
UNIVERSITAT DE BARCELONA

FUNDAMENTALS OF DATA SCIENCE MASTER’S THESIS

Generating Synthetic Intestine Images

Author:
Stefan IVANOV

Supervisor:
Santi SEGUÍ

A thesis submitted in partial fulfillment of the requirements
for the degree of MSc in Fundamentals of Data Science

in the

Facultat de Matemàtiques i Informàtica

June 28, 2019

http://www.ub.edu
http://mat.ub.edu

iii

UNIVERSITAT DE BARCELONA

Abstract

Facultat de Matemàtiques i Informàtica

MSc

Generating Synthetic Intestine Images

by Stefan IVANOV

Capsule endoscopy is a non-invasive medical procedure used to record images of
the gastrointestinal tract. While this method is a better alternative for patients, it
presents a difficulty to doctors who need to go over as much as 50000 images. Scien-
tists are developing machine learning algorithms that will automatically throw away
images free of any anomalies. Like other medical applications, however, available
data to train such models is sparse. Therefore, we attempt to create synthetic images
that can be used as substitution. For the purpose we have used generative adversar-
ial networks (GANs) as they have recently shown great promise for problems like
this one. Training a classifier on both the real and synthetic data, we achieve an
increase in the classification accuracy for a dataset of intestine images.

HTTP://WWW.UB.EDU
http://mat.ub.edu

v

Acknowledgements
Many thanks to Pablo Laiz for always being close to answer questions about deep
learning.
An honourable mention of Alvaro Parafita who is way better at GANs than me.
Much appreciation of Elia Ficapal for it would have been harder to work on this
project without the coffees we shared.
And, most of all, I am very grateful to Santi Segui for not only being a resourceful
and helpful professor, but also quite the cool supervisor.

vii

Contents

Abstract iii

Acknowledgements v

Contents vii

1 Introduction 1
1.1 Capsule Endoscopy . 1
1.2 Generating Synthetic Data . 1
1.3 Main Contributions . 2
1.4 Report Structure . 3

2 Background 5
2.1 Convolutional Neural Networks . 5
2.2 Generative Adversarial Networks (GANs) 6

2.2.1 DCGAN . 8
2.2.2 Conditional GAN . 8
2.2.3 Wasserstein GAN . 9
2.2.4 WGAN with Gradient Penalty 10

3 Methods 13
3.1 Data Exploration . 13
3.2 Implementations . 13
3.3 Network Architecture . 16
3.4 Improving Image Quality . 17
3.5 Classification Loss . 20
3.6 Assessment . 21

4 Conclusion 25
4.1 Future Work . 25
4.2 Summary . 25

Bibliography 29

1

Chapter 1

Introduction

1.1 Capsule Endoscopy

Capsule endoscopy is a modern medical procedure used to record images of the gas-
trointestinal tract to be analysed for medical diagnosis. Patients swallow a capsule
containing a tiny camera and it travels trough their body, taking as much as 50000 (or
more) images, transmitted wirelessly to a portable device nearby. The novelty of this
approach is it allows doctors to examine parts of the tract unreachable by alternative
endoscopy methods, and furthermore it is non-invasive. Common reasons for using
capsule endoscopy include searching for polyps, uclers and tumors, as well as diag-
nosis of unexplained bleeding or other diseases. Caffrey et al., 2008 provide further
details about capsule endoscopy. Examples of usage are presented by Zhuan Liao et
al., 2010 (investigate detection, completion, and retention rates of capsule endoscopy
in the small bowel) and Tong et al., 2012 (investigate iron deficiency anemia without
evidence of gastrointestinal bleeding using capsule endoscopy).

The problem associated with this method is the infeasibility of a doctor manually
reviewing so many photos taken inside the body. While diagnosis should certainly
be done by a professional, automatically removing pictures that, with high certainty,
don’t have any anomalies on them helps the process significantly. Researchers have
developed machine learning algorithms to recognise those photos, but they face
some difficulties with the data to train them. For instance, data from different pa-
tients has high variability. Furthermore so if different capsule cameras are used.
Most of all, as in other medical applications, data is simply not enough. Even worse,
the positive and negative class are often extremely unbalanced. Consider the 50000
images the camera in the capsule takes - even if the patient had cancer, it would only
show on a very few of those frames. There are different techniques to alleviate this
problem, most frequently data augmentation. This means creating new images by
applying simple operations like rotation, translation, scaling etc to the existing ones.
While this enlarges the dataset artificially, it doesn’t create much variability, as new
images are essentially the old ones with some transformation. Recently, scientists’
interest has moved onto generating synthetic image data.

1.2 Generating Synthetic Data

The main goal of this project is to successfully generate synthetic data, given a set of
real data it should resemble. In this application, we have images of intestines pro-
duced from capsule endoscopy. The images come from different classes, depending

2 Chapter 1. Introduction

on what they capture - blobs, bubbles, walls etc. We need to be able to produce
images that look true and that capture the diversity of the classes.

Synthetic image generation is a field that has fascinated machine learning enthusi-
asts with its numerous applications ranging from rather useful, like image inpaint-
ing (repairing an image by filling up the missing part, see Yu et al., 2018) and text to
image translation (Zhang et al., 2017), to some quite quirky, like cross-domain trans-
fer (recreating a painting in the style of another artist, see Jones, 2017 and figure 1.1)
and creating fictional celebrity faces (Hart, 2017).

FIGURE 1.1: Example of generating synthetic imagery - cross-domain
adaptation; in this case we transform a real photo to look like a paint-
ing in the style of Van Gogh; source: Deep learning for hackers with

MXnet (2): Neural art

A traditional approach to synthetic image generation is variational autoencoders
(VAE), where we encode the real data to a latent space, represented by a mean and
variance. This allows us to sample this space for vectors, which when decoded pro-
duce new synthetic data. The original paper on the subject by Kingma and Welling,
2014 contains the details and figure 1.2 provides a schema of the main idea. While
VAEs offer neat probabilistic reasoning and relatively easy implementation, recently
another method has shown promise with a much higher visual fidelity and variety
- generative adversarial networks (GANs). This is precisely why we have chosen to
tackle the problem by using GANs. In this paper we analyse their performance for
the task we have set.

FIGURE 1.2: This diagram shows the main idea behind VAEs as ex-
plained here

1.3 Main Contributions

The main steps we followed while working on this project are as follows:

1.4. Report Structure 3

• Extensivelly researched the theory behind deep learning, convolutional neural
networks, generative adversarial networks and their variants.

• Experimented substantially on the MNIST dataset to produce first GAN ver-
sions.

• Moved on to working with the intestine dataset, implemented the original
GAN.

• GAN wouldn’t train well, so optimizations like Wasserstein GAN were em-
ployed.

• Conditional GAN was implemented to impose label conditioning.

• The network performance was assessed and analyzed, we check if automatic
image classification is improved with the use of the generated data.

1.4 Report Structure

This section serves to outline the general structure the report will follow.

First, in the next chapter the reader is introduced to the scientific advances we have
based this work on. We begin by a brief explanation of convolutional neural net-
works and how they are used in GANs. We explore in detail the ideas behind GAN
and how researchers improved the original model to the state-of-the-art.

Next, in chapter 3 we describe the work done by providing details on the implemen-
tation, discussing the problems encountered and how they were solved, as well as
analysing the results.

Finally, the last chapter offers a further discussion about the limitations of the project,
but also the possible improvements and extensions.

5

Chapter 2

Background

2.1 Convolutional Neural Networks

In the 1960s multiple scientists contributed to the derivation of backpropagation, no-
tably Dreyfus, 1962, who based his work completely on the chain rule. In the 1970s
the general method for automatic differentiation (AD) was published by Linnain-
maa, 1976, which together with the rapid development of cheap, powerful GPU-
based computing systems in the years to come, ultimately led to the birth of deep
learning. As reviewed in Schmidhuber, 2015, deep neural networks revolutionized
the field of machine learning and proved successful in many applications like clas-
sification, regression etc. Most importantly, they allowed breakthroughs in areas
previously lagging like speech recognition (Hannun et al., 2014), natural language
processing (Hochreiter and Schmidhuber, 1997) and, what will be of particular in-
terest to us, computer vision.

Traditionally, computer vision methods for detection, segmentation and other tasks
were based on hard manual preprocessing steps such as noise reduction, background
subtraction or contrast enhancement, followed by error-prone feature extraction like
Canny edge detector, localized interest points and so on. Applying deep learning
to images largely removed the need for these obsolete methods and offered great
results. Papers like Lee, 2016 explore the differences and tradeoffs between the two
broad approaches.

Problem is, applying a deep neural network to an image is not straightforward as we
need to preserve the structure. The idea of convolutional neural networks (CNNs)
came to tackle this issue. Lecun et al., 1998 was the first to recognize that the abil-
ity of multi-layer networks trained with gradient descent to learn complex, high-
dimensional, non-linear mappings from large collection of examples makes them
obvious candidates for image recognition tasks and suggested the convolutional net-
works relying on three architectural ideas: local receptive fields, shared weights and
spatial sub-sampling.

What this means in practice is a filter (kernel) is applied to a window of fixed size
moving throughout the image. Each convolutional layer tries to learn the parameters
for a set number of such filters. Essentially, every filter should be able to recognize a
specific pattern, such as horizontal/vertical edges, colour schemes etc. In addition,
pooling layers are usually used to reduce the dimensionality of the image and make
the computation more efficient. Most often the max pooling approach is followed,
meaning that from a small window of nearby pixels we only take the maximum
value. Finally, after the convolutional layers, most architectures have some fully

6 Chapter 2. Background

connected layers, as in the traditional multi-layer perceptron, to produce the final
result. Figure 2.1 is an example of a CNN that uses all of the above concepts.

FIGURE 2.1: Lecun et al., 1998 present the architecture of the first
CNN LeNet, which consists of a few convolutional and pooling lay-
ers, followed by fully connected layers. This network can be used to

classify the MNIST digits.

CNNs revolutionized computer vision and their building blocks have been used
in many architectures for different purposes. Krizhevsky, Sutskever, and Hinton,
2012 built AlexNet to win the ImageNet Large-Scale Visual Recognition Challenge
in 2012, which is a classification task with more than 1000 classes. He et al., 2016
from Microsoft showed an improvement in CNNs by introducing the residual block
in their ResNet.

Residual blocks are based on skip connections to a few layers forward. Backpropa-
gating through those allows us to learn initial layers as fast as the final layers. Thus,
a residual learning framework is shown to ease the training of networks that are
substantially deeper, solving problems like vanishing gradient.

FIGURE 2.2: He et al., 2016 shows the structure of a residual block. A
skip connection is introduced and instead of learning the output, we
optimize with regards to the difference between output and input -

the residual, hence the name.

In this work we have reused these ideas to implement CNNs successfully.

2.2 Generative Adversarial Networks (GANs)

GANs, originally suggested by Goodfellow et al., 2014, propose an adversarial pro-
cess to estimate a generative model. Two networks are trained simultaneously: a
generator that captures the data distribution, and a discriminator that estimates the
probability that a sample came from the training data.

2.2. Generative Adversarial Networks (GANs) 7

FIGURE 2.3: GAN general diagram; source: An intuitive introduction
to Generative Adversarial Networks (GANs)

The training process goes as follows: the generator G creates fake images from ran-
dom noise. The discriminator D learns to distinguish between the fake data and the
real set. This in turn improves G as it continuously tries to fool D. This concept is
illustrated on figure 2.3.

In other words, D and G play the following two-player minimax game with value
function V(G,D), which we need to optimize:

min
G

max
D

V(D, G) = Ex∼pdata(x)[logD(x)] + EZ∼pz(z)[log(1− D(G(z)))] (2.1)

The discriminator is a binomial classifier labelling images as real or fake, thus the
architecture of a CNN is usually applied. The generator is similar in structure, but
instead of downsampling, we upsample to produce an image from the noise.

Although GANs have shown great promise and have been used successfully in
many image generations scenarios, they are particularly hard to train. Even intu-
itively, it is easier to recognize the artist that painted an image, rather than to paint
it yourself. The difficulty lies mostly in GANs’ adversarial nature. For instance, if
the discriminator becomes too good at its job, the generator gradient vanishes and
it learns nothing. This is called the diminishing gradient problem. People also often
face mode collapse, that is the generator tricks the discriminator by learning a partic-
ular mode, but as real-life data distributions are multimodal, this results in a greatly
limited variety of the produced samples. Furthermore, the model parameters easily
oscillate, destabilize and sometimes this causes non-convergence, as noted by Hui,
2018. These are some of the problems we encountered while working on this project.

As the scientific community realized the prospects of GAN, many variations and
improvements appeared. For example, CycleGAN as proposed by Zhu et al., 2017
is well suited for the domain adaptation example from figure 1.1. Stacked GAN
(SGAN, see Huang et al., 2016) uses a hierarchy of top-down stacked GANs, "each
learned to generate lower-level representations conditioned on higher-level repre-
sentations", thus improving image quality (originally, images produced by GANs
were often blurry or had checkers patterns). Similarly, Progressive GAN, suggested
by Karras et al., 2017, tries to improve results for higher resolution images, but with

8 Chapter 2. Background

another approach - by starting at a smaller resolution and continuously growing the
network to "model increasingly fine details as training progresses". In the end of
2018, Karras, Laine, and Aila, 2018 from Nvidia built Style GAN on top of the pro-
gressive architecture to achieve the state-of-the-art in high resolution human faces
generation. In this paper, we will focus on a few GAN improvements as described
next.

2.2.1 DCGAN

Radford, Metz, and Chintala, 2015 published a paper making specific recommenda-
tions on the architecture of GANs, including:

• Use fully convolutional neural networks as proposed by Springenberg et al.,
2014. This means replacing the pooling layers with strided convolutions. Stride
is the distance between spatial locations where the convolution kernel is ap-
plied. Having a stride larger than 1 results in a dimensionality reduction.

• Furthermore, they remove the fully connected layers, leaving only convolu-
tional layers.

• Batch normalization is recommended to stabilize the learning by normalizing
the input to each unit to have zero mean and unit variance. This helps with
some of the training problems we mentioned.

• The generator uses a ReLU activation, except for the last layer, which uses
tanh. The discriminator uses the leaky ReLU.

This improved network was called Deep Convolutional GAN (DCGAN) and we
have implemented it in this project.

2.2.2 Conditional GAN

GANs showed good ability to learn representations with rich variety, but initially
we couldn’t control the modes of data to be generated. Sometimes it is necessary
to enable the generator to produce images of a particular class, as in our case. This
can be achieved by simply inputting the class label as an additional parameter in the
model. This modification by Mirza and Osindero, 2014 is called Conditional GAN
(CGAN). Figure 2.4 illustrates how the generator and disriminator are changed.

This changes the loss function as follows, where now we introduce the label y:

min
G

max
D

V(D, G) = Ex∼pdata(x)[logD(x|y)] + EZ∼pz(z)[log(1− D(G(z|y)))] (2.2)

Alternative ways of conditioning the generator’s output exist too. Chen et al., 2016
suggest InfoGAN, which can learn meaningful latent variables without any labels
on the data. That is, part of the generator output is reserved for a salient variable c,
which is sampled from a distribution, learned by the discriminator. As this is more
complex and CGAN is more widely adopted, we have stuck with it for this project.

2.2. Generative Adversarial Networks (GANs) 9

FIGURE 2.4: Conditional GAN architecture as defined by Mirza and
Osindero, 2014. Note both generator and discriminator take an addi-

tional input y - the label.

2.2.3 Wasserstein GAN

We already discussed how GANs are infamously hard to train. Often the algorithm
never converges, and researchers tried to come up with a new cost function that will
solve this issue. Let’s try to give some insight into the problem:

A generative model tries to learn a probability distribution q that will closely resem-
ble a given distribution p. Distribution similarity is traditionally measured with KL-
or JS-divergence, defined as follows:

DKL(p||q) = ∑
x∈χ

P(x)log
P(x)
Q(x)

(2.3)

DJS(p, q) =
1
2

DKL(p|| p + q
2

) +
1
2

DKL(q||
p + q

2
) (2.4)

Although JS-divergence is preferred, because it is symmetric, both suffer the same
problem, intuitively explained by Hui, 2018. In essence, when the distributions are
too different, the gradient diminishes. And when the gradient is close to 0, the gener-
ator learns nothing from the gradient descent. In practice, an optimal discriminator
produces good information for the generator to improve. But if the generator is not
doing a good job yet, we fall into the described pitfall.

Therefore, Arjovsky, Chintala, and Bottou, 2017 introduce a new cost function, using
the Earth-Mover (or Wasserstein) distance instead. Defined as the minimum cost
of transporting mass in converting the data distribution q to the data distribution
p, it benefits from a smooth gradient everywhere, thus escaping the aforementioned

10 Chapter 2. Background

problem. Wasserstein GAN (WGAN), as it was named, learns no matter if the gener-
ator is performing or not, which is the important breakthrough. We no longer need
to balance generator and discriminator carefully. The better the discriminator, the
higher quality the gradients we use to train the generator.

DW(p, q) = inf
γ∈Π(p,q)

E(x,y)∼γ[||x− y||] (2.5)

is the Wesserstein distance, where Π(p, q) denotes the set of all joint distributions
γ(x, y) whose marginals are respectively p and q. Due to the infimum, this is further
reduced to a more tractable form as follows:

DW(p, q) = sup
|| f ||L≤1

Ex∼p[f (x)]−Ex∼q[f (x)] (2.6)

To optimize this new cost function, we train a neural network similarly to the origi-
nal GAN, but now we remove the sigmoid activation and instead have the outputs
as scalar scores rather than probabilities. This score is interpreted as a judgement
of how real the input image seems. To reflect the new role of the discriminator, it is
renamed to a critic.

The fact that the Earth-Mover distance is continuous and differentiable means that
we can train the critic till optimality. Empirically, the authors of the paper show that
this not only stabilizes training, but also successfully avoids mode collapse.

2.2.4 WGAN with Gradient Penalty

Notice in the formula (2.6), f needs to be a 1-Lipschitz function. Lipschitz continuity
limits how fast a function can change: there exists a real number such that, for every
pair of points on the graph of this function, the absolute value of the slope of the line
connecting them is not greater than this real number. To enforce this constraint, the
authors of the WGAN paper use weight clipping, meaning they clamp the weights
to a fixed box (usually [-0.01,0.01]) after each gradient update. This, however, is not
a reliable method. "If the clipping parameter is large, then it can take a long time
for any weights to reach their limit, thereby making it harder to train the critic till
optimality. If the clipping is small, this can easily lead to vanishing gradients when
the number of layers is big, or batch normalization is not used."

Gulrajani et al., 2017 suggest an alternative that will improve training of WGANs.
Since a differentiable function f is 1-Lipschitz if and only if it has gradients with
norm at most 1 everywhere, we can penalize the model if the gradient norm moves
away from its target value 1. Thus, we define a new cost function for WGAN with
gradient penalty (WGAN-GP) as follows:

L = Ex̃∼p[f (x̃)]−Ex∼q[f (x)] + λEx̂∼Px̂ [(||∇x̂ f (x̂)||2 − 1)2], (2.7)

where x represents the real data, x̃ is as produced by the generator, and x̂ is sampled
from x and x̃ with t uniform from 0 to 1:

x̂ = tx̃ + (1− t)x

2.2. Generative Adversarial Networks (GANs) 11

As one can notice, this is the same cost function as before, but with the gradient
penalty added. λ is a coefficient that the authors set to 10. An important note here
is that while previous GAN implementations usually did batch normalization in the
critic, this should now be avoided since we penalize the norm of the critic’s gradient
with respect to each input independently, rather than with respect to the batch.

FIGURE 2.5: Gulrajani et al., 2017 present results on GAN conver-
gence

On figure 2.5 we can see a comparison of the convergence of the original WGAN
with weight clipping and WGAN-GP for a popular dataset CIFAR-10. Obviously,
the result is much better. Furthermore, it is comparable with DCGAN, but more
stable.

13

Chapter 3

Methods

3.1 Data Exploration

The data for this project comes from capsule endoscopy performed on 50 patients.
We have footage of the small intestine in healthy subjects obtained using PillCam
SB2. The images are divided into 7 classes depending on the particularities captured
by the camera - bubbles, clear blob, dilated, turbid, undefined, wall and wrinkles.
Figure 3.1 shows examples. Classification and labeling is performed by an expert, so
we consider this the ground truth. The images are available in 256x256 resolution.
Throughout the project we experimented with different sizes, starting with smaller
images as it is easier and then trying to reproduce the results for bigger ones. We
had 20000 total images per class, which in principle is more than enough to train
a GAN. We used 1000-3000 per class in practice. More detailed information on the
dataset can be found in the paper by Seguí et al., 2016, where they try to improve
anomalies recognition on it by feature learning.

The nature of this dataset makes it rather challenging to work with. As one can
observe on figure 3.1 some classes are quite similar and can be confused for one
another. We aim to see if GANs can recreate the variety, but also learn the differences
between the classes.

3.2 Implementations

All the implementations for this project are done in Keras. Along with TensorFlow
and PyTorch, it is one of the widely used frameworks for deep learning develop-
ment. We have chosen Keras for its powerful capabilities, but also for its simplicity
and ease of use as it was developed as a high-level API with a focus on enabling fast
experimentation.

Due to the challenge that the intestine dataset presents, we began work on this
project by experimenting with an easier set first - the fashion MNIST. This is a set,
included in Keras, that consists of images of clothing and accessories, divided into
10 classes. It provides an easy way to learn how to use and tweak GANs.

We started by implementing a version of the original GAN. The code can be found
in gan_fashion_mnist.ipynb and is based on work by Rowel Atienza, as linked from
the notebook. In general, all implementations follow this structure:

• We define a class to hold all the GAN methods.

14 Chapter 3. Methods

FIGURE 3.1: The set of real images. Each row contains four samples
of one class, from top to bottom - bubbles, clear blob, dilated, turbid,

undefined, wall and wrinkles

3.2. Implementations 15

• We define the architecture of the generator and the discriminator and then
combine them into the adverserial network. We compile the model with the
optimizer and loss function we have chosen. In the beginning, those were
respectively Adam and a simple binary crossentropy.

• We train as follows: We randomly select a batch of real images and generate
a batch of fake images, then training the discriminator on all those to let it
learn to distinguish. After this, we train the generator by inputting noise in
the adversarial network and telling the discrminator the images produced by
it are real. We repeat the process for the desired number of iterations.

• We usually include a method to plot the produced synthetic images.

For this simple dataset this showed satisfactory results, but we wanted to implement
WGAN too. This improvement can be found in wgan_fashion_mnist.ipynb, following
examples from the same project. You can notice the new Wasserstein loss, as well
as the weight clipping as described in Chapter 2. Another thing that changes in the
training process is we now train the discriminator 5 times in every iteration since in
this case we want it to be as good as possible.

FIGURE 3.2: Principal component analysis on the images from 4 dif-
ferent classes. Red points represent real samples and blue points
represent the generated ones. It seems the distribution is preserved
within each class, which is the expected result. For instance, notice on
the lower right graph there seems to be two big clusters in both red

and blue.

Next, we needed to write the code for the cGAN to impose the label as a condition.
The implementation is in cgan_fashion_mnist.ipynb. The resulting images looked
quite good, but we did some detailed experimentation to make sure our GANs are
working well before moving on to the real dataset. For example, we performed PCA
on the data points to reduce them to 2D and plot them, expecting that real and fake
samples from the same class should be close together. The plot of all classes gets a bit
cluttered and one cannot assess it very well, so we decided to do separate plots for
each class. We present some of them here on figure 3.2. It seems that the distribution
of the points is preserved in the fake samples.

16 Chapter 3. Methods

Furthermore, we tried to define a network that classifies the images into the 10
classes and check if training it on the extended set (with the synthetic images added)
would improve accuracy. The final validation accuracy for real images only was
0.91, for fake images only - 0.82 and for combined - 0.91. It doesn’t show an im-
provement yet, but it is still a good result. We decided not to lose more time on this
set as a better score might depend on its specifities, whereas it is not our focus.

At this point we moved to the intestine dataset to try and reproduce the results. As
the set is more challenging, this introduced certain difficulties. In the next sections,
we focus on those and how we had to modify the GANs so they produce satisfying
results.

3.3 Network Architecture

One of the challenges of GANs is choosing the right architecture for both generator
and discriminator. The toyset we used has black and white images of size 28x28
pixels. Thus, a shallow convolutional neural network as in figure 3.3 was sufficient.

FIGURE 3.3: Architecture of the discriminator. The gener-
ator is symmetrical, but we start with the noise, reshaping
it into an image and then upsampling instead of downsam-
pling. The diagram is generated by adapting the code from

https://github.com/gwding/draw_convnet

For the intestine dataset, where images are bigger and have 3 color channels, this
network wouldn’t learn the particularities. Results were blurry and unclear. We
decided we need to implement DCGAN as defined in Chapter 2. However, as ex-
plained earlier, deeper networks sometimes enable additional problems like vanish-
ing gradient. Thus, we decided to add skip connections, resulting in an architecture
similar to the ResNet, visualized on figure 3.4.

In yellow you can see the input - a 64x64 image with 3 channels. We reduced the size
of the original 256x256 images to 64x64 as smaller images are generally easier and
we wanted to take a methodical approach starting with these. Each blue rectangle
is a convolution with a kernel of size 5x5. We do a few of those one after the other
and we call this a block. Before each block, we reduce the dimensionality by setting
a stride of 2. At the end of each block we add a skip connection. Thus, the pink
rectangles combine the results from the last convolution and the one in the begin-
ning of the block. As in ResNet, we use an addition operator to do this (although

3.4. Improving Image Quality 17

FIGURE 3.4: Diagram of the final architecture.

we experimented with other possibilities as well - multiplication, concatination etc).
Finally, we do one last convolution to bring the tensor to a size of 4x4x512, which is
reasonable to flatten (this is the green rectangle). And then we add a fully connected
layer from it to the desired output (the red dot).

Once we moved on to bigger images, it was really easy to just add new blocks of
convolutions - one more for a 128x128 input, and two more for a 256x256 input. This
architecture has around 15 million parameters, which nowadays is perfectly normal.
Similarly to before, the architecture for the generator is completely symmetrical.

We implemented this architecture within a WGAN. This meant changing the loss
function, but also the activation function in the critic as explained in Chapter 2. Fur-
thermore, instead of Adam, we used a RMSprop optimizer as it is empirically shown
it works better with WGANs. The code is in wgan.ipynb. Results were, however, un-
satisfactory as evident on figure 3.5. The next section regards our efforts to fix the
GAN and the uncertainties we faced.

3.4 Improving Image Quality

To improve the image quality, we experimented with numerous tweaks briefly out-
lined here:

• The design of generator and discriminator:
Before stopping at the architecture as described above we continuously tried to
tweak the number of layers, the kernel size, the activation functions, the num-
ber of channels per convolution, using pooling as opposed to strides, changing
the dropout or batch normalization etc

• The parameters of the GAN:
This means the optimizers, the loss functions, the particular implementation
(especially for Wasserstein, which seemed quite puzzling at first and took some
time to get it right)

18 Chapter 3. Methods

FIGURE 3.5: The first results. One can see the network is learning
some of the characteristics of the different classes, but they are too
blurry or have a checkboard pattern and other unwanted artefacts.

3.4. Improving Image Quality 19

• The training procedure:
There were a few considerations we had here. For one thing, people often
train on a random batch each iteration. We experimented with the alternative
of reshuffling the training data on each epoch and going through all of it to
make sure we make full use of all the available data. This turned out irrelevant
in the end.
Then we had some uncertainties coming from the conditional nature of our
GAN. For instance, when we train the critic on real and fake data, we were
wondering whether the fake images should be assigned the same labels as the
real ones. Also we couldn’t figure out if we need to train the network on real
images with wrong labels to make it understand the classes better. Currently
we only train on real images with the corresponding labels and fake images
with any labels. The problem is that the critic, in essence, needs to learn two
things - distinguishing real from fake, but also distinguishing classes. More on
this in the next section.
Another important point is to freeze the generator when training the critic, and
vice versa.

• Inputting the labels:
Another source of confusion was the particular way that we input the labels
into the conditional versions of the generator and discrminator. The original
paper on cGAN doesn’t specify the correct way and we found out alternatives
exist. The problem comes from the fact that the two inputs have a very dif-
ferent format. This is easily solved for the generator, where we can simply
concatenate the label to the noise vector. Even so, we would either first learn
an embedding or use the one hot encoded label. Both options provide a good
result. For the critic it is harder, because we have a fully convolutional network
that takes an image as input, so we cannot simply concatenate another vector.
The widely adopted approach seems to be to embed the label into a space as
big as the flattened image and then multiply these two quantities. After this,
we reshape back into an image shape and start convoluting. This is what we
ended up using in the end, although we had doubts that maybe "stamping"
the label over the image like this is causing the bad quality of the resulting
synthetics. The main alternative we experimented with is performing all the
convolutions and downsamplings until the tensor is small enough to be flat-
tened. It’s only then that we would input the label via concatenation and add a
few fully connected layers to ensure the network learns it before the final out-
put. However, the network never learnt the label successfully. Another thing
we tried is to embed the label into 64x64 (for a 64x64 image) and then add it as
a new channel in the input. Thus, instead of a 64x64x3 image, we would input
a 64x64x4 image. This also proved unsuccessful. Finally, the most interesting
suggestion is proposed by Tang et al., 2018 who do a one hot channel encoding.
That is, each label gets its own 64x64 channel full of zeros. For the label that
corresponds to the image, we fill in the channel with ones. Although, it works
in their algorithm for artificially aging faces with GANs, we couldn’t make use
of their approach in the end.

• How long to train:
Of course, we also experimented with the number of epochs. We gave the
networks enough time to train - sometimes tens of thousands of epochs for
hours or even days for the final trials. To check if it makes sense to train more,
we kept track of the loss for both discrminator and generator, and visualized

20 Chapter 3. Methods

it using TensorBoard. You can see on figure 3.6 it converges close to 0 for both
networks. This should mean the network has learnt well. Even so, the results
were still questionable.

FIGURE 3.6: The Wasserstein loss for the critic and the generator. It is
low, close to 0, so we assume the network is learning well. We notice

some unstability in the end.

The situation finally improved when we changed to WGAN-GP. This meant replac-
ing the weight clipping with the gradient penalty. Also we made sure to remove
batch normalization in the critic as is recommended. As explained in Chapter 2 this
network performs better than the original WGAN. However, it introduced a new
problem initially - the GAN would produce good images, but wouldn’t recognize
the classes. We inspect that in the next section.

3.5 Classification Loss

At this point, we also trained a 1-class GAN and it was working perfect. It’s un-
doubtedly easier to learn generating one class, than a few of them. As mentioned
previously, the problem is that in a multi-class environment the critic needs to learn
two things - distinguishing real from fake images, but also distinguishing classes.
We tried tweaking the training procedure to accommodate for this. Finally, we de-
cided to change the loss function by adding a penalty for misclassification, inspired
by the age module in the paper about artificially aging faces by Tang et al., 2018.
Actually, this technique has been applied numerous times and it proves successful.
The new loss function is as follows:

3.6. Assessment 21

L = Ex̃∼p[f (x̃)]−Ex∼q[f (x)] + λEx̂∼Px̂ [(||∇x̂ f (x̂)||2 − 1)2]−
7

∑
c=1

yx̃,clog(px̃,c)

This is exactly the same as before, except for the last additive, which is simply the
categorical cross entropy loss for classification problems. To calculate it, we build
a new neural network that will classify images into one of our 7 possible classes.
For the purpose we can use the same architecture or even a much simpler one as
this is an easier task. We just need to change to a softmax activation function in the
output layer, so that we get the probability of each class. Training this network on
the same data that we use for the GAN for about 50 epochs, we get an accuracy of
0.95, which is very good. Then when we evaluate the loss metrics of the GAN, for
each generated image we further run it through the classifier and it gives us what
we consider to be the true label. If it doesn’t match the one we fed to the generator,
then we penalize the model.

With this addition, the WGAN-GP was working very well. Code can be found in
wgan-gp.ipynb. One can observe the additional loss function added to the generator
model. The resulting final synthetic images are shown on figure 3.7.

3.6 Assessment

To a human eye, the produced synthetic images already looked good, albeit not
perfect. Sometimes they would be a bit blurry, specifically for the 64x64 case. This is
why we added the extra blocks to run the algorithm on 128x128 and 256x256, which
expectedly improved resolution. We ran a few tests to make sure the network is
working correctly. The final model that we assessed was run for two days on a GPU.

For one thing, we manually gave the generator random noise and a label to see if
it produces an image from the class we expect. Then we analysed the output of the
critic for this synthetic image and all possible labels. As should be, the score for
the correct label is the highest. It’s interesting to see for which classes the scores are
similar as this means the network is uncertain about those and might confuse them.
For example, undefined and wrinkles are often similar.

Apart from that, we wanted to find an actual measure for the GAN’s performance.
Inception Score (IS) is often used for this purpose. Proposed for the first time by Sal-
imans et al., 2016, it tries to judge the dataset of produced synthetic images on two
criteria: if they look like something sensible and if they have variety. This is done
by running the images through a classifier, combining the label probability distri-
bution over the whole set and calculating the divergence from the real distribution,
using KL-divergence as defined in equation (2.3). Usually GANs are scored on the
Inception classifier, hence the name of the measure, but it is very different from our
problem (produced by Google, it classifies images into 1000 different classes). Thus,
we cannot use the measure directly. We tried tuning it to use our own classifier that
we came up with in the previous section, but the score didn’t make sense compared
to other ISs we found in literature, so we are not sure if it is directly comparable. IS
is considered imperfect due to its nature of linking the score to the classifier. Frechet
Inception Distance (FID), proposed by Heusel et al., 2017 offers an improvement,
but still uses the Inception network.

22 Chapter 3. Methods

FIGURE 3.7: The final results. The leftmost image serves to remind of
the real class. The rest of the images are synthetically generated.

3.6. Assessment 23

Either way, we decided to do something that is essentially very close to the idea of
IS. Going back to the beginning, the idea of this project was to create synthetic data
that would aid classification algorithms with insufficient training data. Thus, we
wanted to check if the new images would improve the classification accuracy. That’s
why we performed the following test:

• Divide the real images into a train and test set.

• Train a first classifier on the train set. Evaluate on the test set and on the syn-
thetic data.

• Train a second classifier on the synthetic images. Evaluate on the test set and
the train set.

• Train a third classifier on both the train set and the synthetic images. Evaluate
on the test set.

We have used the same architecture as in the previous section, but we trained for 25
epochs. Results are provided in table 3.1.

accuracy synthetic data train set test set
1st classifier 0.91 0.89 0.75
2nd classifier 0.99 0.66 0.63
3rd classifier 0.98 0.98 0.78

TABLE 3.1: Evaluation results, where the classifiers are as described
in the text. The values in italic are in training time. The values in bold

are reported on unseen data.

We can observe some overfitting of the classifiers as the test accuracy is lower than
the train accuracy, although we have designed the network with dropout specifically
to avoid this. Either way, this will not be of concern for the moment. We can also see
that when training on the real data, the classifier is performing perfectly on the syn-
thetic one. We could hope for an improvement the other way around, but the lower
scores are probably because of some artefacts that sometimes appear on synthetic
images. Finally, in the last row we can see that when we trained on all the available
data, the accuracy in the test set increased slightly. Therefore, we can conclude the
GAN is producing good images and the synthetic data can indeed be used for the
goal we pursued.

The code for these tests, including the attempts to score with IS, can be found in
eval.ipynb

25

Chapter 4

Conclusion

In the last chapter we would like to summarize what we have achieved and discuss
what we believe can be done next.

4.1 Future Work

As stated in the beginning, the main purpose of generating the synthetic images is to
use them in training algorithms for automatically recognizing anomalies when per-
forming capsule endoscopy on a patient. Those could be bleedings, ulcers, polyps.
Recognizing polyps is particularly challenging, even for humans, because of the dif-
ferent shapes they could have. The initial goal of the project was to yield an algo-
rithm that will produce real-looking images with polyps on them, but due to the
difficulty of training the GANs we only developed the network for the easier set
of the intestine images. Indeed, in medical applications the positive class usually
suffers from scarcity, so ideally we would like to turn our focus to generating the
polyps. This section serves to offer insights on how we can extend the project to
solve this problem.

In particular, we are interested in reproducing or improving the results of Shin,
Qadir, and Balasingham, 2018. They try to take real images and put realistic looking
polyps on top of them. To do so, instead of inputting random noise in the gener-
ator, they input an edge filtering of the original and a random binary polyp mask.
Then the network should learn to generate a synthetic image, keeping the edges,
but adding a polyp on top. This is done to make sure that polyp and environment
are harmonious in the synthetic images, while maintaining the overall content of
the colonoscopy images. This is an interesting case of a cGAN, where instead on a
label we condition on the edges and mask. The concept is shown on figure 4.1. We
consider this a possible and logical continuation of the work on this project.

4.2 Summary

The invention of wireless capsule endoscopy has had a tremendous impact on medicine,
revolutionizing the management of dozens of conditions and diseases. The biggest
challenge to its adoption, however, has been the limits of the human eye and hu-
man attention. Artificial intelligence and deep learning algorithms that can learn
from raw and unprocessed imagery are considered the solution. Michael F. Byrne
and Fergal Donnellan, 2019 claim that a human can discern 3 features for polyp

26 Chapter 4. Conclusion

FIGURE 4.1: The polyp generation GAN proposed by Shin, Qadir,
and Balasingham, 2018. Note that a different capsule camera has been

used, therefore the images look different to the ones in this project.

differentiation, whereas their algorithm for polyp detection was seeing over 1000
discriminating features.

As is usually the case, the quantity and quality of available data is key to a well
performing algorithm. Different strategies have been utilized to tackle insufficient
training data. We are concerned with artificially enlarging the training set by adding
new synthetically generated images. In this project we have used a GAN to achieve
this.

GAN employs a minimax game between two adversarial agents - discrminator and
generator. While the discriminator tries to distringuish real from fake images, the
generator gets better at producing the latter. We have implemented the original
GAN, as well as necessary improvements like the conditional variant where we
impose a condition on the generator and the Wasserstein GAN, including gradient
penalty, where we use a new loss function to stabilize training.

With this we have achieved our goal of improving classification accuracy for a dataset
of various intestine images, ranging from showing clear blobs to bubbles to wrinkles
etc. In particular, the accuracy on a test set has increased from 0.75 to 0.78 when train-
ing on both the real and synthetic data. Results show promise to be applied to the
harder task of recognizing polyps, the next step for the development of this project.

While we have tried to make the GAN as good as possible by continuously testing
different configurations for its parameters and hyperparameters, we recognize its
imperfections. GANs are a subject of numerous ongoing studies - researches try to
apply new loss functions, change the architectures and introduce other novelties.

4.2. Summary 27

We are certain that more experiments could be run to further improve the quality of
the output.

29

Bibliography

Arjovsky, Martin, Soumith Chintala, and Léon Bottou (2017). “Wasserstein GAN”.
In: URL: https://arxiv.org/abs/1701.07875.

Caffrey, Colm Mc et al. (2008). “Swallowable-Capsule Technology”. In: IEEE Perva-
sive Computing 7.1, pp. 23–29. URL: https://ieeexplore.ieee.org/document/
4431853/authors#authors.

Chen, Xi et al. (2016). “InfoGAN: Interpretable Representation Learning by Informa-
tion Maximizing Generative Adversarial Nets”. In: URL: https://arxiv.org/
abs/1606.03657.

Deep learning for hackers with MXnet (2): Neural art. URL: https://no2147483647.
wordpress.com/2015/12/21/deep- learning- for- hackers- with- mxnet- 2/
(visited on 05/03/2019).

Dreyfus, Stuart (1962). “The numerical solution of variational problems”. In: Jour-
nal of Mathematical Analysis and Applications 5.1, pp. 30–45. URL: https://www.
sciencedirect.com/science/article/pii/0022247X62900045?via%3Dihub.

Goodfellow, Ian J. et al. (2014). “Generative Adversarial Networks”. In: URL: https:
//arxiv.org/abs/1406.2661.

Gulrajani, Ishaan et al. (2017). “Improved Training of Wasserstein GANs”. In: URL:
https://arxiv.org/abs/1704.00028.

Hannun, Awni et al. (2014). “Deep Speech: Scaling up end-to-end speech recogni-
tion”. In: URL: https://arxiv.org/abs/1412.5567.

Hart, Matthew (2017). “Nvidia’s A.I. Generates Perfect Headshots of Fake Celebri-
ties”. In: Nerdist.com. URL: https://nerdist.com/article/nvidia-ai-headshots-
fake-celebrities/ (visited on 04/29/2019).

He, Kaiming et al. (2016). “Deep Residual Learning for Image Recognition”. In:
2016 IEEE Conference on Computer Vision and Pattern Recognition. URL: https://
ieeexplore.ieee.org/document/7780459.

Heusel, Martin et al. (2017). “GANs Trained by a Two Time-Scale Update Rule Con-
verge to a Local Nash Equilibrium”. In: URL: https://arxiv.org/abs/1706.
08500.

Hochreiter, Sepp and Jürgen Schmidhuber (1997). “Long Short-term Memory”. In:
Neural Computation 9.8, pp. 1735–1780. URL: https://arxiv.org/abs/1404.7828.

Huang, Xun et al. (2016). “Stacked Generative Adversarial Networks”. In: URL: https:
//arxiv.org/abs/1612.04357.

Hui, Jonathan (2018). “GAN - Why it is so hard to train Generative Adversarial Net-
works!” In: URL: https://medium.com/@jonathan_hui/gan-why-it-is-so-
hard-to-train-generative-advisory-networks-819a86b3750b.

Jones, Kenny (2017). “GANGogh: Creating Art with GANs”. In: towardsdatascience.com.
URL: https://towardsdatascience.com/gangogh-creating-art-with-gans-
8d087d8f74a1 (visited on 04/30/2019).

Karras, Tero, Samuli Laine, and Timo Aila (2018). “A Style-Based Generator Archi-
tecture for Generative Adversarial Networks”. In: URL: https://arxiv.org/abs/
1812.04948.

https://arxiv.org/abs/1701.07875
https://ieeexplore.ieee.org/document/4431853/authors#authors
https://ieeexplore.ieee.org/document/4431853/authors#authors
https://arxiv.org/abs/1606.03657
https://arxiv.org/abs/1606.03657
https://no2147483647.wordpress.com/2015/12/21/deep-learning-for-hackers-with-mxnet-2/
https://no2147483647.wordpress.com/2015/12/21/deep-learning-for-hackers-with-mxnet-2/
https://www.sciencedirect.com/science/article/pii/0022247X62900045?via%3Dihub
https://www.sciencedirect.com/science/article/pii/0022247X62900045?via%3Dihub
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1704.00028
https://arxiv.org/abs/1412.5567
https://nerdist.com/article/nvidia-ai-headshots-fake-celebrities/
https://nerdist.com/article/nvidia-ai-headshots-fake-celebrities/
https://ieeexplore.ieee.org/document/7780459
https://ieeexplore.ieee.org/document/7780459
https://arxiv.org/abs/1706.08500
https://arxiv.org/abs/1706.08500
https://arxiv.org/abs/1404.7828
https://arxiv.org/abs/1612.04357
https://arxiv.org/abs/1612.04357
https://medium.com/@jonathan_hui/gan-why-it-is-so-hard-to-train-generative-advisory-networks-819a86b3750b
https://medium.com/@jonathan_hui/gan-why-it-is-so-hard-to-train-generative-advisory-networks-819a86b3750b
https://towardsdatascience.com/gangogh-creating-art-with-gans-8d087d8f74a1
https://towardsdatascience.com/gangogh-creating-art-with-gans-8d087d8f74a1
https://arxiv.org/abs/1812.04948
https://arxiv.org/abs/1812.04948

30 BIBLIOGRAPHY

Karras, Tero et al. (2017). “Progressive Growing of GANs for Improved Quality, Sta-
bility, and Variation”. In: URL: https://arxiv.org/abs/1710.10196.

Kingma, Diederik P and Max Welling (2014). “Auto-Encoding Variational Bayes”.
In: URL: https://arxiv.org/abs/1312.6114.

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton (2012). “ImageNet classi-
fication with deep convolutional neural networks”. In: NIPS’12 Proceedings of the
25th International Conference on Neural Information Processing Systems 1, pp. 1097–
1105. URL: https://dl.acm.org/citation.cfm?id=2999257.

Lecun, Y. et al. (1998). “Gradient-based learning applied to document recognition”.
In: Proceedings of the IEEE 86.11, pp. 2278–2324. URL: https://ieeexplore.ieee.
org/document/726791.

Lee, Andy (2016). “Comparing Deep Neural Networks and Traditional Vision Algo-
rithms in Mobile Robotics”. In: URL: https://www.cs.swarthmore.edu/~meeden/
cs81/f15/papers/Andy.pdf.

Linnainmaa, Seppo (1976). “Taylor expansion of the accumulated rounding error”.
In: BIT Numerical Mathematics 16.2, pp. 146–160. URL: https://link.springer.
com/article/10.1007%2FBF01931367.

Michael F. Byrne, MD and MD Fergal Donnellan (2019). “Artificial intelligence and
capsule endoscopy: Is the truly“smart”capsule nearly here?” In: Gastrointestinal
endoscopy 89.1, pp. 195–197. URL: https://www.giejournal.org/article/S0016-
5107(18)32937-7/fulltext.

Mirza, Mehdi and Simon Osindero (2014). “Conditional Generative Adversarial Nets”.
In: URL: https://arxiv.org/abs/1411.1784.

Radford, Alec, Luke Metz, and Soumith Chintala (2015). “Unsupervised Represen-
tation Learning with Deep Convolutional Generative Adversarial Networks”. In:
URL: https://arxiv.org/abs/1511.06434.

Salimans, Tim et al. (2016). “Improved techniques for training GANs”. In: URL: https:
//arxiv.org/pdf/1606.03498.pdf.

Schmidhuber, Juergen (2015). “Deep Learning in Neural Networks: An Overview”.
In: Neural Networks 61, pp. 85–117. URL: https://arxiv.org/abs/1404.7828.

Seguí, Santi et al. (2016). “Generic Feature Learning for Wireless Capsule Endoscopy
Analysis”. In: URL: https://arxiv.org/pdf/1607.07604.

Shin, Younghak, Hemin Ali Qadir, and Ilangko Balasingham (2018). “Abnormal
Colon Polyp Image Synthesis Using Conditional Adversarial Networks for Im-
proved Detection Performance”. In: URL: https://ieeexplore.ieee.org/abstract/
document/8478237.

Silva, Thalles. An intuitive introduction to Generative Adversarial Networks (GANs).
URL: https://medium.freecodecamp.org/an-intuitive-introduction-to-
generative-adversarial-networks-gans-7a2264a81394 (visited on 05/17/2019).

Springenberg, Jost Tobias et al. (2014). “Striving for Simplicity: The All Convolu-
tional Net”. In: URL: https://arxiv.org/abs/1412.6806.

Tang, Xu et al. (2018). “Face Aging with Identity-Preserved Conditional Generative
Adversarial Networks”. In: URL: https://www.researchgate.net/publication/
329743796_Face_Aging_with_Identity-Preserved_Conditional_Generative_
Adversarial_Networks.

Tong, Jessica et al. (2012). “Diagnostic yield of capsule endoscopy in the setting of
iron deficiency anemia without evidence of gastrointestinal bleeding”. In: Cana-
dian Journal of Gastroenterology 26.10, pp. 687–690. URL: https://www.ncbi.nlm.
nih.gov/pmc/articles/PMC3472906/.

Yu, Jiahui et al. (2018). “Generative Image Inpainting with Contextual Attention”.
In: URL: https://arxiv.org/abs/1801.07892.

https://arxiv.org/abs/1710.10196
https://arxiv.org/abs/1312.6114
https://dl.acm.org/citation.cfm?id=2999257
https://ieeexplore.ieee.org/document/726791
https://ieeexplore.ieee.org/document/726791
https://www.cs.swarthmore.edu/~meeden/cs81/f15/papers/Andy.pdf
https://www.cs.swarthmore.edu/~meeden/cs81/f15/papers/Andy.pdf
https://link.springer.com/article/10.1007%2FBF01931367
https://link.springer.com/article/10.1007%2FBF01931367
https://www.giejournal.org/article/S0016-5107(18)32937-7/fulltext
https://www.giejournal.org/article/S0016-5107(18)32937-7/fulltext
https://arxiv.org/abs/1411.1784
https://arxiv.org/abs/1511.06434
https://arxiv.org/pdf/1606.03498.pdf
https://arxiv.org/pdf/1606.03498.pdf
https://arxiv.org/abs/1404.7828
https://arxiv.org/pdf/1607.07604
https://ieeexplore.ieee.org/abstract/document/8478237
https://ieeexplore.ieee.org/abstract/document/8478237
https://medium.freecodecamp.org/an-intuitive-introduction-to-generative-adversarial-networks-gans-7a2264a81394
https://medium.freecodecamp.org/an-intuitive-introduction-to-generative-adversarial-networks-gans-7a2264a81394
https://arxiv.org/abs/1412.6806
https://www.researchgate.net/publication/329743796_Face_Aging_with_Identity-Preserved_Conditional_Generative_Adversarial_Networks
https://www.researchgate.net/publication/329743796_Face_Aging_with_Identity-Preserved_Conditional_Generative_Adversarial_Networks
https://www.researchgate.net/publication/329743796_Face_Aging_with_Identity-Preserved_Conditional_Generative_Adversarial_Networks
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3472906/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3472906/
https://arxiv.org/abs/1801.07892

BIBLIOGRAPHY 31

Zhang, Han et al. (2017). “StackGAN: Text to Photo-realistic Image Synthesis with
Stacked Generative Adversarial Networks”. In: URL: https://arxiv.org/abs/
1612.03242.

Zhu, Jun-Yan et al. (2017). “Unpaired Image-to-Image Translation using Cycle-Consistent
Adversarial Networks”. In: URL: https://arxiv.org/abs/1703.10593.

Zhuan Liao, MD et al. (2010). “Indications and detection, completion, and retention
rates of small-bowel capsule endoscopy: a systematic review”. In: Gastrointestinal
Endoscopy 71.2, pp. 280–286. URL: https://www.giejournal.org/article/S0016-
5107(09)02540-1/references.

https://arxiv.org/abs/1612.03242
https://arxiv.org/abs/1612.03242
https://arxiv.org/abs/1703.10593
https://www.giejournal.org/article/S0016-5107(09)02540-1/references
https://www.giejournal.org/article/S0016-5107(09)02540-1/references

	Abstract
	Acknowledgements
	Contents
	Introduction
	Capsule Endoscopy
	Generating Synthetic Data
	Main Contributions
	Report Structure

	Background
	Convolutional Neural Networks
	Generative Adversarial Networks (GANs)
	DCGAN
	Conditional GAN
	Wasserstein GAN
	WGAN with Gradient Penalty

	Methods
	Data Exploration
	Implementations
	Network Architecture
	Improving Image Quality
	Classification Loss
	Assessment

	Conclusion
	Future Work
	Summary

	Bibliography

