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Including fringe fields from a nearby ferromagnet in a percolation theory of organic
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Random hyperfine fields are essential to mechanisms of low-field magnetoresistance in organic semiconductors.
Recent experiments have shown that another type of random field—fringe fields due to a nearby ferromagnet—
can also dramatically affect the magnetoresistance. A theoretical analysis of the effect of these fringe fields
is challenging, as the fringe field magnitudes and their correlation lengths are orders of magnitude larger
than that of the hyperfine couplings. We extend a recent theory of organic magnetoresistance to calculate the
magnetoresistance with both hyperfine and fringe fields present. This theory describes several key features of the
experimental fringe-field magnetoresistance, including the applied fields where the magnetoresistance reaches
extrema, the applied field range of large magnetoresistance effects from the fringe fields, and the sign of the
effect.
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Introduction. A major thrust of research in organic spin-
tronics concerns transport through organic semiconductors
sandwiched between either magnetic1,2 or nonmagnetic3,4

electrodes. Both classes of devices display large magnetore-
sistance (MR), and have spurred significant experimental3–8

and theoretical9–12 interest. A complete description of the
physics involved in this organic magnetoresistance (OMAR)
is still evolving.13 For the nonmagnetic case, one explanation
of the MR relies on the existence of random, uncorrelated
hyperfine fields (HFs) that vary from one localizing center to
another (referred to as HF-OMAR).9 A recent experiment14

has tested the importance and influence of randomizing fields
by situating a single electrically isolated ferromagnet some
specified distance from the organic semiconductor. When
the ferromagnet is magnetically unsaturated, spatially varying
fringe fields (FFs) emanate outside the ferromagnet, and these
FFs dramatically alter the MR line shape (referred to as
FF-OMAR). Such FFs could also be important in experiments
with magnetic electrodes, such as organic spin valves.15 A
theoretical explanation of the FF influence has proven difficult
since the spatial distribution of FF’s differs greatly from that
of HF’s; the magnitude and correlation lengths are both more
than one order of magnitude larger.

In this Rapid Communication, we demonstrate that a
recently proposed theory of OMAR,11,16,17 based on per-
colation theory, offers a solution to the anomalous OMAR
observed14 in the presence of FFs. The main ingredient is
that field-dependent spin transitions (due to FFs and HFs)
open otherwise blocked hopping pathways which in turn alter
the sample’s resistance. We find that a careful study of the
statistics of the FFs identifies several regions of behavior,
including a region close to the ferromagnetic film where FF
gradients govern the MR line shape, and a region farther
away where HF reemerge as an important element and where
the dominant effect of the ferromagnet is through the FF
magnitude. For regions closer to the ferromagnetic film, where
FF gradients are important, we predict the size of the FF effect
will not be very sensitive to the thickness of the ferromagnetic
layer; as both the lateral size of the domains (and thus

the field correlation length) and the magnetic moments will
increase with thickness, the gradient should remain nearly
constant.

We now give a short description and summary of the
experiments on FF-OMAR reported in Ref. 14. The organic
semiconductor device, called a semispin valve [Fig. 1(c)],
consists of a ferromagnetic Co/Pt multilayered film with
perpendicular magnetic anisotropy followed by a nonmagnetic
spacer, an organic layer, and a Ca top electrode. FF-OMAR
is observed even when the ferromagnetic layer is excluded
from the current path, and therefore excludes effects such as
spin-injection or tunneling anisotropic magnetoresistance.18

The reversal of magnetization, M , in the ferromagnet occurs
through nucleation, growth, and annihilation of magnetic
domains.19 The saturation magnetization, Ms , is 5.4 × 105

A/m. The properties of the ferromagnetic films have been
further characterized in Ref. 14. The organic layer is a 30-
nm-thick film of tris(8-hydroxyquinoline)aluminum (Alq3).
The bottom electrode also serves as a spacer layer of variable
thickness zi to separate the magnetoresistive material Alq3

from the magnetic layer that is the source of the magnetic FFs.
The FF’s strength and spatial-correlation length depend on
the magnetic domain configuration as well as on the distance
from the ferromagnet to the organic film. Typical experimental
data is shown in Fig. 2(a). Unlike ordinary HF-OMAR, the
FF-OMAR is hysteretic and extends to a much larger field
scale. In Ref. 14 transmission x-ray microscopy based on the
x-ray magnetic circular dichroism effect was used to determine
the Co/Pt layer’s microscopic magnetic domain structure as
a function of the applied perpendicular field [see Figs. 1(a)
and 1(b)]. We obtain here, through methods described below,
the FF distribution at a given distance above the ferromagnetic
film from magnetostatic modeling [see Fig. 1(d)].

Theory. In disordered organic films transport occurs by
hopping between localized sites. The fermionic nature of
the charge carriers forbids the formation of doubly occupied
sites in a triplet state. Hence a hopping polaron experiences
a reduction in the number of accessible sites which affects
the transport properties of the organic semiconductor. This
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FIG. 1. (Color online) (a), (b) Two examples of the ferromagnet
with different domain configurations and normalized magnetiza-
tions (M/Ms) obtained by x-ray microscopy imaging in Ref. 14.
(c) Cartoon picture of two occupied sites and their local fields. Insets:
experimental setup and M/Ms versus applied field B0. (d) Fringe
fields Bffz

and Bffx
in a 2 μm × 2 μm area calculated 15 nm above

the ferromagnet.

leads to the formation of bottlenecks where a transport
pathway is restricted due to the spin blocking described. The
situation can be alleviated when two polarons on nearby sites
(a polaron pair) experience local magnetic fields which allow
the charge-blocking triplet polaron pair to undergo a transition
to the singlet state which allows for a doubly occupied site
to form. However if the spin transition is slow enough, it
may be more expedient for the blocked charge to bypass
the other occupied site. This produces a competition between
two processes: formation of a doubly occupied site (e.g., a
bipolaron or a doubly occupied deep trap) and disassociation
of the polaron pair. For local fields which are due to the nuclear
spins, theory predicts the crossover between the two processes
can be seen in the MR when the hopping rate v0 is varied from
slow hopping to fast hopping (compared to the strength of the
HF).16,20

Solution to the spin-independent transport problem in such
systems comes from percolation theory.21 The percolation
theory solution of OMAR is encapsulated in the following
equation for the threshold hopping distance rc:11,16,17

∫ rc

0
4πNeffr

2 dr = Bc (1)

with Neff = N − NT + αpT →SNT , where NT = 3
4N1 is the

density of polarons that form a triplet spin state with some
specific polaron; N1 is the concentration of injected polarons
with localization length �. N is the density of sites in the system
and considered to be �N1 (i.e., dilute carrier concentration
approximation). α is a number less than unity. Equation (1) is
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FIG. 2. (Color online) (a) MC as measured for different spacer
distances by Ref. 14. (b) HF-OMAR calculated from our theory.
(c) FF-OMAR calculated from our theory for several spacer distances
with a = 3 mT and d = 10 nm. A moving average is taken to smooth
the curves. The applied field range is limited by the availability of
x-ray images at larger B0. Thick arrow indicates the direction of field
ramping.

spin dependent through the probability for a triplet polaron pair
to transition to a singlet polaron pair pT →S . Bc is the average
number of sites within a distance rc of one another that exist
in the percolating cluster; in three dimensions, Bc ≈ 2.7 as
found from numerical simulations.21 The theory is valid for
unipolar transport, though many of its qualitative features can
also be applied to the bipolar regime16,22 probably relevant
for the FF-OMAR experiments.14 The theory has been further
bolstered by success in explaining features of experiments23

in the bipolar regime.
After defining MR ≡ 〈[Rc(B) − Rc(0)]/Rc(0)〉 with Rc =

R0e
2rc/�, we use Eq. (1) to write11,16,17

MR ≈ η

6πy2
c

∫ 2π

0

∫ π

0

∫ yc

0
〈pS(B) − pS(0)〉y2 sin θ dy dθ dφ,

(2)
where y = r/� and we have made the substitution pT →S =
1
3 [1 − pS] in terms of the easier to evaluate quantity pS→S ≡
pS and η = NT /N .24 Estimating η is difficult since the carrier
concentration is not known with precision and deeply charged
traps likely exist that do not contribute to the carrier population
but can contribute to the MR.17,25 It has been established that26

pS =
∑
m,m′

∣∣P mm′
S

∣∣2 1/τ 2
h

(ωm′ − ωm)2 + 1/τ 2
h

, (3)

where PS is the singlet projection operator, m and m′ are
indices denoting the eigenstates of the total Hamiltonian,
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ω represents the eigenvalues, and τh = v−1
0 exp(2r) is the

hopping time between two sites separated by a distance r .
For concreteness, we choose � = 0.2 nm and rc = 1 nm
throughout this Rapid Communication.27,28 We assume v0 =
102 in frequency units of 1 mT.

The system Hamiltonian of the polaron pair H = H0 +
Hff is composed of terms that are responsible for “normal”
OMAR,

H0 = [ωhf (r1) + ω0] · S1 + [ωhf (r2) + ω0] · S2, (4)

and a new term arising from the FFs:

Hff = ωff (r1) · S1 + ωff (r2) · S2. (5)

Both HFs and FFs have spatial dependence; however as
shown below, the dependencies are very different. HFs are
uncorrelated from site to site (on the order of 1 nm) and their
magnitudes follow a Gaussian distribution of width a which
is on the order of a few milliTesla. FFs are correlated over a
larger distance (∼100 nm) and their magnitudes are ∼100 mT
for a spacer length of zi = 15 nm.14

Calculation. The existence of fringe fields adds consid-
erable complexity to a calculation of Eq. (2) since spatial
variables must be accounted for in the eigensystem of pS .
Additionally the placement of a bottleneck could be in either
a region of small or large FF in comparison to the HF; also
the FF may either be constant or sharply vary between the
two occupied sites. These issues are not encountered when
the local fields are entirely uncorrelated (such as was the
case with HF). To account for these complexities, during
the integration we sample pairs of sites (i.e., bottlenecks)
randomly throughout the organic semiconductor volume. The
spatial integrals (as well as the six integrals resulting from the
average over hyperfine configurations) are done numerically
by the Monte Carlo integration method:

P (B0) =
∫ 2π

0

∫ π

0

∫ yc

0
〈pS(y,θ,φ)〉y2 sin θ dy dθ dφ

≈ 2ππyc

1

K

K∑
k=1

pS(yk,θk,φk)y2
k sin θk, (6)

where the random numbers are chosen uniformly from the
ranges 0 < yk < yc, 0 < θk < π , and 0 < φk < 2π . Angular
brackets denote the averaging over hyperfine field distribution;
the coordinates of the two hyperfine field vectors are also
random variables included in the summation. Convergence
is slow; for the results presented herein, K = 1–10 million.
Whenever the applied field is changed, the calculation requires
the FFs to be recalculated given the new domain configuration.
There are 31 x-ray images of the domains for 31 different
applied fields within the magnetic switching regime. We
calculate the MR at these applied fields in a 1 μm × 1 μm × d

volume. Larger volumes account for the domain structure more
accurately but are computationally expensive. In the field range
where the ferromagnet is saturated (no FFs), we calculate MR
from the HFs only.

Results. Figure 2(c) shows our main results for the MR,
to be compared with the experimental results from Ref. 14,
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FIG. 3. (Color online) (a) The quantity P (B0) [Eq. (6)] at
B0 = 0 mT (dotted) and 36 mT (solid) for three different hyperfine
couplings a = 0, 1, and 4 mT. (b) The calculated % MR for the same
hyperfine couplings at 36 mT. The field 36 mT is chosen since it
nearly corresponds to the magnetization M/Ms = 0.

Fig. 2(a). Note that the results of Ref. 14 are for the
magnetoconductivity (MC), which implies that their MR is of
opposite sign to our calculations (when a MR is calculated for
unipolar transport, the MR seen in bipolar transport usually
has opposite sign due to the fact that forming a doubly
occupied site, i.e., an exciton, reduces current16,22,29). The
experimental and theoretical curves exhibit similar trends as
the distance between the organic and ferromagnetic layer
increases. For example, a region of negative MR is seen at small
positive fields for small distances, and the area of this region
decreases as the distance increases. For even larger distances
eventually HF-OMAR should emerge as FFs become weaker.
This is artificially demonstrated in Fig. 3(b) by controlling
the magnitude of the FFs by adjusting Ms . As the FFs
(as well as the size of their gradients) are reduced, HF-OMAR
is retained (∼18.5% in this case). By adjusting the HF
coupling, it becomes apparent that there is a competition
between FF and HFs in determining the overall behavior.
The x-ray images exist for only ramping up the field so the
hysteretic nature of the FF-OMAR cannot be seen from the
calculation.

A natural question arises regarding the minima observed in
the MR line shape. Why and where do the minima occur? We
find that this feature corresponds well to behavior observed
in the FF statistics. From the analysis of the FF statistics
performed in Ref. 14 it is known that the FF correlation
length was two orders of magnitude larger than that of the
HF correlation length (∼100 nm versus 1 nm). However,
possibly a better indication of the efficacy of FFs in altering
the MR is the FF gradient between the bottleneck sites.30

We find that the gradients can be comparable to the HF
gradients so it is reasonable to expect the FF to modulate
the MR.

Our statistical analysis is depicted in Fig. 4 where the
averages and standard deviations of FFs are determined.
Several conclusions can be derived from the FF statistics. One
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FIG. 4. (Color online) (a) and (b) are two examples of the partial
derivative of Bffz

with respect to z distributions. (b) The width
narrows as distance from the ferromagnet increases. (b) The dis-
tributions are wider near M = 0 which corresponds to B0 ≈ 36 mT.
(c) An example of the total field (minus HF) distribution at B0 = 0 mT
for small and large zi . (d) Standard deviations σzz of ∂zbz(r) computed
at random points in the specified volume with bottom edge at zi . Plots
(e) and (f) follow the same direction of labels for different zi . σij for
{i,j} ∈ {x,y,z}) display similar behavior. The average gradients (not
shown), e.g., ∂zbz(r), do not stray significantly from zero. (e) The
average total field (minus HF) magnitude as a function of applied
field for several different zi . (f) The standard deviation of the total
field (minus HF) magnitude as a function of applied field for several
different zi . The vector B is B0 + Bff .

key point is that even at B0 = 0 mT, there still exists large
FFs such that Bff � Bhf . This is shown in Fig. 4(e) for the
smaller zi where Bff ≈ 100 mT at B0 = 0 mT (zi = 15 nm).
While the width of the distribution is ≈30 mT, the FFs still
quench practically all the HFs. In view of Fig. 4(f) also,
the situation is unchanged; the average total field increases
as does the width but still all HFs are overpowered. This
suggests that the mechanism that produces the deviation from
the Lorentzian line shape-referred to here as “ears”—is not
due to a mixture of HF-OMAR components with uniform FFs
adding to the applied field (this is the “uncorrelated B-field
model” of Ref. 14). The ear cannot be due to any decrease in
net field; B increases while σB decreases modestly [Figs. 4(e)
and 4(f)] and an increase in total field tends to result in MR
> 0 which is not observed in that field range. However if the
distance zi increases, the situation changes because the average
total field reduces dramatically, as demonstrated in Fig. 4(c).
For such cases, the average field B in a small finite field can
actually be larger than the average field at zero field; this effect
reduces the resistance and shows up as MR < 0 (not shown).

The statistical analysis of the previous paragraph points to
the OMAR ear for low zi being due to the gradients in the

FFs. Figure 4(a) shows that typical sizes of the FF gradients
can be up to a few millitesla per nanometer, which would
make the effect larger or at least comparable to HF-OMAR.
The trend in σzz with applied field correlates with the ear,
which lends further credence to the importance of the FF
gradients. This is explainable from the fact that at M = 0,
there are equal numbers of up and down domains which give
rise to maximally varying FFs; in short, the probability that the
two sites of the bottleneck feel local fields that are different
is a maximum at M = 0. As the magnetization approaches
saturation, one expects the standard deviation to be zero as the
FFs are quenched—however the quality of the x-ray images
diminishes in such cases and the domain configurations cannot
be extracted for M/Ms nearer to unity. HF-OMAR does not
immediately emerge when the FF gradients become smaller
than the HF gradients—the 65 nm curve in Fig. 4(d) is very
narrow so FF gradients are small. However the MR line
shape is still significantly modified from that of HF-OMAR
[Fig. 2(b)]. While the gradients are small, the HFs still are
influenced by the FF (even at zero applied field), as the
FFs, though not varying spatially much, are still larger than
the HFs.

Figure 3(a) shows the quantity P (B0) for three different
hyperfine couplings a. First consider nonzero HF and the B0 =
0 mT lines (dotted): For the smallest Ms , the FFs are negligible
so P and MR are independent of Ms . When Ms increases
to where B ∼ a, the FFs still have very small gradients
(e.g., the σzz of Fig. 4 will scale linearly with Ms so at
Ms = 0.01, σzz ≈ 0.03 mT/nm � σHF ≈ 1 mT/nm) so the
FFs effectively act as uniform fields across a site pair. This
shows up as an increase in P (0) and a decrease in MR(36 mT)
since even though the applied field is fixed, increasing Ms

is effectively increasing the uniform field felt by a site pair.
Eventually Ms can be increased enough to where σzz becomes
comparable to σHF; the variations in FFs between the site pair
can now cause spin transitions more effectively. Since the FFs
random variations are larger at 36 mT than at 0 mT, the MR is
negative. For larger a, the P (0) and MR curve shift to higher
Ms since σHF is larger. When a = 0 mT, a different picture
emerges; at Ms = 0, there can be no spin transitions between
singlets and triplets so pS = 1 and P (0) = 4π

3 y3
c ≈ 523.6. In

the opposite limit of large Ms , pS = 1/2 so P (0) converges to
≈ 4π

6 y3
c .

Conclusions. The present approach has shown that the
salient features of FF-OMAR are explainable by our recent
theory of OMAR based on calculating magnetotransport with
percolation theory. This work serves as a springboard for
further calculations to be performed within other OMAR
theories—especially those that handle ambipolar carriers.20

To find better agreement with experiment requires studying
the dependence of MR on the hopping rate v0. That task
necessitates more intensive numerical work and thus has been
avoided in this current discussion. This line of inquiry is also
expected to elucidate how the FF mechanism is similar to
either the HF or the �g mechanisms.31

We acknowledge support from an ARO MURI and stim-
ulating discussions with P. A. Bobbert. F.M. acknowledges
support from MC-IOF 253214.
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(2012).
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