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Abstract

The Shapley value (Shapley, 1953) has been axiomatically characterized from different

points of view. van den Brink (2001) proposes a characterization by means of effi-

ciency, fairness and the null player property. In this paper, we characterize the family of

single-valued solutions obtained by relaxing fairness into weak fairness. To point out the

Shapley value, we impose the additional axiom of weak self consistency and strengthen

the null player property into the dummy player property. Remarkably, impossibility re-

sults emerge when replacing self consistency by a large set of α-consistency properties à

Thomson (1990).
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1. Introduction

Probably the most relevant single-valued solution for cooperative games with trans-

ferable utility (games, hereafter) is the Shapley value (Shapley, 1953). Many characteri-

zations of this solution, including his original axiomatic approach, use the principle that

if a player contributes zero to all coalitions, then she must receive a zero payoff: the null

player property. Various authors have proposed alternative foundations of the Shapley

value imposing the null player property. Particularly, van den Brink (2001) interprets the

Shapley value as the unique solution satisfying, additionally, efficiency, imposing that all

the gains from cooperation are distributed among the players, and fairness, a property

inspired by Myerson’s (1977) fairness. For single-valued solutions, fairness essentially

imposes that if a game suffers an impact consisting in adding another game in which

two players are symmetric, then their payoffs should change by the same amount. If we

measure the relevance of a player in terms of her marginal contributions to all coalitions,
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fairness is a quite natural requirement since adding such a game does not change the

contributions of symmetric players.

In this paper, we study what solutions emerge when weakening fairness into weak

fairness (van den Brink et al., 2016),1 combined again with efficiency and either the null

player property or the dummy player property, which states that if a player contributes

only her individual worth to all coalitions then she must receive her individual worth.

Weak fairness, a property very much related to strong aggregate monotonicity (Arin,

2013), can be viewed as a solidarity axiom in the sense that if only the worth of the

grand coalition varies, while the worth of all other coalitions remain unchanged, then

players’ payoffs should be affected equally.2

Another different principle used from Hart and Mas-Colell (1989) to interpret the

Shapley value is self consistency. Consistency is an outstanding relational property widely

used in the axiomatic analysis of solutions imposing that an original agreement should

be reconfirmed in the underlying reduced game when some agents leave.3 Calleja and

Llerena (2019) impose self consistency and fairness together with covariance, a classical

invariance property with respect to changes in scale and origin, to characterize the Shap-

ley value. In this work, we impose weak self consistency, that is, self consistency when

only one or two agents stay, to select the Shapley value from the set of solutions satisfying

efficiency, weak fairness and the dummy player property.4 This characterization has the

flavour of Hart and Mas-Colell (1989), van den Brink (2001) and Calleja and Llerena

(2019) but it uses substantially weaker versions of fairness and self consistency.

The remainder of this paper is organized as follows. In Section 2, we introduce some

preliminaries. In Section 3, we characterize the family of single-valued solutions satis-

fying efficiency, weak fairness and either the dummy player property or the null player

property. Remarkably, these characterizations can be extended to any domain of games.

In Section 4, we provide a new axiomatization of the Shapley value by means of weak

self consistency, weak fairness and the dummy player property. These properties still

characterize the Shapley value on the domain of convex games. Interestingly, we show

that incompatibilities emerge when replacing self consistency by a huge class of consis-

tency properties that includes, as particular cases, max consistency (Davis and Maschler,

1965), complement consistency (Moulin, 1985) and projected consistency (Funaki, 1998).

1These authors impose weak fairness, together with other properties, to characterize all convex com-

binations of the equal division solution and the center of imputations (Driessen and Funaki, 1991).
2Strong aggregate monotonicity imposes that if only the grand coalition become richer then all players

are affected equally and are strictly better off.
3See Thomson (2012) for an essay on the consistency property.
4The dummy player property does not imply (is not implied by) covariance.
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2. Preliminaries

The set of natural numbers N denotes the universe of potential players. A coalition

is a non-empty finite subset of N and let N denote the set of all coalitions of N. Given

S, T ∈ N , we use S ⊂ T to indicate strict inclusion, that is, S ⊆ T and S 6= T . By |S| we

denote the cardinality of the coalition S ∈ N . A transferable utility coalitional game

is a pair (N, v) where N ∈ N is the set of players and v : 2N −→ R is the characteristic

function that assigns to each coalition S ⊆ N a real number v(S), representing what S

can achieve by agreeing to cooperate, with the convention v(∅) = 0. For simplicity of

notation, and if no confusion arises, we write v(i), v(ij), . . . instead of v({i}), v({i, j}), . . ..
By Γ we denote the class of all games.

Given N ∈ N , the unanimity game (N, uN ) associated to N is defined as uN (N) =

1 and uN (S) = 0 otherwise. Given a game (N, v) and ∅ 6= N ′ ⊂ N , the subgame

(N ′, v|N ′) is defined as v|N ′(S) = v(S) for all S ⊆ N ′. For any two games (N, v), (N,w),

and α ∈ R, we define the game (N, v + w) as (v + w)(S) = v(S) + w(S), and the game

(N,α · v) as (α · v)(S) = α · v(S), for all S ⊆ N .

Given N ∈ N , let RN stand for the space of real-valued vectors indexed by N ,

x = (xi)i∈N , and for all S ⊆ N , x(S) =
∑
i∈S xi, with the convention x(∅) = 0. The

vector eN ∈ RN is defined as eN,i = 1 for all i ∈ N . For each x ∈ RN and T ⊆ N , x|T

denotes the restriction of x to T : x|T = (xi)i∈T ∈ RT .

Let N ∈ N . The preimputation set of (N, v) consists of the efficient payoff vectors,

that is, X(N, v) = {x ∈ RN |x(N) = v(N)}, and the core is the set of preimputations

where each coalition gets at least its worth, that is C(N, v) = {x ∈ X(N, v) | x(S) ≥
v(S) ∀ S ⊆ N}. A game (N, v) is balanced if it has a non-empty core, and it is (strictly)

convex if v(S∪T )+v(S∩T ) (>) ≥ v(S)+v(T ) for all S, T ⊆ N . For t ∈ R and any game

(N, v), the game (N, vt) is defined as vt(S) = v(S) for all S ⊂ N and vt(N) = v(N) + t.

Player i ∈ N is called a dummy player in (N, v) if v(S ∪ {i}) − v(S) = v(i) for all

S ⊆ N \{i}, and is called a null player in (N, v) if v(S∪{i}) = v(S) for all S ⊆ N \{i}.
We say that players i and j are symmetric in (N, v) if v(S ∪ {i}) = v(S ∪ {j}) for all

S ⊆ N\ {i, j}.
A single-valued solution on Γ′ ⊆ Γ is a function σ : Γ′ →

⋃
N∈N

RN that associates

with each game (N, v) ∈ Γ′ an |N |-dimensional real vector σ(N, v). The Shapley value,

Sh, is defined by

Shi(N, v) =
∑

S⊆N\{i}

|S|! (|N | − |S| − 1)!

|N |!
(v(S ∪ {i})− v(S)) for all i ∈ N.

With any preimputation x ∈ X(N, v) we associate the vector of all excesses e(S, x) =

v(S) − x(S), ∅ 6= S ⊂ N , the components of which are non-increasingly ordered. The
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prenucleolus (Schmeidler, 1969), ν, is the preimputation that minimizes with respect

to the lexicographic order5 the vector of excesses over the set of preimputations.

3. Efficiency, weak fairness and dummy or null player property

van den Brink (2001) characterizes the Shapley value on the domain of all games

making use of fairness together with efficiency and the null player property.

A single-valued solution σ on Γ′ ⊆ Γ satisfies

• Efficiency (E) if for all N ∈ N and all (N, v) ∈ Γ′ it holds that σ(N, v) ∈ X(N, v);

• Null player property (NP) if for all N ∈ N , all (N, v) ∈ Γ′ and all i ∈ N , if i

is a null player in (N, v), then σi(N, v) = 0;

• Fairness (F) if for all N ∈ N , all (N, v), (N, v′) ∈ Γ′ with (N, v + v′) ∈ Γ′ and all

i, j ∈ N such that i and j are symmetric in (N, v′), we have σi(N, v+v′)−σi(N, v) =

σj(N, v + v′)− σj(N, v).

In this section, we investigate what single-valued solutions appear when weakening

fairness into weak fairness combined with efficiency and either the dummy player property

or the null player property.

A single-valued solution σ on Γ′ ⊆ Γ satisfies

• Weak Fairness (wF) if for all N ∈ N , all (N, v), (N, v′) ∈ Γ′ such that v(S) =

v′(S) for all S ⊂ N and all i, j ∈ N , we have σi(N, v
′) − σi(N, v) = σj(N, v

′) −
σj(N, v);

• Dummy player property (DP) if for all N ∈ N , all (N, v) ∈ Γ′ and all i ∈ N ,

if i is a dummy player in (N, v) then σi(N, v) = v(i).

Weak fairness is a solidarity axiom that plays an important role in the paper. It

imposes that if the game suffers an impact that changes only the worth of the grand

coalition, while all other coalitions remain the same, then, and due to all players are

equally responsible of it, they should be treated equally. By taking weak fairness together

with efficiency and the dummy player property a large family of single-valued solutions

emerge. In order to describe such a family for any domain of games, we first introduce

some concepts. In the remainder of this section we deal with a fixed player set N and,

consequently, a game (N, v) is described by its characteristic function v and Γ denotes

the set of all games with player set N .

5Given two vectors x, y ∈ RN , we say that x ≤lex y if either x = y, or x1 < y1 or there exists

k ∈ {2, . . . , |N |} such that xi = yi for all 1 ≤ i ≤ k − 1 and xk < yk.
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Given v ∈ Γ, a player i ∈ N is called a potential dummy player in v if v(S ∪
{i}) − v(S) = v(i) for all S ⊂ N \ {i}. By D(v) and PD(v) we denote the set of

dummies and potential dummies in v, respectively. Notice that D(v) ⊆ PD(v) and,

moreover, any player i ∈ PD(v)\D(v) will become a dummy player in game w ∈ Γ

with w(S) = v(S) for all S ⊂ N and w(N) = v(i) + v(N\ {i}). Moreover, Lemma 3

in Calleja et al. (2012) states that if i ∈ D(v) and j ∈ PD(v), i 6= j, then j ∈ D(v)

and v(N) =
∑

i∈PD(v)

v(i) + v(N\PD(v)). Hence, either D(v) = ∅ or D(v) 6= ∅ and thus

D(v) = PD(v).

Let Γ′ ⊆ Γ be a certain domain of games with player set N . We next define the

equivalence relation R on Γ′ as follows: for all v, w ∈ Γ′

vRw if and only if v(S) = w(S) for all S ⊂ N .

The equivalence class containing v ∈ Γ′ is denoted by [v] = {w ∈ Γ′ : wRv}. Let

Γ′�R = {[v] : v ∈ Γ′} be the quotient set. For every equivalence class [v] ∈ Γ′�R we

fix a representative element, denoted by v∗. If there is w ∈ [v] such that D(w) 6= ∅,
by Lemma 3 in Calleja et al. (2012), w is unique and then choose v∗ = w. Otherwise,

choose an arbitrary v∗ ∈ [v]. It is worth to mention that although v ∈ Γ′ and PD(v) 6= ∅,
there might be no w ∈ [v] such that D(w) 6= ∅.

Let Γ′∗ stand for a set of representative games, one for each equivalence class.

Observe that the set of representative games might not be unique. Any v ∈ [v∗] can be

expressed as

v = v∗ + (v(N)− v∗(N)) · uN .

Moreover, PD(v) = PD(v∗) and v∗(N) =
∑

i∈PD(v)

v(i)+v(N\PD(v)), whenever D(v∗) 6=

∅.

Definition 1. Let Γ′ ⊆ Γ and Γ′∗ be a set of representative games. A dummy-adapted

Γ′∗−selection is a function F : Γ′∗ → RN such that
∑
i∈N

Fi(v∗) = v∗(N) and Fi(v∗) = v∗(i)

for all i ∈ D(v∗).

Let Γ′ ⊆ Γ and Γ′∗ be a set of representative games. A dummy-adapted Γ′∗−selection

associates an efficient vector to every representative game of Γ′∗, with the particularity

that if dummy players appear they receive exactly their individual worth. Let FD(Γ′∗)

denote the class of dummy-adapted Γ′∗−selections. Given F ∈ FD(Γ′∗), we can define

the associated single-valued solution σF as follows: for all v ∈ Γ′,

σF (v) = F (v∗) +
v(N)− v∗(N)

|N |
· eN , (1)

being v∗ ∈ Γ′∗ such that v ∈ [v∗].
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The interpretation of σF is as follows: given v ∈ Γ′, let v∗ ∈ Γ′∗ be such that v ∈ [v∗],

σF first distributes v∗(N) among players according to F , and then it distributes what

is left of the gains of cooperation equally. Geometrically, σF is the set of straight lines

(one for every element of Γ′�R) going through F (v∗) with direction vector eN
|N | .

Let us illustrate the calculation of σF solutions by an example.

Example 1. Let N = {1, 2, 3, 4} and Γ′ = Γ. We choose the set of representative games

Γ∗ as follows. For a given game v ∈ Γ, if PD(v) = ∅ then take v∗ ∈ [v] with v∗(S) = v(S)

for all S ⊂ N and v∗(N) = 0. While if PD(v) 6= ∅ then take v∗ ∈ [v] with v∗(S) = v(S)

for all S ⊂ N and v∗(N) =
∑
i∈PD(v) v(i) + v(N \ PD(v)). Note that if PD(v) = ∅ we

have some freedom to choose v∗(N). On the other hand, if PD(v) 6= ∅ then v∗ is unique,

D(v∗) 6= ∅ and D(v∗) = PD(v∗) = PD(v).

Since both the Shapley value and the prenucleolus satisfy efficiency and the dummy

player property, two examples of dummy-adapted Γ∗−selections, F,G ∈ FD(Γ∗), are:

F (v∗) = Sh(v∗) and G(v∗) = ν(v∗), for all v∗ ∈ Γ∗.

Now we take the game v(12) = v(13) = v(14) = v(123) = v(124) = v(134) = 1,

v(N) = 2, and v(S) = 0 otherwise. Since PD(v) = ∅, as a representative element of

[v] we choose the game v∗, being v∗(N) = 0 and v∗(S) = v(S) for any other coalition

S ⊂ N . Then,

σF (v) = Sh(v∗) +

(
1

2
,

1

2
,

1

2
,

1

2

)
=

(
1

2
,
−1

6
,
−1

6
,
−1

6

)
+

(
1

2
,

1

2
,

1

2
,

1

2

)
=

(
1,

1

3
,

1

3
,

1

3

)
while

σG(v) = ν(v∗) +

(
1

2
,

1

2
,

1

2
,

1

2

)
=

(
3

4
,
−1

4
,
−1

4
,
−1

4

)
+

(
1

2
,

1

2
,

1

2
,

1

2

)
=

(
5

4
,

1

4
,

1

4
,

1

4

)
.

Clearly, F (v∗) and G(v∗) propose efficient allocations of v∗(N). In a second stage,

to obtain σF (v) and σG(v), the difference v(N)− v∗(N) is distributed equally among the

players.

Now consider the game w(1) = w(23) = w(123) = 0, w(234) = 3, w(N) = 4 and

w(S) = 1 otherwise. Since PD(w) = {1}, the representative element w∗ ∈ [w] is given

by w∗(N) = w(1)+w(234) = 3 and w∗(S) = w(S) for any other coalition S ⊂ N . Hence,

σF (w) = Sh(w∗) +

(
1

4
,

1

4
,

1

4
,

1

4

)
=

(
0,

5

6
,

5

6
,

4

3

)
+

(
1

4
,

1

4
,

1

4
,

1

4

)
=

(
1

4
,

13

12
,

13

12
,

19

12

)
while

σG(w) = ν(w∗) +

(
1

4
,

1

4
,

1

4
,

1

4

)
= (0, 1, 1, 1) +

(
1

4
,

1

4
,

1

4
,

1

4

)
=

(
1

4
,

5

4
,

5

4
,

5

4

)
.

Here, F (w∗) and G(w∗) are efficient allocations of w∗(N) such that player 1, which

is a dummy player in w∗, receives its individual worth w∗(1) = w(1) = 0. In a second

stage, to obtain σF (w) and σG(w), we distribute equally w(N)− w∗(N).
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To finish, observe that σF (v) = Sh(v) and σF (w) = Sh(w) due to the Shapley value,

in addition to efficiency and the dummy player property, satisfies weak fairness. How-

ever, although σG(w) = ν(w) we have that σG(v) 6= ν(v), confirming that the prenucleolus

does not satisfy weak fairness.

Now, we are in a position to obtain our characterization result.

Theorem 1. Let Γ′ ⊆ Γ and Γ′∗ be a set of representative games. A single-valued solution

σ on Γ′ satisfies efficiency, weak fairness and the dummy player property if and only if

there exists a dummy-adapted Γ′∗−selection F ∈ FD(Γ′∗) such that σ = σF .

Proof Let σ be a single-valued solution on Γ′ and F ∈ FD(Γ′∗) such that σ = σF . Then,

E follows directly from F ∈ FD(Γ′∗). To check DP, let v ∈ Γ′ be with D(v) 6= ∅ and let

v∗ ∈ Γ′∗ be such that v ∈ [v∗], then v = v∗. Consequently, for all i ∈ D(v),

σi(v) = σFi (v) = Fi(v∗) = v∗(i) = v(i),

where the last but one equality follows from F ∈ FD(Γ′∗). To check wF, let v, w ∈ Γ′

be such that v(S) = w(S) for all S ⊂ N . Hence, v, w ∈ [v∗] being v∗ ∈ Γ′∗ and, for all

i ∈ N ,

σi(w)− σi(v) = Fi(v∗) + w(N)−v∗(N)
|N | − Fi(v∗)− v(N)−v∗(N)

|N |

= w(N)−v(N)
|N | .

To show the reverse implication, let σ be a single-valued solution on Γ′ satisfying E,

wF and DP. Define F : Γ′∗ → RN as F (v∗) = σ(v∗) for all v∗ ∈ Γ′∗. By E and DP, it

follows directly that F ∈ FD(Γ′∗). To finish, let us show that σ = σF with F ∈ FD(Γ′∗)

as defined above. Let v ∈ Γ′, v ∈ [v∗] being v∗ ∈ Γ′∗. Since v = v∗+ (v(N)− v∗(N)) ·uN ,

by E and wF,

σ(v) = σ(v∗) + v(N)−v∗(N)
|N | · eN

= F (v∗) + v(N)−v∗(N)
|N | · eN

= σF (v).

Remarkably, a solution satisfying efficiency, weak fairness, and the dummy player

property must be described in two stages. Given a game v, we first search the repre-

sentative element v∗ ∈ [v] and distribute efficiently v∗(N) taking into account that if

D(v∗) 6= ∅, each dummy player should receive her individual worth. In a second stage,

the difference v(N)− v∗(N) is distributed equally among the players. The first stage is

a direct consequence of efficiency and the dummy player property, and the second stage

is a direct consequence of efficiency and weak fairness.

It is natural to ask for the consequences of weakening the dummy player property into

the null player property in Theorem 1. It is not difficult to extend the notion of potential
7



dummy player to potential null player in order to characterize the family of single-valued

solutions satisfying efficiency, weak fairness and the null player property.

Let v ∈ Γ, a player i ∈ N is called a potential null player in v if v(S ∪{i}) = v(S)

for all S ⊂ N \ {i}. Let N(v) and PN(v) be the set of null and potential null players in

v, respectively. Clearly, N(v) ⊆ PN(v) and, moreover, from Lemma 3 in Calleja et al.

(2012) either N(v) = ∅ or N(v) 6= ∅ and thus N(v) = PN(v) with v(N) = v(N\PN(v)).

Let Γ′ ⊆ Γ be a certain domain of games with player set N . For every equivalence

class [v] ∈ Γ′�R we choose a representative element v• as follows: if there is w ∈ [v]

such that N(w) 6= ∅, w is unique, and then choose v• = w; otherwise, choose an arbitrary

v• ∈ [v]. Let Γ′• stand for a set of representative games. Now, we can define a null-adapted

Γ′•−selection analogously to Definition 1. Let FN (Γ′•) denote the class of null-adapted

Γ′•−selections.

Theorem 2. Let Γ′ ⊆ Γ and Γ′• be a set of representative games. A single-valued solution

σ on Γ′ satisfies efficiency, weak fairness and the null player property if and only if there

exists a null-adapted Γ′•-selection F ∈ FN (Γ′•) such that σ = σF .

Note that both Theorem 1 and Theorem 2 are stated for any domain Γ′ ⊆ Γ. The

properties in both theorems are non-redundant on Γ. The equal division solution, ED,

defined by EDi(v) = v(N)
|N | for all v ∈ Γ and all i ∈ N meets all properties but neither the

dummy player property nor the null player property. The single-valued solution ρ defined

as ρi(v) = v(i) for all v ∈ Γ and all i ∈ N meets all properties but efficiency. Let π be

a permutation on N , the marginal contribution solution relative to π, mcπ, defined

as mcπi (v) = v ({j ∈ N |π(j) ≤ π(i)}) − v ({j ∈ N |π(j) < π(i)}) for all v ∈ Γ and all

i ∈ N meets all properties but weak fairness. On the contrary, there are domains Γ′ ⊂ Γ

where the properties are redundant. For instance, on the domain of assignment games,

ΓA, (Shapley and Shubik, 1972) weak fairness does not apply since if v ∈ ΓA and t ∈ R,

t 6= 0, then vt 6∈ ΓA. Hence, weak fairness is redundant in both theorems. Similarly, on

the domain of strictly convex games, ΓSC , the dummy player property (and also the null

player property) does not apply since for all v ∈ ΓSC , D(v) = ∅ (and thus N(v) = ∅).
Note that, furthermore, PD(v) = ∅ (and thus PN(v) = ∅). Hence, the dummy player

property is redundant in Theorem 1 and the null player property in Theorem 2. However,

observe that the solutions proposed above show the independence of the properties in

Theorem 1 (Theorem 2) for domains Γ′ ⊆ Γ that are rich enough, that is, domains that

contain a game(s) for which ED, ρ, and mcπ does not satisfy the dummy player property

(the null player property), efficiency, and weak fairness, respectively.

4. Consistency, weak fairness and dummy or null player property

Consistency is an internal stability requirement that relates the solution of a game

to the solution of a reduced game that appears when some agents leave. The different
8



ways in which the coalitions of the remaining agents are evaluated give rise to different

notions of reduced game. Particularly interesting are the reduced games introduced by

Davis and Maschler (1965), Moulin (1985) and Funaki (1998). All these instances can

be included in a general definition making use of the concept of admissible subgroup

correspondence introduced by Thomson (1990).

Definition 2. An admissible subgroup correspondence α : N → N is a correspondence

that associates with each N ∈ N a non-empty list α(N) of coalitions of N .

We denote by A the set of all admissible subgroup correspondences. Examples of

admissible subgroup correspondences can be given by taking into consideration several

aspects of coordination between players: communication, hierarchies, geographical areas,

law requirements, or the size of the subgroups.

Given α ∈ A, we introduce the associated α-max reduced game.

Definition 3. Let α ∈ A and (N, v) be a game, ∅ 6= N ′ ⊂ N and x ∈ RN . The α-max

reduced game relative to N ′ at x is the game
(
N ′, rN

′

α,x(v)
)

defined by

rN
′

α,x(v)(R) =


0 if R = ∅,

max
Q∈α(N\N ′)

{v(R ∪Q)− x(Q)} if ∅ 6= R ⊂ N ′,

v(N)− x(N \N ′) if R = N ′.

(2)

The interpretation of the α-max reduced game is as in Davis and Maschler (1965) but

here the options of members in N ′ to cooperate with members in N \N ′ are restricted

by the admissible subgroup correspondence α. That is, in the α-max reduced game

(relative to N ′ at x) the worth of a coalition R ⊂ N ′ is determined under the assumption

that R can choose the best partners in α(N \N ′). The Davis and Maschler reduced

game is a particular case when α(N) = 2N for all N ∈ N . Other well-known reduced

games can also be obtained by taking a suitable admissible subgroup correspondence.

For instance, the complement reduced game proposed by Moulin (1985) is defined

by α(N) = {N} for all N ∈ N , or the projected reduced game (Funaki, 1998) by

α(N) = {∅} for all N ∈ N . The above reduction operations will be denoted by αDM , αM

and αP , respectively.

Given α ∈ A, a single-valued solution σ on Γ′ ⊆ Γ satisfies

• α-Consistency (α-CO) if for all N ∈ N , all (N, v) ∈ Γ′ and all ∅ 6= N ′ ⊂ N we

have
(
N ′, rN

′

α,x(v)
)
∈ Γ′ and x|N ′ = σ

(
N ′, rN

′

α,x(v)
)

where x = σ(N, v).

The consistency principle states that in the corresponding α-max reduced game the

original agreement should be reconfirmed. α-weak consistency ( α-wCO) imposes this

internal stability requirement for reduced games with at most two players.

9



Surprisingly, there is no admissible subgroup correspondence α ∈ A for which the

properties in Theorem 2, efficiency, weak fairness and the null player property, are com-

patible with α-weak consistency.

Theorem 3. Let α ∈ A. There is no single-valued solution on the domain of all games

that satisfies efficiency, α-weak consistency, weak fairness and the null player property.

Proof Let α ∈ A and suppose, on the contrary, that there exists a single-valued solution

σ satisfying E, NP, wF and α-wCO on Γ. Let (N, v) be a game with set of players

N = {1, 2, 3} and characteristic function v(i) = 0 for all i ∈ N , v(12) = v(123) = 1 and

v(13) = v(23) = 0. Let x = σ(N, v) and z = σ(N, v1.5). Since player 3 is a null player in

the game (N, v), by NP

x3 = 0, (3)

and wF together with E lead to

z3 = x3 +
1

2
=

1

2
. (4)

Denote N ′ = {1, 2} and N ′′ = {2, 3}. Note that for a single player i ∈ N , α(i) can

only be αDM (i), αP (i) or αM (i). We distinguish three cases:

Case 1: α(N \ N ′) = α(3) = αDM (3) = {∅, {3}}. By definition of αDM -max reduced

game, rN
′

αDM ,z(v
1.5)(1) = rN

′

αDM ,z(v
1.5)(2) = 0 and rN

′

αDM ,z(v
1.5)(12) = 2.5 − 1

2 = 2.

Let us denote w1 = rN
′

αDM ,z(v
1.5). Note that (w1)−2(12) = 0. Hence, players 1

and 2 are null players in the game (N ′, (w1)−2). By NP, wF and E we receive

σ(N ′, w1) = (0, 0) + (1, 1) = (1, 1). Finally, by α-wCO and (4) we obtain

z =

(
1, 1,

1

2

)
.

Let us now consider the following subcases:

(A) α(N \ N ′′) = αDM (1) = {∅, {1}}. By definition of the αDM -max reduced

game, rN
′′

αDM ,z(v
1.5)(2) = rN

′′

αDM ,z(v
1.5)(3) = 0 and rN

′′

αDM ,z(v
1.5)(23) = 2.5−1 =

1.5. Let us denote w2 = rN
′′

αDM ,z(v
1.5). Note that (w2)−1.5(23) = 0. Hence,

players 2 and 3 are null players in the game (N ′′, (w2)−1.5). By NP, wF and E

we receive σ(N ′′, w2) = (0, 0) + ( 3
4 ,

3
4 ) = ( 3

4 ,
3
4 ). By α-wCO, σ|{2,3}(N, v

1.5) =(
3
4 ,

3
4

)
6=
(
1, 12
)

= z|{2,3}, a contradiction.

(B) α(N \ N ′′) = αM (1) = {{1}}. By definition of the αM -max reduced game,

rN
′′

αM ,z(v
1.5)(2) = 0, rN

′′

αM ,z(v
1.5)(3) = −1 and rN

′′

αM ,z(v
1.5)(23) = 2.5− 1 = 1.5.

Let us denote w3 = rN
′′

αM ,z(v
1.5). Note that (w3)−2.5(23) = −1. Hence, player

2 is a null player in the game (N ′′, (w3)−2.5). By NP, wF and E we receive

σ(N ′′, w3) = (0,−1)+( 5
4 ,

5
4 ) = (5

4 ,
1
4 ). By α-wCO, σ|{2,3}(N, v

1.5) =
(
5
4 ,

1
4

)
6=(

1, 12
)

= z|{2,3}, a contradiction.
10



(C) α(N \ N ′′) = αP (1) = {∅}. By definition of the αP -max reduced game,

rN
′′

αP ,z(v
1.5)(2) = rN

′′

αP ,z(v
1.5)(3) = 0 and rN

′′

αP ,z(v
1.5)(23) = 2.5− 1 = 1.5. Note

that w2 = rN
′′

αP ,z(v
1.5). Hence, players 2 and 3 are null players in the game

(N ′′, (w2)−1.5). By NP, wF and E we receive σ(N ′′, w2) = (0, 0) + ( 3
4 ,

3
4 ) =

( 3
4 ,

3
4 ). By α-wCO, σ|{2,3}(N, v

1.5) =
(
3
4 ,

3
4

)
6=
(
1, 12
)

= z|{2,3}, a contradic-

tion.

Case 2: α(N \ N ′) = α(3) = αP (3) = {∅}. By definition of αP -max reduced game,

rN
′

αP ,z(v
1.5)(1) = rN

′

αP ,z(v
1.5)(2) = 0 and rN

′

αP ,z(v
1.5)(12) = 2.5 − 1

2 = 2. Note that

w1 = rN
′

αP ,z(v
1.5). Hence players 1 and 2 are null players in the game

(
N ′, (w1)−2

)
.

By NP, wF and E we receive σ (N ′, w1) = (0, 0) + (1, 1) = (1, 1). Finally, by

α-wCO and (4) we obtain

z =

(
1, 1,

1

2

)
.

At this point, we may consider the subcases (A), (B) and (C) displayed in Case

1 and following the same arguments we get a contradiction.

Case 3: α(N \ N ′) = α(3) = αM (3) = {{3}}. By definition of αM -max reduced game,

rN
′

αM ,x(v)(1) = rN
′

αM ,x(v)(2) = 0 and rN
′

αM ,x(v)(12) = 1 − 0 = 1. Let us denote

w4 = rN
′

αM ,x(v). Note that w−14 (12) = 0. Hence, players 1 and 2 are null players in

the game
(
N ′, w−14

)
. By NP, wF and E we receive σ (N ′, w4) = (0, 0) + ( 1

2 ,
1
2 ) =

( 1
2 ,

1
2 ). Now, by α-wCO and (3) we obtain x =

(
1
2 ,

1
2 , 0
)
. Finally, by wF and E

we receive

x+

(
1

2
,

1

2
,

1

2

)
=

(
1, 1,

1

2

)
= z.

As before, we may consider the subcases (A), (B) and (C), and the same argu-

ments applied here lead to a contradiction.

Theorem 3 deserves some intuitive explanation. Apart from the Shapley value, there

are many other well-known single-valued solutions that satisfy efficiency, the dummy

player property and weak fairness for two-person games. For instances, the center of

imputations (CI) (Driessen and Funaki, 1991), the equal sharing of non separable

costs (ESNC) (Moulin, 1985) and the prenucleolus. However, when these solutions

are extended to games with more than two players through α-max consistency, α ∈
{αP , αM , αDM}, they lose some of the aforementioned properties: both CI and ESNC

fall to satisfy the dummy player property, and the prenucleolus does not meet weak

fairness. What is remarkable (as shown Theorem 3) is that, independently of the α-max

consistency properties we work with, the family of single-valued solutions that emerge

does not satisfy efficiency, the dummy player property and weak fairness for an arbitrary

set of players N , even for three-player games.
11



In Theorem 3 we use the characterization result presented in Theorem 2. In fact,

whenever we have to compute the solution for a game (N, v) we simply find first the

representative element v∗ ∈ [v] that happens to be unique because we always work with

games with potential null players. In (N, v∗) we impose the dummy player property

and efficiency and to return to game (N, v) we use efficiency and weak fairness. This

procedure is pointed out by the definition of σF , being F a null-adapted selection.

Let us observe that the dummy player property and α-weak consistency, α ∈ A,

imply efficiency. To show it, let ({i}, v) be a one-player game. By the dummy player

property, σ({i}, v) = v(i), which means that σ satisfies efficiency for one-player games.

Now, it is not difficult to check that efficiency for one player games together with α-weak

consistency imply efficiency (see, for instance, the proof of Proposition 1 in Calleja and

Llerena, 2019). This observation leads to the following result.

Corollary 1. Let α ∈ A. There is no single-valued solution on the domain of all games

that satisfies α-weak consistency, weak fairness and the dummy player property.

Since the Shapley value satisfies weak fairness and the dummy player property, Corol-

lary 1 has the following immediate consequence.

Corollary 2. Let α ∈ A. On the domain of all games, the Shapley value does not satisfy

α-weak consistency.

To show that each of the properties in Theorem 3 and Corollary 1 is logically indepen-

dent of the remaining properties first we need to fix α ∈ A. In case α = αDM , the equal

division solution meets all properties but the null player property (and thus the dummy

player property), the Shapley value satisfies all properties but αDM -weak consistency, the

prenucleolus meets all properties but weak fairness (see Example 1) and the zero solu-

tion (z(N, v) = (0, . . . , 0) ∈ RN for all (N, v) ∈ Γ) satisfies all properties but efficiency

and the dummy player property. Let α ∈ A, α 6= αDM . It can be easily checked that the

equal division solution, the Shapley value and the zero solution show the independence

of the null player property, α-weak consistency and efficiency in Theorem 3, respectively.

While the equal division solution and the Shapley value, show the independence of the

dummy player property and α-weak consistency in Corollary 1, respectively. However, it

is open if weak fairness is redundant in both impossibility results.

Although, among the families of single-valued solutions characterized in Theorems 1

and 2 there is no one satisfying α-weak consistency for any α ∈ A, the Shapley value is

uniquely selected when considering self consistency (Hart and Mas-Colell, 1989).

Definition 4. Let σ be a single-valued solution, N ∈ N , (N, v) ∈ Γ, and ∅ 6= N ′ ⊂ N .

12



The self reduced game relative to N ′ at σ is the game
(
N ′, rN

′

σ (v)
)

defined by

rN
′

σ (v)(R) =

 0 if R = ∅,

v(R ∪N ′′)−
∑
i∈N ′′ σi(R ∪N ′′, v|R∪N ′′ ) if ∅ 6= R ⊆ N ′,

where N ′′ = N \N ′.

In the self reduced game (relative to N ′ at σ), the worth of a coalition R ⊆ N ′ is

determined under the assumption that R joins all members of N ′′ = N \ N ′, provided

they are paid according to σ in the subgame associated to R ∪N ′′.
A single-valued solution σ on Γ′ ⊆ Γ satisfies

• Self consistency (SC) if for all N ∈ N , all (N, v) ∈ Γ′ and all ∅ 6= N ′ ⊂ N, we

have
(
N ′, rN

′

σ (v)
)
∈ Γ′ and σ(N, v)|N ′ = σ

(
N ′, rN

′

σ (v)
)
.

Self consistency has been used to characterize the Shapley value from Hart and Mas-

Colell (1989). Weak self consistency (wSC) requires consistency for reduced games

with at most two players. It turns out that imposing weak self consistency, in addition to

those properties in the statement of Theorem 1, provides a new axiomatic interpretation

of the Shapley value on the domain of all games. However, these properties are redundant,

what allows us to drop efficiency leading to the following characterization.

Theorem 4. The Shapley value is the unique single-valued solution on Γ that satisfies

weak self consistency, weak fairness and the dummy player property.

Proof. Clearly the Shapley value satisfies wSC, wF and DP. Let σ be a single-valued

solution on Γ satisfying these properties. To prove that σ = Sh, we will use an induction

argument on the number of players. First, we show that wSC and DP imply E. Let

({i}, v) be a one-player game, since player i is a dummy player, by DP σ({i}, v) = v(i),

which means that σ satisfies efficiency for one-player games. It is well known that E for

one player games together with wSC imply E (see, for instance, the proof of Lemma

8.3.8 in Peleg and Sudhölter, 2007). Thus, from E, σ = Sh for one-player games. Now,

let N = {i, j} ∈ N and (N, v) ∈ Γ. If v(N) = v(i) + v(j), then by DP it follows

directly that σ(N, v) = (v(i), v(j)). If v(N) 6= v(i) + v(j), consider the associated game

(N, v′) defined as follows: v′(k) = v(k) for all k ∈ N , and v′(N) = v(i) + v(j). Clearly

v = v′ + (v(N) − v(i) − v(j)) · uN . Then, by wF, DP and E we obtain σk(N, v) =

v(k) + 1
2 (v(N)− v(i)− v(j)) for all k ∈ N . Thus, σ = Sh for two-player games.

Induction hypothesis: Fix t ≥ 2, let σ(N, v) = Sh(N, v) for all (N, v) ∈ Γ with

|N | ≤ t. From this point, following literally the proof of Theorem 8.3.6 in Peleg and

Sudhölter (2007) we obtain σ(N, v) = Sh(N, v).

The properties in Theorem 4 are non-redundant on Γ. The equal division solution

meets all properties but the dummy player property. The single-valued solution ρ, as
13



defined to show the independence of the properties in Theorem 1, meets all properties

but weak self consistency, and the marginal contribution solution meets all properties

but weak fairness.

Observe that weak self consistency, weak fairness and the null player property do

not characterize the Shapley value on the domain of all games. Clearly, the null player

property and weak self consistency do not imply efficiency, take for instance the zero

solution. If we additionally impose efficiency, the Shapley value meets all these properties

but uniqueness still remains open.

A natural question is to ask for the applicability of Theorem 4 to some domains of

games. Because of the definition of self reduced game, it only makes sense to consider

classes of games such that all subgames belong to the class, like the well-established

domain of convex games. Although the domain of convex games is not closed under the

self reduction operation for the Shapley value, Hokari and van Gellekom (2002) show that

it satisfies weak self consistency. This observation allows us to follow the same arguments

as in the proof of Theorem 4 to characterize the Shapley value on the domain of convex

games.

Theorem 5. The Shapley value is the unique single-valued solution on the domain of

convex games that satisfies weak self consistency, weak fairness and the dummy player

property.

To finish, note that all the games used in Theorem 3 are convex. It might be the case

that, for some α ∈ A, the class of convex games is not closed under the α-max reduction

operation. Given a class of games Γ′, a way to overcome such a problem is replacing α-

weak consistency by the weaker property of conditional α-weak consistency imposing

that the original agreement must be reconfirmed in the reduced game only when it belongs

to the class Γ′. The incompatibility stated in Theorem 3 still hold on the class of convex

games imposing conditional α-weak consistency. Moreover, since one-player games are

convex and the dummy player property together with α-weak consistency, α ∈ A, imply

efficiency, Corollary 1 also holds on the domain of convex games imposing conditional

α-weak consistency.
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