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Spin torque nano oscillators (STNO) are nano-scale devices that can convert a direct current into
short wave-length spin-wave excitations in a ferromagnetic layer. We show that arrays of STNO can
be used to create directional spin-wave radiation similar to electromagnetic antennas. Combining
STNO excitations with planar spin waves also creates interference patterns. We show that these
interference patterns are static and have information on the wavelength and phase of the spin waves
emitted from the STNO. We describe means of actively controlling spin-wave radiation patterns with
the direct current flowing through STNO, which is useful in on-chip communication and information
processing and could be a promising technique for studying short wave-length spin waves in different
materials.

Introduction

Controlling magnetization dynamics in ferromagnetic
(FM) thin films is important to a new generation of wave-
computing and on-chip communication devices working
at high frequency and low power. Spin wave devices may
complement digital semiconductor technologies and of-
fer new possibilities for memory capacity and computa-
tional performance of particular importance as semicon-
ductor devices miniaturization approaches fundamental
limits. The main requirements for wave computation in-
clude localized sources and detectors of coherent waves
in continuous or patterned propagating media. Nanome-
ter scale electrical contacts to ferromagnetic thin films
can source enough current density to generate a high-
frequency dynamic response of the magnetic moments in
FM films [1, 2], resulting in emission of short wave-length
spin waves [3].

Emission of spin waves from nanopoint contacts, so
called spin-torque nano-oscillators (STNO), has been
predicted theoretically [3] and recently has also been
demonstrated experimentally [4, 5]. Spin wave radiation
from a single STNO may not be symmetric but may in-
stead be directional due to spin wave band structures
or due to dipolar fields, external fields, anisotropy film
fields, or Oersted fields generated by the current in the
contact [6]. For example, magnetic properties of thin
films can be tailored to create preferred propagating di-
rections and frequency band gaps, for example as done
in magnonic crystals [7, 8]. Polycrystalline perpendic-
ularly magnetized films may have, however, symmetric
radiation patterns (in the absence of Oersted fields). In
addition, STNO can be frequency and phase locked to
external oscillatory signals or to other STNO frequencies
under certain conditions [9–17].

While applications in computation and information
storage usually require a unique reference signal (a clock)
that times the system and synchronizes it, wave compu-
tation offers asynchronous or poly-synchronous operation
[18–20]. STNO, like other wave sources, can encode in-

formation in a carrier signal by modulating combinations
of amplitude, frequency, and phase. Nonlinear effects of
amplitude and frequency modulation in STNO have been
studied both experimentally and theoretically [17, 21–
24]. However, little work as been done thus far on phase
modulation.

In this paper we investigate spin-wave patterns created
by STNO and their interactions with background oscil-
lations in perpendicularly magnetized films. We describe
STNO as spin-wave antennas, derive expressions for the
radiation diagrams, and discuss how to actively control
the radiation patterns. We also discuss how to encode
information in spin-wave radiation.

Spin-Torque Nano Oscillators

Spin-polarized currents flowing throughout a magnetic
thin film exert a torque on the background magnetiza-
tion called a spin-transfer-torque [1–3, 25, 26]. These
polarized electrical currents encounter resistance when
crossing a magnetic material that depends on the relative
orientation between the current spin-polarization and the
film magnetization; this is the phenomenon of giant mag-
netoresistance (GMR) [27, 28]. STNO are nanoscale elec-
trical contacts to a ferromagnetic thin film in a multilayer
structure. Typically, dc currents greater than a criti-
cal value flow first across a thicker magnetic layer that
spin polarizes them, and then pass through a thinner
film where they excite magnetization dynamics. The two
magnetic layers are separated by a non-magnetic layer to
magnetically decouple them (see, Fig. 1). The electrical
dc-current generates a high-frequency dynamic response
(1 GHz - 1 THz) in the free ferromagnetic layer and re-
sults in the emission of spin waves [3]. STNO radiate
only in two dimensions; FM thin films are considered
two dimensional structures in terms of spin-wave propa-
gation since the spin-wave wavelength and the ferromag-
netic exchange length are usually much larger than the
film thickness.
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FIG. 1: Schematic of STNO sources. An electrical charge
flows through a point contact to a thin ferromagnetic layer
called the free layer. The magnetic moments in the contact
area precess, thereby exciting spin-waves that may propagate
in the film. A double STNO arrangement (right hand side
panel) creates an anisotropic spin-wave excitation that is the
result of interference from two single contact excitations.

Mathematical Analysis

Any perturbation of the magnetic moment initially
causes the magnetic moment to precess around the direc-
tion of the effective field, Heff, and eventually an align-
ment with the effective field as a result of damping. A
polarized current is modeled with an additional term in
the magnetization dynamics equation [1, 2], and when
the current density exceeds a certain threshold, (j >
jc), a magnetic excitation develops [1–3, 25, 26]. This
is described by the Landau-Lifshitz-Gilbert-Slonczewski
(LLGS) equation

∂M

∂t
= −|γ|µ0M×Heff − α

|γ|µ0

Ms
M× (M×Heff )

+β(r)(M×M×mp),
(1)

where the precession (first term on the right-hand side)
and damping (second term) are controlled by the effective
field, Heff , which is the sum of the external magnetic
field, demagnetizing field, and exchange field:

Heff = H0z−Mzz +
D

|γ|µ0Ms~
∇2M, (2)

where Ms is the saturation magnetization. Note that the
exchange field magnetically couples different film loca-
tions. For example, if some area in a FM film is being
excited with a polarized current from a point contact,
the magnetization dynamics in the area will couple to
the rest of the film and spin waves will develop in the
contact neighborhood.

The spin-torque (third term in Eq. 1) is controlled by
the spin polarization direction of the applied current, mp.
The function β(r) is a Heaviside function defining the

sizes and locations of the point contacts. β(r) also de-
pends on the current intensity, the layer thickness and
the spin polarization [20]. We consider steady state con-
ditions, situations in which the current has been turned
on for a certain time. The free magnetic layer where spin
dynamics are excited is considered thin compared to the
magnetic exchange length, λex,. Therefore, we disregard
variations in the magnetic moment across the film thick-
ness (z direction).

We consider a case where the free layer is perpen-
dicularly magnetized. Since the magnetization vector

m =
M

Ms
lies on the unit sphere, we focus on the lat-

eral behavior in the free layer. We write the components
of m as

m = (m,mz) m = mx + imy, mz =
√

1− |m|2.

The out-of-the-plane component, mz, or the absolute
value of the in-plane magnetization component, |m|2 =
1−m2

z, describes the amplitude of the excitation and is
a non-oscillating quantity. The in-plane components, mx

and my, contain the frequency and phase information of
the excitations.

The resulting patterns created by an STNO (or from
arrays of STNO) are mostly controlled by the diffusion
term in the effective field (Eq. 2). The equation for the
magnetization amplitude m (from Eq. 1 and after nor-
malization) is a non-linear Schrödinger equation [20, 29],

i
∂m

∂t
= (1 + iα)∇2m− f(|m|2)m+ ig(|m|2)m, (3)

where f and g are non-linear functions of the amplitude,
|m|2 (expressions for f and g are given in [20])

A linear approximation of Eq. 1 has the form

i
∂m

∂t
= (1 + iα)∇2m+ ωi m− iαωim+ iβ(r)m, (4)

where ωi is the internal frequency of the oscillator.
This equation is a good starting point for studying
interference patterns from different point sources. How-
ever, phase locking and stabilization of patterns in the
presence of noise require analysis of Eq. 3.

For a single nanocontact we consider a solution of
the form m(ρ, t) = φ(ρ)eiωt, where ρ is the radial
component,

(1+iα)(∂ρρφ+
1

ρ
∂ρφ)+(ω−ωi)φ+i(β(ρ)−αω)φ = 0. (5)

Slonczewski determined a linear solution using Bessel
functions and appropriate boundary conditions at the
nanocontact boundary [3].
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Material parameters

We now discuss typical material parameters in STNO.
We have performed our calculations having in mind tran-
sition metal thin films. For a typical ferromagnetic
thin film we list permalloy’s most relevant parameters:
Ms ≈ 860 kA/m, λex ≈ 5.3 nm, f ≈ 1 − 30 GHz for
H < 1 T, and the damping constant, α ≈ 0.01. Spin
waves are expected to propagate tens of microns in such
films.

Other candidates for short wave length spin wave radi-
ation patterns are magnetic semiconductors, a semicon-
ductor host is magnetically doped by transition metal
impurities (e.g., Ga1−xMnxAs with x < 1 − 10%) [30]
or Heusler alloys, ferromagnetic metal alloys based on a
Heusler phase (e.g., Cu2MnAl) [31]. Magnetic semicon-
ductors and Heusler alloys have different magnetization
saturation values but resonant frequencies are of the same
order (∼GHz); damping parameters might vary depend-
ing on the compound or the fabrication method (some
Heusler alloys have been reported to have damping con-
stants one order of magnitude smaller than transition
metals).

Radiating STNO Antennas

The spin waves radiating from a single STNO out of
the point contact (in a linear approximation) is given in
terms of a Hankel function, which is a linear combination
of Bessel function of the first and second kind

m(ρ, t) = H2
0 (ρ)eiωt (6)

where the radial component, ρ, has been normalized with
the wavelength, λ, which is defined by the size of the con-
tact, r, being 5r the first set of solutions of Eq. 5 [29]. For
large ρ (ρ� 2π), the Hankel function is approximately

H
(2)
0 (ρ) ≈

√
2

πρ
ei
π
4 e−iρ = A

e−iρ

ρ
. (7)

When different sources have a common oscillation fre-
quency and very similar wavelengths, one can effectively
describe the resulting activity patterns from STNO ar-
rays with

m(ρ, θ, t) ≈ D(θ)H2
0 (ρ) exp(iωt) (8)

where D(θ) is the energy distribution of the radiated
waves [20, 32]. Although single devices may have a radia-
tion pattern with some asymmetries, the resulting energy
distributions from combining multiple sources may still
be written as a single oscillator radiation multiplied by a
spatial energy distribution, D(θ), known as a radiation
diagram. Figure 2 shows the contour plots of the radi-
ated spin waves for the quantity m from a single (a), a
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FIG. 2: Spatial dependence of the excitation, m, from a single
(a), a double (b), and a triple (c) STNO array. Simulation
results are shown for a 500 × 500 nm2 film with point con-
tacts 40 nm in diameter, and separation between contacts of
100 nm (≈ λ = 2π/k). The larger plots (left hand side) are
contour plots of the radiated spin waves corresponding to the
amplitude of the excitation, |m|, and the smaller 3-d graphs
(right hand side) correspond to the amplitude, |m|, and one
of the oscillating components, mx.

double (b), and a triple (c) STNO array. For comparison
we append 3-d plots of |m| and mx. In (a) the emission
is isotropic while (b) and (c) show preferred directions of
propagation.

Similar to electrical antennas, the distance between
sources with respect to the wavelength, λ = 2π/k is cru-
cial in controlling the radiation patterns. As required
in electrical antennas, sources must radiate with exactly
the same frequencies and with a set phase difference to
create a steady interference pattern.

A given interference pattern created by a group of
STNO may change with the relative phase, φ, among
oscillators. In the simplest case, two oscillators phase
lock and oscillate at the same frequency having a rela-
tive phase determined by the difference in internal fre-
quencies [20]. The internal frequency of an STNO, (i.e.,
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a

(ρ,θ)

STNO	1 STNO	2

ρ'

FIG. 3: Schematic diagram of 2 STNO separated a distance
2a. The joint coordinate system is (ρ, θ) and the coordinate
system for STNO 1 would be (ρ′, θ′)

ω1, ω2, etc.) depends on the applied current and the local
fields at the contact.

STNO can also be patterned with different shapes
(ovals, rectangles, etc). However, simulations of Eq. 1
showed that resulting interference patterns are mostly
isotropic. A physical distance between contacts (of the
order of the wavelength) is required to create interference
patterns.

In the next subsections we derive expressions for the
radiation diagrams for simple cases of aggregated STNO;
and, we calculate the radiation patterns for sets of 2 and
3 STNO and also for groups of STNO that have different
oscillation phases.

Radiation from 2 STNO

Let us consider the simplest case for a radiation pat-
tern from two STNO separated by a distance 2a and
located as shown in Fig. 3. One can write the radial
component, ρ′, in the original system of each STNO for
any given point (ρ, θ) assuming the new reference system
is shifted (a, b) from the original one (this follows from
trigonometric identities):

ρ′(a, b, θ, ρ) = ρ− sgn(a)
√
a2 + b2

× cos (θ − arctan(b/a)) ,
(9)

where we have considered that ρ�
√
a2 + b2. Following

Eq. 9 we obtain ρ′ = ρ − a cos θ for STNO 1 and ρ′ =
ρ+ a cos θ for SNTO 2. The solution of Eq. 4, m(ρ, θ, t),
for the radiation is a combination of STNO 1 and STNO
2:

m(ρ, θ, t) = eiωt
(
H

(2)
0 (ρ− a cos θ) +H

(2)
0 (ρ+ a cos θ)

)
≈ eiωt

A

ρ

(
e−i[ρ−a cos θ] + e−i[ρ+a cos θ]

)
= 2eiωtH

(2)
0 (ρ) cos (a cos θ) ,

(10)
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FIG. 4: Upper panels plot |m(ρ, θ, t)| for 2 STNO as in Fig.
1; on left hand side, STNO are separated one wavelength,
λ, on the right, STNO are separated half of a wavelength,
λ/2. Plots correspond to a 500 × 500 nm2 area with point
contacts of 40 nm in diameter. Lower panels show the cor-
responding radiation diagram, D(θ), calculated with Eq. 11.
Radiation diagrams are plotted in a 2-dimensional plot where
x = D(θ) cos(θ) and y = D(θ) sin(θ).

which is basically the solution for a single oscillator mul-
tiplied by a radiation function,

D(θ) = 2 cos(a cos θ), (11)

which depends only on the angle and the distance be-
tween the contacts.

The upper panels in Fig. 4 show the spatial dependence
of the excitation amplitude, |m(ρ, θ, t)|, from 2 STNO
positioned as shown in Fig. 3 (the amplitude |m| is time
independent). The lower panels show the corresponding
radiation diagram, D(θ), calculated with Eq. 11. We
have chosen two representative cases; distance, d = 2a,
between STNO to be either a half or a full wave length
(0.5λ or λ).

Radiation patterns are determined by spin-wave inter-
ference from multiple sources. For two STNO, changing
the phase of one of the sources, eiωt → ei(ωt+ψ) changes
the resulting radiation pattern. Radiation patterns for
two STNO with a phase difference ψ can be calculated
and the radiation function becomes

D(θ) = 2eiψ/2 cos(a cos θ + ψ/2). (12)

Figure 5 shows the radiation diagrams calculated from
Eq. 12 for different phase shifts.
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FIG. 5: Radiation diagram, D(θ), calculated with Eq. 12 for
ψ = 0,±π/2 and π. STNO are separated half of a wavelength,
λ/2. Radiation diagrams are plotted in a 2-dimensional plot
where x = |D(θ)| cos(θ) and y = |D(θ)| sin(θ).
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FIG. 6: Left hand side panel shows a plot of |m(ρ, θ, t)| for 3
STNO as in Fig. 6; the plots correspond to a 500 × 500 nm2

area with point contacts of 40 nm in diameter. Right hand
side panel shows the corresponding radiation diagram, D(θ),
calculated with Eq. 13. Separation between contacts is equal
to the wavelength, λ.

Radiation from 3 STNO

The radiation function for an array of 3 STNO ar-
ranged as shown in the inset of Fig. 6 can be written
as

D(θ) = ei[2a/
√

3 cos(θ−π/6)] + e
−i
[

2a√
3

cos(θ+π/6)
]

+e
−i
[√

3a
2a sin θ

]

= 2 cos

(
2a√

3
cos θ

)
e−iπ/6 + e

−i
[√

3
2a sin θ

]
,

(13)

which results in a pattern that radiates in 6 directions
(see, Fig. 6). Combinations with different phases allows
rotation of the pattern and other complicated spin-wave
excitation patterns.

Radiation from n STNO

For a general case with n oscillators located at arbi-
trary positions one can find the expression for the ra-
diation functions by adding the single radiation pattern
from each oscillator.

Interaction with Background Oscillations

Spin waves from STNO may also interfere with back-
ground spin-wave oscillations (e.g., with incoming planar
waves). Electromagnetic radiation from electrical anten-
nas can create planar spin-wave oscillations in FM thin
films [33–35].

Here we consider the interference between a single
source (STNO) and a planar wave excitation both hav-
ing the same oscillating frequency. Again we take the
asymptotic expression for an STNO radiation (from Eq.
7), which is the same as a circular wave with wavelength
λc,

mc(λc, ρ, t) = eiωtH
(2)
0

(
ρ

λc

)
≈ eiωtAe

−i( ρ
λc

)

ρ
λc

. (14)

and a simple planar wave in the x direction with wave-
length λp

mp(λp, x, t) = eiωtBe
−i
(
x
λp

)
. (15)

Let us assume there is no damping so both planar and
circular excitations have constant envelopes (both in time
and in space). Adding both signals we obtain

m = mc + mp = eiωt
(
Ae−i(

ρ
λc

) +Be
−i
(
x
λp

))

= Aeiωte−i
ρ
λc

(
1 +

B

A
e
−i
(
x
λp
− ρ
λc

))
.

(16)
We see that adding the two waves produces a new ex-

citation that varies in space while still being constant
in time (notice that the individual excitations had con-
stant envelopes both in time and space). We draw three
different representative cases using three different wave-
lengths. The three cases are plotted in Fig. 7, λc = λp,
5λc = λp and λc = 5λp. We first plotted the real part
of both waves, which correspond to the oscillatory com-
ponent mx, where we identify the wavelengths, λc and
λp respectively. The resulting interference pattern be-
tween the planar and the STNO spin wave excitations
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induces a pattern in the amplitude, which is a time-
independent pattern that captures the structure of spin
waves from both the point contact and the planar source.
The dynamic response of the magnetic moment in the
FM thin film is modulated by the wavelengths of the two
excitations−a modulation of the energy.

|mc+mp|

Re{mc}

|mc+mp| |mc+mp|

Re{mp} Re{mc} Re{mp} Re{mc} Re{mp}

λc=λp 5λc=λp λc=5λp

FIG. 7: Three plots of spin-wave interference patterns be-
tween a single STNO and a planar spin wave, λc = λp on
the left hand side panel, 5λc = λp on the center panel and
λc = 5λp on the right hand side panel. The upper panels
show the patterns of the individual excitations (time depen-
dent patterns), the amplitude of each individual excitation is
constant. Lower panels show the amplitude of the resulting
interference patterns.

A closer look at Eq. 16 shows that the interference of a
planar and a circular wave creates a new wave excitation
in the energy−or the envelope− that has a wavelength
that depends on the direction (taking as the origin the
point source). We can write the planar excitation in the
polar coordinates (x = ρ cos(θ)) centered at the point
source and we obtain:

m = mc + mp = eiωte−i(
ρ
λc

)A

(
1 +

B

A
e
−iρ

(
cos θ
λp
− 1
λc

))
.

(17)
The wavelength, λenv, of the modulation envelope de-
pends on the direction, θ, and is set by

λenv(θ) =
λpλc

λc cos θ − λp
, (18)

and the strength of the modulation depends on the rela-
tive amplitudes, A and B, of the two waves. The smaller
wavelength determines the modulation.

Detecting Spin-Wave Activity

Point contacts may also be used as detectors [20] of
spin-wave activity in a thin film; the respective alignment
of the fixed and free layers determine the resistance of the
STNO [27, 28]. Thus, low current densities−that do not
excite magnetization dynamics−through the point con-
tacts will serve to read the state of the free layer. The
magnetization of the two layers can be set in different

HH

FIG. 8: (Left hand side) Relative alignment of fixed and free
layers where the resistance of the contact does not change with
the oscillating magnetic moments. This configuration senses
the amplitude of the wave excitation. (Right hand side) Rel-
ative alignment of a fixed and free layer where the resistance
of the contact changes with the oscillating magnetic moment;
this configuration extracts frequency and phase information
from the wave excitations. Note that this configuration re-
quires sufficient bandwidth in the detection circuit.

geometries for different purposes; a geometry where the
resistance of the contact is the same for all points of the
oscillation trajectory (see, Fig. 8 left hand side panel)
may serve to sense the energy or the amplitude of the spin
wave excitation, |m|, (e.g., detecting amplitude modula-
tion); a geometry where the resistance of the junction
varies along the oscillation trajectory (see, Fig. 8b) may
serve to sense the frequency of the spin wave excitation
(e.g., detecting frequency or phase modulation).

The giant magnetoresistance effect is weak when the
orientation of one layer tilts only a few degrees, particu-
larly when the layer magnetizations are initially collinear.
Adding a magnetic tunnel junction either between the
free and polarizing layer or the free layer and a separate
magnetic electrode would would enhance the magnetore-
sistance effect [20, 36].

Encoding Information in the Modulation of STNO
spin waves

STNO are spin-wave sources and detectors; their, ra-
diating oscillatory signals may be modulated. Frequency
modulation usually offers an ideal method to reduce noise
in communications. However, the frequency and the am-
plitude of the oscillatory signals in STNO depend on the
driving current; amplitude and frequency are nonlinearly
connected. Experiments have shown the effect of non-
linear frequency modulation in single [21, 24] and double
STNO [23] and the effect has been described theoretically
in [17, 22].

Pulse amplitude modulation provides a case where fre-
quency and amplitude are uncoupled; turning the spin-
wave sources on and off causes a spin-wave diffusive
front to propagate away from the contacts every time
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the STNO are pulsed. In [20] it was shown that pulse
modulation of an STNO source has a dissipative nature
because of the spin wave diffusion (see, Eq. 1). However,
information can still be processed and transmitted using
a simple amplitude modulation system [20].

Phase modulation may also be possible in STNO.
Whenever a STNO phase locks to another STNO or to an
external oscillatory signal, there is an interval of nomi-
nal frequencies where the STNO still synchronizes to the
reference signal [9–12]. Within this frequency interval
oscillators remain synchronized but their relative phase
to the reference signal changes. In most of the spec-
troscopic techniques one measures the phase difference
between an external signal−used to excite an intrinsic
resonance−and the intrinsic resonance (e.g., Ferromag-
netic resonance). One may combine arrays of synchro-
nized STNO and tune independently their relative phases
with respect of an external signal. Phase modulation may
provide an interesting option for encoding information as
its detection is usually simple with the help of a reference
signal.

Discussion and Conclusion

We have studied spin-wave interference patterns and
directional spin-wave radiation in ferromagnetic thin film
with STNO. The spatial dependence of the excitation en-
ergy in a single STNO might not be symmetric but lacks
information about the wavelength of the spin-wave ex-
citation. The spatial energy of a planar wave created
by an rf-antenna also misses information about its wave
length. The creation of interference patterns captures the
information of wavelength from single sources. Arrays of
STNO or STNO in combination with planar waves, allow
energy directionality and control of the spatial energy dis-
tribution. Relative distances and positions of the STNO
with respect of their wavelength produce different radia-
tion diagrams. Patterns can also be controlled by setting
the relative phase between STNO.

Communications and computation are open fields that
would welcome using gigahertz excitations in solid state
materials. However, a more precise control of these exci-
tations would be needed to achieve the most basic oper-
ations. Magnonic crystals use control of the propagating
media; here we explored control of radiating spin waves
from STNO through interference patterns. Additionally,
the studied cases of arrays of STNO and an STNO with
a planar waves could serve to block certain wavelengths
or to enhance others in different locations (i.e., to create
bandgaps).

Another interesting outcome of this study on static in-
terference patterns and radiation diagrams is the poten-
tial use in sensing short wavelengths of high frequency
spin-wave excitations. STNO in a ferromagnet such as
permalloy have excitation frequencies of tens of gigahertz

and wavelengths of hundreds of nanometers; its temporal
and spatial resolution are challenging and involve syn-
chronization between the measuring equipment and the
internal frequency of STNO at the nanosecond scale and
space resolution at the nanometer scale. Spin-wave in-
terference patterns from STNO arrays (or from STNO
combined with planar waves) create steady patterns of
the excitation amplitude (energy) that depend on the
wavelength of the single sources [20, 32] and its relative
phase; in such a case, a static detecting method could
probe the wavelength of the excitations.
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