∑

n=0

ynξni
n!

)
= 1 +

y2E(ξ2
i )

2
+ E

( ∞∑
n=3

ynξni
n!

)
≤ 1 +

y2E(ξ2
i )

2
+ E

( ∞∑
n=3

yn|ξi|n

n!

)
≤ 1 +

y2E(ξ2
i )

2
+ E

( ∞∑
n=3

yn|ξi|2

n!

)
= 1 +

y2E(ξ2
i )

2
+ y3E(ξ2

i )
∞∑
n=0

yn

(n+ 3)!

By induction one can easily prove that (n+3)! ≥ 6·3n. Continuing the computations
we get

E(eyξi) ≤ 1 +
y2E(ξ2

i )

2
+
y3E(ξ2

i )

6

∞∑
n=0

yn

3n

= 1 +
y2E(ξ2

i )

2
+
y3E(ξ2

i )

6

(
1

1− y
3

)
= 1 +

y2E(ξ2
i )

2
+
y3E(ξ2

i )

6− 2y
.
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Using that 1 + x < ex, for x > 0, and applying these last computations to (3.1.2)
we get

E(eyX) ≤
m∏
i=1

(
1 +

y2E(ξ2
i )

2
+
y3E(ξ2

i )

6− 2y

)
≤ e

y2

2

(
1+ y

3−y

)∑m
i=1 E(ξ2i ).

Using this in (3.1.1), we obtain

P(X ≥ γ) ≤ e
y2β
2

(
1+ y

3−y

)
−yγ,

because β =
∑m

i=1 E(ξi). Hence, if γ ≥ β, let y = 1 to conclude

P(X ≥ γ) ≤ e
3β
4
−γ ≤ e−

γ
4 ,

and if γ ≤ β, let y = γ
β

to conclude

P(X ≥ γ) ≤ e
γ2

2β

(
1+ γ

3β−γ

)
− γ

2

β ≤ e−
γ2

4β .

3.1.3 Jittered sampling

As we will see in Section 3.2, both upper bound results, for the spherical discrepancy
of an n-element set of points on Sk, Theorem 3.2.1, and for the L2-discrepancy of
an n-element set of points on Sk, Theorem 3.2.2, are based in a technique involving
regular area partitions of Sk called jittered sampling. We are going to follow [2].

Basically, jittered sampling is a way of producing semi-random sets of points.
In our case, we are going to use this technique in generating sets of points on Sk
but it applies in many geometric different settings: balls, rotated rectangles, cubes,
spherical caps, etc. The general structure of the jittered sampling technique is the
following: we first divide our original manifold in n regions of equal volume and
almost equal diameter, then we take a point uniformly random in each of these
pieces, independently of the others. In our setting, we use regular area partitions
of Sk, where instead of volume we use surface area (normalized) and the diameter
of the pieces behaves like the number of pieces to the power − 1

k
times a constant

depending only on k.
Intuitively, this construction guarantees that the set of points which results is

well distributed in the sense that there are no large gaps. In many situations this
distribution yields nearly optimal discrepancy. This is consistent with the fact that
purely random constructions are far from optimal and deterministic sets are very
hard to construct, in terms of well-distribution.

As we will see in Section 4.2, following the proof presented in [3], this technique
can be viewed as a determinantal process with a specific kernel.
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3.2 Main results

We are going to study [5], J. Beck’s paper about upper bounds in the theory of
irregularities of distribution. Concretely, we are going to study Theorem 2, page
117. In [5] there is a more general version than the one presented in this thesis,
but since we are only studying discrepancies on Sk, we are going to complement the
study with [7], J. Beck’s and W. W. L. Chen’s book, because it contains a spherical
version of this result, which is the following result:

Theorem 3.2.1. (J. Beck). For an arbitrary integer n ≥ 2, there exists an n-
element set of points P on the unit k-dimensional sphere Sk such that, for any
spherical cap C(x, t) = {y ∈ Sk; 〈x, y〉 ≤ t} ⊂ Sk with x ∈ Sk and −1 ≤ t ≤ 1, we
have ∣∣Z(P, x, t)− nσ∗(t)

∣∣ < c28(k)n
1
2
− 1

2k

√
log n.

Proof. We use the jittered sampling technique presented in Subsection 3.1.3. Let
us consider a regular area partition {Si}ni=1 of Sk with constant c27(k). We know
its existence by Theorem 3.1.5. Let us associate with each Si, for i = 1, . . . , n, a
uniformly distributed random point ξi ∈ Si, i.e., these random points, or random
variables, {ξi}ni=1 satisfy

P(ξi ∈ H) =
σ(H ∩ Si)
σ(Si)

, (3.2.1)

for every measurable set H ⊂ Sk and for every i = 1, . . . , n. We can also assume
that {ξi}ni=1 are independent.

Let us prove the existence of {ξi}ni=1. For every i = 1, . . . , n, defining

Fi = {H ∩ Si ; H ⊂ Sk measurable}

and

Pi(H ∩ Si) =
σ(H ∩ Si)
σ(Sk)

,

we have that each triple (Si,Fi,Pi) is a probability space and the identity function
ξi : Si → Si is a random point having the desired distribution. However, we cannot
ensure the independence. But there exist independent copies of {ξi}ni=1, that we will
denote also by {ξi}ni=1, which can be defined in the probability space

(S1 × . . .× Sn,F ,P)

where
F = {(H1 ∩ S1, . . . , Hn ∩ Sn) ; H1, . . . , Hn ⊂ Sk measurable}

and
P(H1 ∩ S1, . . . , Hn ∩ Sn) = P1(H1 ∩ S1) · . . . · Pn(Hn ∩ Sn),

as the projections ξi : S1 × . . .× Sn → Sk, ξi(s1, . . . , sn) = si, for all i = 1, . . . , n.
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Let us fix a spherical cap C = C(x, t) ⊂ Sk, with x ∈ Sk and −1 ≤ t ≤ 1. We
denote by C̃ the union of all Si contained in C, i.e.,

C̃ =
⋃
Si⊂C

Si.

Clearly, C̃ contains as much ξi as Si contained in C. So we need to study the
discrepancy of C \ C̃. Denote by I(C) ⊂ {1, . . . , n} the set of indices such that, if
i ∈ I(C), then

C ∩ Si 6= ∅ and (Sk \ C) ∩ Si 6= ∅.

We can easily check that

C \ C̃ =
⋃

i∈I(C)

(Si ∩ C). (3.2.2)

Note that, in fact, it is a disjoint union since the sets {Si}ni=1 are pairwise disjoint.
We claim that

card(I(C)) ≤ c29(k)n1− 1
k , (3.2.3)

To see this observe that, for each i ∈ I(C), Si intersects the boundary of C.
Because of the properties of this regular area partition, (see Definition 3.1.3), each

Si is contained in the (c27(k)n−
1
k )-neighbourhood of this boundary, which means

that the whole union is in there.
The surface area of a b-neighbourhood of a (k− 1)-dimensional sphere inside Sk

is bounded above by the surface area of the b-neighbourhood of the equator of Sk,
which at the same time is bounded by a constant c30(k) times b. Therefore, since
all Si have the same surface area, we conclude that

card(I(C))
σ(Sk)
n
≤ c30(k)

n
1
k

,

with c29(k) = c27(k)c30(k), as we have claimed.
To visualize this a bit more, we can think in the case k = 2, so we have S2 ⊂ R3.

All Si with i ∈ I(C) are included in a (c27(2)n−
1
2 )-neighbourhood around the

boundary of the spherical cap, which in this case is a spherical zone with high
h = 2c27(2)n−

1
2 . Recall that in this case the boundary is rS1, with 0 ≤ r ≤ 1. The

surface area of this spherical zone is 4rπh, with r the radius of the boundary of the
spherical cap. This value is maximized in the hemisphere, when r = 1.

Let us define the random variables ηi, i ∈ I(C), as follows

ηi =

{
1 if ξi ∈ C ∩ Si,
0 if ξi /∈ C ∩ Si.

Then,∑
ξi∈C

1− n σ(C)

σ(Sk)
=

∑
ξi∈C,Si⊂C

1− n σ(C̃)

σ(Sk)
+

∑
ξi∈C,Si 6⊂C

1− nσ(C \ C̃)

σ(Sk)
. (3.2.4)
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Observe that the difference of the first two terms in (3.2.4) is zero. Using that C̃ is
the union of the disjoint sets Si contained in C, and that all of them have the same

measure, σ(Sk)
n

,

∑
ξi∈C,Si⊂C

1− n σ(C̃)

σ(Sk)
=

∑
ξi∈C,Si⊂C

1− n

σ(Sk)
∑
Si⊂C

σ(Si)

=
∑

ηi∈C,Si⊂C

1−
∑
Si⊂C

1 = 0.

Back to (3.2.4), using (3.2.2), the definition of the random variables {ηi}i∈I(C) and
the equation (3.2.1),

∑
ξi∈C

1− n σ(C)

σ(Sk)
=
∑
i∈I(C)

ηi −
n

σ(Sk)
σ

( ⋃
i∈I(C)

(Si ∩ C)

)

=
∑
i∈I(C)

(
ηi −

σ(Si ∩ C)

σ(Si)

)
=
∑
i∈I(C)

(
ηi − P(ξi ∈ Si ∩ C)

)
.

Since {ηi}i∈I(C) take values 0 or 1, its expectation is E(ηi) = P(ξi ∈ Si∩C), therefore

∑
ξi∈C

1− n σ(C)

σ(Sk)
=
∑
i∈I(C)

(ηi − E(ηi)). (3.2.5)

Now, we are going to apply Bernstein-Chernoff’s inequality (Lemma 3.1.7). Let

γ = c31(k)n
1
2
− 1

2k

√
log n, where the constant c31(k) > 0 will be specified later. Recall

that the β appearing in Lemma 3.1.7 satisfies β ≤ card(I(C)) ≤ c29(k)n1− 1
k since

β =
∑
i∈I(C)

E
(
(ηi − E(ηi))

2
)

and using (3.2.3). Therefore, applying Lemma 3.1.7 to (3.2.5), since γ ≤ β

P
(∣∣∣∣∑

ξi∈C

1− n σ(C)

σ(Sk)

∣∣∣∣ ≥ c31(k)n
1
2
− 1

2k

√
log n

)
= P

(∣∣∣∣ ∑
i∈I(C)

(ηi − E(ηi))

∣∣∣∣ ≥ γ

)

≤ e
− (c31(k)n

1
2−

1
2k
√
logn)2

4c29(k)n
1− 1

k

=
1

nc32(k)
,

with c32(k) = c31(k)2

4c29(k)
→∞ as c31(k)→∞.
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The strategy we have followed, proving the result for a fixed spherical cap, has one
big problem: the family of the spherical caps on Sk is an uncountable family of sets.
A priori it is not clear that we can pass the bounds obtained for the discrepancy
of a fixed spherical cap to bounds for the discrepancy of the whole family of the
spherical caps on Sk, and to preserve the order of the discrepancy.

But, it can be seen that there exists a finite subfamily S of the family of all
spherical caps on Sk, with cardinality nc33(k), where c33(k) > 0 is a constant depend-
ing only on k, satisfying that, given a spherical cap C ′ = C(x′, t′) on Sk, there exist
A,B ∈ S with

A ⊂ C ′ ⊂ B and
σ(B \ A)

σ(Sk)
<

1

n
.

If A,B ∈ S are as before, with respect to a spherical cap C ′ = C(x′, t′) on Sk,
we have that

|Z(P, x′, t′)− nσ∗(t′)| ≤
∣∣∣∣∑
ξi∈B

1− n σ(B)

σ(Sk)

∣∣∣∣+

∣∣∣∣nσ(B \ C ′)
σ(Sk)

∣∣∣∣
<

∣∣∣∣∑
ξi∈B

1− n σ(B)

σ(Sk)

∣∣∣∣+ n
1

n

≤ max

{∣∣∣∣∑
ξi∈B

1− n σ(B)

σ(Sk)

∣∣∣∣, ∣∣∣∣∑
ξi∈A

1− n σ(A)

σ(Sk)

∣∣∣∣}+ 1.

This tells us that the discrepancy of the family of the spherical caps on Sk is of the
same order as the discrepancy of the subfamily S, and hence, that we can restrict
ourselves to spherical caps in S. So, using this reduction, we can bound the spherical
cap discrepancy of the union of the sets of S by

P
(∣∣∣∣∑

ξi∈C

1− n σ(C)

σ(Sk)

∣∣∣∣ ≥ c31(k)n
1
2
− 1

2k

√
log n, for some C ∈ S

)
≤ card(S)

1

nc32(k)

≤ 1

nc32(k)−c33(k)

≤ 1

2
,

if c32(k) > c33(k), and recall that in the expression of c32(k) it appears c31(k) for
which we have some freedom in adjusting it, and this finishes the proof because we
have seen

P
(∣∣∣∣∑

ξi∈C

1− n σ(C)

σ(Sk)

∣∣∣∣ & n
1
2
− 1

2k

√
log n

)
≤ 1

2
,

so the probability with the reverse inequality is bigger than 1
2
, which ensures the

existence of such an n-element set of points on Sk.

As an immediate consequence, taking the supremum over all spherical caps on
Sk, we have that

Dn(P ) . n
1
2
− 1

2k

√
log n,
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which is the best upper bound, known up to now, for the spherical cap discrepancy
of an n-element set of points P on Sk.

We have studied two results concerning lower bounds, due to J. Beck, Theorem
2.2.3 and Theorem 2.2.4, in Section 2.2. The first one, Theorem 2.2.4, gives a lower
bound for the spherical cap discrepancy of an n-element set of points on Sk and
is an immediate consequence of the second one, Theorem 2.2.3, which is the main
result concerning lower bounds. Its starting point is Stolarsky’s Invariance Principle,
Theorem 2.2.1, and it gives a lower bound for the L2-discrepancy of an n-element
set of points on Sk.

Unlike before, the best known upper bound for the spherical cap discrepancy of
an n-element set of points on Sk, Theorem 3.2.1, it is not a consequence of a result
concerning the L2-discrepancy of an n-element set of points on Sk, but such a result
exists. K. B. Stolarsky, in a work previous to all these results due to J. Beck, in
1973, established the best upper bound for this L2-average and it is known that the
bound he gave is sharp.

Theorem 3.2.2. (K. B. Stolarsky).

c0(k)n2 − S(n, k) < c34(k)n1− 1
k .

Proof. We have to find an n-element set P on Sk such that

∫ 1

−1

(
1

σ(Sk)

∫
Sk

(
Z(P, x, t)− nσ∗(t)

)2
dσ(x)

)
dt ≤ c34(k)n1− 1

k , (3.2.6)

because

c0(k)n2 − S(n, k) ≤ c0(k)n2 − S(n, k, P )

=

∫ 1

−1

(
1

σ(Sk)

∫
Sk

(
Z(P, x, t)− nσ∗(t)

)2
dσ(x)

)
dt.

We follow exactly the same strategy, step by step, as the proof of Theorem 3.2.1,
until the moment before applying Lemma 3.1.7, equation (3.2.5). Basically, we use
the jittered sampling technique presented in Subsection 3.1.3 and then, defining
random variables for a subcollection of sets of the partition with certain properties,
we find out that ∑

ξi∈C

1− n σ(C)

σ(Sk)
=
∑
i∈I(C)

(
ηi − E(ηi)

)
.
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Observe that

E
(( ∑

i∈I(C)

(
ηi − E(ηi)

))2
)

= E
( ∑
i1∈I(C)

∑
i2∈I(C)

(
ηi1 − E(ηi1)

)(
ηi2 − E(ηi2)

))
=

∑
i1∈I(C)

∑
i2∈I(C)

E
((
ηi1 − E(ηi1)

)(
ηi2 − E(ηi2)

))
=

∑
i1∈I(C)

∑
i2∈I(C)

E
((
ηi1 − E(ηi1)

))
E
((
ηi2 − E(ηi2)

))
=
∑
i∈I(C)

E
((
ηi − E(ηi)

)2
)
,

just using the linearity of the expectation and that, since {ηi}i∈I(C) are independent
random variables, in the last equality only remain the terms where i1 = i2. Hence,

E
((∑

ξi∈C

1− n σ(C)

σ(Sk)

)2
)

= E
(( ∑

i∈I(C)

(
ηi − E(ηi)

))2
)

=
∑
i∈I(C)

E
((
ηi − E(ηi)

)2
)

≤
∑
i∈I(C)

E(η2
i )

≤
∑
i∈I(C)

1 = card(I(C)),

using these lasts expressions and that |ηi| ≤ 1. By equation (3.2.3) of the proof of
Theorem 3.2.1, we get

E
((∑

ξi∈C

1− n σ(C)

σ(Sk)

)2
)
≤ c29(k)n1− 1

k . (3.2.7)

Finally, by (3.2.7) and Tonelli’s Theorem,

E
(∫ 1

−1

(
1

σ(Sk)

∣∣∣∑
ξi∈C

1− nσ(C(x, t))

σ(Sk)

∣∣∣2 dσ(x)

)
dt

)
≤ c35(k)n1− 1

k .

As a consequence, there exists an n-element set of points on Sk satisfying (3.2.6), as
we wanted to see.

Combining Theorem 2.2.3 and Theorem 3.2.1 we have that the L2-discrepancy
of an n-element set of points P on Sk satisfies

c1(k)n1− 1
k < Dn(P )2 < c34(k)n1− 1

k .

As a remark, observe that the cases k = 1 and k ≥ 2 are completely different. While
in the case k = 1 the L2-discrepancy of an n-element set of points on Sk remains
bounded as n → ∞, in the case k ≥ 2 the L2-discrepancy of an n-element set of
points on Sk goes to infinity as n→∞ with polynomial speed.
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Chapter 4

Determinantal point processes

In this chapter we will introduce the notion of determinantal point process, first
introduced by Odile Macchi in 1975, we will see that the point process given by the
jittered sampling technique, explained in Section 4.2, can be viewed as a determi-
nantal point process and finally we will study a result due to K. Alishahi and M.
Zamani, presented in [9], that gives a construction of a specific determinantal point
process which achieves the bounds presented in the previous chapters, in S2. We will
start by presenting the basic definitions and concepts related with the determinantal
point processes, in full generality, to provide the necessary background for the next
sections. To do so, we will follow [4]. To see that the point process given by jittered
sampling technique is a determinantal one we will follow [3].

4.1 Basic concepts and setting

Let us start this introductory section with some definitions.

Definition 4.1.1. We say that Λ is a locally compact Polish space if it is a topological
space which admits a topology induced by a complete and separable metric.

Definition 4.1.2. We say that µ is a Radon measure on Λ if it is a Borel measure
which is finite on compact sets.

The examples that would have bigger relevance in this thesis are the following:

1. Let Λ be an open subset of Rk and µ the k-dimensional Lebesgue measure
restricted to Λ.

2. Let Λ be a finite or countable set and µ such that it assigns unit mass to each
element of Λ (the counting measure on Λ).

Definition 4.1.3. A point process X on Λ is a random integer-valued positive Radon
measure on Λ. If X almost surely (a.s.) assigns at most measure 1 to singletons, it
is a simple point process.

39
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In this case, X can be identified with a random discrete subset of Λ. We denote
as X (D) the number of points of this set that lie in D ⊂ Λ.

One way to describe the distribution of a point process is through its joint in-
tensities (also known as correlation functions).

Definition 4.1.4. Let X be a simple point process. The joint intensities of a point
process X with respect to µ are functions (if any exist) ρn : Λn → [0,∞), for n ≥ 1
such that for any family of pairwise disjoint sets D1, . . . , Dn of Λ

E
[ n∏
i=1

X (Di)

]
=

∫
D1×...×Dn

ρn(x1, . . . , xn) dµ(x1) · . . . · dµ(xn).

In addition, we shall require that ρn(x1, . . . , xn) vanishes if xi = xj for some i 6= j.

If Λ is finite and µ is the counting measure on Λ, then for distinct x1, . . . , xn the
quantity ρn(x1, . . . , xn) is just the probability that x1, . . . , xn ∈ X .

Let K : Λ2 → C be a measurable function.

Definition 4.1.5. A point process X on Λ is said to be a determinantal point process
with kernel K if it is simple and its joint intensities with respect to the measure µ
satisfy

ρn(x1, . . . , xn) = det
(
K(xi, xj)1≤i,j≤n

)
,

for every n ≥ 1 and x1, . . . , xn ∈ Λ.

Observe that we need K(xi, xj) to be well defined for every pair (xi, xj). Also,
in order to have a definition which makes sense, we need det

(
K(xi, xj)1≤i,j≤n

)
to be

locally integrable on Λn. Both of these problems disappear when K is continuous.
The notion of determinantal point process was first introduced by Odile Macchi,

in 1975, as a way of model fermions in quantum mechanics. These type of point pro-
cesses arise surprisingly often in random matrix theory, combinatorics and physics.

A typical example of determinantal point process is the circular unitary ensemble
(CUE). The points on this process are the set of eigenvalues of a random unitary
matrix sampled from the Haar measure on the group of n× n unitary matrices.

The Haar measure is the unique Borel probability measure on the group of n×n
unitary matrices that is invariant under left multiplication by unitary matrices. It
is also invariant under right multiplication by unitary matrices and under inversion.
The result, due to Weyl and Dyson, is the following:

Theorem 4.1.6. (Weyl, Dyson). Given an n × n unitary matrix U , let {eiθj ; 1 ≤
j ≤ n} be the set of its eigenvalues. The counting measure of eigenvalues is a
determinantal point process on S1 with kernel

K(eiθ, eiφ) =
1

2π

n−1∑
l=0

eilθ−ilφ,
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with respect to the Lebesgue measure on S1 (with total measure 2π). Equivalently,
the vector of eigenvalues, in uniform random order, has density

1

n!(2π)n

∏
j<l

‖eiθj − eiθl‖2,

with respect to the Lebesgue measure on (S1)n.

4.2 Jittered sampling as a determinantal point

process

In this section we are going to see that the point process given by the jittered sam-
pling technique explained in Section 4.2 can be viewed as a determinantal point
process. We have applied the jittered sampling technique to a regular area partition
of Sk but, as we have mentioned before, this is a more general technique that applies
in many different geometric settings, so this proof is going to be in a Polish space
Λ.

Consider a partition A = {Ai}ni=1 of the space Λ into pairwise disjoint measurable
sets of equal measure, i.e., Ai ∩ Aj = ∅ for i 6= j, µ(Ai) = 1

n
and µ(Λ) = 1. Define

the projection operator

pA(f)(x) =
n∑
i=1

χAi(x)

µ(Ai)

∫
Ai

f(y) dµ(y) =

∫
Λ

KA(x, y)f(y) dµ(y)

to the space of measurable functions with respect to the finite σ-algebra generated
by A. The kernel of this operator is given by

KA(x, y) =
n∑
i=1

χAi(x)χAi(y)

µ(Ai)
.

The determinantal point process defined by the projection kernel KA, XA
n , is then

equal to the jittered sampling process associated to the partition A, which can be
seen by computing

E(XA
n (A1) · . . . · XA

n (An)) =

∫
A1

· . . . ·
∫
An

det
(
K(xi, xj)1≤i,j≤n

)
dµ(x1) · . . . · dµ(xn).

If we expand the determinant, taking into account that KA(xi, xj) = 0 whenever
i 6= j with xi ∈ Ai, xj ∈ Aj (because the sets in A are pairwise disjoint), we have
that

E(XA
n (A1)·. . .·XA

n (An)) =
∑
π∈Sn

sgn(π)

∫
A1

· . . .·
∫
An

n∏
i=1

KA(xi, xπ(i)) dµ(x1)·. . .·dµ(xn)
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=
n∏
i=1

∫
Ai

KA(xi, xi) dµ(xi) = 1, (4.2.1)

where Sn denotes the symmetric group and sgn(π) denotes the sign of the permuta-
tion π, using the definition of KA, because for all permutations, except for π = id,
the term KA(xi, xπ(i)) vanishes.

We know, by [4], that XA
n samples n points almost surely. Thus, the product

XA
n (A1) · . . . · XA

n (An) is either 0 or 1, almost surely. By equation (4.2.1), it is equal
to 1, almost surely, which means that the process XA

n samples exactly one point per
set of the partition A. Moreover,

E(XA
n (D)) =

∫
D

K(x, x) dµ(x)

=
n∏
i=1

∫
D

χAi(x)2

µ(Ai)
dµ(x)

=
n∑
i=1

µ(Ai ∩D)

µ(Ai)

= nµ(D),

because of the properties of the partition A. If D ⊂ Ai, then

E(XA
n (D)) =

µ(D)

µ(Ai)

because only one of the terms µ(Ai∩D) survives thanks to the disjointness of the sets
of the partition A. This means that the sample point chosen from Ai is distributed
with measure µi = µ

µ(Ai)
on Ai.

4.3 Spherical ensemble

In this section we are going to study a result, due to K. Alishahi and M. Zamani,
presented in [9], concerning a specific determinantal point process called spherical
ensemble. We are going to see the construction of such a process, in S2, providing a
small piece of code that generates an image of such a process, and then we are going
to enter into the proof of Theorem 4.3.2, and as we are going to see, using some
assumptions, is very similar to the proof of Theorem 3.2.1, presented in Section 3.2.

Given an n-element set of points P = {x1, . . . , xn} on S2 we have defined its
spherical cap discrepancy as

D2
n(P ) = sup

C(x,t)⊂S2

∣∣∣∣Z(P, x, t)− nσ(C(x, t))

4π

∣∣∣∣,
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where Z(P, x, t) denotes the number of points of P that lie in the spherical cap
C(x, t), with x ∈ S2 and −1 ≤ t ≤ 1, and σ is the surface area measure on S2, so
σ(S2) = 4π. We denote the spherical cap discrepancy of an n-element set of points
in S2 by D2

n.
In Section 2.2, Theorem 2.2.4, we have seen that for any n-element set of points

P on S2 we have
cn

1
4 ≤ D2

n(P ),

where c > 0 is a numerical constant that does not depend on n. Also, in Section
3.2, Theorem 3.2.1, we have seen that for any n ≥ 1 there exists an n-element set
of points P , with cardinality n, on S2 such that

D2
n(P ) ≤ Cn

1
4

√
log n,

where C > 0 is a numerical constant that does not depend on n.

4.3.1 Construction

Let us see how the spherical ensemble is constructed. We are going to construct
a point process X (n) =

∑n
i=1 δPi , so we must determine {P1, . . . , Pn}. Let An and

Bn be two independent n × n random matrices with independent and identically
distributed standard complex Gaussian entries.

Definition 4.3.1. A complex-valued random variable Z follows a standard complex
Gaussian distribution, and it is denoted by Z ∼ NC(0, 1), if its density function is

fZ(z) =
1

π
e−|z|

2

, z ∈ C,

with respect to the Lebesgue measure.

Let us denote as {λ1, . . . , λn} the set of eigenvalues of A−1
n Bn. We can consider

this set of eigenvalues as a (simple) random point process on C. We can describe it

using the joint intensities ρ
(n)
k , 1 ≤ k ≤ n, with respect to the measure

dµ(z) =
n

π(1 + |z|2)n+1
dz

where dz denotes the Lebesgue measure on C.

M. Krishnapur showed, in [10], that this random point process is a determinantal
point process on the complex plane with kernel

K(n)(z, w) = (1 + zw̄)n−1

with respect to the measure dµ(z), i.e.,

ρ
(n)
k (z1, . . . , zk) = det

(
K(n)(zi, zj)

)
1≤i,j≤k
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for every k ≥ 1 and z1, . . . , zk ∈ C.

Let us consider h the stereographic projection of the sphere S2 from the north
pole (0, 0, 1) onto C, seen as the two-dimensional plane {(t1, t2, 0); t1, t2 ∈ R}, i.e.,
for (x1, x2, x3) ∈ S2

h(x1, x2, x3) =
x1 + ix2

1− x3

.

Now, let Pi = h−1(λ1), for i = 1, . . . , n. As K. Alishahi and M. Zamani comment
in [9], it can be seen that the vector (P1, . . . , Pn), in uniform random order, has the
joint density

c
∏
i<j

‖pi − pj‖2,

with respect to the Lebesgue measure on (S2)n, where c > 0 is a numerical constant
that does not depend on n.

As we have seen, the spherical ensemble is quite simple to construct. Let us see
a figure of a spherical ensemble of 500 points.

Figure 4.1: Spherical ensemble of 500 points.

It has been obtained with the following piece of code, that can run in Matlab or
Octave.

% We want 500 points.

n=500;

% Standard deviation of the real and imaginary parts.

c=1/sqrt(2)
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% Eigenvalues of the matrix M^{-1}*N.

A=eig(inv(c*randn(n)+i*c*randn(n))*(c*randn(n)+i*c*randn(n)));

% Inverse of the stereographic projection.

B=[2*real(A)./(1+A.*conj(A)),2*imag(A)./(1+A.*conj(A)),

(-1+A.*conj(A))./(1+A.*conj(A))];

% Plot.

plot3( B(:,1), B(:,2), B(:,3),’.’);

axis square

Let us study the result, presented in [9], which describes the behaviour of the
spherical cap discrepancy of a concrete type of set of points, which is a determinantal
point process, the spherical ensemble, as we increase the number of points.

4.3.2 Spherical cap discrepancy of the spherical ensemble

Given two functions f and g, the notation f(x) = O(g(x)) means that there exist a
constant C > 0 and x0 such that |f(x)| ≤ Cg(x) for all x ≥ x0.

Theorem 4.3.2. Consider the point process X (n) =
∑n

i=1 δPi where the points
{P1, . . . , Pn} are the ones given by the spherical ensemble. For every M > 0 in-
dependent of n, we have

D2
n({P1, . . . , Pn}) = O(n

1
4

√
log n)

with probability at least 1− 1
nM

.

Let C = C(x, t) be a spherical cap on S2, with x ∈ S2 and −1 ≤ t ≤ 1. Recall
that X (n)(C) denotes the number of points of the point process X (n) that lie in C,
following the notation established at the beginning of this chapter. We are going to
assume the following, proved in [9]:

1. For any spherical cap C = C(x, t) on S2, with x ∈ S2 and −1 ≤ t ≤ 1, the
random variable X (n)(C) has the same distribution as

∑
k ηk where ηk are

independent Bernoulli random variables.

2. The expected value of X (n)(C) is equal to nσ(C)
4π

.

3. There exists an absolute constant c > 0 such that

Var(X (n)(C)) ≤ c
√
n.

In [9], Alishani and Zamani specify the value P(ηk = 1), but for our purposes we do
not need this value. Let us pass to study the proof of Theorem 4.3.2.

Proof. Using the first assumption above and Bernstein-Chernoff’s inequality, Lemma
3.1.7, presented in Section 3.1.2, we have

P(|X (n)(C)− E(X (n)(C))| ≥ t) ≤ 2e
−min

(
t2

4Var(X (n)(C))
, t
4

)
,
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and using the third assumption we get

P(|X (n)(C)− E(X (n)(C))| ≥ t) ≤ 2e
−min

(
t2

4c
√
n
, t
4

)
.

Now, taking t = O(n
1
4

√
log n) we have

P
(
|X (n)(C)− E(X (n)(C))| ≥ O(n

1
4

√
log n)

)
≤ 2e−min

(
O(logn)

4c
,
O(n

1
4
√
logn)

4

)
.

Since the exponential term goes (quickly) to 0 as n→∞, because log n and n
1
4

√
log n

go to infinity as n→∞, for any M > 0 we have

X (n)(C) = E(X (n)(C)) +O(n
1
4

√
log n) (4.3.1)

with probability at least 1− 1
nM

, where the implied constant in O(·) does not depend
on C.

As we have argued previously, in the proof of Theorem 3.2.1, there exists a
subfamily S2 of the family of all spherical caps on S2, with cardinality nc40 , where
c40 > 0 is an absolute constant, satisfying that, given a spherical cap C ′ ⊂ S2, there
exists A,B ∈ S with

A ⊂ C ′ ⊂ B and σ(B \ A) <
4π

n
.

If A,B ∈ S2 are as before, with respect to the spherical cap C ′ on S2, we have that

|X (n)(C ′)− E(X (n)(C ′))| ≤
∣∣∣∣X (n)(B)− nσ(C ′)

4π

∣∣∣∣
≤
∣∣∣∣X (n)(B)− nσ(B)

4π

∣∣∣∣+

∣∣∣∣nσ(B \ C ′)
4π

∣∣∣∣
< |X (n)(B)− E(X (n)(B))|+ n

1

n
≤ max

{
|X (n)(B)− E(X (n)(B))|, |X (n)(A)− E(X (n)(A))|

}
+ 1,

using the second assumption. This implies that the discrepancy of the family of the
spherical caps on S2 is of the same order as the discrepancy of the subfamily S2,
and hence, we can restrict ourselves to spherical caps in S2. Using this reduction in
the union bound we get that (4.3.1) holds uniformly in C, as we wanted to see.

As we have seen, the structure of this proof is the same as the proof of Theorem
3.2.1. We see, using Bernstein-Chernoff’s inequality, Lemma 3.1.7, that the proba-
bility of the complementary statement is really small for a fixed spherical cap and
then we pass this estimation to the whole family using an approximation family of
certain cardinality.
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