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ABSTRACT

A significant body of literature suggests that dugollutants can interfere with the
physiological function of the fish hypothalamicptary-interrenal (HPI) axis, and eventually
impair the ability to cope with subsequent stressbor this reason, development of accurate
techniques to assess fish stress responses havméed growing interest. Fish scales have
been recently recognized as a biomaterial thatragtates cortisol, hence it can be potentially
used to assess chronic stress in laboratory conditiWe, therefore, aimed to evaluate the
applicability of this novel method for cortisol assment in fish within their natural
environment. Catalan chuBdqualius laietanyswere sampled from two sites; a highly polluted
and a less polluted (reference) site, in orderxXanmgne if habitat quality could potentially
influence the cortisol deposition in scales. Weo atsaluated the seasonal variation in scale
cortisol levels by sampling fish at three differ¢ime points during spring-summer 2014. In
each sampling, blood was collected to complemanirtformation provided by the scales. Our
results demonstrated that blood and scale cortsatls from individuals inhabiting the
reference site were significantly correlated, tfaneincreasing the applicability of the method
as a sensitive-individual measure of fish HPI aagsivity, at least in non-polluted habitats.
Since different environmental conditions could mtiedly alter the usefulness of the technique,
results highlight that further validation is reaqadrto better interpret hormone fluctuations in
fish scales. Scale cortisol concentrations werdfectad by habitat quality although fish from
the polluted environment presented lower circutpthortisol levels. We detected a seasonal
increase in scale cortisol values concurring witheaergetically costly period for the species,
supporting the idea that the analysis of cortis@dales reveals changes in the HPI axis activity.
Taken together, the present study suggests thasalolevels in scales are more likely to be
influenced by mid-term, intense energetically dediag periods rather than by long-term
stressors. Measurement of cortisol in fish scatesapen the possibility to study novel spatio-
temporal contexts of interest, yet further reseasalequired to better understand its biological

relevance.
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1. INTRODUCTION

The analysis of circulating cortisol, the main gloorticoid (GC) in teleost fish released after
the activation of the hypothalamic-pituitary-ineemal (HPI) axis, has been by far the most
common method used in stress response assessHiEmsNnsen et al., 1999; Schreck et al.,
2016). Although acute stress responses, such ae thibiated after an attack by a predator or
severe storms, are imperative for fish homeostasilssurvival, chronic stressors can negatively
affect fish growth, reproduction and the immunetays(Moberg and Mench, 2000; Pankhurst,
2011). The difficulty of obtaining baseline bloodnsples in wildlife, and the growing interest
of conservation physiology in assessing chroniceiases of cortisol (Dantzer et al., 2014),
makes imperative the development of novel techmigoequantify fish HPI axis activity. In
other taxa, integumentary structures such as Feathers, shed skin or claws are recently
gaining attention since they provide an alternatihey to measure hormone concentrations
integrated over time (Berkvens et al., 2013; Bottokt al., 2008; Davenport et al., 2006; Matas
et al., 2016). In this direction, fish scales hd#emn recently recognized as a biomaterial that
accumulates cortisol (Aerts et al., 2015; Carbafadl., 2018). Thus far, no research has been
done to examine the accurate time course over wdgales accumulate cortisol. Similarly to
the process described for corticosterone depostiorfeathers (Bortolotti et al., 2008) or
cortisol diffusion into the hair shaft (Russellatt, 2012), scales are vascularized by capillaries
from which GC may diffuse into the matrix. As scsalgrow during the entire life of the fish
(Elliott, 2000), cortisol measurements in this malized tissue could potentially integrate a
longer period than any other tissue available. Dedpormone analysis in fish scales is a
promising tool as it may provide integrated measwkcortisol, this method is not yet fully
validated. To date, only one study has demonstihtedisefulness of scales as an indicator of
long-term HPI axis activity in fish subjected tdodaatory conditions (Aerts et al., 2015).
Although these authors verified the biological velece of scale cortisol levels, whether
hormone concentrations in this media are propaation their abundance in the bloodstream

still remains to be explored. Establishing the treteship between scales and blood cortisol
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levels is crucial to increase the applicability tbfs novel method as a sensitive-individual
measure of fish HPI axis activity (Cook, 2012; $ffiet al., 2011). In addition, this integrative
technique has only been tested in farmed fish belder captivity. Nevertheless, given the
structural characteristics of this matrix, the asggent of cortisol in fish scales is likely to

present a promising applicability in natural enmiments.

Decline of wild fish populations, particularly treodrom freshwater systems, has been partly
exacerbated by pollution (Ismail et al., 2017). g4arm exposure to pollutants, such as metals,
pesticides, and other organics, can cause the ichemtivation of the HPI axis, which as
mentioned, can have detrimental consequences brpégormance (Mommsen et al., 1999;
Scott and Sloman, 2004). Many researchers haveomxplthe effects of environmental
contaminants on the fish stress response, eithasumeg cortisol in blood (Hontela et al.,
1992; Jorgensen et al., 2017; Miller et al., 200@) surrounding water (Pottinger et al., 2016)
or using whole-body homogenates (Belanger et 8l62King et al., 2016; Pottinger et al.,
2013). Measurement of cortisol in scales could better option when an integrated measure of
the HPI axis activity over longer periods is neededenhance the ‘“snapshot” of cortisol

measurement.

When designing an experiment, several factors mousé considered in order to yield valuable,
biologically relevant results (Johnstone et al120Killen et al., 2016; Schreck et al., 2016),
and this is especially important when new matriées endocrine assessment are being
developed (Cook, 2012; Sheriff et al., 2011). lis tontext, a considerable amount of research
has reported seasonal variation on cortisol lef&danger et al., 2016; Madliger and Love,
2014; Palme, 2005). Given that the assessmentrtgaan fish scales is a recent contribution
(Aerts et al., 2015; Carbajal et al., 2018), itcrsicial to understand the potential seasonal
variation in scale cortisol concentrations (SCOple using this method as an indicator of HPI

axis activity in wild specimens.
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Taking into account these previous consideratitims,present study was designed to explore
the usefulness of fish scale cortisol analysis hiiadicator in wild environments. As a further
validation of the technique, we first aimed to exat whether the quantification of cortisol in
scales reflects the HPI axis activity by individyalomparing blood and scale cortisol levels in
specimens of Catalan chubqualius laietanys Second, we aimed to determine whether habitat
quality affected the cortisol content in fish ssalBecause of the long-term inhibitory effects of
certain pollutants on the HPI axis activity (Gestaal., 2008; Hontela et al., 1992; Leblond et
al., 2001; Norris et al., 1999) we hypothesized fish from a polluted habitat would present
lower SCC compared to fish from a less pollutedithdbAdditionally, we evaluated whether
seasonality could influence SCC by sampling fistthat beginning-spring, middle-spring and
beginning-summer. We hypothesized that higher aunagons of cortisol would be detected at
the beginning of summer concurring with an enecgdlti demanding period for this cyprinid

(Colin et al., 2017).

2. MATERIALS & METHODS

2.1. Study area

Fish sampling was carried out in the Ripoll RivBeg0s basin) located in the north-east of
Spain. The polluted habitat (2°06.40E 41°3417.88'N) was located immediately after an
industrial plant, strongly affected by the industgd urbanization. The less polluted site,
henceforth referred to as the reference site (22D87E"” 41°38'45.05N"), was located on the
same river but 2.7 km upstream from the highly ddgd habitat. A small dam located between
the two sampling sites prevented the passage loffftesn one sampling point to the other.
Analysis of physico-chemical water parameters gssion 2.3.) and chemical analysis of per-
and polyfluoroalkyl substances (PFAS) in the musdléhe fish collected at the two sites (see
section 2.4.) were performed in order to certifattithe selected habitats were correctly

classified according to their pollution gradientgth pollution (henceforth referred to as the
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“polluted habitat”) and low pollution (hencefortbferred to as the “reference habitat”) habitats.
All procedures were conducted in accordance with European Directive for animal
experimentation (2010/63/EU) and approved by thgidgtal Government of Catalonia (Ref.
AP/007). One of the co-authors holds a FELASA fiedie that regulates the use of animals for

experimental and other scientific purposes.

2.2. Sampling times

In order to study whether habitat quality influemc8CC without accounting for seasonal
variation, fish were sampled at the beginning afrgp2014 from the reference (25/03/2014; n
= 7; mean body weight + SD = 43.2 + 16.1 g) andftbe polluted habitat (21/03/2014; n = 17,

mean body weight £ SD = 53.6 £ 24.72 g). To exantheseasonal influence on SCC, three
consecutive sampling efforts were carried out i eference habitat in spring-summer 2014.
Samplings were performed in the early spring (22084; n = 7; mean body weight + SD =

43.2 + 16.1 g), middle spring (08/04/2014; n = &am body weight + SD = 32.7 + 12.1 g) and

early summer (16/07/2014; n = 17; mean body weigBD = 46.3 + 26.0 g).

In each sampling, blood was also collected in otdemomplement the information provided by
the scales with the “snapshot” of blood cortisabasurement. We evaluated circulating cortisol
levels after a period of confinement since stressddced cortisol concentrations are known to
provide a better understanding of the stress resspmmess (Romero, 2004). Stress-induced
cortisol increases have been detected from as ah@15 min to as long as 120 min in different
fish species (Mommsen et al., 1999; Pankhurst, P0Adcordingly, fish were caught with a
portable electrofishing unit (300 V) and kept inka with the local river water for about 1 h in
order to trigger a stress response by capture amithement. Fish were then euthanized with an
overdose of MS-222, and immediately after, blood armole body scales were collected. A
portion of muscle was sampled for chemical analg6BFAS. Sex, body weight, gonad weight
and total length were recorded during post-mortes@renations. Fulton’s condition factor,
considered to reflect an individual's energetictestéBarton et al., 1998) was calculated

according to the formulak = 10 - body weight (g) - total length (mth{Goodbred et al.,



135  2015). The reproductive stage of each individuas \g&ven by the gonadosomatic index, a
136  broadly used indicator of reproductive periods (#Breet al., 2008), which was calculated with

137  the formula, GSI = 100 - gonad weight (g) - bodigive(g)" (Goodbred et al., 2015).

138  2.3. Physico-chemical water parameters

139  In the physico-chemical analysis, altered wateapeters were observed in the polluted habitat
140 compared to the reference site (Table 1). Thesaesaprovide evidence that the habitat
141  classified as polluted exhibits features commordgesved in disturbed ecosystems (Colin et

142 al., 2017; Maceda-Veiga et al., 2013; Stasinaka.ef012).

Table 1. Physico-chemical water parameters from pollutedir@ference habitats analyzed
on spring and summer 2014

Spring Summer
Reference  Polluted Reference Polluted
25/3/14 21/3/14 16/7/14 15/7/15

Flow (L/s) 239.5 241.2 28.4 124.0
Temperature (°C) 14.2 16.9 19.0 23.0
Oxygen (mg/L) 7.2 6.2 7.1 8.0
Conductivity (uS/cm) 728 3680 709 4777
pH 8.1 8.3 7.1 8.3
NH; (mg/L) 0.04 0.40 0.04 5.30
NO, (mg/L) 0.01 0.90 0.01 5.51
NO; (mg/L) 0.13 19.6 0.06 10.6
PO, (mg/L) 0.1 1.0 0.1 0.8
SO, (mg/L) 15.8 414.1 17.9 464.0
Cl (mg/L) 40.0 987 31.9 1088

143

144  2.4. Per- and polyfluoroalkyl substances

145 Seven PFAS were detected in muscle tissue by URigZfluorononanoic acid (PFNA),
146  perfluorooctane sulfonic acid (PFOS), perfluorodeia acid (PFDA), perfluoroundecanoic
147 acid (PFUnA), perfluorodecane sulfonic acid (PFO&¥fluorododecanoic acid (PFDoA) and
148  perfluorotridecanoic acid (PFTriDA). Informationgarding the chemicals and reagents, sample
149  extraction and analysis technique applied is pewidn the Supplementary material. The

150 analysis of PFAS confirmed that, in both spring @udhmer, fish from the polluted habitat
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presented higher bioaccumulation of PFAS than #ference site (Table 2), further verifying

that both habitats had been properly classifiedrmleg to their habitat quality characteristics.

Table 2. Per- and polyfluoroalkyl substances detected umsate
tissue by UPLC from individuals inhabiting polluteshd reference
habitats analysed on spring and summer 2014

Spring Summer
Reference Palluted Reference Palluted
25/3/14 21/3/14 16/7/14 15/7/15

PFNA 0.06 0.52 0.13 0.27
PFOS 2.32 13.9 2.27 8.07
PFDA 0 13.2 0 9.12
PFUNA 0.77 18.2 0.55 13.9
PFDS 0.01 0.06 0 0.06
PFDoA 0.96 24.5 0.6 43.4
PFTriDA 0.51 47.1 0.32 49.9
Total 4.63 117.48 3.87 124.72

PFNA, perfluorononanoic acid; PFOS, perfluorooctankonic acid; PFDA,
perfluorodecanoic acid; PFUNnA, perfluoroundecanoarid; PFDS,
perfluorodecane sulfonic acid; PFDoA, perfluorodmd®ic acid; PFTriDA,
perfluorotridecanoic acid

2.5. Cortisol extraction
Blood - Blood was collected by puncture of the auekin with a heparinized insulin syringe
and kept on ice until transported back to the latmoy. Samples were then centrifuged at 1500

x g for 5 min at 4 °C and the plasma collected stased at -20 °C until analysis.

Scales - Whole body scales were removed with alswoalpel and all of them where used for
hormone extraction. In studies using larger spedhes optimal methodology should employ

one or a small number of scales while taking intoocaint that ontogenetic and regenerated
scales can accumulate different hormone concemigtiat least in common carp under
laboratory conditions (Aerts et al., 2015). In gresent study, extraction of cortisol from scales
was performed following the procedure describe€hybajal et al., (2018). Briefly, scales were
washed three times with isopropanol and, oncettisy were minced with a ball mill (Retsch,

MM2 type, Germany). Then, 50 mg of each powderedpéa was incubated in methanol for
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18h. This sample mass was used chosen followingritinods of previous studies on other
cumulative matrices (Davenport et al., 2006; Fowtieal., 2016; Lattin et al., 2011). After

extraction, samples were centrifuged and the sapenhwas evaporated. Dried extracts were
reconstituted with enzyme immunoassay (EIA) exioacbuffer and immediately stored at —20
°C until analysis. Not enough scale sample mass$dcbea collected from some specimens
(reference n = 8; polluted n = 6) due to their $ntmidy size, consequently, from these

individuals only cortisol from plasma was analysed.

2.6. Cortisol analysis and validation tests

Cortisol concentrations from plasma and scales weeasured by enzyme immunoassay
(Cortisol EIA KIT; Neogen® Corporation, Ayr, UK). Ithough the EIA kit comes already
species-specifically validated, each assay needsxhaustive biochemical validation for the
species and sample of interest (Buchanan and Gitlds2904). Biochemical validation was
conducted using methods previously described fatismd analysis in scales of goldfish
(Carassius auratysby EIA (Carbajal et al., 2018). Plasma and seakeacts from 10 different
specimens were pooled for assay validation. Inssap coefficient of variation (CV) from all
duplicated samples analysed was calculated forigioec assessment. The specificity was
evaluated with the linearity of dilution. Accuraaas assessed through the spike-and-recovery
test. And the sensitivity of the test was givently smallest amount of hormone that the assay

is able to distinguish and measure for each matrix.

2.7. Statistical analysis

The computer program R software (R-project, Vers®d.1l, R Development Core Team,
University of Auckland, New Zealand) was used talgse the data. A < 0.05 was considered
statistically significant. Shapiro-Wilk tests wewsed to test for normality of data, and log-
transformed when appropriate.

Pearson’s correlation coefficients (r) were usetesd the relationship between SCC and plasma
cortisol concentrations (PCC) in the two sites saiply. We explored whether season and

habitat quality could potentially influence PCC a8@C using linear regression models with

10
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sex,K and GSI as covariates. Covariates were omitted fiwrfinal models since they were
non- significant f > 0.05). We used Tukey post-hoc tests to distsiytihe seasonal variations
in SCC. We assessed seasonal and habitat differémke GSI and sex by applying ANOVAs
and Student's t-test for quantitative variablesd ahi-squared for sex. Additionally, sex
differences in PCC and SCC were analysed with desitls t-test.

In the biochemical validation, Pearson’s correlatiwas used to evaluate the correlation
between obtained and expected values from seratialis. The same statistical test was
applied to calculate the relationship of the patisin between cortisol standards and the

serially diluted pool extract.

3. RESULTS

3.1. Sex and mor phological variables

The morphological variables and sex distributiorCatalan chub in both assessments (habitat
quality and seasonal variability) are shown in €aBl Significant differences iK between
individuals from the reference and polluted habitaére detectegh(< 0.01). A seasonal change
in K was also observed with significantly higher valdetected on the early summpr<(0.01).
Neither differences between sites nor a seasomgltizen in GSI and the sex distribution was

detectedp > 0.05).

3.2. Biochemical validation of the EIA

The sensitivity of the assay was 0.07 ng cortisdiémplasma and 0.08 ng cortisol/ml for scales
extracts. Intra-assay CV for plasma and scales leamyas 8.80 % and 6.60 % respectively. In
the dilution test, obtained and expected cortismicentrations were significantly correlated

both in plasma and scales (r = 0.9 0.01).The average of the recovery percentage from
spike-and-recovery test was 107.6 + 10.0 % (me&D}for plasma and 101.1 + 4.8 % (mean +

SD) for scales validation. These results demorestizdt the EIA kit used is precise, specific,

11
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accurate and sensitive measuring cortisol levelsoth plasma and scales of the Catalan chub,

likewise demonstrated in other fish species (Cail®djal., 2018).

Table 3. Sex distribution (n (%)) and values of K and GSeém + SD) of individuals sampled
from reference and degraded habitats (habitattgpalnd individuals sampled during the early
spring, middle spring and early summer (seasonaiabifity). Different letters indicate
statistical difference between sites (habitat dualand among sampling efforts (seasonal
influence) (p < 0.01).

Habitat quality Seasonal influence
Variable i
Reference Polluted . M|lee
Early spring spring Early summer
Sex (males)| 5 (62.5%) 10 (52.6 %) | 5 (62.5%} 5 (62.5%f 13 (65.0%}
K 1.02+0.08 1.12+0.08 | 1.02+0.08 1.01+0.08 1.26 +0.1%
GSI 3.76+21% 327+198 | 3.76 £2.17 4.47+2.30 5.36+2.78

K, Fulton's condition factor; GSI, gonadosomaticeid

3.3. Cortisol levels
Fish from the reference site displayed significamtelation between SCC and PCC (r = 0pt1,

= 0.04), however, such correlation was not sigaiftdn fish inhabiting the polluted habitat (r =
0.44, p = 0.20). Comparison between habitats revealed thatdegraded site presented
significantly lower PCC levelsp(= 0.02; Fig. 1A), but no differences on SCC betwsites
were detectedp(= 0.56; Fig. 1B). Seasonal differences were detieote SCC |§ = 0.01; Fig.
2B), although PCC remained constgmt=(0.90; Fig. 2A). Post-hoc tests revealed thagarly
summer, SCC were significantly higher comparedeteells detected in early = 0.04) and
middle spring p = 0.03). Sex differences in PC@ £ 0.09) and SCC were not detected=(

0.76).

4. DISCUSSION

Fish scales have been recently recognized as aateaal that accumulates cortisol, hence the
present study explores the applicability of scaledisol analysis as a bioindicator in wild
environments. We provide further evidence thatescatay accumulate cortisol in proportion to

circulating concentrations. Moreover, results o study suggest that the deposition of cortisol

12
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in fish scales is probably not influenced by thbita quality, but rather by seasonal intrinsic or

extrinsic factors.

An essential way to validate whether scale cortisfiect the HPI axis activity is to evaluate if
hormone levels deposited in the matrix correlateéhtwse detected in plasma from the same
individuals (Cook, 2012; Sheriff et al., 2011). Diowentation on this relationship, however, has
never been reported before in free-ranging aninveesshould point out that, although we could
not specifically validate the time course elevatiomlood cortisol concentrations, as supported
by the literature, we were probably measuring streduced PCC given that we collected blood
1 h following exposure to a stressor (Mommsen et1&899; Pankhurst, 2011). From our study,
a significant correlation was found between cottisgels in scales and blood in fish from the
reference habitat. Direct hormone correlations betwblood and cumulative matrices (e.g.,
hair and feathers) may not always be expec@edilar to our findings, correlations have been
successfully determined between corticosteronddeaneblood and feathers, probably the bird
cumulative matrix analogous to fish scales. Inti@ngky, the correspondence was evident by
using stress-induced blood corticosterone levelsrtfiotti et al., 2008) and when blood
hormone values were the highest of the overallistugeriod (Fairhurst et al., 2013a). Blood
and scale cortisol concentrations predominantlfediih the time frames that are reflected by
the measurements. While PCC offers an instantangmaysshot view of the HPI axis activity,
SCC are hypothesized to provide an integrated mea®ur results, therefore, are unlikely to
indicate that a single blood cortisol value reffettte total SCC. The connection between both
matrices provides evidence that scales could legiating cortisol relative to bloodstream
concentrations, at least in the non-stressful haisince such relationship was not mirrored in
fish from the polluted site.

The lack of correlation in the polluted habitatperhaps not surprising. When PCC were
contrasted between fish from habitats of differemnitaminant load, fish from the polluted site
exhibited lower PCC. This different response imeitsite could be due to the effect of certain

aquatic contaminants, since there is strong eviléhat can inhibit post-stress cortisol levels

13
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(Hontela et al., 1992; Jorgensen et al., 2017;drebkt al., 2001; Quabius et al., 1997) or delay
the stress response (Marentette et al., 2012; Netral., 1999). Importantly, altered PCC may
suggest a reduced capacity of the fish to tolesatisequent or additional stressors from their
natural settings (Angelier and Wingfield, 2012; @datt et al., 2006). Consequently, any
potential relationship between PCC and SCC coulde Haeen masked as a result of the
pollutants’ interference. Despite this, the podigjbof a sample size with not enough statistical
power to identify the relationship between matricesinot be completely ruled out. As

observed in other cumulative matrices (Ashley et2011; Fairhurst et al., 2013a), fish scales
accumulate lower amounts of cortisol compared telte detected in plasma. Therefore, the
collection of a certain quantity of scales is ingi®e in order to reliably extract and detect
cortisol concentrations in fish scales. In the enésstudy some small body-sized specimens
where discarded since not enough sample mass beultbllected. Hence increasing sample
size will probably aid in determining if such betwmematrix relationship differs among

populations due to the habitat characteristics.

Since scales are hypothesized to accumulate doréildive to concentrations in bloodstream
(Aerts et al.,, 2015), this latter result observed RCC should also be reflected in SCC.
Nevertheless, whether cortisol is incorporated itite scales from the surrounding water,
especially in polluted sites with higher water i levels (Weizel et al., 2018) should not be
completely ruled out. In the present study, we dat detect differences in SCC when
comparing a polluted and a reference site. Previstuslies have described that habitat
degradation can affect the cortisol response toeasor, while keeping baseline levels unaltered
(Belanger et al., 2016; Blevins et al., 2013, 20Hing et al., 2016). Considering that basal
cortisol concentrations in Catalan chub potentiadisnained unaffected by the habitat quality,
our results are consistent with the idea that catrud matrices, such as feather, hair and shed
skin, are more influenced by basal levels of thertame than by acute and non-recurrent stress

responses (Ashley et al., 2011; Berkvens et al32Bairhurst et al., 2013a; Tallo-Parra et al.,

14
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2017). Understanding the influence of acute andtsevations of cortisol in SCC seems vital
in order to deepen its value as a measure of lemg-tHPI axis activity. Experimental
manipulations of plasma cortisol levels at sevémgdnsities (from moderate to severe) and
durations (from minutes to days) would provide eata the biological relevance of SCC and
thus help for the appropriate interpretation ofuliss Although further experimental work is
needed to clarify this effect, our findings may gest that the contribution of single acute

stressors to scale cortisol is probably small.

Despite the fact that SCC stayed the same betwabkitats, there was a seasonal change in
SCC. A growing body of literature has demonstraeasonality on GC levels in different taxa
(Baker et al., 2013; Cockrem, 2013; Windfield arahfero, 2015). In line with this assumption,
the present study provides novel evidence that &6 could vary seasonally. On one hand,
the lack of differences detected between earlyramtile spring samplings could indicate that
cortisol levels in scales are relatively stable @éimat SCC may probably not change in the
context of minor life changes. On the other, therement of SCC from middle spring to
summer suggests that during the time between tinassampling efforts something promoted
the activation of the HPI axis. As a consequenteulating levels of the hormone could have
been increased, incorporating higher amounts dfisobrinto the scales. In agreement with
previous reports on Catalan chub (Aparicio, 201d5t&a et al., 1990), the increment observed
in GSI from spring to summer suggests that theopestudied covered the species’ breeding
season. Breeding is a life-history stage enerdbtiexpensive (Bonier et al., 2011; Romero,
2002) largely known to influence the HPI axis aityiDantzer et al., 2014; Wingdfield and
Sapolsky, 2003). In this context, the breeding seas Catalan chub has already been described
to be a physiologically demanding live-history stagistinguished by a high percentage of
blood alterations (Colin et al., 2017). Therefottee increase in SCC concurring with the
breeding period of the species could be partlyuariced by the common energetic needs of

individuals during reproduction (Milla et al., 2Q08chreck, 2010).
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Besides the biological demands driven by the bregseason, the period studied coincides with
a series of short-term changes in the habitat tiondi that are worth mentioning. As
demonstrated by the physico-chemical analysiswheer flow was drastically reduced from
spring to summer in the reference site. Droughtoperand consequently low water flow
conditions are typically observed in this geographiea, and are related to reduced habitat
guantity and quality (Jessop et al., 2003; Maced@¥ et al., 2009). Interestingly, events such
as drought are known to trigger stress responsemity vertebrate species (Baker et al., 2013;
Jessop et al.,, 2003; Tokarz and Summers, 2011; I8Kiket al., 2001). Variation in water
temperature is another environmental variable shauld be considered when studying wild
fish, since several authors have demonstratedfiteence on cortisol stress responses (Blevins
et al., 2012; Cook et al., 2011; Meka and McCormB05; Quinn et al., 2010). In order to
cope with subtle changes in the environment, sgdia@ above mentioned, healthy individuals
are predicted to increase GC secretion (Wikels#li@aoke, 2006), leading to higher circulating
cortisol levels (Bonier et al., 2009). Therefotee seasonal differences observed in SCC could
also be driven or exacerbated by short-term changedbably of a certain intensity, in the
environmental conditions (Wingfield et al., 201%pme authors have concluded that in order to
detect hormonal changes in cumulative matrices gerimbense and/or prolonged activation of
the HPI axis in needed (Fairhurst et al., 2013430 Lattin et al., 2011). Although empirical
evidence of the extended change in the energetiadds is scarce, our results could suggest
that fluctuations in SCC may become apparent oheeHP| axis has been challenged or
stimulated for a period of at least 3 months (mkspan between thé“2and & sampling),

regardless of whether it is driven by intrinsiceatrinsic causes.

The relationship between cortisol levels and isidnfactors related to the animals’ biology
such as body condition or the reproductive stafissieen emphasized by many authors (Baker
et al., 2013; Cook et al., 2012; Sheriff et al.120Vera et al., 2017). Despite not detecting an

influence ofK nor GSI on SCC, fish from the polluted habitat préed higher body condition
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than those from the reference site. Although nanhroon, higher body condition in fish
inhabiting polluted environments has been descrif@dodbred et al., 2015). Colin and
colleagues (2017) reported similar findings in Gatachub by using the Scaled Mass Index
instead of the Fulton’s condition index. As thesghars suggested, eutrophication of fresh
water can result in better food quality. Note tlaime pollutants, especially those with
endocrine disrupting effects, have obesogenic ictin humans and other vertebrates
(Holtcamp, 2012; Ismail et al., 2017) includinghfi$Lyche et al., 2010). Thus a differing
contaminant profile between habitats could alsosedrio the contrasting body condition
observed. Furthermore, fish at the early summeeased their body condition compared to the
previous assessments. Several factors other thesssisuch as seasonal and developmental
modifications, can also induce changes in conditnatices (Barton et al., 1998; Mahé et al.,

2018), possibly explaining why body condition vares the season progressed.

In fish, sex has been less frequently consideramimparison with studies in other vertebrates,
yet it is known that cortisol levels can vary doesex differences (Baker et al., 2013). In this
study we did not detect differences in PCC nor $€6veen males and females. While this is
the first time that sex differences in SCC are @atdd, our results provide valuable data for
studies in wildlife where sex is a factor usualifficult to control, especially in species without
sexual dimorphism, and when the number of indivisli@llected needs to be kept low for

ethical reasons.

In conclusion, while comparison of fish inhabitifgbitats of different contaminant load
suggests that SCC may not be a promising bioinalicat environmental quality, the SCC
increase concurring with an energetically costlyiqek for the fish species studied strongly
supports the idea that the analysis of cortisaédales could reveal changes in the HPI axis
activity. This study, therefore, indicates thattism levels in scales are more likely to be

influenced by mid-term, intense energetically dednag periods rather than by long-term
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stressors. The degree to which cortisol depositioacales is affected by external (drought,
temperature) and/or internal (reproduction) factoeeds to be further explored. Studies
including samples collected over extended periofidime (e.g. a year), along with the
assessment of other physiological endpoints ofsstresponses would be of interest to

determine whether, when and which factors influgheecortisol deposition in fish scales.
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Figure 1. Boxplots of (A) plasma cortisol concentrations @uagtisol/ml plasma) and (B) scale
cortisol concentrations (ng cortisol/g scale) intal@n chub from degraded and reference
habitats. The asterisk indicates differences isrmpkacortisol concentrations between habifats (
= 0.02).

Figure 2. Boxplots of seasonal comparisons on (A) plasmaisabr concentrations (ng
cortisol/ml plasma) and (B) scale cortisol concatmns ( g cortisol/g scale) in Catalan chub
from the reference habitat. The asterisk indictttes at the early summer scales cortisol levels

were significantly higher compared to eany=0.04) and midd = 0.03) spring levels.
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