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Motility and morphodynamics of confined cells
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We introduce a minimal hydrodynamic model of polarization, migration, and deformation of a biological
cell confined between two parallel surfaces. In our model, the cell is driven out of equilibrium by an active
cytsokeleton force that acts on the membrane. The cell cytoplasm, described as a viscous droplet in the Darcy
flow regime, contains a diffusive solute that actively transduces the applied cytoskeleton force. While fairly
simple and analytically tractable, this quasi-two-dimensional model predicts a range of compelling dynamic
behaviours. A linear stability analysis of the system reveals that solute activity first destabilizes a global
polarization-translation mode, prompting cell motility through spontaneous symmetry breaking. At higher
activity, the system crosses a series of Hopf bifurcations leading to coupled oscillations of droplet shape and
solute concentration profiles. At the nonlinear level, we find traveling-wave solutions associated with unique
polarized shapes that resemble experimental observations. Altogether, this model offers an analytical paradigm
of active deformable systems in which viscous hydrodynamics are coupled to diffusive force transducers.
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I. INTRODUCTION

Biological cells provide a striking example of far-from-
equilibrium, highly deformable microscopic systems. During
embryonic development, immune responses, or diseases such
as cancer, cells undergo vital functions involving morpholog-
ical changes. These include cell division and cell migration,
two hallmarks of life that are driven by a perplexing array of
coordinated mechano-chemical processes.

Individual cell motility takes various forms depending
on the cell type and the environment in which the cell is
migrating. The specifics of crawling motility are influenced
by factors such as adhesion strength, the type of substratum
(tissues and gels), external migratory cues (both chemical and
mechanical), and the organization of the cellular cytoskele-
ton [1]. The cytoskeleton, a dynamic network of interlinking
protein filaments, is responsible for generating the molecular
forces necessary for active (ATP-fueled) translocation. By
interacting with the external environment, the cytoskeleton
produces locomotion and cell shape changes that correlate
with internal flows and shifting distributions of intracellular
biomolecules [2]. While the key force-generating components
in the cell have long been identified, it remains unclear how
their local activity and transport dynamics determine the
macroscopic cell polarity and morphology.

In light of the many cell motility phenotypes that have been
observed, two main migration modes are put forward in the
literature: (1) the mesenchymal mode, characterized by strong
specific adhesion to the environment and critically powered
by actin polymerisation, and (2) the amoeboid mode, which
in extreme cases involves only weak nonspecific interactions
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with the environment and is characterised by high contractil-
ity levels of the cytoskeleton [1,3]. The former is typically
associated with actin-rich structures that protrude form the
leading edge of the cell, while the latter is associated with
smoother, more rounded morphologies. Historically, most
in vitro experimental studies have focused on mesenchymal
cell migration over flat two-dimensional (2D) surfaces. More
recently, it has been recognised that in vivo cell migration
mainly occurs in three-dimensional (3D) micro-environments
that impose stringent spatial constraints [4]. In fact, it was
shown over the last decade that environmental cues, and in
particular geometric confinement, could trigger dramatic phe-
notypic changes and induce prototypical amoeboid motility in
several cell types [4–8].

Physical models of the problem, aimed at deciphering
the minimal building blocks of motility, have also
focused primarily on the mesenchymal (adhesion and
polymerization-based) mode (see, e.g., Refs. [9–24]),
with fewer descriptions of the amoeboid (contractility or
friction-based) mode [8,25–34]. In all, the extensive modeling
efforts have made use of several theoretical tools, such as
reaction-diffusion equations (as in Refs. [18,25,35,36]),
active gel hydrodynamics (as in Refs. [16,21,24,26,27,29,37–
41]), and phenomenological equations based on symmetry
considerations (as in Ref. [42]). Due to the mathematical
complexity involved, analytical treatments were mostly
limited to one dimension [12,13,26,29,39,43–45], while
free-boundary models in two and three dimensions have
typically required numerical simulations (with few notable
exceptions [16,21,24,46,47]). For more on the numerical
approaches, see comprehensive reviews [48–50].

For the most part, previous droplet-based models of
cells have described aqueous suspensions of cytoskele-
ton filaments with (or without) their associated motors
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[16,17,21,24,37,41,51–53]. To the best of our knowledge and
understanding, the existing 2D models have lacked an ex-
plicit hydrodynamic account of the internal cytoplasmic fluid,
meaning the cytosol. Yet this viscous fluid, which typically
constitutes the bulk of the cell mass, imposes important me-
chanical constraints on the overall dynamics, namely, (1) in
certain situations, the fluid viscosity could be a considerable
source of kinetic energy dissipation, (2) the interaction of
the fluid with the external substratum may lead to a marked
transfer of momentum, and (3) the incompressibility of the
fluid means that cell volume is controlled by water fluxes
through the semipermeable cell membrane. Although a strict
conservation of volume may not apply to all migrating cells,
there exists experimental evidence of area conservation during
keratocyte migration on substrates [46] and HL-60 (leukemia
cells) migration in confinement [54].

In addition, one should be mindful of the fact that the
cytoplasm is mechanically linked to the active cell cortex.
Indeed, cell deformations induced by cortex activity naturally
produce internal cytoplasmic flows [32,55–57]. Moreover, it
has been shown that cytoplasmic flows can shift the distribu-
tion of proteins that regulate cell cortex activity [58]. With
regard to cell motility, such flows are thought to play an
important role due to the hydrodynamic forces they apply,
as well as to their influence on the transport of cytoskeleton
components [55].

Here we introduce a minimal active droplet model of
motility under quasi-2D confinement. Unlike previous de-
scriptions, we tackle the problem from the perspective of
the passive cytoplasmic fluid. More specifically, we describe
the cell cytoplasm as a mass-conserving viscous fluid that
is driven on its boundary (the cell membrane) by an ac-
tive traction force. This force, which could be powered
either by actin polymerisation or by actomyosin contrac-
tion, is controlled by a diffusive cytoplasmic component (a
force-transducing solute). Closing the coupling, we account
for the advection of the solute by the internal cytoplasmic
flow.

This paper is structured as follows. Section II outlines
the formulation of the model, its general properties, and a
reduced dimensionless representation. Section III provides
a rigorous linear stability analysis characterizing the rest-
state solution. This analysis shows that a global polarization-
translation (motility) mode becomes unstable beyond a critical
threshold of solute activity. Upon increasing activity further,
the system crosses a series of Hopf bifurcations of multipolar
modes, destabilizing coupled shape-concentration waves. In
Sec. IV we introduce a nonlinear semi-analytical method
for computing self-consistent traveling solutions. The results
obtained in this section reveal how the steady-state speed and
shape of traveling cells vary as functions of model param-
eters. In Sec. V we conclude the analysis and discuss the
significance of our theoretical findings in light of experimental
observations in vitro.

II. MODEL

We consider a fluid droplet of viscosity μ confined between
two parallel plates separated by a gap h (a Hele-Shaw cell), as
illustrated in Fig. 1. Let u = u(t, x, y) be the gap-averaged
planar flow and p = p(t, x, y) be the internal fluid pressure

FIG. 1. Model illustration. An active actomyosin force (dark
arrows) drives the motility and morphodynamics of the confined
cytoplasmic droplet (blue). This force acts on the droplet free-
boundary in the normal direction and is modulated locally by a
diffusive solute (green circles). Inset: Cross section highlighting
the fluid flow and solute transport within the droplet. Thin arrows
mark the parabolic flow profile, induced by the pressure gradient
(blue-level background) and averaged by u (thick blue arrow). The
solute binds on and off the plates with rates kon, koff and is advected
by the fluid flow only in the unbound state.

(up to a constant). The 2D moving-boundary-value problem
for the droplet is given by

u = −M∇p in�(t ), (1)

∇ · u = 0 in �(t ), (2)

p + Fact(c)/h = σκ on ∂�(t ), (3)

Vn = u · n on ∂�(t ). (4)

In Eq. (1), M = h2/12μ represents the mobility in the
effective Darcy’s law, which averages the Stokes momen-
tum balance in thin films. In Eq. (2) we impose the fluid
incompressibility, which [along with Eq. (1)] mandates that
the pressure is Laplacian in the droplet domain. Equation (3)
defines the normal force balance on the droplet free-boundary
∂�(t ) (discarding exterior pressure gradients by assuming
negligible viscosity of the surrounding fluid). Here σ denotes
the surface tension and κ denotes the curvature. The Young-
Laplace condition is perturbed in our model by an active
traction force, Fact(c)n, where n is the unit normal pointing
outward (see Fig. 1). This force is defined per unit length and
is controlled locally by the gap-integrated concentration of an
internal solute, c = c(t, x, y). We stress that Fact(c) can be ei-
ther positive (pushing outwards) or negative (pulling inwards).
Due to incompressibility, any uniform term F0 ∈ R added to
this force would merely offset the pressure p by a constant
(−F0/h) and thus be irrelevant to the dynamics. For the sake
of generality, we do not specify an explicit form of Fact(c)
at this stage. In Eq. (4) we present the kinematic condition,
stating that the normal velocity of the sharp interface, Vn, is
given by the normal velocity of the fluid on ∂�(t ).

The active force in our model represents a substrate re-
action to cytoskeleton activity. By taking only a boundary
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force, we essentially neglect friction between the cytoskeleton
and the cytosol in the bulk. This is justified if, for instance,
(1) the actin filaments are relatively stationary in the labo-
ratory reference frame or (2) the actin flow is rapid but its
density is sufficiently low as to not modify Eq. (1). Impor-
tantly, our formulation does not imply that active cytoskeleton
stresses and traction forces are not at play in �(t ). Rather, we
suggest that the net effect of bulk cytoskeleton activity on the
cytosol is transmitted through the membrane. In this regard,
we note that Eq. (2) constrains the problem in such a way
that if one introduces an inhomogeneous active stress in �(t ),
which is isotropic, our model would remain equivalent [by
simply redefining the pressure in Eqs. (1) and (3)].

In order to produce motion and/or deformation of the
droplet, the active force must be graded along the boundary.
The simplest choice is then Fact(c)n, meaning a normal force
that is controlled locally by one chemical species. As we
focus on the dynamics of the cytosol, we do not describe the
force-generation and force-transmission mechanisms at the
molecular level. We postulate that our coarse-grained Fact(c)n
is driven either by actin polymerization against the membrane
or by the contraction of actomyosin filaments. In order to
transmit the external force on the cell membrane, the actin
filaments must also interact mechanically with the substrate,
e.g., via cortex-substrate adhesion.

To this end, the solute can be any cytoplasmic protein
controlling the force-generation or adhesion machinery. In our
model, we assume that c either induces an inwards pulling
force or inhibits an outwards pushing force (see Fig. 1). In line
with this principal assumption, we define the negative linear
response of Fact(c) to solute deviations about the mean planar
concentration c0, namely, F ′

act(c0) ≡ −χ , where χ > 0.
In the bulk, we assume fast solute adsorption on the top and

bottom plates (or onto an adhered cortex), as shown in Fig. 1.
With rapid on and off rates, kon and koff, the quasi-2D transport
of the gap-integrated solute is given by

∂t c + (1 − a)u · ∇c − D∇2c = 0 in �(t ), (5)

D∇c · n + aVnc = 0 on ∂�(t ), (6)

where a = kon/(kon + koff ) is the steady fraction of adsorbed
molecules not advected by the average flow and D is an
effective diffusion coefficient.

In Eq. (5) we present the effective advection-diffusion dy-
namics in �(t ). Note here that the total (advective + diffusive)
solute flux is j = (1 − a)uc − D∇c. In Eq. (6) we impose
zero solute flux on the moving boundary, i.e., j · n − Vnc = 0,
where we inserted the kinematic condition, Eq. (4). Simply
put, the solute is effectively advected at a slower velocity than
that of the fluid. Hence, its concentration decreases (increases)
towards an advancing (retracting) front.

Mass conservation. Our equations of motion explicitly
conserve both the fluid volume (and hence the projected
droplet area A ≡ ∫

�
da) and the total solute (Ctot ≡ ∫

�
c da).

Specifically, Ȧ = 0 results from the fluid incompressibility
and the kinematic condition, Eqs. (2) and (4), while Ċtot = 0
is due to the lack of unbalanced reactions (sources and sinks)
in �(t ) along with the no-flux condition on ∂�(t ), Eqs. (5)
and (6).

External force balance. By calculating the time-derivatives
of the droplet geometric moments (through a complex-number
mapping, detailed in Appendix A), we obtain via the first mo-
ment the fluid center-of-mass velocity, ucm = A−1

∫
∂�

xVn dl ,
in terms of the solute distribution on the boundary

ucm = M

Ah

∮
∂�(t )

Fact(c)n dl. (7)

It is easy to recognize that the line integral on the RHS is
precisely the net active traction force that acts on ∂�. This
driving force is balanced by the net effective friction that acts
over �. It can be shown that the term −M−1hAucm equals the
total viscous shear force applied externally on the two fluid
layers in contact with the no-slip plates (see Appendix A).

Nondimensionalization. We reduce the number of indepen-
dent model parameters by formulating our physical equations
in terms of rescaled dimensionless variables. In this repre-
sentation, length will be given in units of R0 =√

A/π (the
droplet radius), time in units of R2

0/D (solute diffusion time
over the droplet), solute concentration in units of c0 = Ctot/A,
and pressure in units of D/M. Accordingly, the curvature (κ)
will be given in units of 1/R0 and velocities (u, Vn) in units of
D/R0. In addition, Fact will be given in units of Dh/M. We then
make the transformation Fact → Fact/h to simplify the notation
in Eq. (3).

Our reduced dimensionless equations are given explicitly
in Appendix B. They are defined with three dimensionless
parameters:

a = kon

kon + koff
, σ ′ = Mσ

DR0
, χ ′ = MCtotχ

DAh
. (8)

For brevity, we shall omit the primes hereinafter, such that
σ, χ will denote the dimensionless parameters in Eq. (8),
unless stated otherwise.

III. LINEAR STABILITY ANALYSIS

In this section, we examine the shape-concentration dy-
namics close to the circular homogeneous rest state, which
is a straightforward solution to our problem for all parameter
values. In this state, the shape is defined by R = 1 and the
internal solute concentration is c = 1. It follows that κ = 1
on ∂� and the resulting pressure is constant: p = σ − Fact(1)
in �, meaning that u = −∇p = 0. We now perturb both the
shape of the droplet and the solute concentration such that
R = 1 + δR(t, θ ) and c = 1 + δc(t, r, θ ), where δR � 1 and
δc � 1. Let us expand these perturbations in normal cosine
modes,

δR(t, θ ) =
∑

m

δRm(t ) cos(mθ ), (9)

δc(t, r, θ ) =
∑

m

δcm(t, r) cos(mθ ), (10)

where m = 0, 1, 2, . . . , and δRm � 1, δcm � 1. Note that the
sine modes are omitted here since orthogonal perturbations
are uncoupled at the linear level.

Next, we expand the resulting variation in pressure. It
follows from Eqs. (1) and (2) that ∇2δp = 0, and thus
δp(t, r, θ ) = ∑

m Am(t )rm cos(mθ ) (discarding solutions that
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diverge at r = 0). We obtain the amplitudes Am(t ) by substi-
tuting in Eq. (3) the linearized boundary variations in pressure:
δp 	 δp(r = 1), curvature: δκ 	 ∑

m(m2 − 1)δRm cos(mθ ),
and the active force: δFact(c) 	 F ′

act(1)δc 	 −χδc(r = 1).
From the kinematic condition, Eq. (4), it follows that Vr 	

−∂rδp|r=1, and thus

δṘm(t ) 	 −σm(m2 − 1)δRm(t ) − χmδcm(t, 1), (11)

where we used Eqs. (9) and (10) and the pressure expansion.
Note that for χ = 0 we recover the cubic dispersion relation
that characterizes the morphological stability of the passive
droplet.

We proceed by expanding the solute transport problem,
Eqs. (5) and (6), to first order in {δRm, δcm}:

∂tδcm(t, r) 	 [∂rr + r−1∂r − r−2m2]δcm(t, r), (12)

∂rδcm(t, r)|r=1 	 −aδṘm(t ). (13)

Note that, while the bulk equation [Eq. (12)] neglects the
quadratic advection term, the linearized no-flux condition
[Eq. (13)] still couples the solute transport problem with the
droplet shape evolution [Eq. (11)].

Taken together, Eqs. (11)–(13) describe a closed dynam-
ical system for the pair of cos(mθ ) perturbations, δRm(t )
and δcm(t, r). Discarding solutions that diverge at r = 0, the
kernels of Eq. (12) may be written as Jm(−i

√
sr)est , where

Jm is the Bessel function of the first kind of order m and
s is the eigenvalue (constrained by the boundary condition
and normally real-negative for pure diffusion problems). We
search for the coupled shape-concentration eigenmodes by
imposing a shared growth rate s for both degrees of freedom,

δRm(t ) = αmse
st , δcm(t, r) = βmsJm(−i

√
sr)est , (14)

where s, αms, βms ∈ C and we consider the real part of the
RHS in both equations.

As a final reduction of the linearized system, we substitute
the ansatz, Eq. (14), back in Eqs. (11) and (13):

[s + σm(m2 − 1)]αms = −χmJm(−i
√

s)βms (15)

−i
√

sJ ′
m(−i

√
s)βms = −asαms. (16)

The eigenvalues of Eqs. (15) and (16) are then computed
as the roots of the complex characteristic function,

Gm(s) = [s + σm(m2− 1)]i
√

sJ ′
m(−i

√
s)+ aχmsJm(−i

√
s).

(17)

The implicit equation Gm(s) = 0, which determines s
and thus governs stability, depends only on two control
parameters: σ , the stabilizing surface tension, and aχ , the
destabilizing droplet-solute coupling. Note that aχ also has
the meaning of a Pe number, as it represents the ratio be-
tween the driven advection rate of the solute (relative to the
fluid) over its diffusive transport rate. For each eigenvalue
s, the associated shape-concentration eigenmode, vms(r, θ ) ≡
{αms, βmsJm(−i

√
sr)} cos(mθ ), depends on all three indepen-

dent parameters.
For aχ = 0, we recover both s = −σm(m2 − 1) and

the infinitely many real-negative zeros of J ′
m(−i

√
s) =

1
2 [Jm−1(−i

√
s) − Jm+1(−i

√
s)]. The former characterizes the

morphological stability of the viscous droplet and the latter
characterize the decaying diffusion modes on a rigid no-
flux disk. As a function of aχ , the solute diffusion modes
become increasingly entwined with the droplet deformation
mode (for more details, see Appendix C). In our analy-
sis, we will focus on those coupled eigenmodes that can
be destabilized at some critical aχ . These are summarized
in the stability phase diagram shown in Fig. 2. We will
also take note of the marginally stable eigenmodes (asso-
ciated with s = 0) as these represent symmetries in our
system.

Mass modes. Substituting m = 0 in Eq. (17), we find that
the roots of G0(s) are all real and nonpositive, meaning that
there are no azimuthally symmetric instabilities. The eigen-
value s = 0 has two nontrivial eigenmodes: vR

00(r, θ ) = {1, 0}
and vC

00(r, θ ) = {0, 1}. These correspond to perturbations of
the fluid mass (expanding the droplet radius via vR

00) and the
solute mass (elevating the uniform concentration via vC

00).
Both are marginally stable due to the conservation of fluid
volume and total solute.

Polarization-translation modes. Substituting m = 1 in
Eq. (17) and expanding G1(s) for small s, we obtain the
roots s = 0 and s1 	 8(aχ−1)

3−aχ
. Here s = 0 is associated with

a single nontrivial eigenmode, v10(r, θ ) = {1, 0} cos(θ ), de-
scribing the infinitesimal translation of the circular homoge-
neous rest state (a signature of translational invariance). The
more interesting eigenvalue, s1, changes sign from negative
to positive as the control parameter aχ exceeds the value
of 1 (s1 	 4(aχ − 1) when aχ ≈ 1, note the black line in
Fig. 2). Assuming small s1, the associated eigenmode is
approximated by v1s1 (r, θ ) ≈ {χ, −s1r} cos(θ ). That is, the
global translation of the droplet is coupled to an internal solute
polarity, as suggested already by Eq. (7).

The physics of mode v1s1 (r, θ ) could be understood as
follows. Given an infinitesimal solute gradient, e.g., δc =
εr cos(θ ) = εx, the circular droplet is driven in the direction
−sign[ε]x̂. In the stable case [s1 < 0, visualized in Fig. 2(a)],
corresponding to aχ < 1 (low Pe number), the solute spreads
out over the droplet domain (δc → 0) at a typical relaxation
time τ1 = |s1|−1. Consequently, the droplet stalls (u → 0)
after translating a total distance �x 	 −τ1χε. In the unstable
case [s1 > 0, Fig. 2(b)], corresponding to aχ > 1, the solute
drift with respect to the fluid dominates over diffusion. As
the solute accumulates at the rear, the forward fluid flow is
amplified [proportional to −χ∇c; see Eq. (7)]. In turn, this
flow increases the rearward solute accumulation [proportional
to −au; see Eq. (6)]. This positive feedback loop, factored
by aχ , destabilizes the polarization-translation (motility)
mode.

Multipolar shape-concentration modes. For m � 2, we find
marginally stable modes (with s = 0 for any aχ ) only if
σ = 0. In fact, in this zero surface tension limit (treated in
Appendix C), all normal modes are closely analogous to mode
m = 1, with the additional real eigenvalue approximated by
sm 	 4m(m+1)(aχ−1)

2+(1−aχ )m 	 2m(m + 1)(aχ − 1) for aχ ≈ 1. How-
ever, for σ > 0, we find a pair of complex-conjugate eigenval-
ues whose real part changes sign from negative to positive as
aχ increases or as σ decreases (when aχ > 1); see Fig. 2.
In other words, the shape-concentration coupling (aχ ) can
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FIG. 2. The droplet-solute coupling destabilizes shape-concentration modes. Linear stability phase diagram (left): To the right of the black
vertical line (aχ > 1), the coupled polarization-translation (motility) mode is unstable. To the right of each m � 2 colored curve—whose
slope decreases with m—the respective shape-concentration wave is unstable. These critical lines are found computationally by tracing the
Hopf bifurcations over the parameter space. The thin translucent lines mark their analytic low-σ approximation. (a) and (b) Visualizations of
the polarization-translation mode in the stable case (a), where aχ = 0.9, and the unstable case (b), where aχ = 1.1. Both are evolving from
left to right following the characteristic time τ1 = |s1|−1. (c) Standing shape-concentration waves corresponding to mode m = 2, evolving from
left to right at the marked time stamps (with T = 2π/Im[s2] denoting the oscillation period). Parameters are set on the Hopf bifurcation point
(such that Re[s2] = 0, matching in this case to σ = 1 and aχ 	 1.61). The color density map in the bulk represents δc (negative in blue to
positive in light green), and the color-coded boundary represents δκ (negative in dark red to positive in bright yellow). On the boundary, these
perturbations give rise to deviations in the active force, −χδcn, and the restoring capillary force, −σδκn (both marked with matching arrows).
The vector field in the bulk represent the instantaneous fluid flow, u = −∇δp.

destabilize each m � 2 mode through a Hopf bifurcation. To
do so, it must work not only against the solute diffusion (as in
m = 1), but also against the surface tension. To first order in σ ,
the mth Hopf bifurcation occurs at aχ c 	 1 + 3m2+m−4

4(m+2) σ with

sm 	 ±im(m + 1)
√

2(m − 1)σ (see Appendix C for deriva-
tion and the thin translucent lines in Fig. 2). Then, the asso-
ciated eigenmodes, vmsm (r, θ ), represent shape-concentration
standing waves oscillating with frequency ωm = |Im(sm)|.
Note that, in terms of the dimensional parameters, the os-
cillation period scales like T ∼ √

τsoluteτdroplet, where τsolute =
R2

0/D is the solute diffusion time over the droplet and τdroplet =
R3

0M−1σ−1 is the characteristic shape relaxation time of the
viscous droplet.

From a physical standpoint, the standing waves result from
a dynamic interplay between the active driving force and the
restoring surface tension. Consider an initial state in which
finite solute and curvature gradients produce force variations
on the boundary that directly balance each other [Fig. 2(c),
t = 0]. At this instant, the resultant pressure is uniform and
thus u = 0. The solute then spreads out via diffusion while
the tension persists in countering the curvature gradients (t =
T/8). As the boundary is driven by tension, retracting edges
amass solute while advancing edges disperse with solute [see
Eq. (6)]. By the time the circular shape is recovered (t = T/4),
a residual solute gradient on the boundary induces a nonuni-
form active force that pulls in the retracting edges further. In
essence, this overshoot (or memory) comes from the diffusive
transport of the solute. As the droplet is deformed in the
transverse direction by Fact(c), the tension counters the new
deformation until the fluid stalls again (t = T/2). The same
mechanism then drives the droplet back to the initial state (as

seen in Supplemental Movie 1.a [59]). We stress that such
oscillations can be stable (damped) or unstable (amplified),
depending on the strength of the shape-concentration coupling
(see diagram in Fig. 2).

Traveling morphological waves are also supported by the
model in the linear regime. Such waves can be constructed in
a straightforward manner by superimposing two orthogonal
standing waves [cos(mθ ) and sin(mθ )], evolving at the same
amplitude and frequency with a temporal phase shift of a
quarter period (see Supplemental Movies 1 and 2 [59]). Inter-
estingly, in these traveling waves, the fluid pathlines circulate
locally over time while the instantaneous streamlines remain
irrotational by definition (being that u = −∇p). Our model
sustains such flow patterns because the inhomogeneous active
force [Fact(c)n] continuously drives the droplet in a time-
dependent manner.

IV. STEADILY MOVING STATES

Reverse-engineering problem. In this section we search
for self-consistent solutions to our nonlinear model that are
characterized by a fixed stationary shape,

(u − ucm) · n = 0 on ∂�(t ), (18)

where we relied on the kinematic condition, Eq. (4).
We prove in Appendix D that Eq. (18) mandates that

the internal Darcy flow is uniform and given by u = ucm

in �(t ). Hence, at steady state, we take u = u1x̂ without
loss of generality. In this state, both the pressure p and the
solute concentration c are stationary in the moving frame of
reference. It follows that Eq. (1) and Eqs. (5) and (6) are
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solved by the unique (y-independent) forms:

p(x̃) = p1 − u1x̃, c(x̃) = c1e−au1 x̃ in �(t ), (19)

where x̃ = x − u1t and p1, c1 are normalization constants.
Hereinafter, we shall work in the moving frame of reference
and omit the tilde in x̃ for brevity.

The generic steady-state forms in Eq. (19), which follow
from the fixed-shape condition, Eq. (18), significantly reduce
the degrees of freedom in our problem. Indeed, if a steadily
moving solution exists for given set of parameters, it is fully
determined by the three constant numbers (u1, p1, c1). The
challenge is to find those combinations of numbers that pro-
duce a self-consistent (physically viable and dimensionless)
shape that is sustained by Eq. (3).

Active force saturation. Working in the nonlinear regime,
one must specify a formula for Fact(c). To account for the
plausible saturation of this active force, we choose here the
simplest Hill function (with Hill coefficient n = 1), as adopted
in previous one-dimensional (1D) models [44,45],

Fact(c) = − βc

cs + c
, (20)

where β denotes the maximal pulling force induced by the
solute and cs is the saturation parameter. In the dimensionless
model, the phenomenological parameters β and cs are defined
as Mβ

Dh and Acs
Ctot

, respectively (in terms of the dimensional pa-
rameters). The linear response parameter χ , which determines
the stability of the rest state, is then given by χ ≡ −F ′(1) =
βcs/(1 + cs)2.

Optimization procedure. Substituting Eqs. (19) and (20)
back in the normal force balance, Eq. (3), gives the curvature
on ∂� as a single-valued function of x:

κ (x) = σ−1

(
p1 − u1x − βc1e−au1x

cs + c1e−au1x

)
. (21)

This equation translates to an ODE problem for the bound-
ary line that we solve numerically. To be physically viable,
the resultant contour ∂� must be a simple (nonintersecting)
closed curve without cusps. In addition, the enclosed do-
main � must satisfy the dimensionless normalization condi-
tions, namely, A = π and Ctot = π . Together, these constraints
translate to three nonlinear equations in the three numbers that
make up our reverse-engineered solution (u1, p1, c1). To solve
this problem efficiently, we built a computational optimization
procedure (for details, see Appendix D).

Computational solutions. In Fig. 3 we fix a moderate finite
tension (σ = 1) and trace the dimensionless steadily moving
states as they branch out from the rest state (u1 = 0) through
a pitchfork bifurcation that occurs at aχ = 1 (the threshold of
the motility-mode instability). As shown in Fig. 3, and also
analytically in Appendix D, this bifurcation is supercritical
if cs � 0.5 and subcritical if cs < 0.5. For cs < 0.5, there
is also a saddle-node bifurcation of finite velocity occurring
at some aχ∗ < 1. This bifurcation structure admits three
motility phases: (1) rest phase, where only the stable rest
state exists (aχ < 1 and cs � 0.5 or aχ < aχ∗ and cs < 0.5),
(2) traveling phase, where the rest state is unstable and there
exists a stable traveling state (aχ > 1), and (3) bistable phase,
where both the rest state and a high-speed traveling state
are stable (aχ∗ < aχ < 1 and cs < 0.5). In this phase, we

a cs�2 b cs�0.5

c cs�0.1

FIG. 3. Steadily moving states (moderate tension). Motility bi-
furcation diagram (top): with σ = 1, a = 1 fixed, we plot the steady-
state velocity u1 as a function of the force parameters: χ and cs.
Blue (dashed orange) contours and blue (light orange) surfaces mark
the stable (unstable) branch of the steady traveling solutions. The
circular homogeneous rest state is represented by the plane u1 = 0.
On this plane, the black line at χ = 1 marks the instability of the
motility mode (m = 1), and the red line at χ 	 1.61 marks the m = 2
Hopf bifurcation. The branching of traveling states at χ = 1 takes
the form of a pitchfork bifurcation (supercritical if cs � 0.5 and
subcritical if cs < 0.5). The thin gray line marks the saddle-node
bifurcation occurring in the subcritical regime. Large symbols mark
the representative solutions visualized in panels (a)–(c). In these
panels the color density map in the bulk represents the exponential
solute profile, Eq. (19) (increasing from dark blue to light yellow).
The color-coded boundary represents the curvature, Eq. (21) (in-
creasing from negative in pink through dark red for κ = 0 to positive
in bright yellow). The thin vector field in the bulk represents the
flow, u = u1x̂. The dark arrows on the boundary represent Fact(c)n,
Eq. (20). In panel (c), the saddle-node state on the left corresponds
to χ 	 0.558. Parameters matching all other states can be inferred
from the diagram.

find an additional low-speed steady state that is unstable.
Far from critical points, the speed u1 (on the stable branch
in blue) tends to scale linearly with the maximal pulling
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a cs�2 b cs�0.5

c cs�0.1

FIG. 4. Steadily moving states (low tension). Motility bifurcation
diagram (top): With σ = 0.1, a = 1 fixed, we plot the steady-state
velocity u1 as a function of the force parameters: χ and cs. All
graphic objects and styles have the same meaning as in Fig. 3. Note
here the additional saddle-node bifurcation occurring at high χ (thin
gray line). This bifurcation annihilates the stable branch and gives
rise to a new unstable branch beneath it. The latter is itself cut off at
a pinched state, traced on the diagram by the thin orange curve. As
the two saddle-node bifurcations disappear simultaneously for low
cs, the subcritical branch merges with the unstable pinching branch.
Large symbols mark the representative solutions visualized in panels
(a)–(c). In these panels, graphic objects and colors have the same
meaning as in Figs. 3(a)–3(c). In panel (b), the second (saddle-node)
and third (pinched) states correspond to χ 	 1.063 and χ 	 1.058,
respectively. All other parameters can be inferred from the diagram.

force β = χ (cs + 1)2/cs. This picture is robust for moderate
to high tension, extending to the limit σ → ∞ (the rigid
circular case, also treated in Appendix D). Note that the same
bifurcations and consequent motility phases appear similarly
in the analogous 1D model [44,45].

We stress that our results for the deformable droplet do not
merely reconstitute a familiar force-speed relationship. Us-
ing our computational optimization method for resolving the
self-consistent traveling states, we also capture their shapes
[Figs. 3(a)–3(c)]. This acquisition allows us to explore the
force-shape (or speed-shape) relationship efficiently at the
nonlinear level, without relying on heavy numerical simula-
tions of the coupled moving-boundary dynamics.

In Fig. 4 we fix a low tension (σ = 0.1) and compute
the steadily moving solutions in the same manner. Here, the
bifurcation diagram exhibits a distinct qualitative change in

the force-speed dependence. Strikingly, we find a parametric
regime (about cs = 0.5), for which the steady-state speed
u1 (on the stable branch in blue) becomes a nonmonotonic
function of the force amplitude β. The puzzling decrease in
speed ends at an inverted saddle-node bifurcation, occurring
at some aχ∗∗ > min[aχ∗, 1] (depending on cs). This critical
point essentially annihilates the stable branch for higher force
amplitudes. The newly formed unstable branch is terminated
as well, at some χ < χ∗∗, where a pinching point occurs,
implying a topological singularity [see Fig. 4(b)]. In addition,
there exists a critical cs (smaller than 0.5), below which the
two saddle nodes are annihilated and the stable branch com-
pletely disappears. At this stage, the unstable pinching branch
merges with the subcritical branch that originates at aχ = 1.

The recovered shapes in Fig. 4 reveal that this intricate
bifurcation structure is caused by a particular deformation
tendency that takes hold in the low cs (and low σ ) regime. This
provides a unique opportunity to gain insights into the nonlin-
ear physics underlying the force-shape-speed dependence.

Interpretation of the steady state morphology. We may
infer the qualitative makeup of ∂� from a brief overview
of the curvature extrema. Due to reflection symmetry about
the axis motion (the polarity axis x), the front (rightmost)
and rear (leftmost) limits of the boundary are themselves
local curvature extrema. As detailed in Appendix D, both
coordinates, denoted xR and xL respectively, are determined
implicitly by the constraints which grant a self-consistent
solution. Deriving Eq. (21), we also obtain a maximum (x+)
and minimum (x−) of κ (x),

x± = 1

au1
log

{
c1

2cs
[aβ − 2 ±

√
aβ(aβ − 4)]

}
. (22)

We stress here that u1, c1 (themselves determined by the
constraints) also depend nonlinearly on all dimensionless
parameters, including σ . We also note that x± are necessarily
real numbers since the minimal aβ for which steady traveling
states exist is 4.

The extrema x± have the meaning of crossover points in
the normal force balance, Eq. (21). For x > x+, the curvature
decreases with x because the pressure, given in Eq. (19),
dominates the equation [Fact(c) is negligible at high x due
to the exponential drop of c(x), Eq. (19)]. For x ∈ (x−, x+),
the curvature increases with x due to the nonlinear rearwards
amplification of the active pulling force [in this regime,
∂xFact(c(x)) > 0 dominates over p′(x) = −u1]. For x < x−,
the curvature again decreases with x due to the saturation of
Fact(c).

For high cs, we generally find that x− < xL < x+ < xR.
This means that x− is irrelevant (out of bounds) and both
xL, xR are local curvature minima. The resulting shape is
thus elliptical—shortened along the polarity axis—as seen in
Figs. 3(a) and 4(a). A decrease in cs prompts the saturation
of Fact as a function of x, giving xL < x− < x+ < xR. In this
case, the front is still a curvature minimum but the rear is
now a curvature maximum. The shape is thus triangulated
with a bulged rear, as seen in Fig. 3(b). Notice that, about
x−, the curvature can also be negative, as seen in Fig. 3(c)
(high-speed stable state on the right) and Fig. 4(b). For slow
traveling states at low cs, we typically find that xL < x− <

xR < x+. In this arrangement, x+ is irrelevant and both xL,
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xR are curvature maxima. The corresponding shape is then
necessarily elongated in the direction of motion, as seen in
Fig. 3(c) (leftmost steady state) and Fig. 4(c). At low tension
and low cs, the force amplitude β amplifies the negative
curvature deformation along the stable branch, leading to a
peanut-like (cat-tongue) shape, as evident in the saddle-node
state [second image in Fig. 4(b)]. This introduces a boundary
section, just prior to the rear, on which Fact(c) is saturated
and yet nx > 0. This adds a meaningful negative contribution,
Fact(c)nx < 0, to the external force balance, Eq. (7). Hence,
the speed u1 ultimately decreases as a consequence of this
(deformation-induced) active drag effect. The same effect also
leads to the morphological pinching point that terminates the
newly formed unstable branch [bottom state in Fig. 4(b)].

V. CONCLUSION AND DISCUSSION

Our coupled moving-boundary model offers a concise
physical description of symmetry breaking, active-capillary
waves, and steady-state motility in confined cells. While
such phenomena usually entail significantly more complex
and analytically intractable modeling, our simple equations
of motion capture two types of linear instabilities as well
as a range of stationary patterns that connect motion with
shape. Despite their intricacy, these results are accordant with
stringent constraints imposed by (1) the incompressibility of
the internal fluid and (2) the external geometry (or Darcy’s law
more generally).

The analysis provides both quantitative predictions (i.e.,
particular speeds and shapes for given parameters) and
physical insights, meaning an intuitive understanding of the
mechano-chemical self-organization of our system. Indeed,
given the simplicity of our formulation, and being that Fact(c)
is defined phenomenologically, the main value of our work is
in these physical insights.

Quantitative predictions for actual cell behaviors remain
beyond the scope of the present study. Notwithstanding, the
theoretical patterns obtained here do bear some strong qual-
itative similarities to a number of experimental observations.
Specifically, the elongated traveling shape solutions, found in
the low tension regime, are reminiscent of in vitro ameoboid
motility in quasi-2D confinement [6–8,54]. Note the distinct
similarity between the polarized progenitor cells in Ref. [7]
and the predicted pearlike shape in Fig. 4(b) (first steady
state). Our model also captures the formation of a uropod-
like structure at the cell rear, which is typical to various
motile cell types, particularly under confinement [6,8,54].
The high aspect-ratio shapes, represented in Figs. 3(a), 3(b),
and 3(c) (specifically, the high-speed steady state), bear more
resemblance to confined dendritic cell migration [44] or “mes-
enchymal” keratocyte migration on substrates [46,60].

In addition, standing and traveling normal waves have
been observed in various systems, including Dictyostelium
cells [61], suspended fibroblasts [62] (previously modeled
in Ref. [63]), developing embryonic cells [64], migrating
micogrlia cells [65], and synthetic membrane vesicles con-
taining the Min protein system [66]. Although these experi-
ments were not set in 2D confinement, the similarity to our
coupled multipolar oscillations suggest the involvement of a
similar mechanism, that is, a fluid-mediated interplay between

the restoring surface tension force and an active pushing
(pulling) force controlled by a diffusive inhibitor (activator).

To this end, there are still open questions pertaining to
the nonlinear dynamics and limit behaviors in our system.
Notably, the global stability of the resolved steadily moving
states is not guaranteed. Such states may have only a lim-
ited basin of attraction within the vast shape-concentration
phase space. To contemplate this point, imagine a randomly
perturbed rest state that is linearly unstable with respect to
numerous normal modes. In this scenario, the growing mul-
tipolar waves would ultimately couple to each other and to
the motility mode at the nonlinear level. Plausible additional
attractors such as shape-concentration limit cycles could con-
ceivably compete with the steadily moving state for selection.
Furthermore, the low tension regime presents a particularly
puzzling conundrum: when the rest state is unstable and our
branch of stable traveling solutions no longer exists, the dy-
namic attractor of the motility mode is completely unknown.
The possibility of incurring asymmetric fragmentation via a
finite-time topological singularity (pinch-off point) is in itself
an exciting avenue for further investigation. Such unsettled
questions may be answered with an appropriate numerical
simulation of the problem.
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APPENDIX A: MOMENTS

Here we derive exact relations characterizing the evolu-
tion of complex geometric moments associated with �(t ).
Similarly to Ref. [21], the (x, y) coordinate is mapped to the
complex number z = x + iy and the kth moment is given by

Mk (t ) =
∫

�(t )
zk da. (A1)

It is easy to recognize that M0 = A and M1 = ARA, where
A is the droplet area and RA is the center-of-mass coordinate
over the complex plane. We compute the time derivative of
Mk (t ),

Ṁk (t ) =
∮

∂�(t )
zkVn dl =

∮
∂�(t )

zku · n dl

=
∫

�(t )
∇ · (zku) da =

∫
�(t )

u · ∇zk da

= −M
∫

�(t )
∇p · ∇zk da = −M

∫
�(t )

∇ · (p∇zk ) da

= −M
∮

∂�(t )
(p∇zk ) · n dl

= M
∮

∂�(t )
[Fact(c)/h − σκ]∇zk · nd l, (A2)
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where we (1) expressed the flux of zk through the moving
boundary ∂�(t ), (2) substituted Eq. (4), (3) used the Diver-
gence theorem, (4) used Eq. (2), (5) substituted Eq. (1), (6)
used the harmonicity of analytic functions (�zk = 0), (7) used
the Divergence theorem again, and (8) substituted Eq. (3).

1. Mass balance (k = 0)

Substituting k = 0 in Eq. (A2) gives the droplet area con-
servation, Ṁ0 = Ȧ = 0.

2. External force balance (k = 1)

Substituting k = 1 in Eq. (A2) gives

Ṁ1 = AṘA = M
∮

∂�(t )
[Fact(c)/h − σκ]∇z · n dl. (A3)

Over the complex plane, ṘA represents the center-of-mass
velocity and ∇z · n = nx + iny is the unit normal pointing
outwards on ∂�(t ). Multiplying Eq. (A3) by h/M, and going
back to R2, we may restate Eq. (A3) as

−hM−1Aucm +
∮

∂�(t )
Fact(c)n dl = 0, (A4)

where ucm denotes the droplet center-of-mass velocity over
R2. Here we used the fact that, over a simple closed curve, the
line integral of the curvature vector vanishes:

∮
κn dl = 0.

We recognize that Eq. (A4) represents the external force
balance on the droplet. The second term on the LHS equals the
net active traction force acting on the droplet boundary in the
normal direction. We will now show that the first term equals
the net viscous shearing force applied externally on the two
fluid layers in contact with the no-slip plates. This dissipative
force is given by

Fdiss =
∫

�(t )
(τ |z=0 (−ẑ) + τ |z=h ẑ)da, (A5)

where τ = μ[∇u + (∇u)T] is the 3D viscous shear stress
tensor and u is the 3D flow field. Given the parabolic profile
of the flow, u(x, y, z) = − z(h−z)

2μ
∇p(x, y), we obtain τ ẑ =

2z−h
2 ∇p(x, y), and thus

Fdiss =
∫

�(t )
(h∇p) da =−hM−1

∫
�(t )

u da = −hM−1Aucm.

(A6)

APPENDIX B: DIMENSIONLESS MODEL

Here we summarize the equations of motion in our reduced
dimensionless model. Upon rescaling variables and param-
eters as discussed in Sec. II (and taking Fact → Fact/h for
brevity), the dimensional Eqs. (1)–(6) are now given by

u = −∇p in �(t ), (B1)

∇ · u = 0 in �(t ), (B2)

p + Fact(c) = σ ′κ on ∂�(t ), (B3)

Vn = u · n on ∂�(t ), (B4)

∂t c + (1 − a)u · ∇c − ∇2c = 0 in �(t ), (B5)

∇c · n + aVnc = 0 on ∂�(t ). (B6)

The linear response of Fact(c) to solute deviations about
c = 1 (the dimensionless mean concentration) is

F ′
act(1) = −χ ′. (B7)

The system of Eqs. (B1)–(B7) is defined by the three
dimensionless parameters given in Eq. (8).

The dimensionless droplet area A and the total solute Ctot

are then ∫
�(t )

da = π,

∫
�(t )

c da = π, (B8)

and the dimensionless form of the external force balance,
Eq. (A4), is

−πucm +
∮

∂�

Fact(c)n dl = 0. (B9)

APPENDIX C: LINEAR STABILITY ANALYSIS

Here we expand on our linear stability analysis of the
circular homogeneous rest state discussed in Sec. III.

1. Special cases

As a series of sanity checks, we analyze Eqs. (15)–(17)
in the special cases: a = 0, χ = 0, and σ = 0. First, it is
clear that if the droplet-solute coupling is not closed (meaning
aχ = 0), the roots of Eq. (17) are the eigenvalues that charac-
terize the completely uncoupled system,

smσ = −σm(m2 − 1), (C1)

sm,n = −λ2
m,n, (C2)

where the eigenvalue smσ � 0 depicts the dispersion relation
for shape perturbations of the passive droplet, and sm,n � 0 are
the infinitely many eigenvalues characterizing the decaying
diffusion modes on a rigid disk with no-flux condition. More
specifically, λm,n is the nth real-positive root of J ′

m(λ) =
1
2 [Jm−1(λ) − Jm+1(λ)] (such that λm,n+1 > λm,n).

We stress that even if aχ = 0, our linear droplet-solute sys-
tem may still be coupled via χ �= 0 or a �= 0. To understand
why the growth rates in Eqs. (C1) and (C2) remain unaffected
by any “one-way” coupling, we examine the eigenmodes
associated with smσ , sm,n in the two special cases: a = 0 and
χ = 0.

No solute adsorption (a = 0). Solving Eqs. (15) and (16)
with a = 0, one obtains

vmσ (r, θ ) =
(

1
0

)
cos(mθ ), (C3)

vm,n(r, θ ) =
(

χmJm (λm,n )
λ2

m,n−σm(m2−1)

Jm(λm,nr)

)
cos(mθ ). (C4)

Let us first make sense of vmσ , Eq. (C3). Without adsorp-
tion, the solute is advected at the same speed of the fluid.
This means that the moving boundary does not induce solute

022404-9



LAVI, MEUNIER, VOITURIEZ, AND CASADEMUNT PHYSICAL REVIEW E 101, 022404 (2020)

gradients; see Eq. (16). If the solute profile is not perturbed
(δc = 0), the active force on the boundary is kept uniform. It
follows that the pure shape perturbation is stabilized by the
tension alone [i.e., with smσ , Eq. (C1)].

The modes vm,n, Eq. (C4), can be understood as follows.
Being that a = 0, the solute diffusion problem is unaffected
by any small motion of the boundary. Thus, one expects
to recover the classical diffusion modes on a rigid no-flux
disk [associated with sm,n, Eq. (C2)]. The enslaved shape
component in vm,n comes from the fact that small deviations
in solute still produce a nonuniform active force on the
boundary (via χ �= 0). Note that in the special scenarios where
σm(m2 − 1) 	 λ2

m,n, the mode vm,n effectively converges to
the mode vmσ , Eq. (C3).

No force-transduction (χ = 0). Solving Eqs. (15) and (16)
with χ = 0, one obtains

vmσ (r, θ ) =
⎛
⎝ 1

a
√

σm(m2−1)

J ′
m[
√

σm(m2−1)]
Jm[

√
σm(m2 − 1)r]

⎞
⎠

× cos(mθ ), (C5)

vm,n(r, θ ) =
(

0
Jm(λm,nr)

)
cos(mθ ), (C6)

Let us first interpret vmσ , Eq. (C5). Being that χ = 0, the
active force on the boundary is kept uniform and independent
of small solute deviations. Hence, the shape perturbation must
decay with the classical growth rate smσ , Eq. (C1). Assuming
a �= 0, the movement of the free boundary still feeds into
the solute transport problem [via Eq. (16)] and this results
in the enslaved solute component of vmσ . Note that, in the
special scenarios where σm(m2 − 1) 	 λ2

m,n, the mode vmσ

effectively converges to the mode vm,n, Eq. (C6).
The eigenmodes vm,n, Eq. (C6), are easier to understand.

Since χ = 0, the shape is unaffected by small solute devia-
tions, Eq. (15). Hence, if the shape is not perturbed (δR = 0),
one simply recovers the classical diffusion modes on a rigid
no-flux disk [associated with sm,n, Eq. (C2)].

Zero surface tension (σ = 0). We consider the limit σ =
0 and focus only on the multipolar modes m � 2. Note that
the modes m = 0 and m = 1, which are independent of σ , are
discussed separately.

We begin by substituting σ = 0 in Eq. (17),

Gzst
m (s) = s

i
√

s

2
[Jm−1(−i

√
s) − Jm+1(−i

√
s)]

+ aχmsJm(−i
√

s). (C7)

It is clear that s = 0 is a root of Eq. (C7) for any aχ .
Substituting σ = 0 in Eqs. (15) and (16), we find that s = 0 is
associated with the eigenmode,

vzst
m0(r, θ ) =

(
1
0

)
cos(mθ ), (C8)

which describes the pure deformation of the droplet. With
no surface tension, and with δc = 0, there is no nonuniform
force acting on the boundary that could possibly counter or
amplify vzst

m0. Hence, this perturbation must be marginally
stable (accordingly, s = 0).

Since Gzst
m (s) is highly nonlinear, we cannot find its addi-

tional roots analytically. As we are interested in instabilities,
we expand Eq. (C7) about s = 0 and obtain

Gzst
m (s) 	 s

m!

(
− i

√
s

2

)m

×
[

m(1 − aχ )+ 2+ m(1 − aχ )

4(m + 1)
s

]
.

(C9)

This function has the additional real root szst
m 	 4m(m+1)(aχ−1)

2+m(1−aχ ) ,
which changes sign from negative to positive as aχ exceeds
the critical value of 1. We stress that szst

m is a valid approxima-
tion of a true eigenvalue so long as it is is small, i.e., for aχ ≈
1, in which case, we may write szst

m ≈ 2m(m + 1)(aχ − 1).
The associated eigenmode is then given by

vzst
msm

(r, θ ) =
(

−χmJm(−i
√

szst
m )

szst
m Jm(−i

√
szst

m r)

)
cos(mθ )

≈
(

− i
√

szst
m

2

)m(−χm
szst

m rm

)
cos(mθ )

∼
(

χ

2(m + 1)(1 − aχ )rm

)
cos(mθ ), (C10)

where we expanded the Bessel functions for low szst
m . It

is instructive to note that as aχ passes 1, and hence vzst
msm

becomes unstable, the solute gradient component in the eigen-
mode also changes sign with respect to the shape compo-
nent. This instability is essentially a multipolar analog of
the polarization-translation bifurcation (in mode m = 1; see
following section).

2. Generic coupled case

Mass modes (m = 0). Let us consider the azimuthally
symmetric perturbations of droplet shape and solute concen-
tration. Substituting m = 0 in Eq. (17) gives

G0(s) = si
√

sJ1(−i
√

s). (C11)

As expected, G0(s) is independent of both σ and aχ . It has
only real-negative roots: s = 0 and s0,n = − j2

1,n, where j1,n is
the nth zero of J1(x) (the Bessel-J function of order 1).

Substituting m = 0 back in Eqs. (15) and (16), we find that
the root s = 0 is associated with two nontrivial eigenmodes,

vR
00(r, θ ) =

(
1
0

)
, vc

00(r, θ ) =
(

0
J0(0)

)
=
(

0
1

)
, (C12)

where vR
00 represents a uniform change in the droplet radius

and vc
00 represents a uniform elevation in the solute con-

centration. Due to the conservation of total fluid and total
solute, these mass perturbations are both marginally stable
(accordingly, s = 0).

Each real-negative root, s0,n = − j2
1,n, is associated with an

m = 0 (radial) diffusion mode, given by

v0,n(r, θ ) =
(

0
J0( j1,nr)

)
. (C13)

022404-10



MOTILITY AND MORPHODYNAMICS OF CONFINED CELLS PHYSICAL REVIEW E 101, 022404 (2020)

Polarization-translation modes (m = 1). Substituting m =
1 in Eq. (17) gives

G1(s) = s
i
√

s

2
[J0(−i

√
s) − J2(−i

√
s)] + aχsJ1(−i

√
s).

(C14)

We find that s = 0 is a root of G1(s) for all parameter
values. Substituting m = 1 in Eqs. (15) and (16), and noting
that J1(0) = 0, one finds that s = 0 has a single nontrivial
eigenmode

v10(r, θ ) =
(

1
0

)
cos θ. (C15)

This mode merely describes the infinitesimal translation of the
droplet. At the linear level, the shape remains circular and c
remains uniform, as in the circular homogeneous rest state.
Due to translational invariance, this perturbation is marginally
stable (accordingly, s = 0).

Since G1(s) is highly nonlinear, we cannot find its addi-
tional roots analytically. As we are interested in instabilities,
we expand Eq. (C14) about s = 0:

G1(s) 	 s
i
√

s

2

[
1 − aχ + 1

8
(3 − aχ )s

]
. (C16)

This function has the additional real root s1 = 8(aχ−1)
3−aχ

, which
changes sign from negative to positive as aχ exceeds 1. Note
that s1 approximates a true eigenvalue of G1(s), Eq. (C14),
so long as it is small, i.e., for aχ ≈ 1. In which case, we
may write s1 ≈ 4(aχ − 1). The associated eigenmode is then
given by

v1s1 (r, θ ) =
(−χJ1(−i

√
s1)

s1J1(−i
√

s1r)

)
cos θ

≈ i
√

s1

2

(
χ

−s1r

)
cos θ ∼

(
χ

4(1 − aχ )r

)
cos θ,

(C17)

where we expanded the Bessel functions for small s1. It is
instructive to note that as aχ passes 1, and v1s1 becomes

unstable, the solute gradient component in v1s1 (r, θ ) also
changes sign.

In the stable case (aχ < 1), the solute diffusion dominates
over its relative drift with respect to the fluid. As the solute
spreads out over the droplet domain (δc → 0), the polar
driving force also vanishes, and hence the droplet slows down
and stalls (u → 0). Given an initial gradient δc = εr cos θ =
εx, the stopping distance of the droplet, �x, can be com-
puted from the eigenmode, Eq. (C17), which gives �x =
sign[s1] χ

4(1−aχ )ε = − χ

4(1−aχ )ε. In the unstable case (aχ > 1),
the solute drift with respect to the fluid dominates over diffu-
sion. As the solute accumulates at the rear, it amplifies the
forward droplet velocity, which then strengthens the solute
asymmetry. Hence, in this case, v1s1 , Eq. (C17), represents an
unstable perturbation that breaks the front-rear symmetry and
leads to motility.

Multipolar modes (m � 2). We now examine the roots of
Gm(s) for m � 2 with aχ > 0 and σ > 0. It is easy to see that
s = 0 is always a root of Eq. (17). However, taking m � 2
and σ > 0, it follows from Eq. (15) that αm0 = 0 (the shape
component vanishes), and since Jm(0) = 0 for any m � 1, the
solute component also vanishes. Hence, for each m � 2 with
finite tension, s = 0 has only the trivial eigenmode (v = 0).

As we are interested in instabilities, we look for an eigen-
value s∗ [complex root of Gm(s)] whose real part changes sign
from negative to positive as a function of the destabilizing
control parameter aχ . At the critical point, denoted aχ c, the
real part of s∗ is zero and thus s∗ = iω (where ω ∈ R repre-
sents an oscillation frequency of the associated eigenmode).
By solving Re[Gk (iω)] = Im[Gk (iω)] = 0, we may compute
both ω and aχ c as functions of m and σ . Assuming small
(yet nonzero) frequency, we expand Gm(iω), Eq. (17), to up
to order (m/2 + 3) in ω and obtain

Gm(iω) =
(

− i
√

iω

2

)m[
Fm(ω2) +

(
iω

4

)
Hm(ω2)

]

+O(ωm/2+4), (C18)

where Fm(ω2), Hm(ω2) are the following real-valued
functions:

Fm(ω2) = σm2(m2 − 1)

m!
−
(ω

4

)2 8(m + 2)[2 + m(1 − aχ )] + σm(m2 − 1)(m + 4)

2(m + 2)!
, (C19)

Hm(ω2) = 4(m + 1)[m(1 − aχ )] + σm(m2 − 1)(m + 2)

(m + 1)!
−
(ω

4

)2 12(m + 3)[4 + m(1 − aχ )] + σm(m2 − 1)(m + 6)

6(m + 3)!
.

(C20)

Since s∗ = iω is a root of Gm(s), it follows that Fm(ω2) 	 0 and Hm(ω2) 	 0. This system of two implicit equations can be
solved in the variables ω2 and aχ . Using Mathematica, we find one explicit solution that agrees with our result for the zero-
surface-tension limit, i.e., for σ → 0 one obtains aχ c → 1 and ω → 0. We stress that this explicit solution can be considered a
valid approximation of the bifurcation point so long as ω is small. Hence, we expand it here up to leading order in σ

aχ c 	 1 +
(
3m2 + m − 4

)
σ

4(m + 2)
, (C21)

ω 	 ±m(m + 1)
√

2σ (m − 1). (C22)
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To recapitulate, we find a pair of complex-conjugate
eigenvalues whose real part crosses 0 as aχ exceeds the
critical point aχ c [approximated by Eq. (C21)]. At this
Hopf-bifurcation point, the frequency ω is approximated by
Eq. (C22). Using Eq. (15), we can express the coupled eigen-
mode associated with s∗ = iω. This eigenmode represents a
shape-concentration standing wave,

vms∗ (r, θ ) =
(

−χmJm(−i
√

iω)

(iω + σm(m2 − 1))Jm(−i
√

iωr)

)
cos(mθ )

∼
(

χ

(m + 1)[∓i
√

2σ (m − 1) − σ (m − 1)]rm

)

× cos(mθ ), (C23)

where we expanded the Bessel functions for small ω, and
substituted Eq. (C22). Using Eq. (C23), we find that �φ ≈
π ± arctan {√2/[σ (m − 1)]} approximates the phase shift be-
tween the shape and solute components in the standing wave.
For low σ , we obtain �φ ≈ ∓π/2.

Remark C.1. We use Eq. (C22) to infer the dimensional
frequency ωdim in terms of the original dimensional param-
eters. The time unit in our dimensionless model is τsolute =
R2

0/D, and thus ωdim = τ−1
soluteω. Substituting the dimension-

less tension, Eq. (8), back in Eq. (C22), one obtains

ωdim 	 m(m + 1)
√

2(m − 1)

√
DMσ

R5
0

. (C24)

The oscillation period is then

T = 2π/ωdim 	 2π
√

τsoluteτdroplet

m(m + 2)
√

2(m − 1)
, (C25)

where τdroplet = R3
0/(Mσ ) is the characteristic shape relax-

ation time of the viscous droplet. The fact that T is pro-
portional to the geometric mean of τsolute and τdroplet implies
that the oscillatory mechanism crucially depends on both
relaxation processes.

3. Computational eigenvalues

We complete our linear stability analysis by finding the
numerical roots of Gm(s), Eq. (17). First, we trace these roots
as functions of σ and aχ through a continuous extension
procedure. Second, we describe our continuation method for
tracing the Hopf-bifurcation lines over the aχ -σ diagram.

Continuous extension of the eigenvalues. For any m � 1,
one can compute the real-negative eigenvalues corresponding
to aχ = 0, see Eqs. (C1) and (C2) and Table I. For any
arbitrary σ , we increase aχ incrementally (starting from 0)
and look for the numerical roots of Gm(s) using the Find-
Root function of Mathematica. This function implements a
computational root-finding algorithm about an initial guess
(sg ∈ C). To facilitate convergence, and to prevent inadvertent
confusion between the multiple roots of Gm(s), we define sg

as the numerical root of interest obtained in the previous aχ

iteration.
In Fig. 5 we demonstrate this analysis for m = 1–5. As

there are infinitely many roots for each m, we focus on the

TABLE I. Decoupled eigenvalues at aχ = 0; see Eqs. (C1)
and (C2) and Fig. 5.

Normal mode smσ sm,1 sm,2

m = 1 0 −3.38996 −28.42428
m = 2 −6σ −9.32836 −44.97222
m = 3 −24σ −17.64999 −64.24402
m = 4 −60σ −28.27637 −86.16288
m = 5 −120σ −41.16013 −110.66747

droplet eigenvalue [smσ = −σm(m2 − 1)] and the two least-
negative diffusion eigenvalues (sm,1 and sm,2, given in Table I).
These roots are plotted as functions of aχ for different values
of σ . The graphs essentially validate our main conclusions
regarding the linear stability of each mode m, inferred previ-
ously through Taylor expansions of Gm(s). Namely, the plots
demonstrate that (1) there exists a single steady bifurcation in
m = 1 (occurring at aχ = 1), (2) for σ = 0, all modes m � 2
are closely analogous to m = 1, and (3) for σ > 0 (including
large values of σ ), each m � 2 is destabilized once through a
Hopf bifurcation. Interestingly, the plots also reveal that the
eigenvalue smσ tends to merge with its closest neighboring
sm,n as aχ is increased from zero. Upon merger, these two
eigenvalues become a complex-conjugate pair, signifying a
transition from a stable node to a stable focus. At high aχ ,
beyond the Hopf bifurcation, there is an additional point at
which the complex conjugates separate into two distinct real-
positive eigenvalues, signifying a transition from an unstable
focus to an unstable node. We stress that these transitions do
not imply an overall change in stability. We find computation-
ally that all diffusion eigenvalues that do not merge with smσ

remain real-negative for any aχ .
Tracing the critical lines on the stability phase diagram.–

For each m � 2, we look for the critical line that marks
the Hopf-bifurcation over the aχ -σ plane. Precisely on the
bifurcation point, Gm(s) has two complex-conjugate roots
whose real part crosses zero. Hence, one must solve two
implicit equations, Re[Gm(iω)] = 0 and Im[Gm(iω)] = 0, in
the variable ω ∈ R and one of the control parameters (either
aχ or σ ). Previously, we addressed this problem through a
Taylor expansion of Gm(iω), Eq. (C18). This allowed us to
derive an explicit low-σ approximation for aχ c and ω at the
critical point [see Eqs. (C21) and (C22)]. Here, we approach
the same problem numerically, without expansions, using the
FindRoot function of Mathematica directly on Eq. (17). This
function requires a good initial guess of the two variables
in order to converge on the solution of interest. We chose
to work with small iterations of aχ (starting from aχ = 1)
and solve Re[Gm(iω)] = Im[Gm(iω)] = 0 in the variables ω

and σ . About aχ = 1, the critical tension σ and the fre-
quency ω are both small, so we use Eqs. (C21) and (C22)
to compute the initial guess: σ g = 4(m+2)(aχ−1)

3m2+m−4 and ωg =
m(m + 1)

√
2σ g(m − 1). At higher values of aχ , the guess is

computed by polynomial continuation of the previously reg-
istered numerical solutions. We use this procedure to recover
the critical lines in the linear-stability phase diagram (Fig. 2,
full colored lines). As expected, these lines are tangent to
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FIG. 5. Numerical eigenvalues. For each mode m = 1–5, we plot three computational roots of Gm(s) as functions of aχ for increasing
values of σ . At aχ = 0, we mark the droplet eigenvalue smσ (colored circle) and the two least-negative diffusion eigenvalues, sm,1, sm,2 (colored
disks), given in Table I. In each plot, full lines mark the real part of the eigenvalues, while dashed lines mark the imaginary part. Bifurcations
(dark diamonds) correspond to a critical aχ at which the real part of at least one eigenvalue turns from negative to positive. For m = 1 (and
also for m � 2 if σ = 0) there exists one purely real eigenvalue that changes sign precisely at aχ = 1. For m � 2 (and σ > 0) there exist two
complex-conjugate eigenvalues whose real part changes sign at a Hopf-bifurcation (marked by “H”). For each m, we find numerically that the
infinitely many diffusion eigenvalues that do not merge with smσ remain real-negative for any aχ .
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our explicit low-σ approximation, Eq. (C21) (thin translucent
lines in Fig. 2), at the critical point (aχ, σ ) = (1, 0).

4. Movie legends

Movie 1. Shape-concentration normal waves corresponding
to m = 2. Parameters are set on the Hopf-bifurcation point
(Re[s2] = 0), matching in this case to σ = 1 and aχ 	 1.61.
(a) Standing cos(2θ ) wave. (b) Standing sin(2θ ) wave evolv-
ing at a temporal phase shift of a quarter period with respect to
(a). (c) Traveling m = 2 wave resulting from a superposition
of (a) and (b). In all panels, the color density map in the bulk
represents δc (negative in blue to positive in light green). The
color-coded boundary represents δκ (negative in dark red to
positive in yellow). The blue vector field in the bulk represent
the instantaneous fluid flow, u = −∇δp. On the boundary of
the traveling wave (c), we also trace several fluid path-lines
over time.

Movie 2. Shape-concentration normal waves corresponding
to m = 3. Parameters are set on the Hopf-bifurcation point
(Re[s3] = 0), matching in this case to σ = 1 and aχ 	 2.18.
(a) Standing cos(3θ ) wave. (b) Standing sin(3θ ) wave evolv-
ing at a temporal phase-shift of a quarter period with respect to
(a). (c) Traveling m = 3 wave resulting from a superposition
of (a) and (b). In all panels, the color density map in the bulk
represents δc (negative in blue to positive in light green). The
color-coded boundary represents δκ (negative in dark red to
positive in yellow). The blue vector field in the bulk represent
the instantaneous fluid flow, u = −∇δp. On the boundary of
the traveling wave (c), we also trace several fluid path lines
over time.

APPENDIX D: STEADILY MOVING SOLUTIONS

Here we expand on our derivation of the self-consistent
traveling-wave solutions discussed in Sec. IV.

1. Uniform flow from fixed shape assumption

The stationary shape assumption corresponds to vanishing
normal velocity of the sharp interface in the moving frame of
reference:

0 = Vn − ucm · n = (u − ucm) · n on ∂�(t ), (D1)

where we used Eq. (B4).
Lemma D.1. Let u satisfy

∇ · u = 0, ∇ × u = 0 in �(t ).

Given Eq. (D1), u is uniform and given by

u = ucm in �(t ),

where ucm is a constant in R2 defined as ucm =
A−1

∮
∂�(t ) x(u · n) dl .

Proof. We define the flow in the moving frame of ref-
erence as ũ = u − ucm. Since ucm is a constant and u is
both incompressible and irrotational, it follows that ∇ · ũ = 0
and ∇ × ũ = 0. Thus, one can define � as a Laplacian flow
potential for ũ:

ũ = ∇�, ∇2� = 0 in �.

Note that, for Hele-Shaw flow (Darcy’s law), one has � =
−p − ucm · x.

In terms of �, Eq. (D1) translates to

∇� · n = 0 on ∂�.

From Green’s identity, one has

−
∫

�

(∇2�)� da =
∫

�

∇� · ∇� da −
∮

∂�

(∂n�)� dl.

(D2)
In Eq. (D2), it is easy to see that both the LHS and the

boundary integral on the RHS vanish. Therefore,

0 =
∫

�

ũ2 da. (D3)

It follows that ũ = 0 in � and thus u = ucm in �(t ). �

2. Pressure and solute profiles at steady state

We look for traveling-wave solutions, p(t, x, y) = p(x̃, y)
and c(t, x, y) = c(x̃, y), where x̃ = x − u1t . Being that u1 =
−∇p, it is straightforward that the pressure has the form p =
p1 − u1x̃, where p1 is a normalization constant for the droplet
area. As for the solute, we substitute c = c(x̃, y) in Eqs. (B5)
and (B6) and obtain

− [
∂x(au1 + ∂x ) + ∂2

y

]
c(x̃, y) = 0 in �, (D4)

[nx(au1 + ∂x ) + ny∂y]c(x̃, y) = 0 on ∂�, (D5)

where we used the fact that ∂t c(x̃, y) = −u1∂xc(x̃, y).
Lemma D.2. For any smooth open subset � ⊂ R2 (with

n = (nx, ny) being the outward normal on ∂�), the solution to
the boundary-value problem in Eqs. (D4) and (D5) is unique
and given in the following y-independent form:

c(x̃, y) = c1e−au1 x̃ in �, (D6)

where c1 is constant (normalization factor for the total solute).
Proof. Without loss of generality, let us substitute

c(x̃, y) = f (x̃, y)e−au1 x̃ back in Eqs. (D4) and (D5). One ob-
tains the following boundary-value problem for f

[au1∂x − ∂xx − ∂yy] f (x̃, y) = 0 in �, (D7)

[nx∂x + ny∂y] f (x̃, y) = 0 on ∂�. (D8)

This elliptic Neumann problem is clearly solved by any con-
stant f = c1. All that is left is to is show that nonconstant
solutions do not exist.

Assume that f ∈ C2(�) ∩ C0(�̄) is a nonconstant solution
to Eq. (D7), we denote its maximum by N = max�̄ f > 0.
Being that the Laplacian is positive semidefinite, Eq. (D7)
is uniformly elliptic, and thus the strong maximum principle
holds. If there exists a point x ∈ � such that f (x) = N , then
by strong maximum principle f is constant. It follows that
f < N in � and there exists a point y on ∂� for which
f (y) = N . This means that ∂n f (y) > 0, in contradiction with
the Neumann condition, Eq. (D8). �
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3. Rigid circular cell

We first work under the crude assumption that the steadily
moving shape is the rigid unit disk, as in the rest state. This
simplifying assumption is physically valid at the limit of high
tension and low steady-state velocity, σ/(χa2u2

1) → ∞. Since
the unit disk � is physically viable and dimensionless, there
is no need to explicitly resolve the constant p1.

We find the constant c1 analytically (in terms of u1)
by imposing the dimensionless normalization of solute; see
Eq. (B8). We consider the unit disk geometry and substitute
the steady-state form of the concentration, Eq. (D6), in polar
coordinates, c(r, θ ) = c1e−au1r cos θ ,

π =
∫ 1

0
rdr

∫ 2π

0
c(r, θ ) dθ = c12π I1(au1)

au1

⇒ c1 = au1

2I1(au1)
, (D9)

where I1 denotes the modified Bessel function of the first kind
of order 1.

To find u1, we substitute ucm = u1x̂ and c(r, θ ) back in
the global external force balance, Eq. (B9). Taking the x̂
component (nx = cos(θ )), we obtain

0 = −πu1 +
∫ 2π

0
Fact(c(1, θ )) cos(θ ) dθ, (D10)

where here we consider the Hill-type force in Eq. (20) and
substitute β = χ (1 + cs )2/cs. This equation defines u1 implic-
itly as a function of three parameters: a, χ , and cs. Multiplying
by a �= 0 reduces Eq. (D10) to an implicit equation in one
variable (au1) and two control parameters: aχ and cs. Hence,
one could set a = 1 without loss of generality.

Analytical low-speed approximations. The boundary inte-
gral in Eq. (D10) can be computed systematically by first
expanding the integrand in powers of au1. We do this up to
sixth order and obtain

0 	 (aχ − 1)au1 + aχ (1 − 2cs)

4(cs + 1)2
a3u3

1

+ aχ [cs(cs(2cs + 57) − 60) + 5]

192(cs + 1)4
a5u5

1 + O
(
a7u7

1

)
.

(D11)

We briefly interpret the significance of each term in this
expansion. The sign of the first term controls the stability of
the trivial solution u1 = 0 (i.e., the circular homogeneous rest
state). Clearly, this term is negative for aχ < 1 and positive
for aχ > 1, in agreement with our linear stability analysis.
The second term determines the second-order nature of the
bifurcation into traveling solutions. This term changes sign
at cs = 0.5. The saturation of the Hill-type force, Eq. (20),
is expected to ultimately dampen the steady-state velocity
at the nonlinear level. This is captured by our expansion so
long as the last term is negative (that is, for 0.091273 < cs <

0.927885). Outside of this parametric range, Eq. (D10) is best
solved numerically.

We obtain three branches of symmetric solutions to
Eq. (D11),

u1 = 0, (D12)

u1s± = ± 2(cs + 1)

a

×
√√√√6

g

[
2cs − 1 −

√
(2cs − 1)2 − (aχ − 1)g

3aχ

]
,

(D13)

u1u± = ± 2(cs + 1)

a

×
√√√√6

g

[
2cs − 1 +

√
(2cs − 1)2 − (aχ − 1)g

3aχ

]
,

(D14)

where g = cs[cs(2cs + 57) − 60] + 5 (strictly negative in the
regimes of interest).

The traveling solution branches, u1s± and u1u±, are real-
valued over the parametric regimes, �1 and �2, respectively.
These are given by

�1 = {cs ∈ (0.091273, 0.927885) ∩ aχ ∈ [1,∞)} ∪ �2,

(D15)

�2 =
{

cs ∈ (0.091273, 0.5]

∩ aχ ∈
(

1 − 3(1 − 2cs )2

cs[48 − cs(45 + 2cs)] − 2
, 1

]}
. (D16)

Let us now address the stability of the rigid traveling
solutions, Eqs. (D13) and (D14), in the regimes of interest,
Eqs. (D15) and (D16). The response of the center-of-mass
velocity to a small perturbation δu1 about the steady-state
speed u1, which defines c(x), is proportional to F ′

ext(u1)δu1,
where here Fext refers to the sum of external forces in our
expansion [the RHS of Eq. (D11)]. We may thus determine
the linear stability of u1s± and u1u± by computing the sign
of �F ′

ext(u1) on each solution branch. Using Eq. (D11), we
obtain

F ′
ext(u1s±) = 4πaχ f

g
[
√

3(1 − 2cs) + f ]

∝ −[
√

3(1 − 2cs) + f ] < 0 in �1, (D17)

F ′
ext(u1u±) = 4πaχ f

g
[
√

3(2cs − 1) + f ]

∝ −[
√

3(2cs − 1) + f ] > 0 in �2, (D18)

where f = √−{2 + cs[cs(2cs + 45) − 48]} + g/aχ . It fol-
lows from Eqs. (D17) and (D18) that the branch u1s± is
linearly stable while u1u± is linearly unstable.

To recapitulate, at aχ = 1 we find a transition from the
trivial solution u1 = 0 into steadily moving states. This tran-
sition takes the form of either a super- or subcritical pitchfork
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FIG. 6. Steadily moving states (rigid cell). Left panels: Plots of the steady-state speed u1 as a function of the linear response parameter χ

for different values of cs. The blue (dashed orange) lines represent the stable (unstable) solution branches. We compare the analytical low-speed
approximations [thin lines, Eqs. (D13) and (D14)] with the computational solutions to the exact Eq. (D10) (thick lines). Note the agreement
between the curves about the bifurcation point χ = 1. Right: Computational bifurcation diagram prescribed by Eq. (D10). The steady-state
velocity u1 is plotted as a function of the two force parameters: χ and cs. Blue (dashed orange) contours and blue (light orange) surfaces
mark the stable (unstable) branch of the steadily moving solutions. The homogeneous rest state is represented by the plane u1 = 0. On this
plane, the black line at χ = 1 marks the instability of the motility mode (m = 1). The branching of traveling states at χ = 1 takes the form
of a pitchfork bifurcation, which is supercritical if cs � 0.5, and subcritical if cs < 0.5. The thin gray line marks the motility saddle-node
bifurcation occurring in the subcritical regime.

bifurcation. In the supercritical case (cs � 0.5), the stable
moving states u1s± branch out continuously from the stable
rest state as aχ exceeds 1. In the subcritical case (cs < 0.5),
the unstable moving states u1u± branch out continuously
from the unstable rest state as aχ falls behind 1. The latter
scenario typically implies entrance into a bistable parametric
regime. Indeed, over �2, Eq. (D16), we find coexistence
of both the stable rest state u1 = 0 and the stable travel-
ing states u1s±. In this regime, |u1s±| � |u1u±| and u1s± =
u1u± = ± 2(cs+1)

a

√
6(2cs − 1)/g on a saddle-node bifurcation,

occurring at aχ∗ = 1 − 3(1−2cs )2

cs[48−cs (45+2cs )]−2 [see limit of �2,
Eq. (D16)].

The explicit Eqs. (D13) and (D14) provide useful ana-
lytical insights. However, we stress that these are strictly
low-speed approximations of the true solutions to the exact
Eq. (D10) (the steady-state force balance on the rigid cell).

Computational solutions. To complete the nonlinear bifur-
cation picture associated with the rigid problem, we solve
Eq. (D10) numerically. As stated below this equation, we
may set a = 1 without loss of generality. The idea is to trace
the stable and unstable solution branches starting from the
bifurcation point at χ = 1. To do so, we employ a continuous-
extension procedure in which we vary χ incrementally. Work-
ing with Mathematica, we use (1) the NIntegrate function to
compute the integral in Eq. (D10), and (2) the FindRoot func-
tion to obtain a numerical root of this equation about an initial
guess ug

1. To facilitate convergence and to ensure continuity
of the solution branch, we define ug

1 as the numerical root
obtained in the preceding parametric iteration.

Remark D.1. About the bifurcation point (χ = 1), the true
u1 is small, and so we use Eqs. (D13) and (D14) to define the
initial guess. Specifically, we take ug = u1s+ for cs � 0.5 and
ug = u1u+ for cs < 0.5.

In Fig. 6 (left panels), we compare the results of our
numerical continuous-extension procedure (thick lines) to the
approximations given in Eqs. (D13) and (D14) (thin lines).
The numerical bifurcation structure behaves as expected in

both the low and high cs regimes, including ranges over which
the analytical approximations, Eqs. (D13) and (D14), are no
longer valid. Due to the transition from a super- to a subcritical
bifurcation at cs = 0.5, and the emergence of a saddle node in
the subcritical regime, it is clear that Eq. (D10) admits three
motility phases: (1) rest phase, where only the stable rest state
exists (aχ < 1 and cs � 0.5 or aχ < aχ∗N and cs < 0.5, with
aχ∗N denoting the numerical saddle-node bifurcation point),
(2) traveling phase, where the rest state is unstable and there
exists a stable traveling state (aχ > 1), and (3) bistable phase,
where both the rest state and a high-speed traveling state are
stable (aχ∗N < aχ < 1 and cs < 0.5). In this phase, we find
an additional low-speed steady state that is unstable.

In Fig. 7 we show different representations of the motility
phase diagram. Figure 7(a) is the χ -cs diagram (essentially
a top view of the 3D bifurcation diagram in Fig. 6). Fig-
ure 7(b) shows the motility phases on the β-cs plane [the
original parameters defining Eq. (20)]. Note here the close
correspondence with the analogous 1D model [44] (with its
deterministic version analyzed in the Supplemental Informa-
tion of Ref. [45]). Since the pitchfork bifurcation occurs at
β = (cs + 1)2/cs = 2[1 + cosh(log cs)], we found it useful to
also present the phase diagrams in terms of log cs [Figs. 7(c)
and 7(d)]. Interestingly, Fig. 7(d) reveals that β∗N (the numer-
ical saddle node bifurcation) is closely approximated by the
tangent to the critical line at cs = 0.5.

4. Deformable cell

We wish to obtain the steadily moving states for a de-
formable cell of arbitrary surface tension σ . This problem
consists of finding both the speed and the shape of the
steady state in a self-consistent manner. It is therefore more
complicated than the rigid circular case, which amounted to
one nonlinear equation in one variable (u1). To deal with this
challenge, we must first derive three necessary and sufficient
equations for finding the three numbers that make up our
reverse-engineered solution (u1, p1, c1).
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FIG. 7. Motility phase diagrams (rigid cell). Shown are differ-
ent parametric representations of the motility phases prescribed by
Eq. (D10). In each plot, the thick black line marks the motility
pitchfork bifurcation occurring at χ = βcs/(cs + 1)2 = 1. To the
right of this line, we find the traveling phase (dark blue region), in
which the rest state is unstable and there exists a stable traveling
state. The rest state is always stable to the left of this line. For
cs < 0.5 and aχ∗N < χ < 1 (bistable phase, light cyan region) there
exists in addition a stable (high-speed) traveling state and an unstable
(low-speed) traveling state. The leftmost limit of this phase (thin line
with points) corresponds to the numerical saddle-node bifurcation.
The rest phase (white region) spans the parametric regime over which
there are no steadily moving solutions.

Working in the reference frame of the moving cell, our aim
is to recover the shape defined by Eq. (21). Let us reproduce
this equation here for convenience:

σκ (x) = p1 − u1x − βc1e−au1x

cs + c1e−au1x
on ∂�. (D19)

Note that κ (x) depends on the three solution variables (u1, p1,
c1) and the four dimensionless parameters (σ , a, β, cs). This
can be simplified further by multiplying Eq. (D19) by a �=
0. It is then easy to see that the same κ (x) depends on three
variables (au1, ap1, c1) and only three contracted parameters
(aσ , aβ, cs, where aβ can be replaced by aχ (cs + 1)2/cs).
Hence, like the rigid case, we can set a = 1 without loss of
generality.

The fact that the steady-state curvature is strictly a single-
valued function of x implies reflection symmetry about the
polarity axis x̂. It is therefore natural to define the boundary
line with the curve ±y(x), where +y(x) � 0 represents the
top half of ∂� and −y(x) represents the mirrored bottom half.
The curvature on +y(x) is given by κ = −y′′

(1+y′2 )3/2 . Changing

variables to Y = −σy′/
√

1 + y′2, such that Y ′ = σκ , reduces
Eq. (D19) to a first-order ODE in Y (x). We solve this equation
analytically along with the condition Y (0) = 0, which corre-
sponds to y′(0) = 0:

Y (x) = p1x − 1

2
u1x2 + β

u1
log

(
cs + c1e−u1x

cs + c1

)
. (D20)

Remark D.2. The condition y′(0) = 0 is chosen arbitrarily
for convenience. It essentially aligns the top and bottom
poles (meaning the symmetric poles that are transverse to the
direction of motion) at x = 0. While p1 and c1 vary due to
shifts along the axis of motion, the translational invariance of
the problem implies that the shape itself and the speed u1 will
be unaffected by this arbitrary choice.

Next, we find the leftmost and rightmost limits of the
curve y(x). Strictly speaking, these are the singular points
xL < 0 and xR > 0 at which y′(xL) = +∞ and y′(xR) = −∞.
We may use Eq. (D20) to compute xL and xR numerically,
substituting Y (xL) = −σ and Y (xR) = +σ .

Finally, we find the curve y(x) over the domain x ∈ (xL, xR)
by integrating numerically the first-order ODE

y′(x) = − Y (x)√
σ 2 − Y 2(x)

, y(xR) = 0. (D21)

Here the boundary condition y(xR) = 0 ensures that the curves
±y(x) join continuously at the front end [the point (xR, 0)]
without forming a cusp. In other words, this condition, along
with the fact that y′(xR) = −∞, guaranties the smoothness of
∂� at the front. For ∂� to be physically viable, an equivalent
condition must hold at the rear. The freedom to impose this
additional boundary condition is implicit in our choice of
(u1, p1, c1).

Three constraints. For a given set of dimensionless model
parameters, we look for solutions to Eq. (D21) that satisfy the
following three constraints:

(1) The boundary defined by ±y(x) represents a simple
(nonintersecting) closed contour without cusps. To exclude
intersections, we must take care that y(x) � 0 for x ∈ (xL, xR).
To unsure the smoothness of ∂� at the rear, we look for a
solution that satisfies

y(xL) = 0.

(2) The dimensionless area is conserved, such that

A := 2
∫ xR

xL

y(x) dx = π.

(3) The dimensionless solute is conserved, such that

Ctot := 2
∫ xR

xL

y(x)c1e−u1x dx = π.

Together, these constraints describe a system of three im-
plicit nonlinear equations in the three variables (u1, p1, c1).
If a dimensionless steadily moving solution exists for a given
set of parameters, it can in principle be found by varying those
three numbers while reintegrating Eq. (D21).

Optimization procedure. Rather than resorting to an ex-
haustive 3D grid search, we employ the following optimiza-
tion procedure that greatly facilitates convergence.

(1) For a new set of dimensionless model parameters, we
begin by finding a good quantitative guess of the solution
(ug

1, pg
1, cg

1). Normally, the computation of (ug
1, pg

1, cg
1) relies

on polynomial interpolations of (u1, p1, c1) as functions of
the varied parameter. Technically, these interpolation func-
tions are constructed using the registered numerical solutions
obtained in preceding parametric iterations.
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(2) We define a matrix of phase-space coordinates
{(p1, c1)} about (pg

1, cg
1). For each such coordinate, we run the

following computational element.
(3) With fixed (p1, c1), we resolve constraint no. 1 (mini-

mization of |y(xL)|) by varying u1 about ug
1 while reintegrating

Eq. (D21). This automated shooting-solution method con-
verges rapidly on a velocity u1 > 0 that grants an acceptable
error of |y(xL)| < 10−7. The resultant contours ±y(x) then
bound a shape � that is physically viable (∂� is closed with-
out cusps), but generally not consistent with the dimensionless
normalization conditions: constraints no. 2 and no. 3. We
compute the area A and the total solute Ctot associated with
the physically viable solution.

(4) We use the registered numerical data from steps 2 and
3 to generate the polynomial interpolation functions, A(p1, c1)
and Ctot(p1, c1). We then solve two implicit functions in two
variables, namely, A(p1, c1) − π = 0 and Ctot(p1, c1) − π =
0. The solution, (p∗

1, c∗
1 ), is then substituted back in element

3, giving a speed u∗
1 > 0 and a corresponding curve y∗(x) that

resolve constraint no. 1.
(5) We check if y∗(x) actually satisfies constraints no.

2 and no. 3. In practice, if we find an acceptable error of
both |A − π | < 10−5 and |Ctot − π | < 10−5, we output and
register (u∗

1, p∗
1, c∗

1 ). Else, we substitute (u∗
1, p∗

1, c∗
1 ) as a new

updated guess in step 2, and repeat this process while possibly
changing the extent and the density of our {(p1, c1)} grid.

By using this powerful continuation + minimization pro-
cedure we are able to converge with high precision on the
coveted steady states. Difficulties in convergence arise in
highly nonlinear regimes (e.g., close to bifurcations), where
the speed and/or the shape vary strongly as functions of
the parameters or as functions of (p1, c1). Hence, in these
regimes we work with smaller parametric iterations and
denser {(p1, c1)} grids. While these practices are generally
time-consuming, they tend to improve the accuracy of both the
initial guess and the interpolation functions, which together
promote convergence.

Remark D.3. As we span the parameter space, we fix σ

and cs arbitrarily and perform incremental iterations of χ

[substituting β = χ (cs + 1)2/cs in Eq. (D20)]. We always
begin at χ = 1 (the motility-mode instability), where the
steadily moving states are known to branch out from the
circular rest state via a super- or subcritical pitchfork bifur-
cation. About this critical point, both the speed u1 and the
shape deviation from the circle are small, so we can use our
rigid-droplet results to compute the initial guess. In more
detail, Eqs. (D13) and (D14) are used for computing ug

1. Then
ug

1 is substituted in Eq. (D9) for computing cg
1. Finally, cg

1 is
used to compute pg

1 = σ − Fact(c
g
1).

Remark D.4. Any physically viable solution (u1, p1, c1),
which resolves constraint no. 1 but is not consistent with
constraints no. 2 and no. 3 (obtained, e.g., via step 3 in our
procedure), can be mapped directly to a self-consistent di-
mensionless solution. To perform this mapping correctly, one
must rescale the solution variables and the model parameters
in accordance with our nondimensionalization scheme,

(u1, p1, c1) →
(

R0u1, p1,
A

Ctot
c1

)
,

(σ, β, cs ) →
(

1

R0
σ, β,

A

Ctot
cs

)
,

where R0 = √
A/π . Note that when working with χ instead

of β, i.e., with β = χ (cs + 1)2/cs, one should rescale χ like
χ → Ctot (cs+1)2

A(cs+Ctot/A)2 χ .
For the new set of three dimensionless parameters, the

rescaled solution automatically satisfies all three constraints
(discussed above) and is therefore a dimensionless steadily
moving state. In this appealing shortcut to constraints no. 2
and no. 3, we stress that the dimensionless parameters (σ
and cs specifically) may not be fixed a priori. Hence, unlike
our complete optimization procedure, this direct rescaling
approach is not well-suited for spanning the parameter space
in a controlled, structured manner.
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