1	In Situ Crystallization and Transformation Kinetics of
2	Polymorphic Forms of Saturated-Unsaturated-Unsaturated
3	Triacylglycerols: 1-palmitoyl-2,3-dioleoyl glycerol, 1-stearoyl-
4	2,3-dioleoyl glycerol, and 1-palmitoyl-2-oleoyl-3-linoleoyl
5	glycerol
6	
7	
8	L. Bayés-García, ^a T. Calvet, ^a M. A. Cuevas-Diarte ^a and S. Ueno ^b
9	
10	
11	^a Departament de Cristal·lografia, Mineralogia <u>i</u> I Dipòsits Minerals, Facultat de
12	Geologia, Universitat de Barcelona, Martí i Franquès s/n, E-08028 Barcelona, Spain
13	
14	^b Faculty of Applied Biological Science, Hiroshima University, Higashi-Hiroshima 739,
15	Japan
16	
17	
18	Corresponding author: Laura Bayés-García (<u>laurabayes@ub.edu</u>)
19	
20	
21	

22 Abstract

23	We examined the influence of dynamic thermal treatment (variation of cooling/heating
24	rates) on the polymorphic crystallization and transformation pathways of 1-palmitoyl-
25	2,3-dioleoyl glycerol (POO), 1-stearoyl-2,3-dioleoyl glycerol (SOO), and 1-palmitoyl-
26	2-oleoyl-3-linoleoyl glycerol (POL), which are major saturated-unsaturated-unsaturated
27	(SUU) triacylglycerols (TAGs) of vegetable oils and animal fats (e.g., palm oil, olive
28	oil, and Iberian ham fat). Using mainly a combination of differential scanning
29	calorimetry (DSC) and synchrotron radiation X-ray diffraction (SR-XRD), we analyzed
30	the polymorphic behavior of TAGs when high $(15 \circ C \cdot min^{-1})$, intermediate $(2 \circ C \cdot min^{-1})$,
31	and low $(0.5 \text{ °C} \cdot \text{min}^{-1})$ cooling and heating rates were applied. Multiple polymorphic
32	forms were detected in POO, SOO, and POL (sub- α , α , β'_2 , and β'_1). Transient
33	disordered phases, defined as kinetic liquid crystal (KLC) phases, were determined in
34	POO and SOO for the first time. The results demonstrated that more stable forms were
35	directly obtained from the melt by decreasing the cooling rates, whereas less stable
36	forms predominated at high cooling rates, as confirmed in our previous work.
37	Regarding heating rate variation, we confirmed that the nature of the polymorphic
38	transformations observed (solid-state, transformation through KLC phase, or melt-
39	mediation) depended largely on the heating rate. These results were discussed
40	considering the activation energies involved in each process and compared with
41	previous studies on TAGs with different saturated-unsaturated structures (1,3-dioleoyl-
42	2-palmitoylglycerol, 1,3-dipalmitoyl-2-oleoyl-glycerol, trioleoyl glycerol, and 1,2-
43	dioleoyl-3-linoleoyl glycerol).
44	
45	Keywords: polymorphism, triacylglycerol, lipid, thermal treatment, synchrotron

46 radiation, food product.

47 **1. Introduction**

48

49 Lipids are major nutrients and are widely employed as lipophilic materials in food, pharmaceutical, and cosmetic industries.¹ Triacylglycerols (TAGs) are the 50 main components of natural and industrial fats and oils, and their polymorphism 51 greatly influences the physical properties (e.g., morphology, rheology, texture, 52 and melting) of lipid-based end products. In addition to the chemical nature of the 53 fatty acid components (chain length, saturated/unsaturated, and cis or trans 54 double bonds) and the connection of these fatty acids to the glycerol structure, the 55 use of specific external factors^{2,3} strongly influences the polymorphic 56 crystallization and transformation of TAGs (e.g., the use of additives,⁴ shear,⁵ 57 sonication⁶⁻⁸ and emulsification⁹). In addition, applying dynamic temperature 58 variations permits the monitoring and controlling of the polymorphic behavior of 59 TAGs, with the aim of obtaining desired product characteristics. Many studies 60 have been conducted to characterize the effects of dynamic temperature variation, 61 since the kinetic properties of polymorphic crystallization and transformation of 62 TAGs¹⁰⁻¹⁶ and more complex lipid samples¹⁷⁻²⁰ are significantly influenced by 63 64 cooling and heating rates. Recently, we reported on the effect of cooling rate on the polymorphic crystallization of unsaturated-saturated-unsaturated 1,3-dioleoyl-65 2-palmitoyl glycerol (OPO)¹¹ and the effects of varying both cooling and heating 66 rates on the polymorphic crystallization and transformation pathways of 67 saturated-unsaturated-saturated 1,3-dipalmitoyl-2-oleoyl (POP),¹³ triunsaturated 68 trioleoyl glycerol (OOO), and 1,2-dioleoyl-3-linoleoyl glycerol (OOL).¹⁴ For that 69 study, differential scanning calorimetry (DSC) and synchrotron radiation X-ray 70 diffraction (SR-XRD) with small-angle (SAXD) and wide-angle (WAXD) 71

72	simultaneous measurements were used. These techniques enabled in situ
73	monitoring of the occurrence of complex polymorphic transformation even when
74	high rates (15_°C/min) were applied.
75	In the present study, we used SR-XRD and DSC to dynamically follow the
76	polymorphic crystallization and transformation kinetics of 1-palmitoyl-2,3-
77	dioleoyl glycerol (POO), 1-stearoyl-2,3-dioleoyl glycerol (SOO), and 1-
78	palmitoyl-2-oleoyl-3- linoleoyl glycerol (POL), which are major saturated-
79	unsaturated-unsaturated (SUU) TAGs of lipid products (e.g., palm oil, olive oil,
80	and Iberian ham fat).
81	Some previous research focused on the polymorphic characteristics of these
82	TAGs. Miura et al. ²¹ studied the crystallization of POO and some POO:POP
83	mixtures, as they play important roles in the formation of granular crystals in
84	margarine. In addition, Zhang et al. ²² determined the eutectic binary phase
85	behavior of POP:POO in metastable and stable conditions, due to its practical
86	importance in dry fractionation of palm oil. In these previous studies, only two
87	polymorphic forms (α and β ') of POO were observed. Later, Zhang et al. ²³
88	reported on the immiscible phase behavior of SOS:SOO binary mixtures,
89	determining the presence of three SOO polymorphs (α , β'_2 , and β'_1). Recently,
90	Baker et al. ¹⁶ examined the effect of cooling rate on the polymorphism, thermal
91	properties, and microstructure in symmetric and asymmetric TAGs containing
92	stearic and oleic fatty acids (OSO and SOO). They observed that cooling rates
93	have more limited effect on the phase behavior of asymmetric TAGs than on that
94	of symmetric TAGs.
95	In the present work, we applied different thermal treatments to TAG samples
96	(changing cooling/heating rates from 0.5 °C·min ⁻¹ to 15 °C·min ⁻¹) to characterize

97	a higher number of polymorphs (sub- α , α , β ₂ , and β ₁). To the best of our
98	knowledge, this is the first time that POL polymorphism has been reported.
99	Moreover, intermediate disordered phases, defined as kinetic liquid crystal (KLC)
100	phases, were detected in POO and SOO. The presence of some ordering in the
101	liquid state of TAGs has been widely discussed ²⁴⁻²⁶ since Larsson first proposed
102	the existence of liquid crystal like lamellae. ^{27,28} Ueno et al. ²⁹ observed the liquid
103	crystal phases of the smectic type in 1,3 distearoyl 2 oleoyl glycerol (SOS) using
104	synchrotron radiation X ray diffraction.
105	Considering the results of the present study as well as those of our previous work,
106	we can compare the influence of kinetic factors (e.g., cooling/heating rates) on
107	the polymorphic behavior observed in TAGs with different saturated-unsaturated
108	structures (OPO, POP, OOO, OOL, POO, SOO, and POL).
109	
105	
110	2. Experimental
110 110 111	2. Experimental
110 110 111 112	2. Experimental Samples of POO, SOO, and POL were purchased from Tsukishima Foods
110 111 112 113	 2. Experimental Samples of POO, SOO, and POL were purchased from Tsukishima Foods Industry (Tokyo, Japan) and used without further purification (purity >99%). It
110 111 112 113 114	2. Experimental Samples of POO, SOO, and POL were purchased from Tsukishima Foods Industry (Tokyo, Japan) and used without further purification (purity >99%). It should be noted that the samples were not enantiopure, as they consisted of the
110 111 112 113 114 115	2. Experimental Samples of POO, SOO, and POL were purchased from Tsukishima Foods Industry (Tokyo, Japan) and used without further purification (purity >99%). It should be noted that the samples were not enantiopure, as they consisted of the racemic mixture of corresponding enantiomers (R and S).
110 111 112 113 114 115 116	2. Experimental Samples of POO, SOO, and POL were purchased from Tsukishima Foods Industry (Tokyo, Japan) and used without further purification (purity >99%). It should be noted that the samples were not enantiopure, as they consisted of the racemic mixture of corresponding enantiomers (R and S). DSC experiments were conducted at atmospheric pressure using both a Perkin-
110 111 112 113 114 115 116 117	2. Experimental Samples of POO, SOO, and POL were purchased from Tsukishima Foods Industry (Tokyo, Japan) and used without further purification (purity >99%). It should be noted that the samples were not enantiopure, as they consisted of the racemic mixture of corresponding enantiomers (R and S). DSC experiments were conducted at atmospheric pressure using both a Perkin- Elmer DSC-7 and a Perkin-Elmer DSC Diamond. The DSC thermograms
110 111 112 113 114 115 116 117 118	2. Experimental Samples of POO, SOO, and POL were purchased from Tsukishima Foods Industry (Tokyo, Japan) and used without further purification (purity >99%). It should be noted that the samples were not enantiopure, as they consisted of the racemic mixture of corresponding enantiomers (R and S). DSC experiments were conducted at atmospheric pressure using both a Perkin- Elmer DSC-7 and a Perkin-Elmer DSC Diamond. The DSC thermograms obtained by the two calorimeters were comparable. Samples (9.0 to 9.4mg) were
110 111 112 113 114 115 116 117 118 119	2. Experimental Samples of POO, SOO, and POL were purchased from Tsukishima Foods Industry (Tokyo, Japan) and used without further purification (purity >99%). It should be noted that the samples were not enantiopure, as they consisted of the racemic mixture of corresponding enantiomers (R and S). DSC experiments were conducted at atmospheric pressure using both a Perkin- Elmer DSC-7 and a Perkin-Elmer DSC Diamond. The DSC thermograms obtained by the two calorimeters were comparable. Samples (9.0 to 9.4mg) were weighed into 50µl aluminum pans, and covers were sealed into place. Both
110 111 112 113 114 115 116 117 118 119 120	2. Experimental Samples of POO, SOO, and POL were purchased from Tsukishima Foods Industry (Tokyo, Japan) and used without further purification (purity >99%). It should be noted that the samples were not enantiopure, as they consisted of the racemic mixture of corresponding enantiomers (R and S). DSC experiments were conducted at atmospheric pressure using both a Perkin- Elmer DSC-7 and a Perkin-Elmer DSC Diamond. The DSC thermograms obtained by the two calorimeters were comparable. Samples (9.0 to 9.4mg) were weighed into 50µl aluminum pans, and covers were sealed into place. Both instruments were calibrated with reference to the enthalpy and the melting points
110 111 112 113 114 115 116 117 118 119 120 121	2. Experimental Samples of POO, SOO, and POL were purchased from Tsukishima Foods Industry (Tokyo, Japan) and used without further purification (purity >99%). It should be noted that the samples were not enantiopure, as they consisted of the racemic mixture of corresponding enantiomers (R and S). DSC experiments were conducted at atmospheric pressure using both a Perkin- Elmer DSC-7 and a Perkin-Elmer DSC Diamond. The DSC thermograms obtained by the two calorimeters were comparable. Samples (9.0 to 9.4mg) were weighed into 50µl aluminum pans, and covers were sealed into place. Both instruments were calibrated with reference to the enthalpy and the melting points of indium (melting temperature 156.6 °C; ΔH 28.45J·g ⁻¹) and decane (melting

122	temperature -29.7_°C; ΔH 202.1J·g ⁻¹) standards. An empty pan was used as a	
123	reference. Dry nitrogen was used as purge gas in the DSC cell (at 23cm ³ ·min ⁻¹ in	
124	the Perkin-Elmer DSC-7 and at $20 \text{cm}^3 \cdot \text{min}^{-1}$ in the Perkin-Elmer DSC Diamond).	
125	Thermograms were analyzed using Pyris Software to obtain the enthalpy $(J \cdot g^{-1})$,	
126	integration of the DSC signals) and T_{onset} and T_{end} of the transitions (°C,	
127	intersections of the baseline and the initial and final tangents at the transition).	
128	Before thermal treatments were selected, cooling and heating rate conditions	
129	were screened for POO, which was extrapolated to the SOO and POL. As we	
130	expected, the polymorphic behavior of the three TAGs was similar, due to their	
131	identical SUU structure. Thus, we carried out 16 thermal programs combining	
132	different cooling/heating rates (15_°C·min ⁻¹ , 2_°C·min ⁻¹ , 1_°C·min ⁻¹ , and 0.5	
133	$^{\circ}C \cdot \min^{-1}$; data not shown). Some of these experiment conditions were selected	
134	and more deeply characterized using SR-XRD or laboratory-scale XRD. POO,	
135	SOO, and POL samples were cooled from the melt (from 40_°C to -80_°C) and	
136	subsequently heated (from -80_°C to 40_°C) using the following rates: (1) cooling	
137	at 15_°C·min ⁻¹ and heating at 15_°C·min ⁻¹ and at 0.5_°C·min ⁻¹ , (2) cooling at 2	
138	$^{\circ}C \cdot \min^{-1}$ and heating at 2_ $^{\circ}C \cdot \min^{-1}$, and (3) cooling at 0.5_ $^{\circ}C \cdot \min^{-1}$ and heating at	
139	15_°C·min ⁻¹ . These conditions included high, intermediate and low cooling and	
140	heating rates. At least three independent measurements were performed for each	
141	experiment ($n = 3$). Random uncertainty was estimated with a 95% threshold of	
142	reliability using the Student's t-distribution, which enables estimating the mean	
143	of a normally distributed population when the population is small. $^{2430}_{\bullet}$ A	_
144	correction (described elsewhere $\frac{2531}{1}$) was applied for analyses with cooling or	_
145	heating rates other than $2 \text{-}^{\circ}\text{C} \cdot \text{min}^{-1}$, since both calorimeters were calibrated at this	
146	rate.	

Formatted: Superscript

Formatted: Superscript

147	SR-XRD experiments were performed at the beamline BL-9C of the synchrotron
148	radiation facility Photon Factory (PF) of the High-Energy Accelerator Research
149	Organization (KEK) in Tsukuba (Japan). A double-focusing camera was operated
150	at a wavelength of 0.15nm. X-ray scattering data were simultaneously collected
151	using Position Sensitive Proportional Counters (PSPCs) (Rigaku Co., PSPC-10)
152	for small (SAXD) and wide (WAXD) angles. The SAXD pattern was used for
153	determining the chain length structure of the TAG, and the WAXD pattern
154	permitted us to identify the polymorphic forms. Each temperature program was
155	controlled using a Linkam stage LK-600. A 2mm-thick sample was placed in an
156	aluminum sample cell with Kapton film windows. SR-XRD spectra were
157	acquired at 30 or 60s intervals, depending on the cooling/heating rates used and
158	the complexity of the thermal profile.
159	Laboratory-scale powder XRD was used for some experiment conditions using a
160	PANalytical X'Pert Pro MPD powder diffractometer equipped with a Hybrid
161	Monochromator and an X'Celerator Detector. The equipment also included an
162	Oxford Cryostream Plus 220V (temperature 80 to 500K). This diffractometer
163	operated with Debye-Scherrer transmission. The sample was introduced in a
164	1mm-diameter Lindemann glass capillary. The latter was rotated about its axis
165	during the experiment to minimize preferential orientations of the crystallites.
166	The step size was 0.013° from 1.004° to $28^{\circ} 2\theta$, and the measuring time was
167	2.5min per pattern.
168	
169	
170	
171	

172 **3. Results**

173

- 174 Table 1 summarizes the long and short spacings of the observed POO, POL, and
- 175 SOO polymorphs. These values are in good agreement with those of previous
- 176 studies.²¹⁻²³
- 177

Table 1. Long and short spacing values of the POO, POL and SOO polymorphs.

POO		
	Long Spacing/nm	Short Spacing/nm
sub-α	5.8 2.9	0.42 0.38
α	5.7 2.8	0.41
KLC	6.0	_
β'2	6.7 3.2	0.43 0.41
_β'1	6.7 3.2	0.47 0.46 0.45 0.43 0.41 0.40 0.39
	PC	DL
	Long Spacing/nm	Short Spacing/nm
sub-α	5.7 2.8	0.42 0.38
α	5.6 2.7	0.41
β'2	6.3 3.1	0.42 0.38
ß	64 31	0.47 0.46 0.45 0.44 0.42 0.41 0.40
β 1	0.4 5.1	0.39
	SC	00
	Long Spacing/nm	Short Spacing/nm
sub-α	6.2 3.0	0.42 0.38
α	6.0 2.9	0.41
KLC	6.7	_
β'2	7.1 3.4	0.43 0.41
β'_1	6.9 3.3	0.47 0.45 0.43 0.42 0.41 0.40 0.39

179

Chain length structures of sub-α and α forms are double, and those for the two β'
forms are triple. Long spacings become much greater than those of POP and
OPO, especially for double chain length structures, as the inclination angles
toward the lamellar interface should be relatively small. KLC forms were formed

in POO and SOO, and they were characterized by a single long spacing (see

185 below).

186

188 **3.1.** Polymorphic characteristics of 1-palmitoyl-2,3-dioleoyl glycerol

189

Table 2 presents DSC data (T_{onset} and ΔH) of all the thermal treatments applied to POO. At high ($15_^{\circ}C\cdot min^{-1}$) and intermediate ($2_^{\circ}C\cdot min^{-1}$) cooling rates, the crystallizing polymorph was α , whereas low rates ($0.5_^{\circ}C\cdot min^{-1}$) led to more stable forms (β'_2). With heating, the most stable form (β'_1) was obtained in all cases, but through different pathways depending on the rate used.

Table 2. DSC data of crystallization and transformation of POO polymorphs obtained by cooling rates of

197 (A) $15^{\circ}C \cdot \min^{-1}$, (B) $2^{\circ}C \cdot \min^{-1}$, and (C) $0.5^{\circ}C \cdot \min^{-1}$ and different heating rates. The letters, c and m, in

198

	0		
noronthogog noting noting polymorph	torma maan	any otolly zotion on	malting
Darenneses normo porvinorbir i	norms mean	стухганиханон анс	i menno
parenticoes noting por inorph	iornio mean	or younnearrow and	A INCIUNE.
		2	0

	Α	Cooling		Heating				
L		(15_°C·min ⁻¹)	(15_°C·min ⁻¹)				
		α (c)	$\alpha \rightarrow sub-\alpha$	$sub-\alpha \rightarrow \alpha$	α (m)	$\beta'_2(c)$	$\beta'_2 \rightarrow \beta'_1$	$\beta'_1(m)$
	Tonset (°C)	-20.4 ± 0.4	-62.9 ± 0.5	-65.8 ± 0.5	-44.0 ± 2.1	-16.3 ± 0.4	-6.6 ± 0.6	12.5 ± 0.5
	$\Delta H (J/g)$	-44 ± 1	-5 ± 1	$9 \pm < 1$	4 ± 1	-29 ± 1	-17 ± 2	111 ± 3
l				(0.5 <u></u> °C∙min ⁻¹)			
				$sub-a \Rightarrow \beta'_1$	$\beta'_1(m)$			
				3.5 ± 2.3	12.4 ± 0.3			
	Tonset (°C)			(T _{end})				
	$\Delta H (J/g)$				106 ± 21			
	В	Cooling		Heating				
l		$(2_{\circ}C \cdot min^{-1})$		$(2 \circ C \cdot min^{-1})$				
		α (c)	$\alpha \rightarrow sub-\alpha$	$sub-a \Rightarrow \beta'_1$	$\beta'_1(m)$			
		-11.3 ± 1.6		-0.8 ± 3.7	13.5 ± 0.9			
	Tonset (°C)			(T _{end})				
	$\Delta H (J/g)$	-78 ± 2			109 ± 8			
	С	Cooling		Heating				
		(0.5 <u>°</u> C∙min ⁻	¹)	(15 °C·min ⁻¹))			
		$\beta'_{2}+\beta'_{1}(c)$		$\beta'_2(m)$	$\beta'_1(m)$			
	Tonset (°C)	7.3 ± 1.3		-4.5 ± 4	14.4 ± 1.5			
	$\Delta H (J/g)$	-103 ± 4		$1 \pm < 1$	108 ± 5			
	(

199

200

201 Figure 1 depicts the polymorphic behavior of POO when cooled at $15 \text{°C} \cdot \text{min}^{-1}$

202 and heated at $15 \text{°C} \cdot \text{min}^{-1}$ and $0.5 \text{°C} \cdot \text{min}^{-1}$.

Fig. 1. Polymorphic behavior of POO. (a) Cooling at 15 °C·min⁻¹ and heating at 15 °C·min⁻¹. A. DSC
thermogram. B. SR-SAXD pattern. C. SR-WAXD pattern. (b) Cooling at 15 °C·min⁻¹ and heating at 0.5

206 °C·min⁻¹. A. DSC thermogram. B. SR-SAXD patern. C. SR-WAXD patern.

207

203

208When the molten POO sample was cooled at $15_\circ C \cdot min^{-1}$, the crystallizing209polymorph was α , with a long spacing of 5.7nm and a short spacing of 0.41nm.210On further cooling, the SR-XRD peaks shifted from 5.7 to 5.8nm (SAXD pattern)211and from 0.41 to 0.42nm (WAXD pattern), due to $\alpha \rightarrow$ sub- α transformation. This212sub- α form was characterized by two WAXD peaks (a stronger one at 0.42nm213accompanied by a weaker one at 0.38nm), which was not observed at high

214	cooling/heating rates but could be determined with other experiment conditions
215	(see WAXD pattern in Fig. 1b). When POO was subsequently heated at 15
216	°C·min ⁻¹ (Fig. 1a), sub- α → α transformation occurred at -65.8_°C (Table 2A);
217	according to SR-XRD, the SAXD peak at 5.8nm moved to 5.7nm, and the
218	WAXD peak at 0.42nm shifted to 0.41nm. Here, α form melted at -44.0°C and
219	β_2 form crystallized at -16.3_°C, detected by the presence of the SAXD peak at
220	6.7nm and two broad WAXD peaks at 0.43 and 0.41nm. Later, the DSC profile
221	indicated an exothermic peak at -6.6_°C, corresponding to a $\beta'_2 \rightarrow \beta'_1$ transition.
222	Simultaneously, new WAXD peaks appeared at 0.47, 0.45, 0.43, 0.41, and
223	0.40nm; however, the SAXD peak at 6.7nm did not change. Finally, according to
224	the DSC data, the most stable form (β'_1) melted at 12.5_°C. The considerable
225	width and the high enthalpy of the β'_1 melting peak (111 J·g ⁻¹) may be the result
226	of concurrent melting of both β'_2 and β'_1 forms that may have occurred due to the
227	high heating rate used.
228	In contrast, when the POO sub- α form was heated at a low rate (0.5 °C·min ⁻¹)
229	(Fig. 1b), a series of complex thermal phenomena was observed in the DSC
230	thermogram at a temperature range of -50 to 3.5_°C (enlarged figure in Fig. 1b).
231	Because the endothermic/exothermic nature of the DSC peaks could not be
232	properly identified, only the T_{end} of this set of phenomena was determined (Table
233	2A, in which the process is noted as sub- $\alpha \Rightarrow \beta'_1$). Throughout this large
234	temperature range, the SR-XRD data indicated that the SAXD peak at 5.8nm
235	shifted to 6.0nm and its corresponding (002) reflection did not appear. Regarding
236	the WAXD pattern, the typical peak of sub- α form at 0.42nm vanished, and no
237	diffraction peak was present. This disordered phase, having a single long spacing,
238	could be interpreted as a KLC phase. This phase is characterized by a structural

239	periodicity of 6.0nm of lamellar distance but with no definite periodicity in lateral
240	packing. The presence of some ordering in the liquid state of TAGs has been
241	widely discussed ²⁶⁻²⁸ since Larsson first proposed the existence of liquid-crystal-
242	like lamellae. ^{29,30} Other studies that reported liquid crystal phases in other TAGs
243	(e.g., 1,3-distearoyl-2-oleoyl glycerol (SOS) $^{\frac{2931}{}}$) defined them as a smectic LC.
244	Many transitions were observed in this wide temperature range, and the sequence
245	probably passed through some α form before the formation of KLC. Furthermore,
246	the DSC data did not indicate any clear peak corresponding to KLC formation, as
247	it was somehow overlapped in the complex set of phenomena in the temperature
248	range corresponding to the sub- $\alpha \Rightarrow \beta'_1$ transformations. Later, KLC transformed
249	to β^{\prime}_{2} form (presence of a SAXD peak at 6.7nm and two WAXD peaks at 0.43
250	and 0.41nm); then $\beta'_2 \rightarrow \beta'_1$ transition occurred. Thus, the typical SR-XRD peaks
251	of β ' ₁ forming at 0.47, 0.46, 0.45, 0.43, 0.41, 0.40, and 0.39nm were observed in
252	the WAXD pattern. Finally, β'_1 form melted at 12.4_°C.
253	Intermediate cooling and heating rates were also applied $(2 \text{-}^{\circ}\text{C} \cdot \text{min}^{-1})$. The
254	polymorphic behavior observed was the same as that obtained by cooling at 15
255	$^{\circ}C \cdot \min^{-1}$ and heating at $0.5 ^{\circ}C \cdot \min^{-1}$ (Fig. 2 and Table 2B).
256	

Fig. 2. Polymorphic behavior of POO when cooled at 2_°C·min⁻¹ (α crystallization) and heated at 2
°C·min⁻¹. a) DSC thermogram. b) SR-SAXD pattern. c) SR-WAXD pattern.

272	identified by the presence of the SAXD peak at 6.7nm and two peaks at 0.43 and
273	0.41nm in the WAXD pattern. Finally, β'_2 form transformed to β'_1 form, and the
274	WAXD peaks shifted to 0.47, 0.45, 0.43, 0.41, 0.40, and 0.39nm. β'_1 form melted
275	at 13.5_°C (Table 2B), with the Δ H value of 109J·g ⁻¹ .
276	The polymorphic crystallization of POO was also studied at low cooling rates.
277	Thus, the melted sample was cooled at 0.5 °C·min ⁻¹ and heated at 15 °C·min ⁻¹

278 (Fig. 3).

279 Conventional XRD could be carried out under these conditions, due to the

simplicity observed in the DSC thermal profile. β'_2 and β'_1 forms crystalized

281 | concurrently at 7.3_°C (Table 2C).

282

Fig. 3. Polymorphic behavior of POO when cooled at $0.5 \text{°C} \cdot \min^{-1} (\beta'_2 + \beta'_1 \text{ crystallization})$ and heated at 15°C·min⁻¹. a) DSC thermogram. b) Conventional XRD paterns.

286	The XRD pattern exhibited a peak at 6.7nm in the small-angle region and three
287	peaks in the wide-angle XRD region at 0.45nm (corresponding to β'_1 form), and
288	0.43 and 0.41nm (β'_2 form). On heating, the DSC curve exhibited a weak and
289	broad melting peak with T _{onset} at -4.5_°C. In the same temperature range, the XRD
290	patterns indicated more defined β'_1 peaks (0.47, 0.45, 0.43, 0.41, and 0.39nm);
291	thus, this broad DSC peak was probably due to some β'_2 melting, some $\beta'_2 \rightarrow \beta'_1$
292	transition, or a combination of the two. Finally, only β'_1 form was present, and it
293	melted at 14.4_°C.
294	
295	3.2. Polymorphic Characteristics of 1-palmitoyl-2-oleoyl-3-linoleoyl glycerol
296	
297	1-palmitoyl-2-oleoyl-3-linoleoyl glycerol (POL) was subjected to the same
298	thermal treatments, and the polymorphic behavior was similar to that of POO.
299	Table 3 presents T_{onset} and ΔH values of the phenomena observed in the
300	corresponding DSC thermograms.
301	
302	
303	
304	
305	
306	
307	
308	
309	

Table 3. DSC data of crystallization and transformation of POL polymorphs obtained by cooling rates of (A) $15_{\circ}C \cdot \min^{-1}$, (B) $2_{\circ}C \cdot \min^{-1}$, and (C) $0.5_{\circ}C \cdot \min^{-1}$ and different heating rates. The letters, *c* and *m*, in parentheses noting polymorph forms mean crystallization and melting.

١.	•	Cooling		Heating				
i	A	Cooling		neating				
I		(15 <u>°</u> C·min ⁻¹)		$(15_{\circ}C\cdot min^{-1})$				
		α (c)	$\alpha \rightarrow sub-\alpha$	$sub-\alpha \rightarrow \alpha$	α (m)	$\beta'_2(c)$	$\beta'_2 \rightarrow \beta'_1$	$\beta'_1(m)$
	T (%C)	-20.6 ± 0.3	-41.3 ± 0.6	-31.8 ± 1.6	-16.1 ± 1.7	-12.6 ± 2.3	-5.6 ± 2	8.8 ± 2.2
	$\Delta H (J/g)$	-45 ± 2	(peak top) -1 ± 1	(peak top) 2 ± 1	22 ± 4	-85 ± 18		97 ± 8
I	(; 8)			(0.5 <u>°</u> C·min ⁻¹)			
				$sub-\alpha \rightarrow \alpha$	$\alpha \rightarrow \beta'_2$	$\beta'_2 \rightarrow \beta'_1$	$\beta'_2(m)$	$\beta'_1(m)$
				-35.2 ± 2.5	-33.7 ± 1.2	-10.4 ± 1.3	8.2 ± 0.5	9.6 ± 0.3
	Tonset (°C)			(peak top)				
	$\Delta H (J/g)$			12 ± 2	-18 ± 2	-6 ± 2	14 ± 3	93 ± 4
	(_U)							
-	В	Cooling		Heating				
		$(2^{\circ}C \cdot min^{-1})$		$(2 \circ C \cdot min^{-1})$				
		α (c)	$\alpha \rightarrow sub-\alpha$	$\alpha \rightarrow \beta'_2$	$\beta'_2 \rightarrow \beta'_1$	$\beta'_2(m)$	$\beta'_1(m)$	
		-17.5 ± 0.6	-36.3 ± 0.6	-23.0 ± 0.7	-6.0 ± 1.1	7.5 ± 0.8	10.1 ± 0.8	
	Tonset (°C)		(peak top)					
	$\Delta H (J/g)$	-45 ± 2	-1 ± 1	-24 ± 2	-12 ± 9	107 ± 9		
_								
-	С	Cooling		Heating				
		(0.5 <u>°</u> C·min ⁻¹)	(15_°C·min ⁻¹)				
		$\beta'_2(c)$		$\beta'_2(m)$	$\beta'_1(c)$	$\beta'_1(m)$		
	Tonsat (°C)	-12.8 ± 0.9		-1.5 ± 1.2	1.6 ± 1.6	8.0 ± 1.2		
	$\Delta H (I/\sigma)$	-79 ± 10		3 ± 2	-17 ± 2	99 ± 5		
	шт (J/g)					· · · ·		

313

314 Not surprisingly, α form was crystallized from the melt at high and intermediate

315 rates (15 and 2_°C·min⁻¹), whereas a more stable β'_2 form was obtained at low

316 cooling rates $(0.5 \text{ °C} \cdot \text{min}^{-1})$. Heating resulted in a polymorphic sequence of

317 increasing stability; however, no KLC phase was detected.

318 Figures 4a and 4b depict the polymorphic behavior of POL observed when the

319 molten sample was cooled at $15 \text{ °C} \cdot \text{min}^{-1}$ and heated at 15 and $0.5 \text{ °C} \cdot \text{min}^{-1}$.

320

Fig. 4. Polymorphic behavior of POL. (a) Cooling at 15_°C·min⁻¹ and heating at 15_°C·min⁻¹. A. DSC thermogram. B. SR-SAXD pattern. C. SR-WAXD pattern. (b) Cooling at 15_°C·min⁻¹ and heating at 0.5 °C·min⁻¹. A. DSC thermogram. B. Conventional XRD patterns.

327	When the molten POL sample was cooled at 15_°C·min ⁻¹ , SR-XRD data indicated
328	α form crystallization, which occurred at -20.6 °C, through a SAXD peak at
329	5.6nm and a WAXD peak at 0.41nm. As depicted in Fig. 4a, shifting to 5.7nm
330	and 0.42nm resulted in $\alpha \rightarrow$ sub- α transformation, corresponding to a DSC peak
331	top at -41.3_°C. However, T _{onset} could not be determined, due to the flatness of the
332	DSC peak. The opposite polymorphic transformation (sub- $\alpha \rightarrow \alpha$) occurred at -
333	31.8_°C (peak top) when heating; simultaneously, the SAXD peak at 5.7nm
334	moved to 5.6nm again, and the WAXD peak moved from 0.42 to 0.41nm. A

335	sharp endothermic DSC signal appeared at -16.1_°C, corresponding to the α
336	melting, and further on, crystallization occurred. Two exothermic peaks (with
337	T_{onset} at -12.6_°C and at -5.6_°C) appeared; however, only the latest could be
338	identified. SR-XRD indicated β'_1 form through the peaks at 6.4nm (SAXD) and
339	at 0.47, 0.46, 0.42, 0.41, and 0.40nm (WAXD). Similar to POO, the exothermic
340	DSC peak with T_{onset} at -12.6_°C was probably due to the β'_2 crystallization,
341	which transformed to β'_1 form at -5.6 °C. However, the two processes could not
342	be distinguished using SR-XRD, as they were so close to each other and the
343	heating rate used was so high. Finally, β'_1 form melted at 8.8_°C.
344	Figure 4b depicts the DSC and laboratory-scale XRD results obtained when POL
345	was cooled at $15_^{\circ}C \cdot \min^{-1}$ and heated at $0.5_^{\circ}C \cdot \min^{-1}$. Heating at such a low rate
346	transformed the sub- α form obtained during cooling to α form at -35.2_°C (peak
347	top temperature, see Table 3A), which soon changed to β'_2 form through
348	exothermic solid-state transformation at -33.7 °C. β'_2 form was identified by its
349	wide-angle region peaks at 0.42 and 0.38nm, as the laboratory-scale XRD data
350	indicated. Again, the most stable polymorph of POL (β'_1) was reached on further
351	heating, when an exothermic peak, corresponding to the $\beta'_2 \rightarrow \beta'_1$ transition,
352	appeared at -10.4_°C in the DSC profile. The XRD peaks at 6.4nm (small-angle)
353	and 0.47, 0.46, 0.44, 0.42, 0.41, 0.40, and 0.39nm (wide-angle region) indicated
354	the presence of β'_1 form. Finally, two consecutive melting peaks were observed
355	in the DSC heating curve, corresponding to both melting processes of remaining
356	β'_2 (T _{onset} = 8.2°C) and β'_1 (T _{onset} = 9.6°C) forms. Hence, not all the existing β'_2
357	form was transformed to β'_1 at -10.4 °C.

366 Fig. 5. Polymorphic behavior of POL when cooled at 2_°C·min⁻¹ (α crystallization) and heated at 2
367 °C·min⁻¹. a) DSC thermogram. b) SR-SAXD pattern. c) SR-WAXD patern.

- transformed to α form (the SAXD peak at 5.6nm and the WAXD peak at 0.41
- appeared again at the expense of α peaks). Soon afterward, a SAXD peak at
- 6.3nm and two WAXD peaks at 0.42 and 0.38nm appeared at -23.0 °C, indicating
- solid-state transformation from α to β'_2 form. Part of this β'_2 transformed to β'_1

 $\begin{array}{ccc} 388 & \beta_2 \text{ form was identified by a triple chain length SAXD peak at 6.4 and two broad} \\ 389 & \text{WAXD peaks at 0.42 and 0.38nm. When the sample was quickly heated at 15} \end{array}$

390	°C·min ⁻¹ , melt-mediated transformation from β'_2 to β'_1 form occurred, consisting
391	of β'_2 melting (T _{onset} at -1.5°C) and β'_1 crystallization at 1.6°C (Table 3C). During
392	this transformation, the SAXD peak did not change, whereas WAXD peaks
393	appeared at 0.47, 0.46, 0.44, 0.42, 0.41, 0.40, and 0.39nm, at the expense of $\beta^{\prime}{}_2$
394	peaks. The most stable β'_1 form melted at 8_°C. The considerable width of the
395	endothermic peak may be due to some concurrent β'_2 and β'_1 melting.
396	
397	3.3. Polymorphic Characteristics of 1-stearoyl-2,3-dioleoyl glycerol
398	
399	The influence of varying the cooling and heating rates was also analyzed for 1-
400	stearoyl-2,3-dioleoyl glycerol (SOO). Table 4 presents the DSC data of all the
401	thermal peaks observed.

403**Table 4.** DSC data of crystallization and transformation of SOO polymorphs obtained by cooling rates of404(A) $15_{\circ}^{\circ}C \cdot \min^{-1}$, (B) $2_{\circ}^{\circ}C \cdot \min^{-1}$, and (C) $0.5_{\circ}^{\circ}C \cdot \min^{-1}$ and different heating rates. The letters, c and m, in405parentheses noting polymorphic forms mean crystallization and melting.

Α	Cooling (15_°C·min ⁻¹))	Heating (15_°C·min ⁻¹))			
T_{onset} (°C) AH (J/g)	α (c) -9.0 ± 0.4 -48 ± 1	$\alpha \rightarrow sub-\alpha$ -25.0 ± 0.3 -1 ± <1	$sub-\alpha \rightarrow \alpha$ -22.4 ± 0.8 1 ± 1	α (m) -6.2 ± 0.9 7 ± 2	$\beta'_{2}(c)$ -3.3 ± 0.6 -74 ± 16	$\beta'_2 \rightarrow \beta'_1$ 2.7 ± 0.8	$\beta'_1(m)$ 19.8 ± 0.5 109 ± 9
			(0.5 <u></u> °C∙min ⁻¹)			
			$sub-\alpha \rightarrow \alpha$ -62.2 ± 1.4	$\alpha \rightarrow \beta'_2$ -26.6 ± 0.7	$\beta'_2 \rightarrow \beta'_1$ -4.5 ± 0.6	$\beta'_1(m)$ 22.0 ± 0.6	
			9 ± 8	-18 ± 4	-3 ± 1	136 ± 18	
B 	Cooling (2_°C·min ⁻¹)		Heating (2_°C·min ⁻¹)				
T _{onset} (°C)	$\alpha + \beta'_2(c)$ -5.4 ± 0.3	$\alpha \rightarrow sub-\alpha$ -21.8 ± 0.6	$KLC \rightarrow \beta'_2$ -18.9 ± 0.9	$\beta'_2 \rightarrow \beta'_1$ -2.4 ± 0.4	$\beta'_1(m)$ 20.9 ± 0.4		
$\Delta H (J/g)$	-49 ± 3	-1 ± <1	-21 ± 1	-15 ± 2	122 ± 4		
С	Cooling		Heating				
	(0.5_°C·min ⁻¹)	(15_°C·min ⁻¹))			
	$\beta'_2(c)$		$\beta'_2 \rightarrow \beta'_1$	$\beta'_1(m)$			

Tangat (°C)	5.5 ± 1.8	6.5 ± 1.6	21.1 ± 1.0
$\Delta H (J/g)$	-96 ± 4	-15 ± 6	111 ± 10
Li (0, 8)			

408	Following the same tendency as POO and POL, metastable α form crystallized at
409	high cooling rates, while α and β'_2 forms crystallized concurrently at intermediate
410	rates, and β'_2 crystals were obtained at low rates. Forms of increasing stability
411	were reached while heating similar to POO, and a KLC phase was identified in
412	some experiment conditions.
413	When cooling SOO at 15_°C·min ⁻¹ , exothermic crystallization of α form occurred
414	at -9.0_°C, and transformation to sub- α form occurred at -25.0_°C. Thus, the
415	SAXD peak moved from 6.0nm (α) to 6.2nm (sub- α), and the α WAXD peak at
416	0.41nm changed to the two sub- α peaks at 0.42 and 0.38nm. An exothermic peak
417	was observed at -70_°C, and an endothermic peak was observed at the beginning
418	of the heating step at $15_{\circ}C \cdot \text{min}^{-1}$ (at -60_°C) (Fig. 7a) in the DSC profile.
419	However, they could not be identified using the SR-XRD patterns, as no changes
420	were detected in these temperature ranges. On further heating, sub- α form
421	transformed to α form at -22.4_°C. Immediately afterward, melt-mediated
422	transformation occurred from α to β'_2 form, which consisted of α form melting
423	(at -6.2_°C) and subsequent β'_2 crystallization (at -3.3_°C). Simultaneously, SR-
424	XRD peaks became very flat, almost nonexistent, due to the α melting; a triple
425	chain length SAXD peak at 7.1nm and two broad β'_2 WAXD peaks progressively
426	appeared at 0.43 and 0.40nm, as a result of the β'_2 crystallization. Furthermore,
427	the peak at 7.1nm, observable in the SAXD pattern, moved to 6.9nm; new

428 WAXD peaks at 0.45, 0.43, and 0.40nm identified $\beta'_2 \rightarrow \beta'_1$ solid-state

429 transformation, which occurred at 2.7_°C. β'_1 form melted at a T_{onset} of 19.8_°C.

431

432

Fig. 7. Polymorphic behavior of SOO. (a) Cooling at 15 °C·min⁻¹ and heating at 15 °C·min⁻¹. A. DSC
thermogram. B. SR-SAXD pattern. C. SR-WAXD pattern. (b) Cooling at 15 °C·min⁻¹ and heating at 0.5
°C·min⁻¹. A. DSC thermogram. B. Conventional XRD patterns.

436

Figure 7b depicts the DSC and laboratory-scale XRD data obtained by cooling SOO at $15_{\circ}C\cdot\min^{-1}$ and heating at $0.5_{\circ}C\cdot\min^{-1}$. Heating the sub- α form at such a low rate resulted in transformation to α form at -62.2_°C (Table 4A and enlarged

440	figure in Fig. 7(b) A). At -26.6_°C, a $\alpha \rightarrow \beta'_2$ transition was identified by the two
441	typical broad XRD peaks at 0.43 and 0.40nm in the wide-angle region. Later,
442	another transformation (from β'_2 to β'_1 form) occurred at -4.5_°C. At this point,
443	β'_1 XRD peaks appeared at 0.47, 0.45, 0.43, 0.42, 0.41, 0.40, and 0.39nm. This
444	most stable form finally melted at 22.0_°C, with a melting enthalpy of $136J \cdot g^{-1}$.
445	This high value suggests that, as expected, low heating rates produce higher
446	amounts of the most stable forms. However, taking into account the low enthalpy
447	associated with the $\beta'_2 \rightarrow \beta'_1$ transformation (-3 J·g ⁻¹), one may reasonably assume
448	that some β'_1 form was formed in another step, such as in the $\alpha \rightarrow \beta'_2$ transition.
449	Therefore, some β'_1 form may have formed concurrently with β'_2 . Analysis of the
450	XRD patterns indicated that the β'_2 diffraction peaks became so broad that they
451	were probably overlapping some β'_1 peaks, which became more defined on
452	further heating when all SOO was converted into β'_1 form.
453	Intermediate cooling and heating rates $(2 \circ C \cdot min^{-1})$ were also applied to SOO
454	(Fig. 8).

456 457

Fig. 8. Polymorphic behavior of SOO when cooled at 2_°C·min⁻¹ ($\alpha + \beta'_2$ crystallization) and heated at 2 °C·min⁻¹. (a) DSC thermogram. (b) SR-SAXD pattern. (c) SR-WAXD pattern.

458

Concurrently, α and β'_2 forms crystallized from the melt at -5.4 °C when the 460 sample was cooled at 2 °C·min⁻¹. Thus, the SR-SAXD pattern indicated the 461 presence of a weak peak at 7.1nm (corresponding to β'_2 form) and another one at 462 6.0nm (corresponding to α form). However, the SR-WAXD pattern exhibited the 463 α peak only at 0.41nm. At -21.8 °C, the SAXD peak moved to 6.2nm, and the 464 WAXD peak at 0.41nm split into two peaks at 0.42nm and 0.38nm, due to the 465 $\alpha \rightarrow$ sub- α transformation. Later, when the sub- α form was heated at 2 °C·min⁻¹, 466 diffraction peaks disappeared in the WAXD pattern and a single SAXD peak was 467 detected at 6.1nm, indicating the KLC phase, similar to POO. Nevertheless, this 468 phenomenon could not be attributed to any thermal peak of the DSC curve. 469 Judging from the long spacings, some α form probably formed before the KLC 470 phase, because a weak SAXD peak at 2.9nm, corresponding to the 002 reflection 471

486 Fig. 9. Polymorphic behavior of SOO when cooled at 0.5_°C·min⁻¹ (β'₂ crystallization) and heated at 15
487 °C·min⁻¹. a) DSC thermogram. b) SR-SAXD pattern. c) SR-WAXD pattern.

At this low cooling rate, β'_2 crystals were obtained from the melt at 5.5 °C (Table 4C), as confirmed by the SR-XRD data, with a SAXD peak at 7.1nm, and two WAXD peaks at 0.43 and 0.41nm. When heating, the DSC curve exhibited an exothermic phenomenon at 6.5 °C, corresponding to the $\beta'_2 \rightarrow \beta'_1$ transformation. SR-XRD data enabled us to identify the β'_1 form through the diffraction peaks at 6.9nm (SAXD pattern), and at 0.45, 0.43, 0.41, 0.40, and 0.39nm. According to the DSC results, β'_1 form melted at 21.1 °C. 4. Discussion 4.1. Polymorphic behavior of POO, POL, and SOO The three SUU TAGs described in this work exhibited very similar polymorphic crystallization and transformation pathways when different cooling and heating rates were applied. Figure 10 depicts some schematic diagrams of the polymorphic pathways followed by the mentioned compounds as a summary.

515The polymorphic behavior of POO, POL, and SOO when samples were cooled516and heated at 15° C-min⁻¹-was the same in all three cases: α crystals were directly517obtained from the melt, and they transformed to sub α form on further cooling.518Upon heating, the sequence of polymorphic transformation was sub-

519	$\alpha \rightarrow \alpha \rightarrow$ liquid $\rightarrow \beta'_2 \rightarrow \beta'_1 \rightarrow$ liquid. However, when sub- α crystals were heated at
520	low rates (0.5°C min ⁻¹), complex DSC curves were obtained in all cases, with the
521	general pattern of sub- $\alpha \rightarrow \alpha \rightarrow \beta'_2 \rightarrow \beta'_4 \rightarrow $ liquid. In this sequence of polymorphic
522	transformation, a KLC phase was detected between α and β'_2 forms in POO, but
523	not for POL or SOO. In general terms, the difference between the pathways
524	observed using high and low heating rates lies in the nature of the $\alpha \rightarrow \beta^2_2$
525	transformation: melt-mediation at 15°C min ⁺ and solid-state at 0.5°C min ⁺ .
526	These results were quite similar to those observed in 1,3-dipalmitoyl-2-oleoyl
527	glycerol (POP), ¹³ trioleoyl glycerol (OOO), and 1,2-dioleoyl-3-linoleoyl glycerol
528	(OOL).¹⁴
529	At intermediate cooling/heating rates (both 2°C·min ⁻¹), the results obtained for
530	POO and POL were the same as those of cooling at 15°C min ⁻¹ and heating at
531	0.5°C·min ⁻¹ . In contrast, α and β_2^2 forms crystallized concurrently in SOO,
532	instead of only α form. Heating of these polymorphic forms at 2°C min ⁻¹ -resulted
533	in the sequence of sub- $\alpha \rightarrow (\alpha) \rightarrow KLC \rightarrow \beta'_2 \rightarrow \beta'_1 \rightarrow liquid. We specified \alpha form in$
534	parentheses, as some α form (α 002 peak at 2.9nm) may have occurred for a short
535	time before the KLC phase. Here, we should point out the formation of the KLC
536	phase when POO was cooled at 15°C min ⁻¹ and heated at 0.5°C min ⁻¹ , and cooled
537	and heated at 2°C min ⁻¹ . For SOO, the KLC phase was observed only when it was
538	cooled and heated at 2°C-min ⁻¹ , not when it was cooled at 15°C-min ⁻¹ and heated
539	at 0.5°C-min⁻¹.
540	Finally, the three samples were subjected to a low cooling rate (0.5°C min ⁻¹) and
541	a high heating rate (15°C-min ⁻¹). As expected, more stable forms than α
542	erystallized from the melt, not following the Ostwald step rule of stages: $\frac{32}{\beta}\beta^{2}$
543	form in POL and SOO, and concurrent $\beta'_2 + \beta'_4$ forms in POO. With high heating

544	rates, β'_2 form transformed to β'_1 , which finally melted. However, the nature of
545	this polymorphic transformation differed for the three TAGs: it occurred through
546	melt-mediation in POL and through solid-state in SOO. For POO, no clear
547	transformation appeared in the DSC heating curve.
548	
549	4.2. Comparison of POO, POL, SOO, OPO, POP, OOO, and OOL
550	polymorphisms
551	
552	Following the same tendencies as those observed in OPO, ¹¹ POP, ¹³ OOO, and
553	OOL, ¹⁴ the present study demonstrated the following crystallization and
554	transformation properties, which are strongly related to the thermal treatments
555	applied:
556	(1) Four polymorphic forms (sub- α , α , β'_2 , and β'_1) were isolated in POO,
557	POL, and SOO. Furthermore, KLC phases were observed in POO and
558	SOO.
559	(2) More stable polymorphs were directly obtained from the melt, not
560	following the Ostwald step rule of stages ³² , by decreasing the cooling
561	rates, whereas less stable forms predominated at high cooling rates.
562	(3) Higher amounts of the most stable form (β'_1) were obtained by decreasing
563	the heating rate. Also, with low heating rates, solid-state transformations
564	occurred more easily at the expense of melt-mediated transformations.
565	These properties were also observed for OPO, POP, OOO, and OOL using DSC
566	and SR-XRD when different thermal treatments were applied. Table 5
567	summarizes the crystallization and transformation pathways of POP, OPO, POO,
568	POL, SOO, OOO, and OOL at different cooling and heating rates.

Table 5. Crystallization and transformation pathways of POP, OPO, POO, POO, SOO, OOO and OOL at different cooling and heating rates, in which *mm* and *ss* mean melt-

570 mediated and solid-state transformations.

		POP	OPO	POO	POL	SOO	000	OOL
Polymorphs		α-2, γ-3, β'-2, δ-3, β-3	α-2, β'-2 , β-3	sub-α-2, α-2, KLC, β'-3	sub-α-2, α-2, β'-3	sub-α-2, α-2, KLC, β'-3 ^a	α-2, β'-2 , β-2	α-2, β'-2
Crystallization	rapid	α	α	α	α	α	α	α
on cooling	slow	γ	$\beta' + \beta$	β'	β'	β'	β'	β'
	rapid	$\alpha \rightarrow (mm)\beta' \rightarrow L$	$\alpha \rightarrow (mm) \beta' \rightarrow \beta \rightarrow L$	$\alpha \rightarrow (mm)\beta' \rightarrow L$	$\alpha \rightarrow (mm)\beta' \rightarrow L$	$\alpha \rightarrow (mm)\beta' \rightarrow L$	$\alpha \rightarrow (mm) \beta' \rightarrow (mm) \beta \rightarrow L$	$\alpha \rightarrow (mm) \beta' \rightarrow L$
Transformation	,	γ→L	$\beta' \rightarrow \beta \rightarrow L$	β'→L	β'→L	β'→L	$\beta' \rightarrow (mm) \beta \rightarrow L$	β'→L
on heating	slow	$\alpha \rightarrow \gamma \rightarrow (ss) \delta \rightarrow (mm) \beta \rightarrow L$	n.a ^b	$\alpha \rightarrow KLC \rightarrow \beta' \rightarrow L$	$\alpha \rightarrow (ss)\beta' \rightarrow L$	$\alpha \rightarrow KLC \rightarrow \beta' \rightarrow L$	n.a ^b	$\alpha \rightarrow (ss) \beta' \rightarrow L$
	510 1	$\gamma {\rightarrow} (mm) \; \beta {}^{\!$	n.a ^b	n.a ^b	n.a ^b	n.a ^b	$\beta' \rightarrow (ss) \beta \rightarrow L$	β'→L

572 ^a For simplicity, β_2 ' and β_1 or β_2 and β_1 are summarized into β ' or β , respectively.

573 ^b Not available.

577	Regarding polymorphic crystallization by changing the cooling rates, multiple
578	polymorphic forms involving the most stable β form were obtained with the
579	unsaturated-saturated-unsaturated OPO, demonstrating complex concurrent
580	crystallization in most cases. For triunsaturated OOO and OOL, and saturated-
581	unsaturated-unsaturated POO, POL, and SOO (present work), α was crystallized
582	with rapid cooling, whereas β ' was obtained with slow cooling. However, for the
583	saturated-unsaturated-saturated POP, it was difficult to obtain stable forms such
584	as β ' and β even when the cooling rate was lowered to $0.5 \text{-}^{\circ}\text{C} \cdot \text{min}^{-1}$.
585	When the heating rate was-varied changed, more stable polymorphic forms (e.g.,
586	β and β) were obtained either through solid-state or melt-mediation for OPO,
587	OOO, OOL, POO, POL, and SOO even at a high rate $(15 \circ C \cdot min^{-1})$. However, it
588	was necessary to decrease the heating rates to 2 to 0.1 °C·min ⁻¹ to obtain the most
589	stable β form for POP. Thus, we may conclude that similar polymorphic
590	crystallization and transformation characteristics were obtained in OPO, OOO,
591	OOL, POO, POL, and SOO; however, POP differed in the difficulty of obtaining
592	the most stable β form.
593	The present study has also proposed a new transformation pathway through the
594	occurrence of KLC phases in POO and SOO (both SUU TAGs) when
595	intermediate $(2_{\circ}C \cdot min^{-1})$ and/or low $(0.5_{\circ}C \cdot min^{-1})$ heating rates were used.
596	Thus, lamellar structures having lamellar distances of 6.0nm were identified in
597	POO and those having that of 6.7nm were identified in SOO, with no definite
598	periodicity in lateral packing. This result indicates that, according to Ueno et
599	al., $\frac{3129}{2}$ both KLC phases may correspond to smectic liquid crystals. This is the
600	first work reporting KLC phases for POO and SOO. However, no KLC phases
601	were detected for the other TAGs examined under any cooling/heating

602	conditions. The two KLC phases occurred in the sequence α -2 \rightarrow KLC \rightarrow β '-3.
603	Ueno et al. $\frac{3129}{1}$ determined two different LC phases (LC1 and LC2) for SOS using
604	SR-XRD. However, they did not monitor the cooling and heating rates, as the
605	thermal treatments used consisted of controlled temperature jumps and annealing
606	steps. Similar to the results obtained in our work, Ueno et al. confirmed LC1
607	formation for SOS during the melt-mediation of α to obtain β ' crystals. However,
608	with a jump to a higher temperature, they observed a new type of liquid crystal
609	(LC2) during the intermediate period after the α melting and before the
610	occurrence of γ and $\beta'.$ For SOS and our case study (POO and SOO), LC phases
611	became transitory states between a double-chain-length structure (α form) and a
612	triple-chain-length structure (β ' form), which could be monitored using SR-XRD.
613	In other words, KLC phases may be needed for the mentioned TAGs to transform
614	from a 2L (α) to a 3L (β ') structure with the experiment conditions used.
615	However, this transitory KLC phase was not necessary for other $2L \rightarrow 3L$
616	transformations, as confirmed in previous work on POP and OPO.
617	Our experiment results indicated that quick heating $(15 \text{-}^{\circ}\text{C} \cdot \text{min}^{-1})$ of α crystals
618	results in melt-mediated transformation of SOO to obtain β'_2 form
619	$(\alpha \rightarrow \text{liquid} \rightarrow \beta'_2)$ (Fig. 10). As expected, with a low heating rate $(0.5 \text{-}^\circ\text{C} \cdot \text{min}^{-1})$,
620	this transformation occurred in the solid state ($\alpha \rightarrow \beta'_2$). However, with an
621	intermediate heating rate $(2 \text{-}^{\circ}\text{C} \cdot \text{min}^{-1})$, and similar to the work described by Ueno
622	et al., a KLC phase occurred between α and β'_2 . Melt-mediated transformation
623	from α to β'_2 was also detected when α POO crystals were heated at $15_^{\circ}C \cdot min^{-1}$,
624	and an intermediate KLC phase occurred between these two polymorphic forms
625	when heating at 2_°C·min ⁻¹ and 0.5_°C·min ⁻¹ . Thus, we conclude that we may use
ļ	

Formatted: Superscript

626	a lower heating rate (less than $0.5_^{\circ}C \cdot min^{-1}$) for POO to observe $\alpha \rightarrow \beta'_2$ solid-state
627	transformation. No KLC phase appeared for POL in any of the experiment
628	conditions. With heating at 15_°C·min ⁻¹ , melt-mediation occurred from α to β ' ₂ ,
629	whereas this transformation took place in the solid state when heated at 2 and 0.5
630	$^{\circ}C \cdot min^{-1}$. Thus, the transient KLC phase may be observed using an intermediate
631	heating rate (15 to 2_°C·min ⁻¹). In all cases, KLC phases were detected only when
632	using SR-XRD, not laboratory-scale XRD. However, KLC phases were
633	observable within wide temperature ranges during heating; thus, we assume that
634	laboratory-scale XRD may also be capable of detecting them.
635	
636	4.3. Thermodynamic properties of polymorphic transformations of POO,
637	POL, and SOO compared to OPO, POP, OOO, and OOL
638	
639	As discussed in our previous work, ¹³ these results may be interpreted considering
640	the activation energies of solid-state and melt-mediated transformations from a
641	less stable polymorphic form to a more stable form (Fig. 11).

Fig. 11. Activation free energy ($\Delta G^{\#}$) for solid-state transformation, transformation through KLC phase, and melt-mediated transformation from metastable A to more stable B forms.

643

Transformation rates are determined by the magnitude of the activation free 647 energies ($\Delta G^{\#}$) involved in each process. In solid-state transformation from form 648 A to form B, $\Delta G_{ss}^{\#}$ may include excess energy to enable structural changes, such 649 as changes in the subcell structure and chain length structure. However, in melt-650 mediated transformation, the rate may be determined by the magnitude of $\Delta G_m^{\#}$ 651 (melting of form A) and the subsequent crystallization $(\Delta G_c^{\#})$ of form B. 652 However, the actual rate may be determined by $\Delta G_c^{\#}$ due to the ease of melting 653 and the low values of $\Delta G_m^{\#}$. 654 One may simply assume that the $\Delta G_{ss}^{\#}$ values for transformation involving 655 656 change from loosely packed subcell structures (e.g., hexagonal subcell of α form)

- to more closely packed subcell structures of $O_{\perp}(\beta')$ and $T_{//}(\beta)$ are larger than
- those involving change from $O_{\perp}(\beta')$ to $T_{//}(\beta)$. Also, $\Delta G_{ss}^{\#}$ values may be lower

for transformation between polymorphs having the same double-chain-length structures (e.g., $\alpha \rightarrow \beta'$ in OPO and $\alpha \rightarrow \beta'$ in OOO and OOL) than for changes from double- to triple-chain-length structures (e.g., $\alpha \rightarrow \beta'$ in POO, SOO, and POL; $\alpha \rightarrow \gamma$ and $\beta' \rightarrow \beta$ in POP) (Fig. 12). The same assumption may apply to crystallization, in that the $\Delta G_c^{\#}$ values of polymorphs having tightly packed subcell and triple-chain-length structures (e.g., β form of OPO or POP) may exceed those of others.

666

667

668 Fig. 12. Structure models of POP, OPO, POO, SOO, POL, OOO and OOL. For simplicity, multiple β '

669 and β forms are represented by β ' and β .

671	As depicted in Fig. 11, KLC formation was observed at intermediate heating rates
672	between solid-state and melt-mediated transformation, so that the $\Delta G^{\#}$ value
673	involved in transformation through the KLC phase may be lower than that of
674	solid-state transformation but higher than that of melt-mediation. KLC phase was
675	kinetically detected as a transient state between less stable form A and more
676	stable form B, so that, as illustrated in Figure 11, its melting temperature may be
677	higher than that of A but lower than that of B. According to Figure 11, we
678	considered that the transformation from A to KLC phase occurred at a
679	temperature below $T_m(A)$, as no clear subsequent crystallization phenomena was
680	determined from SR-XRD data. However, one may consider that KLC phase was
681	observed within wide temperature range in all cases.
682	POP exhibited a peculiar polymorphic behavior compared to that of the other
683	TAGs examined: even during slow heating, solid-state transformation occurred
684	with more difficulty. This difference may be due to the fact that POP contains
685	more saturated fatty acid moieties (palmitic acid) whose transformation from less
686	stable to more stable forms may need larger activation energy ($\Delta G_{ss}^{\#}$) than TAGs
687	containing more unsaturated fatty acid moieties. The flexibility of the chain
688	packing of unsaturated acids is more enhanced than that of saturated fatty acids, ³³
689	which may decrease the value of $\Delta G_{ss}^{\#}$ for transformation into more stable forms
690	in more unsaturated TAGs. This may also apply to the difficulty for POP to
691	obtain stable polymorphic forms from the melt, even with low cooling rates.
692	The SUU TAGs analyzed in this study also exhibited a particular behavior due to
693	intermediate KLC phases, which were not detected in POP, OPO, OOO, or OOL
694	using the same experiment conditions. These KLC phases occurred within $\alpha \rightarrow \beta'_2$
695	transformation, which involves rearrangement from a double-chain-length

696structure (α) to a triple-chain-length structure (β'_2). The KLC phases in these697SUU TAGs may be due to some lateral disorder caused by a mismatch in698molecule packing, which may be more important in asymmetric TAGs than in699symmetric TAGs.¹⁵ Baker et al. found that, when comparing the polymorphic700behavior of symmetric OSO and asymmetric SOO, the lateral disorder, probably701generated by local defects in the packing of the molecules, may be amplified by702the asymmetrical position of the two flexible non-oriented unsaturated chains.

704 5. Conclusions

705

706	The application of dynamic thermal treatments is closely related to actual
707	crystallization processes of edible fats. This study examined the occurrence and
708	transformation pathways of polymorphic forms of POO, POL, and SOO as a
709	function of cooling and heating rate variations. The results obtained were
710	compared to those of previous studies on other TAGs (OPO, POP, OOO, and
711	OOL) and were discussed in terms of activation free energy and molecular
712	structure. A peculiar polymorphic behavior was observed in POO, POL, and
713	SOO, which exhibited KLC phase formation as a transient state in transformation
714	from polymorphic forms having a double-chain-length structure to polymorphs
715	with a triple-chain-length structure.
716	
717	Acknowledgements
718	

The authors acknowledge the financial support of the Ministerio de Economía y
Competitividad through Project MAT2011-27225. SR-XRD experiments were

721	conducted with the approval of the Photon Factory Program Advisory Committee	
722	(proposals 2010G114, 2010G656, and 2012G704). The authors gratefully	
723	appreciate the help of Prof. Masaharu Nomura, Station Manager of BL-9C at the	
724	Photon Factory. The authors also acknowledge the Generalitat de Catalunya	
725	through the Grup Consolidat 2014SGR1208.	
726		
727	References	
728	1. Larsson, K., Quinn, P., Sato, K. & Tiberg, F. (Eds.) (2006). Lipids:	
729	structure, physical properties and functionality. Bridgewater: The Oily	
730	Press.	
731	2. Sato, K., Bayés-García, L., Calvet, T., Cuevas-Diarte, M. A. & Ueno, S.	Formatted
732	(2013). External factors affecting polymorphic crystallization of lipids.	
733	European Journal of Lipid Science and Technology, 115, 1224-1238.	
734	3. Bayés-García, L., Patel, A. R., Dewettinck, K., Rousseau, D., Sato, K. &	
735	Ueno, S. (2015). Lipid crystallization kinetics – roles of external factors	
736	influencing functionality of end products. Current Opinion in Food	
737	Science, 4, 32-38.	
738	4. Smith, K. W., Bhaggan, K., Talbot, G. & van Malssen, K. F. (2011).	
739	Crystallization of Fats: Influence of Minor Components and Additives.	
740	Journal of the American Oil Chemists' Society, 88, 1085-1101.	
741	5. Mazzanti, G., Li, M., Marangoni, A. G. & Idziak, S. H. J. (2011) Effects	
742	of Shear Rate Variation on the Nanostructure of Crystallizing	
743	Triglycerides. Crystal Growth & Design, 11, 4544-4550.	

d: Spanish (Spain, nal Sort)

744	6.	Ueno, S., Ristic, R. I., Higaki, K. & Sato, K. (2003). In Situ Studies of
745		Ultrasound-Stimulated Fat Crystallization Using Synchrotron Radiation
746		Journal of Physical Chemistry B, 107, 4927-4935.
747	7.	Chen, F., Zhang, H., Sun, X., Wang, X. & Xu, X. (2013). Effects of
748		Ultrasonic Parameters on the Crystallization Behavior of Palm Oil.
749		Journal of the American Oil Chemists' Society, 90, 941-949.
750	8.	Ye, Y. & Martini, S. (2015). Application of High-Intensity Ultrasound to
751		Palm Oil in a Continuous System. Journal of Agricultural and Food
752		Chemistry, 63, 319-327.
753	9.	Wassell, P., Okamura, A., Young, N. W. G., Bonwick, G., Smith, C., Sato,
754		K. & Ueno, S. (2012). Synchrotron Radiation Macrobeam and Microbeam
755		X-ray Diffraction Studies of Interfacial Crystallization of Fats in Water-in-
756		Oil Emulsions. Langmuir, 28, 5539-5547.
757	10	Smith, K. W., Cain, F. W. & Talbot, G. (2005). Crystallization of 1,3-
758		dipalmitoyl-2-oleoylglycerol and tripalmitoylglycerol and their mixtures
759		from acetone. European Journal of Lipid Science and Technology, 107,
760		583-593.
761	11	. Bayés-García, L., Calvet, T., Cuevas-Diarte, M. A., Ueno, S. & Sato, K.
762		(2011). In situ synchrotron radiation X-ray diffraction study of
763		crystallization kinetics of polymorphs of 1,3-dioleoyl-2-palmitoyl glycerol
764		(OPO). CrystEngComm, 13, 3592-3599.
765	12	. Bouzidi, L. & Narine, S. S. (2012). Relationships between molecular
766		structure and kinetic thermodynamic controls in lipid systems. Part II:
767		Phase behavior and transformation paths of SSS, PSS and PPS saturated

768	triacylglycerols – Effect of chain length mismatch. <i>Chemistry and Physics</i>
769	of Lipids, 165, 77-88.
770	13. Bayés-García, L., Calvet, T., Cuevas-Diarte, M. A., Ueno, S. & Sato, K.
771	(2013). In situ observation of transformation pathways of polymorphic
772	forms of 1,3-dipalmitoyl-2-oleoyl glycerol (POP) examined with
773	synchrotron radiation X-ray diffraction and DSC. CrystEngComm, 15,
774	302-314.
775	14. Bayés-García, L., Calvet, T., Cuevas-Diarte, M. A., Ueno, S. & Sato, K.
776	(2013). Crystallization and Transformation of Polymorphic Forms of
777	Trioleoyl Glycerol and 1,2-Dioleoyl-3-rac-linoleoyl Glycerol. Journal of
778	Physical Chemistry B, 117, 9170-9181.
779	15. Baker, M., Bouzidi, L., Garti, N. & Narine, S. S. (2014). Multi-length-
780	Scale Elucidation of Kinetic and Symmetry Effects on the Behavior of
781	Stearic and Oleic TAG. I. SOS and SSO. Journal of the American Oil
782	Chemists' Society, 91, 559-570.
783	16. Baker, M. R., Bouzidi, L., Garti, N. & Narine, S. S. (2014). Multi-Length-
784	Scale Elucidation of Kinetic and Symmetry Effects on the Behavior of
785	Stearic and Oleic TAG. II: OSO and SOO. Journal of the American Oil
786	Chemists' Society, 91, 1685-1694.
787	17. Lopez, C., Lesieur, P., Bourgaux, C. & Ollivon, M. (2005). Thermal and
788	Structural Behavior of Anhidrous Milk Fat. 3. Influence of Cooling Rate.
789	Journal of Dairy Science, 88, 511-526.
790	18. Tippets, M. & Martini, S. (2009) Effect of cooling rate on lipid
791	crystallization in oil-in-water emulsions. Food Research International, 42,
792	847-855

793	19. Ronholt, S., Kirkensgaard, J. J. K., Pedersen, T. B., Moretensen, K. &	Formatted: German (Germany)
794	Knudsen, J. C. (2012). Polymorphism, microstructure and rheology of	
795	butter, Effects of cream heat treatment. Food Chemistry, 135, 1730-1739.	
796	20. Bayés-García, L., Calvet, T., Cuevas-Diarte, M. A., Rovira, E., Ueno, S. &	
797	Sato, K. (2015). New Textures of Chocolate are Formed by Polymorphic	
798	Crystallization and Template Effects: Velvet Chocolate. Crystal Growth &	
799	Design, 15, 4045-4054.	
800	21. Miura, S. & Konishi, H. (2001). Crystallization behaviour of 1,3-	
801	dipalmitoyl-2-oleoyl-glycerol and 1-palmitoyl-2,3-dioleoyl-glycerol.	
802	European Journal of Lipid Science and Technology, 103, 804-809.	
803	22. Zhang, L., Ueno, S., Miura, S. & Sato, K. (2007). Binary Phase Behavior	
804	of 1,3-Dipalmitoyl-2-oleoyl-sn-glycerol and 1,2-Dioleoyl-3-palmitoyl-rac-	
805	glycerol. Journal of the American Oil Chemists' Society, 84, 219-227.	
806	23. Zhang, L., Ueno, S., Sato, K., Adlof, R. O. & List, G. R. (2009). Thermal	
807	and structural properties of binary mixtures of 1,3-distearoyl-2-oleoyl-	
808	glycerol (SOS) and 1,2-dioleoyl-3-stearoyl-sn-glycerol (sn-OOS). Journal	
809	of Thermal Analysis and Calorimetry, 98, 105-111.	
810	23.24. Mortimer, R. G. (2005). Mathematics for Physical Chemistry. San	
811	Diego: Elsevier Academic Press, pp. 326.	
812	24.25. Perkin Elmer. (1982). Instructions Model DSC-4. Norwalk.	
813	Connecticut, USA.	
814	<u>25.</u>	Formatted: Normal, No bullets or numbering
815	26. Larsson, K. (1992). On the structure of the liquid state of triglycerides.	
816	Journal of the American Oil Chemists' Society, 69, 835-836.	

817	27. Cebula, D. J., McClements, D. J., Povey, M. J. W. & Smith, P. R. (1992).	
818	Neutron Diffraction Studies of Liquid and Cristalline Trilaurin. Journal of	
819	the American Oil Chemists' Society, 69, 130-136.	
820	28. Corkery, R. W., Rousseau, D., Smith, P., Pink, D. A. & Hanna, C. B.	
821	(2007). A Case of Discotic Liquid Crystals in Molten Triglycerides.	
822	Langmuir, 23, 7241-7246.	
823	29. Larsson, K. (1972). Molecular arrangement in glycerides. Fette Seifen	
824	Anstrichmittel, 74, 136-142.	
825	30. Larsson, K. (1994). Lipids: Molecular Organization, Physical Functions	
826	and Technical Applications. Dundee: Oily Press, pp. 75-80.	
827	31. Ueno, S., Minato, A., Seto, H., Amemiya, Y. & Sato, K. (1997).	
828	Synchrotron Radiation X-ray Diffraction Study of Liquid Crystal	
829	Formation and Polymorphic Crystallization of SOS (sn-1,3-Distearoyl-2-	
830	oleoyl Glycerol. Journal of Physical Chemistry B, 101, 6847-6854.	
831	32. Mortimer, R. G. (2005). Mathematics for Physical Chemistry. San Diego:	
832	Elsevier Academic Press, pp. 326.	
833	33. Perkin Elmer. (1982). Instructions Model DSC-4. Norwalk, Connecticut,	
834	USA.	
835	34. Ostwald, W. Z. (1897). Studien über die Bildung und Umwandlung fester	Formatted: German (Germany)
836	Körper. 1. Abhandlung: Übersättigung und Überkaltung. Zeitschrift für	
837	Physikalische Chemie, 22, 289-330.	
838	35. Small, D. M. (1984). Lateral chain packing in lipids and membranes.	
839	Journal of Lipid Research, 25, 1490-1500.	
840		
841		

Figure Click here to download high resolution image

1

α-2, β'-2

In Situ Crystallization and Transformation Kinetics of Polymorphic Forms of Saturated-Unsaturated-Unsaturated Triacylglycerols: 1-palmitoyl-2,3-dioleoyl glycerol, 1-stearoyl-2,3-dioleoyl glycerol, and 1-palmitoyl-2-oleoyl-3-linoleoyl glycerol

Laura Bayés-García, Teresa Calvet, Miquel Àngel Cuevas-Diarte and Satoru Ueno

The use of dynamic thermal treatments on the polymorphic crystallization and transformation of POO, POL and SOO is closely related to actual crystallization processes of edible fats, as the occurrence of designed polymorphic forms may be controlled by tailoring the most efficient temperature programs.