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Abstract: 

Multiciliated cells (MCC) project dozens to hundreds of motile cilia from the cell surface to generate 

fluid flow across epithelial surfaces or turbulence to promote the transport of gametes. The MCC 

differentiation program is initiated by GEMC1 and MCIDAS, members of the geminin family, that 

activate key transcription factors, including p73 and FOXJ1, to control the multiciliogenesis program. 

To support the generation of multiple motile cilia, MCCs must undergo massive centriole amplification 

to generate a sufficient number of basal bodies (modified centrioles). This transcriptional program 

involves the generation of deuterosomes, unique structures that act as platforms to regulate centriole 

amplification, the reactivation of cell cycle programs to control centriole amplification and release, and 

extensive remodeling of the cytoskeleton. This review will focus on providing an overview of the 

transcriptional regulation of MCCs and its connection to key processes, in addition to highlighting 

exciting recent developments and open questions in the field. 
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Highlights 

• GEMC1 and MCIDAS control multiciliated cell differentiation in a stepwise manner. 

• p73 plays a major role in multiciliogenesis. 

• Multiciliated cells activate a cell cycle program to regulate centriole amplification. 

• PLK4, mother centrioles and deuterosomes are not strictly required for multiciliogenesis. 

• Centriole numbers scale to cell surface area. 

 



Multiciliated cells in vertebrates 

Multiciliated cells (MCCs) are specialized epithelial cells that project multiple motile cilia required for 

respiratory, reproductive, renal and brain functions in many vertebrates[1]. In humans, MCCs are 

present in the ependyma and choroid plexus of the brain to direct the flow of cerebrospinal fluid, the 

airways to clear mucus and pathogens, and in the efferent ducts and oviducts for spermatozoa and egg 

transport, respectively. Depending on the tissue, dozens to hundreds of motile cilia are generated per 

MCC that can beat in a coordinated, directional manner or generate turbulence through whip-like 

movements[1,2].  

 

The process of MCC differentiation, or multiciliogenesis, requires the activation of a unique 

transcriptional program that specifies cell fate and allows the massive amplification of centrioles; 

barrel-shaped, microtubule based organelles that dock at the cell surface with other factors to provide a 

basal body (BB) required to support the generation of the ciliary axoneme[3]. As several recent reviews 

have covered different aspects of multiciliogenesis in great detail[1,3–10], here we will focus on 

providing an overview of the transcriptional regulation of multiciliogenesis and how it connects to key 

cellular processes. In addition, we will highlight recent advances in our understanding of other cell 

biological aspects of MCC development and the consequences of their dysfunction. 

 

MCC specification: Notch and the Geminin family proteins 

The inhibition of Notch signaling has emerged as a consistent early event in MCC differentiation from 

the study of frog skin, zebrafish pronephros and murine ependymal, fallopian tube (oviduct) and airway 

epithelia (Figure 1) [11–18]. The precise details of Notch regulation remain unclear in all cases but the 

Mir-34/449 family of miRNAs has been implicated in Notch inhibition in frogs, zebrafish and mice and 

this miRNA family plays redundant roles in MCC formation in several tissues, including the brain, 

airway and male germline[2,11,13,19–23]. In the murine airway, progenitor cells give rise to secretory 

(Clara) or MCC lineages in a Notch dependent manner[24]. Genetic or pharmacological inhibition of 

Notch causes the trans-differentiation of secretory cells into MCCs, demonstrating a central role for 

Notch inhibition in initiating the MCC differentiation program in the airway[15].    

The full effects of Notch inhibition on transcription have not been clearly elucidated at early steps of 

MCC differentiation, but fate decisions following Notch inhibition are controlled by the interplay 

between the Geminin family proteins; Geminin (encoded by GMNN), GEMC1 (Geminin coiled-coil-

domain containing protein 1, encoded by GMNC) and MCIDAS (Multicilin (MCI) and IDAS, encoded 

by MCIDAS). Geminin is a well-studied regulator of DNA replication that prevents re-replication 

through its cell cycle specific binding to CDT1, a factor required for origin licensing[25]. As its name 

reflects, Geminin acts as a dimer, homodimerizing through its central coiled-coil (CC) domain. Both 



GEMC1 and MCIDAS were identified due to the presence of a similar CC domain and all 3 proteins 

can homo or heterodimerize[26–29]. This feature appears to be functionally relevant, as the CC domains 

are required for some of their key functions in all cases, although the physiological significance of 

heterodimerization remains unclear[30,31]. 

Studies in zebrafish and mice identified GEMC1 as a critical upstream mediator of the MCC 

differentiation program that is activated upon Notch inhibition[30,32–34]. GEMC1 deficient mice lack 

MCCs in every tissue where they are normally present, leading to penetrant hydrocephalus and 

infertility. While MCCs are absent from the murine airway in GEMC1 deficient mice, no respiratory 

defects have been reported, potentially due to sterile housing conditions, although significant 

discrepancies remain regarding the lifespan of GEMC1 deficient mice derived in different colonies 

where they range from 9 days to over 2 years[30,32]. 

The induction of Gemc1 and Mcidas in the developing murine brain is temporally distinct and MCIDAS 

deficient mice develop morphologically identifiable MCCs that express early transcription factors, 

including p73 and FOXJ1, but fail to amplify centrioles or generate cilia[33,35]. Air liquid interface 

(ALI) cultures from MCIDAS deficient mice showed no increase in the expression of genes implicated 

in centriole amplification, including CCNO, CDC20B, CCDC78 or DEUP1, indicating that GEMC1 is 

not sufficient to activate these genes when under its normal physiological regulation[35]. Thus, a two-

step process has been proposed; GEMC1 activates MCIDAS and other key transcription factors to 

promote MCC specification and MCIDAS subsequently activates the expression of genes required for 

multiciliogenesis[35]. The overexpression of MCIDAS can trigger MCC differentiation in frog skin and 

mouse cells (the latter in conjunction with an E2F4-activation domain fusion), indicating that MCIDAS 

is one of the most crucial targets of GEMC1[36,37]. Consistent with this, overexpression of GEMC1 in 

frog embryos or murine ALI cultures also generates supernumerary MCCs in a manner that requires 

MCIDAS in ALI cultures[34,35]. Curiously, the overexpression of human or zebrafish GEMC1 is not 

sufficient to generate supernumerary MCCs in zebrafish, potentially indicating that essential cofactors 

or important post-translational modifications of GEMC1 are limiting[34]. 

Transcriptional activation by GEMC1 and MCIDAS 

As GEMC1 and MCIDAS lack clear DNA binding domains, it remained an open question as to how 

they could activate transcription. Work in frogs first showed that a C-terminal domain of MCIDAS, 

absent in Geminin, dubbed the TIRT domain due to a repetitive amino acid motif sequence, interacted 

with the E2F4 and E2F5 transcription factors heterodimerized with DP-1[38]. This connected the 

activity of MCIDAS to previous and subsequent work that established a key role for E2F4 and E2F5 in 

murine brain, airway and germline MCC development[38–41].  While it lacks the specific TIRT amino-

acid repetition, the C-terminus of GEMC1 contains a homologous “TIRT” domain that is also required 

for E2F4/5-DP1 binding and transcriptional activity[30,32]. Recent evidence suggests that the TIRT 



domains of GEMC1 and MCIDAS are not functionally identical. In immunoprecipitation experiments, 

mouse and human GEMC1 showed a higher affinity for E2F5 than E2F4 and this specificity could be 

eliminated by replacing the TIRT domain of GEMC1 with that of MCIDAS[35]. Moreover, co-

expressing E2F5, but not E2F4, with GEMC1 enhanced the activation of FOXJ1. In contrast, MCIDAS 

was shown to have similar affinity to both E2F4 and E2F5, potentially enabling more efficient activation 

of the genes necessary for centriole amplification[35]. One possibility that is consistent with current 

data is that GEMC1 displaces pocket protein inhibitors of E2F5, such as RB, p107 or p130, but does 

not strongly activate the MCC transcriptional program until it is reinforced by MCIDAS expression and 

its interactions with both E2F4 and E2F5. While more detailed biochemical and structural studies 

remain to be performed, the emerging picture is that GEMC1 and MCIDAS play sequential roles that 

utilize specific E2F4/5-DP1 interactions influenced by differences in their C-terminal domains. 

While both E2F4 and E2F5 have been clearly linked to MCC generation, discerning their specific roles 

has been challenging in mice due to their essentiality and influence on the development of many tissues. 

E2F4 and E2F5 have been typically characterized as repressive E2Fs, in contrast to the activating E2Fs, 

E2F1-3, and bind to the regulatory regions of hundreds of genes to repress cell cycle genes during G0 

and G1 in conjunction with the RB family proteins and interactions with the MuvB/DREAM 

complex[42]. Recent work in zebrafish showed that some tissue specificity exists with regards to their 

role in MCC generation, but that this reflects the relative expression levels of E2f4 or E2f5 in those 

tissues, rather than specific functions of either factor, consistent with work in frogs that suggested 

redundancy between E2F4 and E2F5[38,43]. Surprisingly, Mcidas was not required for MCC 

generation in the nasal placode of zebrafish, indicating that in some circumstances, GEMC1 is sufficient 

to promote centriole amplification through E2F4/5[43]. Whether this reflects inherent differences in 

target gene activation, increased expression of GEMC1 or the relative numbers of centrioles needed in 

MCCs in this tissue remains to be determined.  

In overexpression experiments in frogs or human cells, Geminin acted as a potent inhibitor of 

transcriptional activation by GEMC1 and MCIDAS through CC-mediated interactions and the 

formation of a ternary complex with the E2F4 or E2F5-DP1 transcription factors[30,32,38]. It was 

proposed that Geminin may prevent the activation of the multiciliogenesis program until dividing cells 

exit the cell cycle, as the consequent centriole amplification would cause mitotic spindle defects[38]. 

Geminin was previously implicated in transcriptional regulation through interactions with the BRG1 

component of the SWI/SNF complex, that is known to interact with E2F4/5, and controls the expression 

of a number of transcription factors[44–47]. Whether Geminin acts only by impairing GEMC1 or 

MCIDAS homodimerization and transcriptional activation through E2F4/5, or has a more complex role 

involving SWI/SNF or transcription factor interactions, has not been clearly established. 



Recent work using lineage tracing in the mouse ependyma demonstrated that in adult mice, the direct 

generation of MCCs from B1 astrocyte progenitors can occur[48]. This is reminiscent of previous 

studies showing that following damage to the airway, MCCs can be generated directly from p63+ basal 

cells[49]. In the ependyma, the rate of symmetric or asymmetric divisions can be influenced by the 

transient overexpression of either Geminin, that favors symmetric divisions and the B1 cell fate, or 

GEMC1 that promotes MCC differentiation[48]. While this suggests that the expression and 

stoichiometry of Geminin and GEMC1 is highly relevant to cell fate, it remains unclear if direct 

interactions between Geminin and GEMC1 play a role in E2F4/5-mediated MCC specification under 

physiological conditions. 

Other transcription factors required for MCC generation 

A crucial function of GEMC1 and MCIDAS is to activate numerous downstream transcription factors 

(TFs). This expanding list includes FOXJ1, FOXN4, RFX2, RFX3, MYB and P73, among others (Table 

S1). Each of these TFs has been demonstrated to play critical, and in some cases cooperative, roles in 

enabling the gene expression of numerous proteins involved in MCC differentiation.  

The TF p73 (encoded by TP73 and Trp73 in humans or mice) is a member of the p53 family that also 

includes p63, a marker of basal progenitor cells that give rise to MCCs in the airway[15]. Given its 

relationship to p53, one of the most well studied tumor suppressors, p73 was extensively studied in 

mice and was shown to cause a number of developmental phenotypes, many of which have been 

recently linked to defects in MCC differentiation[50]. The TP73 gene generates 2 major isoform groups 

via 2 promoters; the activating (TAp73) or an N-terminally truncated (DNp73) form lacking the 

transactivating domain. Reduced numbers of MCCs were observed in the airway, oviducts and efferent 

ducts of mice lacking both isoforms, or only TAp73, and ChIP experiments linked p73 directly to genes 

involved in multiciliogenesis, such as FoxJ1, Rfx2, or Rfx3[51,52]. P73 forms a ternary complex with 

GEMC1 and E2F5 that is stabilized by both the CC and TIRT domains of GEMC1, and this complex 

can activate the TP73 promoter[31,51,53]. P73 is induced by both GEMC1 and MCIDAS through their 

respective E2F4/5-DP1-containing complexes, although it remains unclear if MCIDAS also interacts 

with p73. P73 expression has been reported in p63+ basal cells and Radial Glial Cells (RGCs), that act 

as MCC progenitors in the airway and brain, respectively, suggesting an early role for p73 in MCC fate 

specification independent of GEMC1 or MCIDAS, although this remains controversial[50–52,54]. The 

requirement for p73 appears to also vary depending on the isoform, tissue and cell type. In contrast to 

the airway, where TAp73 deletion impaired MCC formation, these mice did not exhibit hydrocephalus 

or show impaired MCC formation in the brain due to compensation from the miR-449a-c cluster[20].  

Combined deletion of TAp73 and miR-449a-c impaired MCC generation in the choroid plexus (CP) and 

deletion of both TP73 isoforms impaired MCC generation in ependymal cells[20,55]. Therefore, MCC 



fate may be subjected to tissue-specific feedback modulation, warranting further comparison of the 

transcriptional regulation and signaling pathways involved in different tissues. 

FOXJ1 was the first transcription factor shown to be required for MCC differentiation and is frequently 

used as a marker of MCCs in all tissues[56–59]. FOXJ1 is now a well-established target of p73 and 

GEMC1, that likely work together to activate its expression at early stages of 

multiciliogenesis[30,32,35,51,52]. FOXJ1 is also regulated by MCIDAS, as the absence of MCIDAS 

activity strongly reduced FOXJ1 expression in frog skin and human airway cells, but airway MCCs in 

MCIDAS deficient mice were FOXJ1 positive[35,37,60]. FOXJ1 promotes MCC differentiation by 

regulating a cohort of genes involved in the production, assembly, transport, and docking of the inner 

and outer dynein arms, radial spokes and the central pair as well as genes that encode intraflagellar 

transport (IFT) proteins[56,61–65]. Studies in the human airway demonstrated that the RFX3 TF 

functions as a transcriptional coactivator of FOXJ1, helping to induce the expression of cilia genes 

involved in differentiation towards the MCC lineage[61]. Similarly, recent work demonstrated that 

FOXJ1 preferentially binds enhancers and is stabilized at promoters of cilia genes through cooperative 

interactions with the TF RFX2[66].  The stability of the MCC lineage is reportedly dependent on a 

constant FOXJ1 protein expression level in order to prevent cellular de-differentiation back into a glial-

like morphology in mouse ependymal MCCs[67]. Recently, human patients with FOXJ1 mutations 

were shown to have defects in motile cilia, left right patterning defects and impaired basal body docking 

in MCCs[68]. 

Another Forkhead family transcription factor, FOXN4, was implicated in MCC generation in frog skin 

and identified as an early target of MCIDAS[69]. Similar to FOXJ1, the promoter binding of FOXN4 

was enhanced by RFX2, and its depletion using morpholinos or CRISPR/CAS9 editing impaired 

multiciliogenesis to a similar extent as FOXJ1, although through effects on distinct target genes. Its role 

in MCCs in other organisms has yet to be explored. 

An shRNA based screening strategy in cultured primary human basal cell ALI cultures identified 

TRRAP, a component of several histone acetyltransferase complexes, to be required for MCC 

generation[70]. Analysis of ALI cultures using immunofluorescence showed that TRRAP acted at an 

early time following NOTCH inhibition and accumulated in MCCs prior to FOXJ1. Moreover, it was 

required for MCIDAS expression, suggesting that it was necessary for GEMC1 activity, a possibility 

that remains to be formally tested. In addition to TRRAP, ATAD2B, a AAA domain containing 

ATPase, was also identified in the screen and validated in subsequent experiments[70]. While it was 

not pursued further, it contains a bromodomain, binds acetylated histones, is regulated by E2Fs and has 

been implicated in transcription in cancer, suggesting it may also play a transcriptional role in MCCs 

[71,72]. 



The Aryl hydrocarbon receptor (AHR), a ligand activated transcription factor that responds to a variety 

of xenobiotic chemicals or oxygen levels, has been linked to MCC generation through work in both 

mice and frogs[73,74]. In ALI cultures from Ahr-/- mice, the expression of Mcidas, Ccno and Cdc20b 

were all strongly impaired, suggesting that AHR may function in conjunction with GEMC1 to activate 

Mcidas, and potentially facilitate the ability of MCIDAS to activate Ccno, that was identified as a direct 

AHR target[74]. In both murine ALI cultures and depletion experiments in frog skin, MCC numbers 

were reduced and many of the FOXJ1 positive cells showed disorganized ciliary patterns. At late 

embryonic stages, AHR deficient mice showed reduced numbers of airway MCCs in vivo but adult mice 

did not exhibit the same defects, indicating that redundant pathways may provide compensation for 

AHR loss at later developmental stages. Whether AHR plays a role in MCC generation in other tissues, 

such as the brain or germline, remains unclear, but hydrocephalus, that usually accompanies loss of 

ependymal MCCs, was not reported, and although AHR loss has been linked to reduced fertility in 

aging male mice, available evidence does not suggest that this is due to defects in the MCCs of the 

efferent ducts[75].    

Additional regulators of MCC transcription and differentiation, including IL-6, STAT3, FANK1 and 

JAZF1 have been identified using in vivo and in vitro models[76,77] and there is little doubt that many 

additional transcriptional regulators will be involved in this complex differentiation program. Future 

work will be needed to further deconvolve their functions, regulation and target genes, as well as their 

tissue specific roles. 

Centrioles, cell cycle regulators and the deuterosome      

In proliferating cells, canonical centriole duplication is highly restricted to a single round per cell cycle 

to avoid mitotic defects that can result from multipolar spindle formation. This canonical mother-

daughter (MD) pathway is tightly regulated and has been well described to involve the interplay of 

PLK4, CEP63, CEP152, and SAS6, among other factors[78]. The mother and daughter centrioles 

inherited by the cell following mitosis serve as templates for pro-centriole generation that gives rise to 

2 new daughter centrioles in a process coordinated with cell cycle progression. Aside from contributing 

to the formation of the microtubule-organizing center (MTOC) of the mitotic spindle, the mother 

centriole contains distal appendages that facilitate docking to become a BB that can act as a base for 

the extension of a primary cilium that functions to integrate a diverse range of environmental 

signals[79]. A defining characteristic of post-mitotic MCCs is the massive amplification of centrioles 

to form the BBs needed for generating multiple motile cilia. The MD pathway of centriole duplication 

is estimated to account for only around 10% of BB production in MCCs[80]. The bulk of centriole 

production in MCCs is normally accomplished by the deuterosome-dependent (DD) pathway, that uses 

a ring-shaped, electron dense structure called the deuterosome to facilitate centriole expansion[1,81,82]. 

Many deuterosomes can form during multcilliogenesis, each nucleating multiple procentrioles, thereby 



evading the restrictions that regulate the MD centriole duplication pathway to allow rapid BB 

production.  

 

While the deuterosome was first described many decades ago only recently has its major structural 

component, DEUP1, been identified[81,83]. DEUP1 evolved through a duplication of CEP63, that 

plays a key role in centriole duplication in the MD pathway. In addition to DEUP1, CCDC78 that 

localizes to the acentriolar sites of centriole biogenesis and CDC20B that localizes to the 

perideuterosomal region are the only other deuterosome specific proteins identified in both mouse and 

frog MCCs[82,84]. Other components of the deuterosome are common to the MD pathway, including 

Pericentrin (PCNT), -tubulin, and CEP152, that are all located on the peripheral ring[6]. However, 

there are likely additional proteins that comprise the center core or outer wall of the deuterosome that 

remain to be identified.  

Until recently, the prevailing view was that deuterosome synthesis occurred de novo and did not require 

centrosomal centrioles. Detailed live imaging of newly synthesized centrioles during cultured brain 

MCC differentiation showed that deuterosomes were seeded by the daughter centrosomal centriole[80]. 

However, in the last year, a handful of studies showed that deuterosomes with multiple centrioles could 

be produced when both parent centrioles were depleted[85–87]. Deuterosomes were able to 

spontaneously synthesize from the pericenteriolar material (PCM) in a manner that did not require 

PLK4, in contrast to earlier reports[81]. This opens up a possibility that deuterosomes are created in the 

PCM, and then only briefly associate with the daughter centrioles to facilitate the loading of 

procentrioles that occur there[87]. Recent work has implicated cytoplasmic E2F4 in the initiation of 

centriole amplification[88]. A cytoplasmic pool of E2F4 was shown to co-localize with various 

components of centriole amplification, including PCM1, and it was proposed that this forms the core 

of the fibrous granules that have been observed overlapping with or adjacent to deuterosomes.  It will 

be important in future work to fully elucidate the composition of the PCM in MCCs and explore 

potential species-specific differences. 

The ordered stages of the deuterosome cycle have come in to clearer view through the use of mouse 

models and advancements in cell culture systems and super-resolution microscopy techniques over the 

last few years. At the onset of centriole amplification, a Centrin-2 cloud or ‘halo’ accumulates around 

the pre-existing centrosome (Stage-I or Amplification (A)) and this signal intensifies to adopt a ‘flower-

like’ shape (Stage-II or Growth(G)), corresponding to maturing centrioles that appear in a synchronized 

manner. And finally, the coordinated disengagement (Stage III or D) and release of centrioles and their 

migration to the apical surface as BBs takes place[80]. 

Strikingly, the deuterosome cycle appears to rely on much of the same cell cycle machinery that plays 

a role during stepwise MD centriole duplication in proliferating cells, although the precise regulatory 



details remain unclear. Following cell cycle exit, radial glial progenitors re-express cell cycle markers, 

including KI67, CDK1, CDK2 and phosphorylated histone H3-Serine10, without performing DNA 

synthesis or undergoing mitotic division[89]. Through the use of a number of small molecule inhibitors 

or agonists, key roles in the regulation of the deuterosome cycle were demonstrated for CDK1, CDK2, 

PLK1, APC/C and CDC20[7,89,90]. This repurposing of the mitotic oscillator also appears to require 

the poorly understood CDC20B, as well as CCNO, that has its highest expression levels during the 

earliest phase of deuterosome formation[84,91,92]. CCNO mutant mice exhibit large, malformed 

deuterosomes and produce fewer BBs, suggesting that CCNO was required for deuterosome 

stability[91]. MCCs generated in ALI cultures derived from CCNO knockout mice also display 

significant transcriptional dysregulation, suggesting that CCNO functions to restrain the activation of 

key MCC genes, including MCIDAS[91]. This role of CCNO could prevent the overproduction of 

deuterosome components and contribute to the observed structural abnormalities. Repurposing the 

existing cell cycle regulation machinery appears to provide an elegant solution to regulating centriole 

amplification in the context of MCCs. Future work will be needed to understand its regulation and the 

specific roles of factors such as CDC20B and CCNO that are expressed primarily in MCCs.  

 

Recently, surprising work has questioned the necessity of the deuterosome for centriole amplification 

in MCCs. In mouse tracheal MCCs in vitro, depletion of DEUP1 caused a reduction in centriole 

amplification and CEP63 depletion did not influence centriole numbers in MCCs, due to apparent 

compensation from DEUP1[81]. Depletion of CEP63 in vivo, that reduces MD pathway centriole 

duplication in neural progenitor cells, also did not have an impact on centriole numbers in 

MCCs[93,94]. However, the deletion of DEUP1 in vivo revealed that mice were able to generate MCCs 

normally in the absence of deuterosomes, indicating they are dispensable for procentriole amplification 

during multiciliogenesis in mice and frogs[94]. Concomitant depletion of CEP63, to impair the MD 

pathway, led to a slight reduction in centriole amplification in vitro, indicating that there is likely 

minimal compensation from the MD pathway in the absence of DEUP1[94]. This finding remains to be 

extended to MCCs in all tissues but it opens up the field to a number of exciting possibilities. They 

speculate that centriole synthesis occurs within a cloud of fibrogranular material and PCM, and that 

deuterosomes function to relieve the parental centrioles of the high numbers of procentrioles that form 

along their length. Supporting this possibility, flatworms and some species of ray-finned fish (such as 

zebrafish) are capable of producing MCCs and do not encode DEUP1 or generate deuterosomes[95–

97]. This establishes that another route for de novo procentriole generation in MCCs can function 

independently of both the MD and DD pathways and provide compensation for their loss. It was 

proposed that this pathway may be equivalent to pericentriolar satellites that occur in non-MCCs given 

that they are scaffolded by PCM1 that is enriched in fibrogranular material[94,98]. 

 

Late transcriptional roles, polarization and cilia assembly 



Like many other types of epithelial cells, MCCs are polarized and aligned by the planar cell polarity 

(PCP) pathway[99]. Additionally, MCCs in both the frog skin and mammalian airway originate in a 

basal epithelial layer and migrate apically, through a process known as radial intercalation[100,101]. 

PCP and radial intercalation are both coordinated with ciliogenesis in MCCs through the actions of 

many proteins, including, dystroglycan, Rab11, the Par complex, RFX2, Slit2, Septins  and RhoA[102–

106]. Among these, the transcription factor RFX2 was identified as a central regulator of PCP, radial 

intercalation and ciliogenesis in frogs and other vertebrates[105,107,108]. Recent analysis of mice 

lacking RFX2 identified a key role in the regulation of cilia related genes during spermiogenesis, but 

suggested that it is dispensable for MCC generation in higher mammals, as hydrocephalus and 

respiratory defects were not reported[109–111]. So while RFX2 is expressed in cells with motile cilia 

in mice, further analysis of tissues that contain MCCs will be needed to establish its roles in higher 

mammals and determine if RFX3 or other factors may compensate for its loss[108–111]. 

How MCCs control the number of centrioles/BBs and cilia generated remains unclear. Studies using 

frog larvae showed that during radial intercalation, a network of apical and subapical actin forms in a 

lattice connecting the centrioles, and generates a 2D force that expands the apical surface of MCCs to 

accommodate the required number of BBs and ensure the even distribution of cilia[100,112]. Recent 

work demonstrated that centriole numbers remain normal in mouse cells lacking DEUP1 and a striking 

correlation between cell surface area and centriole number in MCCs was reported[85,94]. Manipulation 

of cell surface area in mouse tracheal epithelial cells, using differences in collagen density, showed that 

centriole numbers were impacted accordingly[85]. This suggests that either cell surface area, or 

potentially cortical stiffness, dictates the number of centrioles generated via early stage transcriptional 

mechanisms, and suggests potential links to the cytoskeletal rearrangements that occur during PCP and 

radial intercalation.  

The YAP transcription factor, a central component of the Hippo signaling pathway, responds to cell 

surface tension and mechanical forces, regulates epithelial size during airway development and has been 

linked to both actin cytoskeletal rearrangements and ciliogenesis[113,114]. YAP is expressed in mouse 

airway MCCs, several YAP interactors have been localized to BBs, and in frogs, YAP nuclear 

translocation and increased tissue stiffness occur during regeneration of the multiciliated 

epithelium[115,116]. However, YAP is not required for MCC generation per se and it remains unclear 

if YAP plays an important role in dictating MCC size or centriole numbers[117].  

Following their amplification, centrioles are transported to the apical surface in an actin-myosin 

dependent manner and the organization and attachment of the BBs takes place, regulated in part by 

ERK7, DVL1/2, CapZIP, CELSR2/3, WDR5, GTPases and the miR-34/449 family to ensure correct 

cilia function and integrity of the epithelium [19,37,50,99,118–126]. While the details of transcriptional 

crosstalk with the cytoskeleton and PCP pathways remains to be fully elucidated, MYB, FOXJ1, p73 



RFX2 and RFX3, all contribute to the regulation of genes that ensure correct BB migration and docking, 

axoneme outgrowth, and motility, as well as cilia beating in frogs and mice[61,65,66,105,123,127–

129].  

Consequences of MCC dysfunction 

While present only in a few tissues, defective MCCs contribute to congenital disorders, such as primary 

ciliary dyskinesia (PCD) and Reduced generation of multiple motile cilia (RGMC), the latter due to 

defects specifically in MCCs[60,130,131]. Thus far, mutations in 2 genes have been implicated in 

RGMC: MCIDAS and CCNO. Both genes are located adjacent to each other on Chromosome 5 (5q11.2) 

that also contains CDC20B that encodes both a protein and the Mir449a/b/c genes. RGMC patients 

present clinically with hydrocephalus, recurrent airway infections and bronchiectasis. Due to the ages 

of the patients, little data regarding fertility has been reported, although some female patients have 

presented with infertility[60,130,131]. While RGMC represents an extreme case, it is possible that less 

severe mutations or tissue specific defects in the function or expression of key MCC factors may result 

in more subtle pathologies, such as subfertility, scoliosis or normal pressure hydrocephalus[132,133]. 

Consistent with this possibility, a mutation in GEMC1 was recently identified in a patient with 

congenital hydrocephalus but respiratory defects or fertility issues were not reported[134]. MCIDAS 

mutations that have been identified in RGMC are located in the TIRT domain of MCIDAS and interfere 

with binding of the E2F4/5 transcription factors, highlighting again the central importance of MCIDAS 

in the MCC transcriptional pathway[60]. A new report identified  the NEK10 kinase in familial 

bronchiectasis and demonstrated its expression in airway MCCs[135]. While these patients exhibited 

respiratory distress, similar to that observed in RGMC, they generated airway MCCs with subtle 

morphological defects and shorter cilia that were incapable of mucociliary clearance. Proteomic 

analysis of NEK10 deficient MCCs revealed widespread effects on the phosphorylation of many 

proteins required for motile cilia function, indicating that NEK10 may be a key regulator of many 

aspects of MCC function. 

Conclusions and open questions 

Rapid advances have been made in determining the molecular events that control MCC generation in 

multiple tissues. However, many open questions remain unresolved. The structural and functional 

similarity of GEMC1 and MCIDAS raises the question as to whether they play distinct or redundant 

roles in transcription. The sequential nature of their activation, their antagonism with Geminin and their 

distinct contributions to MCC differentiation have been well documented[25,26,28,30,32,33,35,38,48]. 

Whether this reflects differential regulation of their activities, post-translational regulation of their 

stoichiometry or distinct functional domains that have yet to be identified remains unknown. Geminin 

levels are well established to be regulated by the Ubiquitin proteasome system, exemplified by the use 

of its N-terminal D-box degron in the Fucci system to monitor cell cycle[136]. MCIDAS also appears 



to have a functional D-box motif and is degraded during anaphase in cancer cells but whether this is 

relevant to its activity in post-mitotic MCCs has not been established[27]. The 3’UTR of GEMC1 

contains overlapping Mir449 and CPE sites, required for binding of CPEB translational regulators, that 

may function to tightly control mRNA and protein levels in response to regulatory cues[30]. Tissues 

from mice lacking CCNO have been reported to exhibit high levels of Mcidas expression, suggesting 

that modulation of CDK activity, that is clearly important for the centriole amplification process, may 

also play a direct role in regulating transcriptional feedback via GEMC1 and MCIDAS but this remains 

to be formally demonstrated[89,91]. MCCs in many tissues, particularly in the airway, must be 

periodically replaced due to damage to the epithelium. The maintenance of mRNA levels of GEMC1 

and other transcriptional activators may serve to prime the rapid replenishment of cilia in existing MCCs 

following damage, and whether GEMC1 is required for the direct generation of MCCs from progenitor 

cells in this context also remains to be tested[48,49]. 

A common feature reported for both GEMC1 and CCNO deficient mice that remains unexplained was 

growth defects[30,32,92]. We speculated that this could be secondary to fluid pressure on the 

developing brain that could influence pituitary gland function, although we could not detect alterations 

in its function. Alternatively, it could reflect functions unrelated to MCC generation, for example in the 

regulation of DNA replication at early developmental stages. Mutations in Geminin are associated with 

Meier-Gorlin syndrome that is characterized by primordial dwarfism[137]. While the expression of 

GEMC1 and MCIDAS appears to be restricted to MCCs, CCNO expression is detected in other tissues, 

including the pituitary and thyroid glands, and may have distinct functions. Future work using 

conditional mouse models can begin to address these possibilities. 

Aberrant expression of key MCC specific genes can also be observed in many cancers and some 

evidence suggests they may play functional roles[138–140]. The aberrant expression or depletion of 

GEMC1 and MCIDAS in cancer cell lines has been shown to impact DNA replication and could 

potentially activate transcription factors such as E2F4, p73 and FOXJ1 that have been implicated in 

cancer development, and could provoke centriole amplification and mitotic defects[26–28]. The 

potential of CCNO and CDC20B to impact cell cycle regulation or apoptosis is also potentially relevant 

to their expression in human cancers[138,141]. 

The intriguing observations that MCCs coordinate cell area with centriole numbers and can perform 

this function in the absence of deuterosomes by repurposing cell cycle machinery opens up a number 

of new mechanistic questions to be addressed[85,89,94]. And finally, microarrays, RNAseq and more 

recently, single cell sequencing, of multiciliated cells has identified new genes in their transcriptional 

programs that have yet to be functionally characterized[30,38,66,69,142–144]. The careful comparisons 

between in vitro systems and MCCs in distinct tissues and organisms will no doubt also reveal new 



aspects of their diversity and specialized functions that are important for human development and 

health. 
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Figure 1: Knowns and unknowns of MCC transcription. The mammalian airway (trachea) is a well 

studied epithelial layer containing MCCs. Basal cells, that generate all other cell types of the trachea 

are p63 positive (+). 1) Induction of p73 at an early stage was proposed to mark p63+p73+ basal cells 

for an MCC fate, (?) although the regulation of this step remains unknown. 2) Inhibition of NOTCH 

instructs MCC fate and the activation of the mir-34/449 family was implicated in this step, (?) but how 

their induction is regulated remains an open question. (?) GEMC1 contains a mir-34/449 consensus site 

in its 3’UTR that may limit its expression levels. 3) (?) NOTCH inhibition activates GEMC1 through 



an unknown mechanism. GEMC1 interacts with E2F5-DP1 through its C-terminal domain, to activate 

the MCC differentiation program. 4) The transcriptional co-activator TRRAP and p73 act at an early 

step, prior to the induction of MCIDAS and p73 has been shown to interact with GEMC1. 5) CDK2 

activity was demonstrated to play an early but thus far uncharacterized role in transcriptional activation. 

6) MCIDAS induction required MYB, that also acts upstream of FOXJ1. 7) During embryogenesis, but 

not in adults, AHR is required for GEMC1-mediated induction of CCNO. 8) Both GEMC1 and 

MCIDAS activate additional TFs, including FOXJ1, FOXN4, RFX2, RFX3 and p73 in a manner that 

requires FANK1 and JAZF1, (?) that remain to be functionally characterized in more detail. (?) Cell 

area correlates with centriole/cilia number and appears to be specified prior to centriole amplification 

through unknown mechanisms. 9) MCIDAS and multiple TFs activate genes required for deuterosome-

mediated centriole amplification and ciliogenesis. (?) CCNO mutants showed elevated levels of 

MCIDAS expression, suggesting a negative feedback role, but the mechanism of this has yet to be 

determined. (?) E2F4 promotes initiation of centriole duplication through a cytoplasmic role that 

remains to be fully elucidated. 10) The deuterosome cycle is regulated at distinct steps, in part by the 

canonical cell cycle machinery, as well as specialized factors including CCNA1, CCNO and CDC20B. 

(?) Whether the DREAM/MUVB-FOXM1 proteins regulate expression of the canonical or MCC-

specific factors in a manner similar to a normal cell cycle remains unknown. 10) CCNO interacts with 

CDK1 and CDK2 and is required for normal deuterosome formation, (?) but its precise role remains 

unclear. (?) Similarly, the function of CDC20B in the deuterosome cycle remains unclear but appears 

to be independent of APC/C regulation. 11) MYB, FOXJ1, FOXN4, RFX2/3 and p73 all influence the 

expression of genes involved in PCP, cytoskeletal dynamics, basal body docking and cilia formation. 

(?) The molecular crosstalk between these processes and transcription remains unclear. 12) NEK10 was 

implicated in cilia length control and function through the phosphorylation of numerous proteins, (?) 

the molecular impact of which remains unknown. See main text for more detailed description and 

references. (?) Denotes open questions indicated in the figure. 

 

Supplementary Table S1: 

 

Gene Organism Function Domains References 

AHR X, M Upstream ligand-
activated transcription 
factor that promotes 
airway MCC 
differentiation 

A basic helix-loop-
helix (bHLH), DNA 
binding, Per-Arnt-
Sim (PAS) 1&2 

[74] 

CCNO M, H Suppresses MCIDAS 
expression levels and 
influences deuterosome 

Cyclin domain [91,130,131] 

https://www.uniprot.org/uniprot/P35869
https://www.uniprot.org/uniprot/P22674


stability. Mutated in 
RGMC patients. 

DP1  X, M Heterodimerizes with 
E2F4 or E2F5 to regulate 
transcription. Interacts 
with GEMC1 and MCIDAS. 

Coiled-coil and 
marked box (CM); 
sequence specific 
DNA-binding 

[36,38,39,41,43,88] 

E2F4 
E2F5 

X, D, M Heterodimerizes with DP1 
to regulate transcription. 
Interacts with GEMC1 and 
MCIDAS. 

Coiled-coil and 
marked box (CM); 
sequence specific 
DNA-binding; 
transactivation 

[36,38,39,41,43,88] 

FANK1 M Promotes MCC 
differentiation upstream 
of FOXJ1 in vitro. 

Fibronectin type III; 
6 Ankyrin repeat 
domains 

[76] 

FOXJ1 X, D, M, H Activates genes involved 
in ciliogenesis, basal body 
trafficking, BB docking at 
the apical membrane and 
axoneme growth. 

Fork-head domain [56–
59,64,65,68,120] 

FOXN4 X Binds to many of the same 
promoters as FOXJ1 and 
complements its activity. 

Fork-head domain [69] 

GEMC1 X, D, M Upstream transcriptional 
activator, critical for MCC 
specification. 

Geminin coiled coil 
(CC); TIRT domain 
(E2F/DP1 
interaction) 

[30–33,53] 

JAZF1 M Promotes MCC 
differentiation upstream 
of FOXJ1 in vitro. 

2 x C2H2-type zinc-
finger (ZF); 1 x 
C2H2- degenerate 
(ZF) 

[76] 

MCIDAS X, D, M, H Downstream of GEMC1 a 
crucial activator of key 
transcription factors and 
genes required for 
centriole biogenesis  
 

Geminin coiled coil 
(CC); TIRT domain 
(E2F/DP1 
interaction) 

[33,35,37,38,53,60] 

MIR34/ 
449a-c 

X, D, M Negatively regulate genes 
in the MCC program. 
Inhibit NOTCH signaling 
by targeting ligands. 

 [2,13,19–23] 

MYB M, H Early transcription factor 
that can induce FOXJ1  

H-T-H motif DNA 
binding 1,2 & 3; 
transactivation 
domain  
 

[127,129] 

P73 M, H Induced by GEMC1 and 
MCIDAS, interacts with 
GEMC1,  directly regulates 
a large number of genes 
required for MCCs 
 

DNA binding; 
transactivation 
domain 

[20,51,52,123] 

https://www.uniprot.org/uniprot/Q14186
https://www.uniprot.org/uniprot/Q16254
https://www.uniprot.org/uniprot/Q15329
https://www.uniprot.org/uniprot/Q8TC84
https://www.uniprot.org/uniprot/Q92949
https://www.uniprot.org/uniprot/Q96NZ1
https://www.uniprot.org/uniprot/A6NCL1
https://www.uniprot.org/uniprot/Q86VZ6
https://www.uniprot.org/uniprot/D6RGH6
https://www.uniprot.org/uniprot/P10242
https://www.uniprot.org/uniprot/O15350


RFX2 X, D Stabilizes FOXJ1 at 
promoters to activate cilia 
genes. May recruit distal 
enhancers to promoters. 

RFX-type winged-
helix DNA-binding  
 

[18,66,105,107] 

RFX3 M, H Downstream of GEMC1, 
modulates FOXJ1 to 
activate genes required 
for ciliogenesis and 
motility.  
 

RFX-type winged-
helix DNA-binding  
 

[61,128] 

TRRAP H Component of several 
histone acetyltransferase 
complexes. Acts 
downstream of NOTCH 
and upstream of MCIDAS. 
 

FRAP, ATM and 
TRRAP (FAT) and 
FAT C-terminal 
(FATC) domain; 
PI3K/PI4K domain 

[70] 

 

Table S1: Transcriptional regulators implicated in MCC differentiation are hyperlinked to uniport.org 

for domain information. Species are abbreviated: Xenopus laevis (X, frogs), Danio Rerio (D, zebrafish), 

Mus musculus (M, mice), Homo sapiens (H, humans). 
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