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ABSTRACT 15 

 16 

For two decades the nature of Fe-rich, oxygen-bearing, Ru-Os compounds found in the 17 

supergene environment has been debated. Ru-Os-Fe-oxides and nano-intergrowths of 18 

ruthenium with magnetite have been proposed. We have applied FE-SEM, EMPA, μ-19 

Raman spectroscopy and synchrotron tts- μXRD to Ru-Os-Fe compounds recovered from 20 

Ni-laterites from the Dominican Republic. The results demonstrate that a significant portion 21 

of Fe exists in a common structure with the Ru-Os alloy, that is, ruthenian hexaferrum. This 22 

mineral occurs both as nanoparticles and as micrometric patches within a matrix of Fe-23 

oxide(s). Our data suggest that supergene ruthenian hexaferrum with a 24 
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(Ru0.4(Os,Ir)0.1Fe0.5)Ʃ1.0 stoichiometry represents the most advanced weathering product of 48 

primary laurite within Ni-laterites from the Dominican Republic. 49 

 50 

Introduction 51 

 52 

Mineralogical investigation of micrometric platinum-group minerals (PGM) is essentially a 53 

question of analytical resolution. Fe-rich, oxygen-bearing, Ru-Os compounds from the 54 

weathered chromitite of the Vourinos complex (Greece) were first described by Garuti and 55 

Zaccarini (1997). However, at that time it was not possible to establish if these minerals 56 

were oxide compounds of platinum-group elements (PGE) or nano-intergrowth of Ru-rich 57 

alloy with Fe-oxide(s). Several authors reported PGM of similar composition from other 58 

localities around the world (e.g. Proenza et al. 2007; Uysal et al. 2009; Kapsiotis et al. 59 

2011; González-Jiménez et al. 2014; O’Driscoll and González-Jiménez, 2016). The nature 60 

of these compounds has, nonetheless, remained uncertain. Recently, Zaccarini et al. (2014) 61 

analysed two Fe-rich and oxygen-containing Ru-Os compounds found in chromitites from 62 

Loma Peguera (Dominican Republic) using X-ray computed tomography and X-ray 63 

diffraction. They concluded that these grains consisted of “a fine intergrown of ruthenium 64 

and magnetite not detectable at the scale of the electron microprobe” and that 65 

desulphurization of primary PGM (e.g. laurite) formed porous grains of ruthenium, which 66 

were subsequently filled up by oxidizing fluids enriched in Fe, leading to crystallization of 67 

magnetite in cavities of the ruthenium grains during low temperature alteration. However, 68 

this interpretation assumes ab initio that PGE are inert during weathering of hypogene 69 

PGM, thus precluding any possible PGM transformation via Fe incorporation during 70 

lateritization. On the contrary, several authors suggested that PGE are mobile during 71 
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weathering (Bowles et al. 1986; McDonald et al. 1999; Melcher et al. 2005; Cabral et al. 103 

2008; Garuti et al. 2012; Oberthür et al. 2014 and references therein). This contribution 104 

demonstrates, using innovative techniques for mineral microanalysis, that laurite is 105 

transformed to ruthenian hexaferrum at the low temperatures of lateritization. 106 

 107 

Sample material and methods  108 

 109 

Samples were collected in the Falcondo Ni-laterite mining area, which is located in the 110 

central part of the Dominican Republic (Fig. 1). From bottom to top, the weathering profile 111 

of this deposit is divided into: (i) serpentinized protolith (harzburgite>dunite>lherzolite), 112 

(ii) saprolite with hydrous Mg silicate-dominated mineralogy and (iii) limonite with Fe-113 

oxide(s)-dominated mineralogy (Lewis et al. 2006; Tauler et al. 2009; Villanova de 114 

Benavent et al. 2014, 2016; Aiglsperger et al. 2016). Small chromitite occurrences without 115 

economic significance are scattered within the lateritic profile (Baurier-Aymat et al. 2015). 116 

Two PGE-rich chromitite samples were selected for this study: (i) one comes from the 117 

Loma Peguera ore deposit, containing ~3 ppm total PGE, and situated within saprolite 118 

(beneath the Mg-discontinuity) (Proenza et al. 2007; Aiglsperger et al. 2015), and (ii) the 119 

other, recovered from the Loma Larga ore deposit, represents a highly weathered chromitite 120 

body included in limonite (above the Mg-discontinuity). The latter sample is characterized 121 

by high PGE concentrations, up to 17.5 ppm total PGE (Fig. 2). Whole-rock PGE contents 122 

were obtained at Genalysis Ltd., Maddington, Western Australia, by ICP-MS after nickel 123 

sulphide fire assay collection, following the method described by Chan and Finch (2001). 124 

Detection limits are 1 ppb for Rh, and 2 ppb for Os, Ir, Ru, Pt and Pd. Both chromitite 125 
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samples, ~100 g each, were carefully crushed, milled and hand-sieved before processing by 156 

means of hydroseparation (HS) techniques at the HS laboratory Barcelona (Aiglsperger et 157 

al. 2015 and references therein). Heavy-mineral concentrates were mounted as polished, 158 

monolayer resin blocks and subsequently investigated by reflected-light microscopy and by 159 

scanning-electron microscopy (SEM) using a standard Quanta 200 FEI XTE 325/D8395, 160 

and a field-emission scanning-electron microscope (FE-SEM) Jeol JSM-7100 at the Serveis 161 

Científics i Tecnòlogics, University of Barcelona, Spain. At the same institution, PGE 162 

grains of interest were further investigated by element-distribution maps using a JEOL 163 

JXA-8230 electron microprobe (EMP) with an accelerating voltage of 20 kV and a beam 164 

current of 128.8 nA. Maps were collected by beam scanning with dwell times of 60 165 

ms/pixel. For each element, the background map was subtracted from the corresponding 166 

peak map. Quantitative EMP analyses were obtained with the same instrument in the 167 

wavelength-dispersive spectroscopy (WDS) mode, operating with an accelerating voltage 168 

of 20 kV, a beam current of 10 nA and a beam diameter of 1 μm. Native elements were 169 

used as standards for Os, Ir, Ru, Rh, Pt, Pd, Co, Sb and S as well as chromite for Al and Fe, 170 

periclase for Mg, NiO for Ni, GaAs for As and wollastonite for Si. The following 171 

interferences RuLβ → RhLα, RhLβ → PdLα, RuLβ → PdLα and RhLα → PtLα were 172 

online-corrected.  173 

 174 

Micro Raman maps were obtained by using a Thermo Scientific™ DXR™xi Raman 175 

imaging microscope. Areas were mapped at a laser power of 2 mW, the exposure time was 176 

1 s with 5 scans and the pixel size was 1 µm. The raw data were treated with Thermo 177 

Scientific OMNIC™xi Raman imaging software.  178 
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Synchrotron through-the-substrate X-ray microdiffraction (tts- μXRD) was used for the 208 

structural characterisation of crystalline mineral phases in situ, within standard polished 209 

thin sections (Rius et al. 2011, 2015). PGM-bearing monolayer polished sections were first 210 

transformed to polished thin sections, 30 μm thick, attached to an approximately <1 mm 211 

thick glass substrate. Subsequently, X-ray diffraction was carried out by both rotating and 212 

static thin sections. Experimental conditions were as follows: transmission mode, beam 213 

diameter of 30 μm, wavelength of 0.4325 Å, distance to a 2048×2048 pixel (79×79 μm2) 214 

CCD detector of 190 mm. The intensities, as a function of the 2θ-diffraction angle, were 215 

obtained by integration of the complete Debye rings, between 0 and 23° (2θ), using the 216 

software Fit2d (Hammersley 1998; Dinnebier 2004). Diffraction profiles were further 217 

analysed and refined by the Rietveld method, using the Bruker software TOPAS Version 218 

4.0 (TOPAS, 2009). The diffraction experiments were performed on the MSPD beamline at 219 

the ALBA Synchrotron Facility_CELLS, Cerdanyola,Barcelona, Spain. 220 

 221 

Mineralogy of Fe-rich, oxygen-bearing, Ru-Os compounds 222 

 223 

About 300 PGM grains with either Ru-, Ir- or Pt-dominant compositions were recovered: 224 

125 grains of Ru-Os-Fe-bearing PGM, from ~10 to ~125 µm across, were selected from 225 

heavy-mineral concentrates from Loma Larga, as well as four Ru-Os-Fe compounds from 226 

Loma Peguera for comparison with literature data. Ru-Os-Fe-bearing PGM display diverse 227 

morphologies, from euhedral crystals to anhedral, rounded grains. They appear yellowish 228 

grey in reflected light microscopy and show strong anisotropy. BSE images of these grains 229 

reveal complex internal structures (see for example Fig. 3a of an imaged Ru-Os-Fe grain 230 
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from Loma Larga). They are characterized by (i) meandering banding at borders 260 

resembling erosion pits with subsequent infill, (ii) bright grey, irregularly formed, compact 261 

patches (up to 10 µm × 10 µm) and (iii) dark grey matrix material of high porosity. 262 

Quantitative element mapping by EMPA reveals different distribution patterns for the 263 

major elements Ru, Os and Fe (Fig. 3b-d): bright areas in BSE images correspond to the 264 

highest concentrations of Ru, which occur within compact patches as well as in bandings 265 

and in void infills at the border of the grain (Fig. 3b). On the other hand, Os appears mainly 266 

homogenously distributed with deficits in the central part of the grain (Fig. 3c). Fe shows 267 

highest concentrations within compact patches and close to the centre of the grain, where 268 

its distribution resembles a fine-structured network (Fig. 3d). In addition, Fe contributes to 269 

the Ru-rich banding at the border of the grain. However, element distribution mapping 270 

suggests that zones rich in Fe are depleted in Os, an observation that is supported by 271 

quantitative surface plots for the zone indicated in Fig. 3a, as well as by column average 272 

plots for the same area (Fig. 3e-g and 4, respectively). EMPA analyses (n=10) show that 273 

this complex microstructure corresponds to a very heterogeneous composition (Table 1). 274 

Highest totals close to 100 wt.% with a stoichiometry of (Ru0.4(Os,Ir)0.1Fe0.5)Ʃ1.0 are 275 

measured on compact patches (i.e. points 4 and 7 in Fig. 3a), whereas low totals (~90 wt.%) 276 

are observed within the fine-grained matrix material (e.g. points 2 and 10 in Fig. 3a). For 277 

comparison Ru-Os-Fe grains from Loma Larga (n=125) and from Loma Peguera (n=4) 278 

were quantified via EMP and plotted as at.% in a Ru-Os-Fe ternary diagram together with 279 

data from the literature. As can be seen in Fig. 5, Ru-Os-Fe grains from Loma Peguera plot 280 

close to results published by Zaccarini et al. (2014), whereas compositions of Ru-Os-Fe 281 

grains from Loma Larga reveal a clear Fe-enrichment trend towards the field of ruthenian 282 

hexaferrum (Mochalov et al. 1998). 283 
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 307 

The same area as for quantitative surface plots was used for a detailed μ-Raman 308 

spectroscopy investigation and maps obtained revealed the presence of at least three 309 

mineral compounds: (i) one Raman inactive mineral, (ii) one mineral with its main bands at 310 

667 and 720 cm-1 and (iii) one mineral with its main bands at 226, 300, 410 and 1325 cm-1 311 

(Fig. 6). The Raman inactive mineral is associated with the bright-appearing compact 312 

patches and highest Ru concentrations (e.g. point 7 in Fig. 3a), whereas Raman active 313 

minerals are associated with the dark-appearing, Fe-rich matrix material (Fig. 6 a-c). 314 

Comparison with literature data shows that Raman active minerals are Fe-oxide(s) with best 315 

fits for maghemite and hematite. Furthermore, Fe-oxide(s)-rich zones in Raman maps 316 

resemble micro channels circuiting Raman inactive, Ru-rich compounds (Fig. 6c). 317 

Synchrotron tts- μXRD of the same grain revealed the presence of two mineral phases: one 318 

belonging to the isometric (cubic) structure and one mineral belonging to the hexagonal 319 

structure (space group P63/mmc). Assessments of diffraction patterns of the isometric 320 

mineral confirmed the presence of Fe-rich spinel (d(111) = 4.76 Å and d(220) = 2.92 Å). 321 

Subsequently, dhkl values and cell parameters of the hexagonal compound were compared 322 

to relevant literature data (Table 2 and 3), which led to the identification of ruthenian 323 

hexaferrum (Mochalov et al. 1998) with cell parameters of a = 2.664(1) Å and c = 4.250(2) 324 

Å. The analysis of the diffraction profile, compared with the instrumental profile of the 325 

experiment obtained with a conventional standard of LaB6, allowed the estimation of the 326 

diffracting domains of ruthenian hexaferrum averaged over volume Lvol = 28 nm. The 327 

particles are estimated to be essentially free from strain (ε0 = 0.025) (Balzar, 1999). Figure 328 

7 depicts the experimental, calculated and difference profiles. 329 
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 348 

Supergene formation of ruthenian hexaferrum in Ni-laterites 349 

 350 

Synchrotron tts- μXRD data confirm that a significant proportion of Fe is bound to the Ru 351 

and Os suggesting that Fe-rich Ru-Os grains are mainly composed of accumulations of 352 

nano-sized ruthenian hexaferrum. The aggregation of these nanoparticles can produce 353 

larger, compact patches as observed in high-resolution FE-SEM BSE images (Fig. 8). 354 

Previous work has shown that hypogene PGM (e.g. laurite) can transform during 355 

serpentinization to secondary PGM hosting Mg silicate on a sub-micron scale (e.g. Uysal et 356 

al., 2009). FE-SEM images and energy-dispersive X-ray spectroscopy (EDS) analyses of 357 

Ru-Os alloys included in chromite suggest that serpentinization results in (i) 358 

desulphurization of the primary laurite and (ii) nanoscaled intergrowth of Mg silicates with 359 

Ru-Os alloys (Fig. 9). However, these Mg silicates are not stable within higher levels of the 360 

Ni-laterite (close to the Mg discontinuity), hence weathering of Mg silicates results in a 361 

significant increase of porosity and permeability within the Ru-Os alloy. As a consequence, 362 

oxidized, Fe-rich fluids can enter the grain along micro channels and crystallize as Fe-363 

oxide(s) (Zammit et al. 2015). According to synchrotron μ-XRD analysis and μ-Raman 364 

spectroscopy, Fe-oxide(s) observed within the studied PGM are maghemite and trace 365 

amounts of hematite, which exhibit a close spatial relationship with ruthenian hexaferrum 366 

nanoparticles (Fig. 6 and 8). Barrón and Torrent (2002) showed that maghemite may form 367 

in tropical soils as a transient phase during the transformation of ferrihydrite to hematite. 368 

Transformation processes of nanoscaled Fe-oxide(s) within the highest levels of the Ni-369 

laterite profile may explain the observed Fe incorporation into Ru-Os alloys. Alternatively, 370 
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magnetite could have first crystallized during early stages of lateritization within porous 402 

Ru-Os alloys and was then subsequently oxidized to maghemite. Recent studies suggest 403 

that at latest stages of lateritization, maghemite is transformed to goethite via biogenic 404 

mediated dissolution-reprecipitation processes that imply the availability of Fe2+ ions 405 

(Monteiro et al. 2014). According to preliminary thermodynamic calculations, a Fe-Ru 406 

alloy would be unstable with regards to Ru(0) and aqueous Fe2+. However, catalytic effects 407 

of the fine-grained and porous Ru(0) grain texture may favour the formation of a metastable 408 

Ru-Fe alloy (i.e. ruthenian hexaferrum), which can coexist with magnetite and/or goethite 409 

at circumneutral pH (Fig. 10). The oxidizing conditions with expected remobilization of 410 

PGE (Ru>Os) at low pH due organic acids and high Eh conditions most likely favour the 411 

formation and subsequent accumulation of ruthenian hexaferrum nanoparticles at the Ru-Os 412 

alloy – Fe-oxide(s) interface as indicated by (i) banding features at the grain´s boundary 413 

and (ii) formation of patches (Fig 8). 414 

Fig. 11 summaries the proposed model of supergene hexaferrum formation within Ni-415 

laterites. 416 

 417 

Conclusions 418 

 419 

Our observations and data suggest that supergene ruthenian hexaferrum with a 420 

(Ru0.4(Os,Ir)0.1Fe0.5)Ʃ1.0 stoichiometry marks the final product of laurite alteration in Ni 421 

laterites from Falcondo. 422 

Supergene ruthenian hexaferrum is believed to form via (i) desulphurization of primary 423 

laurite with subsequent Mg silicate incorporation into the fine-grained Ru-Os alloy during 424 
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serpentinization, followed by (ii) weathering of Mg silicates within the Ru-Os alloy at high 442 

levels of the Ni-laterite profile (above the Mg-discontinuity) and subsequently by (iii) 443 

crystallization of Fe-oxide(s) within highly porous Ru-Os alloy and finally, (iv) 444 

transformation of magnetite or ferrihydrite to hematite via maghemite, causing Fe 445 

incorporation into the Ru-Os alloy.  446 
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Fig. 1 A) Geographic location of the Loma Caribe peridotite and orthophotograph of the 482 

Falcondo mining area highlighting the Loma Larga and Loma Peguera ore deposits. B) 483 

simplified geological map of the central section of the Loma Caribe peridotite (modified 484 

from Bowin 1966; Escuder-Viruete et al. 2007). 485 

 486 

Fig. 2 Idealized Ni-laterite soil profile from the Falcondo mining area showing different 487 

zones and variation in chemical composition. The location of PGM rich chromitites within 488 

saprolite (beneath the Mg-discontinuity) and limonite (above the Mg-discontinuity) is 489 

indicated.  490 

 491 

Fig. 3 BSE image of one representative Fe rich, oxygen bearing, Ru-Os grain with 492 

indicated points of EMP measurements, zone of surface plots and profile direction a-b for 493 

column average plots (A); quantitative element mappings for Ru, Os and Fe (B-D); surface 494 

plots of marked area in (A) for Ru, Os and Fe with indicated profile direction a-b for 495 

column average plots (E-G). 496 

 497 

Fig. 4 Ru, Fe and Os concentrations of column average plots along the rectangle from a-b 498 

as indicated in Fig. 3a. 499 

 500 

Fig. 5 Ternary diagram in the Os-Fe-Ru system showing the compositional transforamtion 501 

trend from Ru-rich alloys towards ruthenian hexaferrum. Note: Fe enrichment is mainly 502 

explained by formation of ruthenian hexaferrum. Compositional fields reproduced from 503 

Mochalow et al. (1998). 504 

 505 
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Fig. 6 Micro Raman spectroscopy mapping of the Ru-Os-Fe grain (A-C) with reference 509 

spectra for common Fe-oxide(s) (modified from Froment et al. 2008) (D). 510 

 511 

Fig. 7 Comparison of observed synchrotron XRD pattern with calculated pattern for 512 

ruthenian hexaferrum (spectra have been shifted for clarity). Baseline refers to the 513 

difference of profiles. The Rietveld refinement of the profile was obtained by integration of 514 

Debye rings converged at an agreement index Rwp = 1.79. 515 

 516 

Fig. 8 FE-SEM BSE images showing the fine grained nature of one representative 517 

ruthenian hexaferrum grain: meandering Ru rich banding at the grain´s border resembling 518 

erosion pits with subsequent infill (A); accumulation of ruthenian hexaferrum nanoparticles 519 

(bright) within Fe-oxide(s) matrix (dark) (B); close-up of the interface between Fe-oxide(s) 520 

containing ruthenian hexaferrum nanoparticles (right) and a compact ruthenian hexaferrum 521 

patch (left) with indicated direction of ruthenian hexaferrum accumulation (C); close-up of 522 

one characteristic bright grey, irregularly formed, compact ruthenian hexaferrum patch 523 

(3µm × 3µm) (D).  524 

 525 

Fig. 9 Fine-grained, porous appearing Ru-Os alloy included between chromian spinel 526 

(right) and an Mg silicate vein (left). Note: no sulphur but significant amounts of Mg and Si 527 

are present in EDS spectra of the Ru-Os alloy. 528 

 529 

Fig. 10 Predominance diagram of the Fe-Ru-H2O system at 25ºC and 1 atm drawn with the 530 

Medusa software Package (Puigdomenech 2010), assuming a [Fe]total = 10-7 M and 531 

[Ru]total=10-15 M. Ru(0) is not allowed to form. Thermodynamic data used for calculations 532 

Suprimit: Fe oxide 
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include the following aqueous species, gas and solid phases: Fe2+, Fe3+, Ru2+, Ru3+, H+, OH-549 

, H2, H2(g), O2, O2(g), H2O, Fe(OH)2, Fe(OH)3-, Fe(OH)42-, FeOH+, Fe(OH)2+, Fe(OH)3, 550 

Fe(OH)4-, Fe2(OH)24+, Fe3(OH)45+, FeOH2+, Fe(0), Ru0.5Fe0.5, Fe3O4 and FeOOH.  551 

Thermodynamic data for all aqueous species and solid phases, except those of Ru, come 552 

from Thermochimie v.9 database (Giffaut et al. 2014, https://www.thermochimie-553 

tdb.com/). Due to limited thermodynamic data of Ru available in the literature two 554 

reactions have been included in the calculations, whose log K have been calculated from 555 

electrochemical data from literature.  556 

0.5Fe2+ + 0.5 Ru2+ + 2e- = Ru0.5Fe0.5  logK=5.20  r.1 557 

Ru3+ + e- = Ru2+  log K = 4.21    r.2 558 

 559 

Fig. 11 Simplified model explaining the formation of supergene ruthenian hexaferrum via 560 

multiple stage alteration of primary laurite as a result of the geochemical evolution of the 561 

Ni-laterite profile. 562 

 563 

 564 

Table captions 565 

 566 

Table 1 Electron microprobe analyses of points indicated in Fig. 3a. 567 

 568 

Table 2 Comparison of X-ray data for ruthenian hexaferrum of this study and chemically 569 

related phases; a McDonald et al. (2010). 570 
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Table 3 Comparative data for ruthenian hexaferrum of this study with ruthenium and 585 

osmium-group mineral and garutiite. 586 

 587 
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