	1	The supergene origin of ruthenian hexaferrum in <u>Ni-laterite</u> s		Suprimit: Supergenic	
			$ \subset $	Suprimit: Ni laterite	
	2	(running head title: The supergene origin of ruthenian hexaferrum in Ni-laterites)	Y	Suprimit: unreveled	
	3	Thomas Aiglsperger ^{a,*} , Joaquín A. Proenza ^a , Salvador Galí ^a , Jordi Rius ^b , Francisco Longo ^d , Cristina	\triangleleft	Suprimit: S	
	3	Thomas Aigisperger, Joaquin A. Proenza-, Salvador Gan-, Jordi Rius-, Francisco Longo-, Cristina	Y	Suprimit:	
	4	Domènech ^a			
	5				
	5				
	6	^a Departament de Mineralogia, Petrologia i Geologia Aplicada, <u>Facultat de Ciències de la Terra,</u> Universitat			
I	7	de Barcelona (UB), Martí i Franquès s/n, 08028 Barcelona, Spain			
	8	*Corresponding author, e-mail: thomas.aiglsperger@ub.edu			
	9	^b Institut de Ciència de Materials de Barcelona, CSIC, Campus de la Universitat Autònoma de Barcelona,			
1	0	Bellaterra, 08193 Barcelona, Spain			
1	1				
1	1	^c Faculty of Engineering, Universidad Catolica Tecnologica del Cibao (UCATECI), Ave. Universitaria, esq.			
1	2	Ave. Pedro Rivera, PO Box 401, La Vega, Dominican Republic			
1	3				
1	5				
1	4				
1	5	ABSTRACT			
1	6		Å	Suprimit: Since	
1	0			Suprimit: true	
1	7	For two decades the nature of Fe-rich, oxygen-bearing, Ru-Os compounds found in the	Ľ	Suprimit: Fe	
			-	Suprimit: oxygen	
1	8	supergene environment has been debated. Ru-Os-Fe-oxides and nano-intergrowths of	(Suprimit: is an unsolved problem	
			$ \subset $	Suprimit: Fe oxide	
1	9	ruthenium with magnetite have been proposed. We have applied FE-SEM, EMPA, μ -	Y	Suprimit: vs.	
	0		\neg	Suprimit: In this contribution we	
4	20	Raman spectroscopy and synchrotron tts- μXRD to Ru-Os-Fe compounds recovered from	λ	Suprimit:	
12	21	Ni-Jaterites from the Dominican Republic. <u>The results</u> demonstrate that a significant portion	Λ	Suprimit: We	
	. 1	The actives from the Dominican republic, the results domonstrate that a significant portion p		Suprimit: is bound	
2	22	of Fe exists in a common structure with the Ru-Os alloy, that is, ruthenian hexaferrum. This		Suprimit: to	
				Suprimit:	
2	.3	ineral occurs both as nanoparticles and as micrometric patches within a matrix of Fe-		Suprimit: thus proving the true existence of	
			$\backslash \rangle$	Suprimit:	
2	24	oxide(s). Our data suggest that supergene ruthenian hexaferrum with a		Suprimit: Ruthenian hexaferrum Suprimit: Fe oxide	
1			\searrow	Suprimit. I'e Oxide	

Suprimit: It is believed that s

(Ru_{0.4}(Os,Ir)_{0.1}Fe_{0.5})Σ_{1.0} stoichiometry represents the most advanced weathering product of Suprimit: final alteration 48

49	primary	laurite	within	<u>Ni-laterites</u>	from	the	Dominican	Republic.

50

51 Introduction

52

53	Mineralogical investigation of micrometric platinum-group minerals (PGM) is essentially a	<
54	question of analytical resolution. Ferrich, oxygenrbearing, Ru-Os compounds from the	_
55	weathered chromitite of the Vourinos complex (Greece) were first described by Garuti and	$\overline{\langle}$
56	Zaccarini (1997). However, at that time it was not possible to establish if these minerals	
57	were <u>oxide compounds of platinum-group elements</u> (PGE) or nano-intergrowth of Ru-rich	
58	alloy with Fe-oxide(s). Several authors reported PGM of similar composition from other	
59	localities around the world (e.g. Proenza et al. 2007; Uysal et al. 2009; Kapsiotis et al.	Ŵ
60	2011; González-Jiménez et al. 2014; O'Driscoll and González-Jiménez, 2016), The nature	
61	of these compounds has, nonetheless, remained uncertain. Recently, Zaccarini et al. (2014)	Ø
62	analysed two Fe-rich and oxygen-containing Ru-Os compounds found in chromitites from	
63	Loma Peguera (Dominican Republic) using X-ray computed tomography and X-ray	
64	diffraction. They concluded that these grains consisted of "a fine intergrown of ruthenium	
65	and magnetite not detectable at the scale of the electron microprobe" and that	
66	desulphurization of primary PGM (e.g. laurite) formed porous grains of ruthenium, which	
67	were subsequently filled up by oxidizing fluids enriched in Fe, leading to crystallization of	
68	magnetite in cavities of the ruthenium grains during low temperature alteration. However,	
69	this interpretation assumes ab initio that PGE are inert during weathering of hypogene	
70	PGM, thus precluding any possible PGM transformation via Fe incorporation during	
71	lateritization. On the contrary, several authors suggested that PGE are mobile during	

Suprimit: hypogene PGE sulphides (e.g. Suprimit:) Suprimit: Ni laterite

	Suprimit:
	Suprimit: mostly
	Suprimit: The first description on
\frown	Suprimit:
	Suprimit:
	Suprimit: was published
	Suprimit: this
	Suprimit: true
	Suprimit:
	Suprimit: oxides
$\wedge / $	Suprimit: -
$\left\ \right\ $	Suprimit:
_///	Suprimit: platinum group minerals (
, \'	Suprimit:)
\mathbb{V} ,	Suprimit: with
	Suprimit: ,
//	Suprimit: however, t
	Suprimit: true nature of these compounds
	Suprimit: ,
///	Suprimit: using X-ray computed tomography and X-ray diffraction,
//	Suprimit:
/	Suprimit:

(Suprimit:
(Suprimit: supergenic
(Suprimit: alteration
(Suprimit: the
	Suprimit: might be

103	weathering (Bowles et al. <u>1986;</u> McDonald et al. 1999; Melcher et al. 2005; Cabral et al.		Suprimit: 1994
104	2008; Garuti et al. 2012; Oberthür et al. 2014 and references therein). This contribution		Suprimit: Oberthuer
			Suprimit:
105	demonstrates, using innovative techniques for mineral microanalysis, that laurite is		Suprimit: will
106	transformed to ruthenian hexaferrum at the low temperatures of lateritization		Suprimit: Our results are twofold as they demonstrate the mobility of PGE in low temperature systems and provide evidence of Fe incorporation in Ru-Os compounds.
107		Y	Formatat: Marca
108	Sample material and methods		
109			
110	Samples were collected in the Falcondo Ni-laterite mining area, which is located in the		Suprimit: Ni laterite
111	central part of the Dominican Republic (Fig. 1). From bottom to top, the weathering profile		
112	of this deposit is divided into: (i) serpentinized protolith (harzburgite>dunite>lherzolite),		
113	(ii) saprolite with hydrous Mg_silicate_dominated mineralogy and (iii) limonite with Fe-		Suprimit: -
114	oxide(s)-dominated mineralogy (Lewis et al. 2006; Tauler et al. 2009; Villanova de	٦	Suprimit:
114	oxide(s)-dominated mineralogy (Lewis et al. 2000, Tadiel et al. 2009, Villanova de		Suprimit:
115	Benavent et al. 2014, 2016; Aiglsperger et al. 2016). Small chromitite occurrences without		Suprimit: Scarce, s
			Suprimit: ,
116	economic significance are scattered within the lateritic profile (Baurier-Aymat et al. 2015).	_	Suprimit:
		\neg	Suprimit: given horizons of
117	Two PGE-rich chromitite samples were selected for this study: (i) one <u>comes</u> from the		Suprimit:
118	Loma Peguera ore deposit, containing ~3 ppm total PGE, and situated within saprolite	٨	Suprimit: Mg-discontinuity
		Â	Suprimit: another one
119	(beneath the Mg-discontinuity) (Proenza et al. 2007; Aiglsperger et al. 2015), and (ii) the	Ż	Suprimit: hosting
		/	Suprimit: Mg-discontinuity
120	other, recovered from the Loma Larga ore deposit, <u>represents a highly weathered chromitite</u>	X	Suprimit: which
121	body included in limonite (above the Mg-discontinuity). The latter sample is characterized		Comentat [CD1]: no se ver las altas concentraciones de PGE en la fig.2
122	by high PGE concentrations, up to 17.5 ppm total PGE (Fig. 2). Whole-rock PGE contents		Suprimit: extremely
122	by angle 1 OE concentrations, up to 17.5 ppin total 1 OE (11g. 2). whole lock 1 OE contents	\leq	Suprimit: (
123	were obtained at Genalysis Ltd., Maddington, Western Australia, by ICP-MS after nickel		Suprimit:)
			Suprimit: (
124	sulphide fire assay collection, following the method described by Chan and Finch (2001).	\bigvee	Suprimit:)
			Suprimit:
125	Detection limits are 1 ppb for Rh, and 2 ppb for Os, Ir, Ru, Pt and Pd. Both chromitite	\backslash	Suprimit: (detection limits: 1 ppb for Rh, and 2 ppb for Os, Ir, Ru, Pt and Pd)
1		Y	Suprimit: sulfide

Suprimit: sulfide

156	samples, ~100 g each, were carefully crushed, milled and hand-sieved before processing by	
157	means of hydroseparation (HS) techniques at the HS laboratory Barcelona (Aiglsperger et	
158	al. 2015 and references therein). <u>Heavy-mineral concentrates were mounted as polished</u> .	
159	monolayer resin blocks and subsequently investigated by <u>reflected-light microscopy and by</u>	
160	scanning-electron microscopy (SEM) using a standard Quanta 200 FEI XTE 325/D8395.	
161	and a field-emission scanning-electron microscope (FE-SEM) Jeol JSM-7100 at the Serveis	
162	Científics i Tecnòlogics, University of Barcelona, Spain. At the same institution, PGE	
163	grains of interest were further investigated by <u>element-distribution maps using a JEOL</u>	
164	JXA-8230 electron microprobe (EMP) with an accelerating voltage of 20 kV and a beam	
165	current of 128.8 nA. Maps were collected by beam scanning with dwell times of 60	
166	ms/pixel. For each element, the background map was subtracted from the corresponding	
167	peak map. Quantitative EMP analyses were obtained with the same instrument in the	
168	wavelength-dispersive spectroscopy (WDS) mode, operating with an accelerating voltage	U
169	of 20 kV, a beam current of 10 nA and a beam diameter of 1 µm. Native elements were	
170	used as standards for Os, Ir, Ru, Rh, Pt, Pd, Co, <u>Sb and S</u> as well as chromite <u>for Al and Fe</u> ,	
171	periclase <u>for Mg</u> , NiO <u>for Ni</u> , GaAs <u>for As</u> , and wollastonite <u>for Si</u> . The following	
172	interferences RuL $\beta \rightarrow$ RhL α , RhL $\beta \rightarrow$ PdL α , RuL $\beta \rightarrow$ PdL α and RhL $\alpha \rightarrow$ PtL α were	
173	online-corrected.	
174		
175	Micro Raman maps were <u>obtained</u> by using a Thermo Scientific TM DXR TM xi Raman	
176	imaging microscope. Areas were mapped at a laser power of 2 mW, the exposure time was	
177	1 s with 5 scans and the pixel size was 1 μ m. The raw data were treated with Thermo	
178	Scientific OMNIC [™] xi Raman imaging software.	

Suprimit: (
Suprimit:)
Suprimit: processed
- Suprimit: Heavy
Suprimit: optical reflected
- Suprimit:
Suprimit: as well as
Suprimit: field
Suprimit: scanning
- Suprimit: element

-{	Suprimit: electron
-{	Suprimit: microprobe

	Suprimit: Pure metals
	Suprimit: and
\neg	Suprimit: (
$\langle \rangle$	Suprimit: ,
	Suprimit:)
$\langle \rangle$	Suprimit: (
$\langle \rangle \rangle$	Suprimit:)
())	Suprimit: (
	Suprimit:)
())	Suprimit: S (S),
	Suprimit: (
	Suprimit:)
1	Suprimit: (
	Suprimit:)
	Suprimit: achieved
\neg	Suprimit: ec
~	Suprimit: Obtained

208	Synchrotron through-the-substrate X-ray microdiffraction (tts- μ XRD) was used for the	
209	structural characterisation of crystalline mineral phases in situr, within standard polished	Fo
210	thin sections (Rius et al. 2011, 2015). PGM_bearing monolayer polished sections were first	Su
211	transformed to polished thin sections, 30 μ m thicky attached to an approximately <1 mm <	Su
212	thick glass substrate. Subsequently, X-ray diffraction was carried out by both rotating and s	Su
213	static thin sections. Experimental conditions were as follows: transmission mode, beam	Su
214	diameter <u>of 30 μm</u> , wavelength <u>bf-0.4325_Å, distance to a 2048×2048 pixel (79×79 μm²)</u>	Su Su
215	CCD detector of 190 mm. The intensities, as a function of the 20-diffraction angle, were	Su Su
216	obtained by integration of the complete Debye rings, between 0 and 23° (2 θ), using the	Su Su
217	software Fit2d (Hammersley 1998; Dinnebier 2004). Diffraction profiles were further	
218	analysed and refined by the Rietveld method, using the Bruker software TOPAS Version	
219	4.0 (TOPAS, 2009). The diffraction experiments were performed on the MSPD beamline at	
220	the ALBA Synchrotron Facility_CELLS, Cerdanyola, Barcelona, Spain.	Su
221		34
221		
222	Mineralogy of <u>Fe-</u> rich, oxygen <u>-</u> bearing, Ru-Os compounds	Su Su
223		Su
224	About 300 PGM grains with either Ru-, Ir- or Pt-dominant compositions were recovered;	Su
		Su
225	125 grains of Ru-Os-Fe_bearing PGM, from ~10 to ~125_µm across, were selected from	Su
226	heavy-mineral concentrates from Loma Larga, as well as four Ru-Os-Fe compounds from	Su Su
227	Loma Peguera for comparison with literature data. Ru-Os-Fe-bearing PGM display diverse	Su Su
228	morphologies, from euhedral crystals to anhedral, rounded grains. They appear yellowish	Su

grey in reflected light microscopy and show strong anisotropy. BSE images of these grains

reveal complex internal structures (see for example Fig. 3a of an imaged Ru-Os-Fe grain

229

230

Formatat: Tipus de lletra: No Cursiva	
Suprimit:	
Suprimit: (
Suprimit:)	
Suprimit: the	
Suprimit:	
Suprimit: information	
Suprimit: obtained	
Suprimit: samples	
Suprimit: The conditions of the experiment were	
Suprimit: 30 μm	
Suprimit: λ(Å)	
Suprimit: 20	

Suprimit: (

- Suprimit: Fe Suprimit:

Suprimit: A total of ~
Suprimit: dominated
Suprimit: mineralogy
Suprimit: from the processed chromitites
Suprimit:
Suprimit: ranging
Suprimit: in diameter
Suprimit: heavy
Suprimit: Fe
Suprimit: do not
Suprimit: (see for example Fig. 3a of an imaged Ru-Os-Fe grain from Loma Larga)
Suprimit:

260	from Loma Larga). They are characterized by (i) meandering banding at borders
261	resembling erosion pits with subsequent infill, (ii) bright grey, irregularly formed, compact
262	patches (up to 10_ μ m × 10_ μ m) and (iii) dark grey matrix material of high porosity,
263	Quantitative element mapping by EMPA reveals different distribution patterns for the
264	major elements Ru, Os and Fe (Fig. 3b-d): bright areas in BSE images correspond to the
265	highest concentrations of Ru, which occur within compact patches as well as in bandings
266	and in void infills at the border of the grain (Fig. 3b). On the other hand, Os appears mainly
267	homogenously distributed with deficits in the central part of the grain (Fig. 3c). Fe shows
268	highest concentrations within <u>compact</u> patches and close to the centre of the grain, where
269	its distribution resembles a fine-structured <u>network (Fig. 3d)</u> . In addition, Fe contributes to
270	the <u>Ru-rich</u> banding at the border of the grain. However, element distribution mapping,
271	suggests that zones rich in Fe are depleted in Os, an observation that is supported by
272	quantitative surface plots for the zone indicated in Fig. 3a, as well as by column average
273	plots for the same area (Fig. 3e-g and 4, respectively). EMPA analyses (n=10) show that
274	this complex microstructure corresponds to a very heterogeneous composition (Table 1).
275	Highest totals close to 100 wt.% with a stoichiometry of (Ru _{0.4} (Os,Ir) _{0.1} Fe _{0.5}) _{Σ1.0} are
276	measured on compact patches (i.e. points 4 and 7 in Fig. 3a), whereas low totals (~90 wt.%)
277	are observed within the fine-grained matrix material (e.g. points 2 and 10 in Fig. 3a). For
278	comparison Ru-Os-Fe grains from Loma Larga (n=125) and from Loma Peguera (n=4)
279	were quantified via EMP and plotted as at, % in a Ru-Os-Fe ternary diagram together with
280	data from the literature. As can be seen in Fig. 5, Ru-Os-Fe grains from Loma Peguera plot
281	close to results published by Zaccarini et al. (2014), whereas compositions of Ru-Os-Fe
282	grains from Loma Larga reveal a clear Fe-enrichment trend towards the field of ruthenian
283	hexaferrum (Mochalov et al. 1998).
	6

Suprimit: of dense quality Suprimit: porous

Suprimit: quality

Suprimit: quality Suprimit: EMPA analyses (n=10) show that this complex microstructure matches with heterogeneous composition (average and minimum - maximum in wt.%): Os 20 (16-23), Ir 9 (7-11), Ru 37 (25-46), Rh 0.07 (bdl-0.2), Pt 0.1 (bdl-0.4), Pd 0.05 (bdl-0.1), Fe 26 (23-30), Co 0.3 (0.1-0.4), Ni 0.5 (0.4-0.7), Sb 0.03 (bdl-0.07), S 0.07 (0.02-0.23), As 0.5 (0.4-0.7), Si 0.2 (0.01-0.3), Mg 0.04 (bdl-0.06), Al 0.4 (0.1-0.8), corresponding to an average total of 94 wt.% ranging from 89-101 wt.% (Table 1). Highest totals close to 100 wt.% with a stoichiometry of (Ru_{0.4}(Os.I7)_{0.1}Fe_{0.3})_{21.0} are measured on patches with a dense quality (i.e. points 4 and 7 in Fig. 3a) whereas lowest totals (-90 wt.%) are observed within the fine-grained matrix material (e.g. points 2 and 10 in Fig. 3a). Suprimit: e

Suprimit: s

1	Suprimit: of dense quality
1	Suprimit: osmium
	Suprimit: of dense quality
-	Suprimit: braiding
-	Suprimit: Ru
-	Suprimit: s
-	Suprimit: which

Formatat: No Marca

Comentat [CD2]: el punto es necesario?	
Formatat: No Marca	
Formatat: No Marca	

308 The same area as for quantitative surface plots was used for a detailed µ-Raman 309 spectroscopy investigation and maps obtained revealed the presence of at least three 310 mineral compounds: (i) one Raman inactive mineral, (ii) one mineral with its main bands at 311 667 and 720 cm⁻¹ and (iii) one mineral with its main bands at 226, 300, 410 and 1325 cm⁻¹ 312 (Fig. 6). The Raman inactive mineral is associated with the bright-appearing compact 313 patches and highest Ru concentrations (e.g. point 7 in Fig. 3a), whereas Raman active 314 minerals are associated with the <u>dark-appearing</u>, <u>Fe-rich matrix material</u> (Fig. <u>6</u> a-c). 315 Comparison with literature data shows that Raman active minerals are Fe-oxide(s) with best fits for maghemite and hematite. Furthermore, Fe-oxide(s)-rich zones in Raman maps 316 317 resemble micro channels circuiting Raman inactive, Ru-rich compounds (Fig. 6c). 318 Synchrotron tts- µXRD of the same grain revealed the presence of two mineral phases: one 319 belonging to the isometric (cubic) structure and one mineral belonging to the hexagonal 320 structure (space group $P6_3/mmc$). Assessments of diffraction patterns of the isometric 321 mineral confirmed the presence of Fe-rich spinel $(d_{(111)} = 4.76 \text{ Å and } d_{(220)} = 2.92 \text{ Å})$, 322 Subsequently, d_{hkl} values and cell parameters of the hexagonal compound were compared 323 to relevant literature data (Table 2 and 3), which led to the identification of ruthenian 324 hexaferrum (Mochalov et al. 1998) with cell parameters of a = 2.664(1) Å and c = 4.250(2)325 Å. The analysis of the diffraction profile, compared with the instrumental profile of the 326 experiment obtained with a conventional standard of LaB6, allowed the estimation of the diffracting domains of ruthenian hexaferrum averaged over volume Lvol = 28 nm. The 327 328 particles are estimated to be essentially free from strain ($\varepsilon 0 = 0.025$) (Balzar, 1999). Figure 7 depicts the experimental, calculated and difference profiles. 329

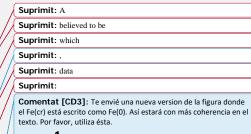
-{	Suprimit: 5
-{	Suprimit: bright
-{	Suprimit: of dense quality
-{	Suprimit: dark
-(Suprimit: Fe
Л	Suprimit: 5
-	Suprimit: Fe
Л	Suprimit: a
\neg	Suprimit: However, shapes of Fe oxide
Υ	Suprimit:)
\neg	Suprimit:

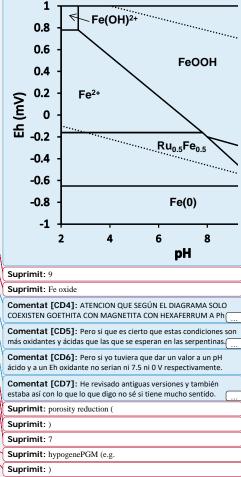
Suprimit: oxidized magnetite					
\neg	Formatat: Marca				
Y	Suprimit: , which is in good agreement with the µ-Raman data				

	Suprimit:
_	Suprimit:
	Suprimit: In f
	Suprimit: 6
	Suprimit: are depicted

7

348	
5.0	


349 Supergene formation of ruthenian hexaferrum in <u>Ni-laterites</u>


350

351	Synchrotron tts- μXRD data confirm that a significant proportion of Fe is bound to the Ru		
352	and Os suggesting that Fe-rich Ru-Os grains are mainly composed of accumulations of		Suprimit: Fe
353	nano-sized ruthenian hexaferrum. The aggregation of these nanoparticles can produce		
354	larger, compact patches as observed in high-resolution FE-SEM BSE images (Fig. 8).	_	Suprimit: of dense quality
			Suprimit: 7
355	Previous work has shown, that hypogene PGM (e.g. laurite) can transform during		Suprimit: ,
356	serpentinization to secondary PGM hosting Mg silicate on a sub-micron scale (e.g. Uysal et		Suprimit: -
		\square	Suprimit: s
357	al., 2009). FE-SEM images and energy-dispersive X-ray spectroscopy (EDS) analyses of		Suprimit: can be incorporated in hypogene PGM (e.g. laurite)
		V ,	Suprimit: at serpentinization stage on a sub-micron scale
358	Ru-Os alloys included in chromite suggest that serpentinization results in (i)		Suprimit: ; McDonald et al., 2010 and reference therein
			Formatat: Marca
359	desulphurization of the primary laurite and (ii) nanoscaled intergrowth of Mg silicates with		Suprimit: PGM
2.00		\swarrow	Suprimit: , (ii) significant redistribution of PGE
360	<u>Ru-Os</u> alloys (Fig. <u>9</u>). However, <u>these Mg</u> silicates are not stable within higher levels of the		Suprimit: i
361	<u>Ni-laterite</u> (close to the Mg discontinuity), hence weathering of Mg silicates results in a	\mathbb{N}	Suprimit: -
			Suprimit: PGE
362	significant increase of porosity and permeability within the <u>Ru-Os</u> alloy. As a consequence,	\mathbb{N}/\mathbb{C}	Suprimit: 8
		/ ///	Suprimit: -
363	oxidized, Fezrich fluids can enter the grain along micro channels and crystallize as Fe-	///	Suprimit: Ni laterite
		//	Suprimit: -
364	oxide(s) (Zammit et al. 2015). According to synchrotron µ-XRD analysis and µ-Raman		Suprimit: to
265	Environment Environment within the statist DCM and the interview		Suprimit: PGE
365	spectroscopy, <u>Fe-oxide(s) observed within the studied PGM</u> are maghemite and trace		Suprimit:
266	amounts of homotita, which arbibit a close spatial relationship with muthanian handfamount	\mathcal{M}	Suprimit: Fe oxide
366	amounts of hematite, which exhibit a close spatial relationship with ruthenian hexaferrum	()	Suprimit: and synchrotron µ-XRD analysis here observed Fe oxide
367	nanoparticles (Fig. 6 and 8). Barrón and Torrent (2002) showed that maghemite may form	//	Suprimit: most likely oxidized magnetite,
507	nanoparticles (11g. o and g). Darton and Torrent (2002) showed that magnetilite may form	/	Formatat: No Marca
368	in tropical soils as a transient phase during the transformation of ferrihydrite to hematite,	$\langle \rangle$	Suprimit: (Fig. 5),
	in a option solls as a datasion phase during the datasion nation of ferningunite to hemalitie		Suprimit: 7
369	Transformation processes of nanoscaled <u>Fe-oxide(s)</u> within the highest levels of the <u>Ni-</u>		Suprimit: with hexagonal closest packing
		$\overline{}$	Suprimit: Fe oxide
370	laterite profile may explain the observed Fe incorporation into Ru-Os alloys. Alternatively,		Suprimit: Ni laterite
			Suprimit: here

Suprimit: Ni laterite

402	magnetite could have first crystallized during early stages of lateritization within porous	
403	Ru-Os alloys and was then subsequently oxidized to maghemite. Recent studies suggest	
404	that at latest stages of lateritization, maghemite is transformed to goethite via biogenic	/
405	mediated dissolution-reprecipitation processes that imply the availability of Fe ²⁺ ions	
406	(Monteiro et al. 2014). According to preliminary thermodynamic <u>calculations</u> , a Fe-Ru	/
407	alloy would be unstable with regards to Ru(0) and aqueous Fe ²⁺ . However, catalytic effects	/
408	of the fine-grained and porous Ru(0) grain texture may favour the formation of a metastable	1
409	Ru-Fe alloy (i.e. <u>ruthenian</u> hexaferrum), which can coexist with magnetite and/or goethite	
410	at circumneutral pH (Fig. <u>10</u>). The oxidizing conditions with expected remobilization of	
411	PGE (Ru>Os) at low pH due organic acids and high Eh conditions most likely favour the	
412	formation and subsequent accumulation of ruthenian hexaferrum nanoparticles at the Ru-Os	
413	alloy - Fe-oxide(s) interface as indicated by (i) banding features at the grain's boundary	١
414	and (ii) formation of patches (Fig.8).	
415	Fig. 11 summaries the proposed model of supergene hexaferrum formation within Ni-	
416	laterites.	
417		
418	Conclusions	
419		
420	Our observations and data suggest that supergene ruthenian hexaferrum with a	
421	$(Ru_{0.4}(Os,Ir)_{0.1}Fe_{0.5})_{\Sigma_{1.0}}$ stoichiometry marks the final product of Jaurite alteration in Ni	
422	laterites from Falcondo,	//
423	Supergene ruthenian hexaferrum is believed to form via (i) desulphurization of primary	~
424	Jaurite with subsequent Mg silicate incorporation into the fine-grained Ru-Os alloy during	
	9	-
	5	

Suprimit:	Mg-silicate

Suprimit: (Fig 10) Suprimit:

Suprimit: PGM (e.g. laurite)

serpentinization, followed by (ii) weathering of Mg silicates within the Ru-Os alloy at high

443 levels of the <u>Ni-laterite</u> profile (above <u>the Mg-discontinuity</u>) and <u>subsequently</u> by (iii)

444 crystallization of <u>Fe-oxide(s)</u> within highly porous Ru-Os alloy and <u>finally, (iv)</u>

transformation of magnetite or ferrihydrite to hematite via maghemite causing Fe

446 incorporation into the Ru-Os alloy.

447

448 Acknowledgements

449

450	This research has been financially supported by FEDER Funds, the Spanish projects	
451	CGL2012-36263 and CGL2015-65824 and the Catalan project 2014-SGR-1661 as well as	
452	by a PhD grant to TA sponsored by the Ministerio de Economía y Competitividad (Spain).	
453	The authors gratefully acknowledge the help and hospitality extended by the staff of	
454	Falcondo mine (Falcondo Glencore). Excellent technical support during EPMA sessions by	
455	Dr. X. Llovet and during FESEM sessions by Eva Prats at the Serveis Científics i	
456	Tecnòlogics (University of Barcelona) is highly appreciated. Louis Cabri and Vladimir	
457	Rudashevsky are greatly thanked for their help during installation of the HS-11 laboratory	
458	in Barcelona. Many thanks to the stuff of the ALBA Synchrotron Facility_CELLS.	
459	Insightful comments and stimulating discussion, with José María González Jiménez have	Suprimit: Constructive discussions
460	improved this work. We acknowledge the constructive criticism of Dr. John Bowles, Dr.	
461	Alexandre Cabral and Dr. Louis J. Cabri as well as the help of the scientific editor of Terra	
462	Nova, Prof. Georges Calas. The authors declare that no conflict of interest exists.	Suprimit: ¶
463	v	Suprimit: ¶
464	Figure captions	Suprimit: ¶
465		

Suprimit: -

	Suprimit: Ni laterite
	Suprimit: Mg-discontinuity
	Suprimit: , followed
	Suprimit: Fe oxide
	Suprimit: processes of Fe oxide(s) (
$\overline{}$	Suprimit:)
	Suprimit: subsequent
	Suprimit: of Fe
	Suprimit: Organic acids and high Eh conditions at highest levels of

Suprimit: Organic acids and high Eh conditions at highest levels of the Ni laterite profile are believed to favour *in situ* neoformation of ruthenian hexaferrum nanoparticles.

482	Fig. 1 A) Geographic location of the Loma Caribe peridotite and orthophotograph of the	
483	Falcondo mining area highlighting the Loma Larga and Loma Peguera ore deposits. B)	
484	simplified geological map of the central section of the Loma Caribe peridotite (modified	
485	from Bowin 1966; Escuder-Viruete et al. 2007).	
486		
487	Fig. 2 Idealized <u>Ni-laterite</u> soil profile from the Falcondo mining area showing different	
488	zones and variation in chemical composition. The location of PGM rich chromitites within	
489	saprolite (beneath the Mg-discontinuity) and limonite (above the Mg-discontinuity) is	<
490	indicated.	
491		
492	Fig. 3 BSE image of one representative Fe rich, oxygen bearing, Ru-Os grain with	
493	indicated points of EMP measurements, zone of surface plots and profile direction a-b for	
494	column average plots (A); quantitative element mappings for Ru, Os and Fe (B-D); surface	
495	plots of marked area in (A) for Ru, Os and Fe with indicated profile direction a-b for	
496	column average plots (E-G).	
497		
498	Fig. 4 Ru, Fe and Os concentrations of column average plots along the rectangle from a-b	
499	as indicated in Fig. 3a.	
500		
501	Fig. 5 Ternary diagram in the Os-Fe-Ru system showing the compositional transforamtion	
502	trend from Ru-rich alloys towards ruthenian hexaferrum. Note: Fe enrichment is mainly	
503	explained by formation of ruthenian hexaferrum. Compositional fields reproduced from	
504	Mochalow et al. (1998).	
505		
1		

Suprimit: Ni laterite

Suprimit: Mg-discontinuity
Suprimit: Mg-discontinuity

509	Fig. 6 Micro Raman spectroscopy mapping of the Ru-Os-Fe grain (A-C) with reference		
510	spectra for common <u>Fe-oxide(s)</u> (modified from Froment et al. 2008) (D).		Suprimit: Fe oxide
511			
512	Fig. 7_Comparison of observed synchrotron XRD pattern with calculated pattern for		Suprimit: 6
513	ruthenian hexaferrum (spectra have been shifted for clarity). Baseline refers to the		Formatat: Tipus de lletra per defecte del paràgraf
514	difference of profiles. The Rietveld refinement of the profile was obtained by integration of		
515	Debye rings converged at an agreement index $Rwp = 1.79$.		
516			
517	Fig. 8 FE-SEM BSE images showing the fine grained nature of one representative		Suprimit: 7
518	ruthenian hexaferrum grain: meandering Ru rich banding at the grain's border resembling		
519	erosion pits with subsequent infill (A); accumulation of ruthenian hexaferrum nanoparticles		
520	(bright) within <u>Fe-oxide(s)</u> matrix (dark) (B); <u>close-up</u> of the interface between <u>Fe-oxide(s)</u>		Suprimit: Fe oxide
501	containing mathemics have former accountial to (right) and a compact mathemics have former	\leq	Suprimit: close
521	containing ruthenian hexaferrum nanoparticles (right) and a <u>compact</u> ruthenian hexaferrum		Suprimit: Fe oxide
522	patch (left) with indicated direction of ruthenian hexaferrum accumulation (C); close-up of	<	Suprimit: of dense quality
523	one characteristic bright grey, irregularly formed, compact ruthenian hexaferrum patch		Suprimit: close
524	(3μm <u>×</u> ,3μm) (D).		Suprimit: of dense quality
			Suprimit: x
525			
526	Fig. 2 Fine-grained, porous appearing Ru-Os alloy included between chromian spinel		Suprimit: 8
527	(right) and an Mg silicate vein (left). Note: no sulphur but significant amounts of Mg and Si		Suprimit: Mg-silicate
528	are present in EDS spectra of the Ru-Os alloy.		
529			
530	Fig. <u>10</u> Predominance diagram of the Fe-Ru-H ₂ O system at 25°C and 1 atm <u>drawn with the</u>		Suprimit: 9
			Suprimit: .
531	Medusa software Package (Puigdomenech 2010), assuming a $[Fe]_{total} = 10^{-7}$ M and		Suprimit: Ru(0) is not allowed to form. [Fe] _{total} = 10^{-7} M; [Ru] _{total} = 10^{-15} M.
532	[Ru] _{total} =10 ⁻¹⁵ M. Ru(0) is not allowed to form. Thermodynamic data used for calculations		
I	12		

549	include the following aqueous species, gas and solid phases: $Fe^{2\pm}$, $Fe^{3\pm}$, $Ru^{2\pm}$, $Ru^{3\pm}$, H^{\pm} , OH^{\pm}		
550	<u>, H₂, H₂(g), O₂, O₂(g), H₂O, Fe(OH)₂, Fe(OH)₃⁻, Fe(OH)₄²⁻, FeOH[±], Fe(OH)₂[±], Fe(OH)₃,</u>		Suprimit:
551	<u>Fe(OH)4[±], Fe₂(OH)2⁴⁺, Fe₃(OH)4⁵⁺, FeOH²⁺, Fe(0), Ru_{0.5}Fe_{0.5}, Fe₃O₄ and FeOOH,</u>		Suprimit:
			Suprimit: , e ⁻ .
552	Thermodynamic data for all aqueous species and solid phases, except those of Ru, come		
553	from Thermochimie v.9 database (Giffaut et al. 2014, https://www.thermochimie-		
554	tdb.com/). Due to limited thermodynamic data of Ru available in the literature two		
555	reactions have been included in the calculations, whose log K have been calculated from		
556	electrochemical data from literature.	_	Suprimit: :
557	$0.5Fe^{2+} + 0.5 Ru^{2+} + 2e^{2-} = Ru_{0.5}Fe_{0.5} - \log K = 5.20$	\succ	Suprimit: r
~ ~ 0			Formatat: Justificada, Interlineat: Doble, Tabulacions: 8 cm, Esquerra
558	<u>$Ru_{4+}^{3+} + e_{5}^{2} = Ru_{4+}^{2+}$</u> Jog K = 4.21 r.2		Suprimit:
		$\wedge \wedge$	Formatat: Tipus de lletra: 12 pt, alemany (Àustria)
559			Formatat: Tipus de lletra: 12 pt, alemany (Àustria)
560	Fig. <u>11 Simplified model explaining the formation of supergene ruthenian hexaferrum via</u>		Formatat: Tipus de lletra: 12 pt, Espanyol (Espanya)
500	rig. <u>It philphiled model explaining the formation of supergene futureman nexaterruit via</u>		Formatat: Espanyol (Espanya)
561	multiple stage alteration of primary laurite as a result of the geochemical evolution of the		Suprimit: .
			Formatat: Tipus de lletra: 12 pt, Espanyol (Espanya)
562	Ni-laterite profile.		Formatat: Espanyol (Espanya)
			Formatat: Espanyol (Espanya)
563			Formatat: Tabulacions: 8 cm, Esquerra
			Suprimit:
564			Formatat: Tipus de lletra: 12 pt, Espanyol (Espanya)
			Formatat: Tipus de lletra: 12 pt, Espanyol (Espanya)
565	Table captions		Formatat: Tipus de lletra: 12 pt, Espanyol (Espanya)
566		1	Formatat: Tipus de lletra: 12 pt, Espanyol (Espanya)
500		1	Suprimit: 10
567	Table 1 Electron microprobe analyses of points indicated in Fig. 3a.	1	Suprimit: Ternary diagram in the Os-Fe-Ru system showing the compositional transforamtion trend from primary laurite to ruthenian hexaferrum. Note: Fe enrichment is mainly explained by formation of
568			ruthenian hexaferrum
569	Table 2 Comparison of X-ray data for ruthenian hexaferrum of this study and chemically		
570	related phases; ^a McDonald et al. (2010).		Formatat: Superindex
571			

585	Table 3 Comparative data for ruthenian hexaferrum of this study with ruthenium and	
586	osmium-group mineral and garutiite.	
587		
588		
589	References:	
590		
591	Aiglsperger, T., Proenza, J.A., Zaccarini, F., Lewis, J.F., Garuti, G., Labrador, M., Longo,	
592	F., 2015. Platinum group minerals (PGM) in the Falcondo <u>Ni-laterite</u> deposit, Loma Caribe	Suprimit: Ni laterite
593	peridotite (Dominican Republic). Miner. Deposita, 50, 105-123.	
594		
595	Aiglsperger, T., Proenza, J.A., Lewis, J.F., Labrador, M., Svojtka, M., Rojas-Purón, A.,	
596	Longo, F., Ďurišová, J., 2016. Critical metals (REE, Sc, PGE) in Ni-laterites from Cuba and	Suprimit: Ni laterite
597	the Dominican Republic. Ore Geol. Rev., 73, 127-147.	
598		
599	Arndt, U.W. and Wonacott, A.J., 1977. The Rotation Method in Crystallography.	
600	Amsterdam, North Holland Biomedical Press, Elsevier.	Comentat [CD8]: No se cita
601		
602	Balzar, D., 1999. Voigt-function model in diffraction line broadening analysis. In:	
603	Microstructure Analysis from Diffraction, edited by R.L. Snyder, H. J. Bunge and J. Fiala,	
604	International Union of Crystallography, 94-126.	
605		

609	Mars soils. Geochim. Cosmochim. Acta, 66, 2801-2806.		
610			
611	Baurier-Aymat, S., Aiglsperger, T., Proenza, J.A., Lewis, J.F., Longo, F., 2015. Chromian		
612	spinel composition, PGE geochemistry and PGE mineralogy of different chromitites from		
613	the Loma Caribe peridotite, Dominican Republic. Proceedings of the 13th SGA Biennial		
614	<i>Meeting (Nancy, France)</i> , 3 , 889-892.		
615 616	Bowin, C.O., 1966. Geology of the central Dominican Republic (a case history of part of an		
617	island arc). In: Hess, H. (Ed.), Caribbean Geological Studies. Mem. Geol. Soc. Am., 98, 11-		
618	84.		
619			
620	Bowles, J.F.W. 1986. The development of platinum-group minerals in laterites. Econ.	-	Suprimit: Bowles, J.F.W., Gize, A.P., Vaughan, D.J., Norris, S.J., 1994. Development of platinum-group minerals in laterites-initial
621	<u>Geol., 81, 1278-1285.</u>	\mathbb{N}	comparison of organic and inorganic controls. <i>Transact. Instn. Min.</i> Metall., 103 , B53-B56.¶
622	Cabral, A.R., Galbiatti, H.F., Kwitko-Ribeiro, R., Lehmann, B., 2008. Platinum enrichment	\searrow	Formatat: Tipus de lletra: Cursiva
623	at low temperatures and related microstructures, with examples of hongshiite (PtCu) and		Suprimit: ¶
624	empirical 'Pt ₂ HgSe ₃ ' from Itabira, Minas Gerais, Brazil. <i>Terra Nova</i> , 20 , 32–37.		
625			
626	Chan, T.K. and Finch, I.J., 2001. Determination of platinum-group elements and gold by		
627	inductively coupled plasma mass spectrometry. In: Australian Platinum Conference, Perth,		
628	Western Australia, pp. 1-9.		

Barrón, V. and Torrent, J., 2002. Evidence for a simple pathway to maghemite in Earth and

629

636	Fit2D V12.043. A short tutorial. (copyright 1987-2004 Andy Hammersley/ESRF).
637	
638	
639	Escuder Viruete, J., Pérez-Estaún, A., Contreras, F., Joubert, M., Weis, D., Ullrich, T.D.,
640	Spadea, P., 2007. Plume mantle source heterogeneity through time: Insights from the
641	Duarte Complex, Hispaniola, northeastern Caribbean. J. Geophys. Res., 112, B04203.
642	
643	Froment, F., Tournié, A., Colomban, P., 2008. Raman identification of natural red to
644	yellow pigments: ochre and iron-containing ores. J. Raman Spectrosc., 39, 560-568.
645	
646	Garuti, G. and Zaccarini, F., 1997. In situ alteration of platinum-group minerals at low
647	temperature: evidence from serpentinized and weathered chromitite of the Vourinos
648	complex, Greece. Can. Mineral., 35, 611-626.
649	
650	Garuti, G., Zaccarini, F., Proenza, J.A., Thalhammer, O.A.R., Angeli, N., 2012. Platinum-
651	group minerals in chromitites of the Niquelândia layered intrusion (Central Goias, Brazil):
652	Their magmatic origin and low-temperature reworking during serpentinization and lateritic
653	weathering. Minerals, 2, 365-384.
654	
655	Giffaut, E., Grivé, M., Blanc, Ph., Vieillard, Ph., Colàs, E., Gailhanou, H., Gaboreau, S.,
656	Marty, N., Madé, B., Duro, L., 2014. Andra thermodynamic database for performance
657	assessment: ThermoChimie. Appl. Geochem., 49, 225-236.

Dinnebier, R.E., 2004. Batch conversion from 2D to 1D powder diffraction data using

- González-Jiménez, J.M., Griffin, W.L., Gervilla, F., Proenza, J.A., O'Reilly, S.Y., Pearson,
 N.J., 2014. Chromitites in ophiolites: how, where, when, why? Part I. Origin and
 significance of platinum-group minerals. *Lithos*, 189, 127-139.
- 662
- Hammersley, A.P., 1998. Fit2D: V99.129 Reference Manual Version 3.1. Internal Report *ESRF-98-HA01*.
- 665
- 666 Kapsiotis, A., Grammatikopoulos, T.A., Tsikouras, B., Hatzipanagiotou, K., Zaccarini, F.,

667 Garuti, G., 2011. Mineralogy, composition and PGM of chromitites from Pefki, Pindos
668 Ophiolite Complex (NW Greece): evidence for progressively elevated fAs conditions in the

669 upper mantle sequence. *Mineral. Petrol.*, **101**, 129-150.

- 670
- Lewis, J.F., Draper, G., Proenza, J.A., Espaillat, J., Jiménez, J., 2006. Ophiolite-related
 ultramafic rocks (serpentinites) in the Caribbean region: a review of their occurrence,
 composition, origin, emplacement and nickel laterite soils. *Geol. Acta*, 4, 237-263.
- 674

675 McDonald, A.M., Proenza, J.A., Zaccarini, Z., Rudashevsky, N.S., Cabri, L.J., Stanley,

676 C.J., Rudashevsky, V.N., Melgarejo, J.C., Lewis, J.F., Longo, F., Bakker, R.J., 2010.

677 Garutiite, (Ni,Fe,Ir), a new hexagonal polymorph of native Ni from Loma Peguera,

678 Dominican Republic. *Eur. J. Mineral*, **22**, 293-304.

- 679
- 680 McDonald, I., Ohnenstetter, D., Ohnenstetter, M., Vaughan, D.G. 1999. Palladium oxides
- 681 in ultra-mafic complexes near Lavatrafo, Western Andriamana, Madagascar. Mineral.
- 682 Mag., 63, 345–352.

683		
684	Melcher, F., Oberthür, T., Lodziak, J. 2005. Modification of detrital platinum-group	
685	minerals from the eastern Bushveld Complex, south Africa. Can. Mineral., 43, 1711–1734.	
686		
687	Mochalov, A.G., Dmitrenko, G.G., Rudashevsky, N.S., Zhernovsky, I.V., Boldyreva,	
688	M.M., 1998. Hexaferrum (Fe,Ru), (Fe,Os), (Fe,Ir) – a new mineral. Zap. Vseross. Mineral.	Formatat: anglès (EUA)
689	Obshch. 127, 41–51 (in Russian)	Suprimit: ¶
690	Monteiro, H.S., Vasconcelos, P.M., Farley, K.A., Spier, C.A., Mello, C.L., 2014. (U-	
691	Th)/He geochronology of goethite and the origin and evolution of cangas. Geochim.	
692	Cosmochim. Acta, 131, 267–289.	
693		
694	O'Driscoll, B., González-Jiménez, J., 2016. Petrogenesis of the platinum-group minerals.	Formatat: Espanyol (Espanya)
695	Rev. Mineral. Geochem., 81, 489–578.	
696	۶	Suprimit: 1
697	"Oberthür, T., Weiser, T.W., Melcher, F., 2014. Alluvial and Eluvial Platinum-group	Suprimit: Oberthuer
698	minerals from the Bushveld Complex, South Africa. S. Afr. J. Geol., 117, 255-274.	
699		
700	Proenza, J.A., Zaccarini, F., Lewis, J., Longo, F., Garuti, G., 2007. Chromian spinel	
701	composition and platinum-group mineral assemblage of PGE-rich Loma Peguera	
702	chromitites, Loma Caribe peridotite, Dominican Republic. Can. Mineral., 45, 211-228.	
703		
704	Puigdomènech, I., 2010. MEDUSA (Make Equilibrium Diagrams Using Sophisticated	
705	Algorithms) Windows interface to the MS-DOS versions of INPUT, SED and PREDOM	
706	(FORTRAN programs drawing chemical equilibrium diagrams) Version 6 Dec 2010. Royal	
	18	

, Labrador, A., Cresp lities of through-the-s	chemdiagr/download <u>.</u> i, A., Frontera, C., Vallcorb ubstrate micro-diffraction: n data from polished thin se	application of Patterson-	function		
lities of through-the-s nethods to synchrotro	ubstrate micro-diffraction:	application of Patterson-	function		
lities of through-the-s nethods to synchrotro	ubstrate micro-diffraction:	application of Patterson-	function		
nethods to synchrotro					
	n data from polished thin so	ections. J. Synchrotron R	ad., 18 ,		
8.					
, Vallcorba, O., Front	era, C., Inmaculada, P., Cre	espi, A., Miravitlles, C., 2	2015.		
ation of synchrotron t	hrough-the-substrate micro-	-diffraction to crystals in	polished		
tions. IUCrJ, 2, 452-	463.				
wanson et al. (1955)				Comentat [CD9]:	
E., Proenza, J.A., G	alí, S., Lewis, J.F., Labrad	or. M., García-Romero.	E., Suárez,		
	009. Ni-sepiolite–falcondo				
-	osit, Dominican Republic. (-			
		,,			
	le and Structure Analysis f	or Powder Diffraction D	ata, version		
, 2009. General Prof.	-				
	-				
	-				
	ermany.			Comentat [CD10]:	
		AXS, GmbH, Germany.	AXS, GmbH, Germany.	AXS, GmbH, Germany.	AXS, GmbH, Germany.

733	Occurrence of rare Ru-Fe-Os-Ir-oxide and associated Platinum-group minerals (PGM) in	
734	the chromitite of Mugla ophiolite, SW-Turkey. Neues Jahrbuch für Mineralogie	Formatat: Espanyol (Espanya)
735	(Abhandlungen), 185 , 323–333.	
736		
737	Villanova-de-Benavent, C., Proenza, J.A., Galí, S., García-Casco, A., Tauler, E., Lewis	
738	J.F., Longo, F., 2014. Garnierites and garnierites: Textures, mineralogy and geochemistry	
739	of garnierites in the Falcondo Ni-laterite deposit, Dominican Republic. Ore Geol. Rev., 58,	Suprimit: Ni laterite
740	91-109.	
741		
742	Villanova-de-Benavent, C., Nieto, F., Viti, C., Proenza, J.A., Galí, S., Roqué-Rosell, J.,	
743	2016. Ni-phyllosilicates (garnierites) from the Falcondo Ni-laterite deposit (Dominican	
744	Republic): Mineralogy, nanotextures, and formation mechanisms by HRTEM and AEM.	
745	Am. Mineral., 101, 1460-1473.	
746		
747	Zaccarini, F., Bindi, L., Garuti, G., Proenza, J.A., 2014. Ruthenium and magnetite	
748	intergrowths from the Loma Peguera chromitite, Dominican Republic, and relevance to the	
749	debate over the existence of platinum-group element oxides and hydroxides. Can. Mineral.,	
750	52 , 617–624.	
751		
752	Zammit, C.M., Shuster, J.P., Gagen, E.J., Southam, G., 2015. The geomicrobiology of	
753	supergene metal deposits. Elements, 11, 337-342.	

732 Uysal, I., Zaccarini, F., Sadiklar, M.B., Bernhardt, H.-J.M., Bigi, S., Garuti, G., 2009.