1	From Trioleoyl Glycerol to Extra Virgin Olive Oil through
2	Multicomponent TriacylglycerolAG Mixtures: Crystallization and
3	Polymorphic Transformation Examined with D <u>ifferential Scanning</u>
4	Calorimetry and X-Ray RDiffration Techniques
5	
6	
7	
8	L. Bayés-García, ^a T. Calvet, ^a M. A. Cuevas-Diarte ^a and S. Ueno ^b
9	
10	
11	
12	^a Secció de Cristal·lografia, Mineralogia i Dipòsits Minerals, Facultat de Ciències de la
13	Terra, Universitat de Barcelona, Martí i Franquès s/n, E-08028 Barcelona, Spain
14	
15	^b Faculty of Applied Biological Science, Hiroshima University, Higashi-Hiroshima 739,
16	Japan
17	
18	
19	
20	
21	
22	Corresponding author: Laura Bayés-García (<u>laurabayes@ub.edu</u>)
23	
24	

26 Abstract

27

28	The polymorphic crystallization and transformation behavior of extra virgin olive oil
29	(EVOO) was examined by using differential scanning calorimetry (DSC) and X-ray
30	diffraction with both laboratory-scale (XRD) and synchrotron radiation source (SR-
31	XRD). The complex behavior observed was studied by previously analyzing mixtures
32	composed by its main 2 to 6 triacylglycerols (TAGs) components. Thus, component
33	TAGs were successively added to simulate EVOO composition, until reaching a 6 TAGs
34	mixture, composed by trioleoyl glycerol (OOO), 1-palmitoyl-2,3-dioleoyl glycerol
35	(POO), 1,2-dioleoyl-3-linoleoyl glycerol (OOL), 1-palmitoyl-2-oleoyl-3-linoleoyl
36	glycerol (POL), 1,2-dipalmitoyl-3-oleoyl glycerol (PPO) and 1-stearoyl-2,3-dioleoyl
37	glycerol (SOO). Molten samples were cooled from $25^{\circ}C \circ C$ to $-80^{\circ}C \circ C$ at a controlled
38	rate of $2^{\circ}C$ /min and subsequently heated at the same rate. The polymorphic behavior
39	observed in multicomponent TAG mixtures was interpreted by considering three main
40	groups of TAGs with different molecular structures: triunsaturated OOO and OOL,
41	saturated-unsaturated-unsaturated POO, POL and SOO, and saturated-saturated-
42	unsaturated PPO. As confirmed by our previous work, TAGs belonging to the same
43	structural group displayed a highly similar polymorphic behavior. EVOO exhibited two
44	different β '-2L polymorphic forms (β '_2-2L and β '_1-2L), which transformed into β '-3L
45	when heated. Equivalent polymorphic pathways were detected when the same
46	experimental conditions were applied to the 6 TAG components mixture. Hence, minor
47	components may not exert a strong influence in this case.
48	

49 Keywords: polymorphism; triacylglycerol; lipid; mixture; olive oil; differential scanning

50 calorimetry; X-ray diffraction; synchrotron radiation.

1. Introduction

54	Lipids are major nutrients and also widely used as lipophylic materials for diverse
55	applications, such as those related to food, cosmetic and pharmaceutical industries
56	(Larsson, Quinn, Sato, and Tiberg-et al., 2006). Natural and industrial lipids are mostly
57	composed by a wide variety of triacylglycerols (TAGs), whose molecules involve
58	different fatty acid moieties (mixed-acid TAGs), giving rise to highly complex systems.
59	The physico-chemical properties of lipids, such as melting behavior, and textural and
60	rheological characteristics (Marangoni, and Narine et al., 2002), are mainly determined
61	by polymorphism, size, morphology and distribution of crystals arranged in fat crystal
62	networks. The complex polymorphic behavior exhibited by TAGs is strongly related to
63	the chemical nature of the fatty acid components: chain length, saturated/unsaturated
64	nature, cis/trans double bonds. Then, as most of natural and industrial lipids contain
65	different types of mixed-acid TAGs, their physicochemical properties must be
66	analyszed not only in single component systems, but also in mixed systems. For this
67	purpose, as an approach in order to understand the physical properties of complex real
68	fat systems, it is necessary to study the mixing behavior in binary (Boodhoo, Bouzidi,
69	and Narine et al., 2009; Bouzidi, Boodhoo, Kutek, Filip, and Narine et al., 2010; Ikeda,
70	Ueno, Miyamoto, and Sato-et al., 2010; Mizobe et al., 2013; Bayés-García, Calvet,
71	Cuevas-Diarte, Ueno, and Sato-et al., 2015), ternary (Sasaki, Ueno, and Sato-et al.,
72	2012) and more complex mixture systems, which may be applied as basic knowledge to
73	delve into model fats and, at the end, final products.

74	An example of complex lipid system is olive oil. Among the different product	
75	categories, extra virgin olive oil (EVOO) becomes a high-value agricultural product,	
76	which is typical from the Mediterranean basin, and whose market has expanded to	
77	North Europe, USA, China and Japan. The increasing popularity of this product has	
78	mainly been attributed to its unique sensory, health and nutritional properties (Harwood,	
79	and Yaqoob et al., 2002). EVOO is widely used as cooking oil and flavouring, but it is	
80	also present in multiple formulated foods, such as sauces and dressings. Although	
81	EVOO is liquid at room temperature, the crystallization characteristics of this low-	
82	melting fat are important for the physical properties of foods employed at chilled	
83	temperatures (e.g. frozen foods). Furthermore, understanding the crystallization and	
84	polymorphic transformation behavior of EVOO, similarly to other lipid systems, may be	
85	also applied for fractionation purposes (Timms, 2005; Salas, Bootello, Martínez-Force,	
86	and Garcés-et al., 2011) or even for the product authentication (Ferrari et al., 2007;	
87	Bayés-García et al., 2016a) and the determination of food frauds (Chiavaro, Vittadini,	
88	Rodriguez-Estrada, Cerretani, and Bendini, et al. 2008; Chiavaro et al., and 2009). At	
89	this point, Chiavaro et al. the authors demonstrated the potential of differential scanning	
90	calorimetry (DSC) as a technique to determine the presence of small amounts of	
91	adulterant vegetable oils, such as refined hazelnut oil or high oleic sunflower oil, in	
92	EVOO.	
93	Previous work (Barba, Arrighetti, and Calligaris et al., 2013) examined the	
94	crystallization and melting behavior of EVOO by using DSC and synchrotron radiation	
95	X-ray diffraction (SR-XRD), in which very approximate conclusions were extracted	
96	from the experimental data, as will be discussed further on. The authors proposed a	
97	hexagonal crystal system for <u>two</u> β ' forms observed (β_a and β_b) during EVOO	C
98	crystallization. However, these results were not consistent with those previously	

Con formato: Fuente: Symbol Con formato: Subíndice Con formato: Fuente: Symbol

Con formato: Subíndice

99	reported, in which crystal systems of β ' forms of pure TAGs were determined. As an
100	example, van Mechelen <u>, Peschar, and Schenck-et al.</u> (2008) determined the β ' crystal
101	structure of a series of mixed-acid TAGs containing palmitoyl, stearoyl and elaidoyl
102	acyl chains by using both laboratory-scale and synchrotron powder X-ray diffraction.
103	The results showed monoclinic cell setting in all cases. By contrast, spectroscopic
104	studies carried out on β ' form of trisaturated 1,2-dipalmitoyl-3-myristoyl-sn-glycerol
105	(Yano et al., 1997) and triunsaturated trioleoyl glycerol (Akita, Kawaguchi, and Kaneko
106	et al., 2006), which becomes the main TAG in olive oil, showed that FT-IR bands
107	corresponded to orthorrombic orthorhombic perpendicular subcell, which is also against
108	the hexagonal symmetry supported by Barba, Arrighetti, and Calligaris (2013)-et al.
109	Our group carried out a systematic study on the polymorphic behavior of the main
110	TAGs present in edible fats and oils, such as olive oil, having different molecular
111	structures: the unsaturated-saturated-unsaturated TAG 1,3-dioleoyl-2-palmitoyl glycerol
112	or OPO (Bayés-García, Calvet, Cuevas-Diarte, Ueno, and Sato-et al., 2011); saturated-
113	unsaturated-saturated 1,3-dipalmitoyl-2-oleoyl glycerol or POP (Bayés-García, Calvet,
114	Cuevas-Diarte, Ueno, and Sato et al., 2013a); triunsaturated trioleoyl glycerol or OOO,
115	and 1,2-dioleoyl-3-rac-linoleoyl glycerol or OOL (Bayés-García, Calvet, Cuevas-
116	Diarte, Ueno, and Sato-et al., 2013b); and saturated-unsaturated-unsaturated 1-
117	palmitoyl-2,3-dioleoyl glycerol or POO, 1-stearoyl-2,3-dioleoyl glycerol or SOO, and
118	1-palmitoyl-2-oleoyl-3-linoleoyl glycerol or POL (Bayés-García, Calvet, Cuevas-
119	Diarte, and Ueno-et al., 2016b). In the present work, we characterized the polymorphic
120	behavior of EVOO with DSC and SR-XRD, by previously analyzing complex mixtures
121	composed by 2 to 6 TAG components. Studying multicomponent TAG mixtures of
122	main TAGs of olive oil permitted to understand in more detail the polymorphic

123 behavior of such a complex sample.

125 2. Experimental

- 126
- 127 Samples of trioleoyl glycerol (OOO), 1-palmitoyl-2,3-dioleoyl glycerol (POO), 1,2-
- 128 dioleoyl-3-linoleoyl glycerol (OOL), 1-palmitoyl-2-oleoyl-3-linoleoyl glycerol (POL),
- 129 1,2-dipalmitoyl-3-oleoyl glycerol (PPO) and 1-stearoyl-2,3-dioleoyl glycerol (SOO)
- 130 were purchased from Tsukishima Foods Industry (Tokyo, Japan) and used without
- 131 further purification (purity >99%). Extra virgin olive oil (EVOO), from the Arbequina
- 132 variety, was obtained from Coselva (cooperative from La Selva del Camp) and
- 133 harvested on December 2010.
- 134 To prepare the multicomponent TAG mixtures, TAG samples were melted at 50℃ °C
- and mixed using a vortex. Jiménez <u>Márquez, and Beltrán Maza et al.</u> (2003), and
- 136 Jiménez Márquez, Beltrán Maza, Aguilera Herrera, and Uceda Ojeda (2007) determined
- the TAGs composition of olive oils obtained from different olive varieties. Following
- 138 the data presented by the authors, mixtures containing from 2 to 6 main TAGs present
- 139 in olive oil of the Arbequina variety were prepared. In order to determine the percentage
- 140 (wt/wt) of each TAG, mean values of the concentration ratios extracted from the
- 141 literature were calculated and extrapolated to 100%. Table 1 shows the concentration
- 142 values (% wt/wt) used to prepare the TAG mixtures, together with compositional data
- 143 from previous works.
- 144
- 145 Table 1. Concentration ratios (% wt/wt) of TAGs present in multicomponent TAG mixtures. Previously
- 146 reported data are is also shown.

Multicomponent TAG mixtures	Arbequina virgin olive oil

2 TAGs	3 TAGs	4 TAGs	5 TAGs	6 TAGs	Jiménez et	Jiménez et
					al. (2003)	al. (2007)
58	47	41	39	38	38.1	32.4
42	31	27	26	25	22.9	24.6
	22	20	19	19	17.6	16.8
		12	11	11	9.3	10.6
			5	4	3.2	5.1
				3	3.1	2.7
	2 TAGs 58 42	2 TAGs 3 TAGs 58 47 42 31 22	2 TAGs 3 TAGs 4 TAGs 58 47 41 42 31 27 22 20 12	2 TAGs 3 TAGs 4 TAGs 5 TAGs 58 47 41 39 42 31 27 26 22 20 19 12 11 5	2 TAGs 3 TAGs 4 TAGs 5 TAGs 6 TAGs 58 47 41 39 38 42 31 27 26 25 22 20 19 19 12 11 11 5 4 3 3	2 TAGs 3 TAGs 4 TAGs 5 TAGs 6 TAGs Jiménez et al. (2003) 58 47 41 39 38 38.1 42 31 27 26 25 22.9 22 20 19 19 17.6 12 11 11 9.3 5 4 3.2 3.1

148	TAG compositions of the samples were determined by High Performance Liquid
149	Chromatography (HPLC). The chromatograph used was an Agilent-1100 with
150	thermostatic control of column temperature and equipped with a differential
151	refractometry detector. A Kinetex column (250 mm long x 4.6 mm i.d.) with C18
152	reverse phase (particle size 5mm) (Phenomenex) was used. TAGs were eluted using a
153	gradient according to the following procedure: mobile phase A acetonitrile and B
154	acetone (50:50), with isocratic gradient during the full analysis. The flow rate was 1
155	ml/min. TAGs were identified by their equivalent carbon number (ECN) calculated as
156	follows: ECN = $CN - 2NDB$, where CN is the carbon number and NDB is the number
157	of double bonds of the TAG. Data were analyzed with HPLC ChemStation software.
158	DSC experiments were conducted at atmospheric pressure using a Perkin-Elmer
159	DSC-7. Samples (9.0-9.4 mg) were weighed into 50 μ l aluminum pans and covers
160	were sealed into place. The instrument was calibrated with reference to the enthalpy
161	and the melting points of indium (melting temperature, 156.6° <u>C</u> ° <u>C</u> ; Δ H, 28.45 J/g)
162	and decane (melting temperature, -29.7 [°] <u>C</u> ; ∆H, 202.1 J/g) standards. An empty
163	pan was used as reference. Dry nitrogen was used as purge gas in the DSC cell at 23
164	cm ³ /min. Thermograms were analyzed with Pyris software to obtain the enthalpy

165	(J/g, integration of the DSC signals) and T_{onset} of the transitions (°C °C, intersections	
166	of the baseline and the initial tangent at the transition). The molten samples were	
167	cooled from 25 [°] ← [°] to -80 [°] ← [°] at 2 [°] ← [°] / min and subsequently heated from -80 [°] ←	
168	<u>°C</u> to 25° <u>C</u> at the same rate. At least three independent measurements were made	
169	for each experiment (n = 3). Random uncertainty was estimated with a 95%	
170	threshold of reliability using the Student's t-distribution, which enables estimation	
171	of the mean of a normally distributed population when it is small.	
172	SR-XRD experiments with simultaneous measurements of small- and wide-angle X-ray	
173	diffraction (SAXD and WAXD) were carried out at the BL-6A of the synchrotron	
174	radiation facility Photon Factory (PF) at the High-Energy Accelerator Research	
175	Organization (KEK) in Tsukuba (Japan). A double-focusing camera operated at a	
176	wavelength of 0.15 nm and the X-ray scattering data were simultaneously collected by	
177	two-dimensional semiconductor PILATUS-2M (Dektoris Co., Switzerland) for SAXD	
178	and PILATUS-100K for WAXD. Camera lengths were 900 mm for SAXD and 270 mm	
179	for WAXD. Each temperature program was controlled by a Linkam THMSF-600 stage	
180	(LINKAM Co., Cambridge, U.K.) and a 1-mm-thick sample was placed in an aluminum	
181	sample cell with Kapton film windows. Tripalmitin (PPP) and trilaurin (LaLaLa) were	
182	used as calibrants and data were processed with in-house software provided by the	
183	Laboratory of Food Biophysics of the Hiroshima University. SR-XRD spectra were	
184	acquired at 60s intervals.	
185	Laboratory-scale powder XRD experiments were performed by using a PANalytical	
186	X'Pert Pro MPD powder diffractometer equipped with a Hybrid Monochromator and an	
187	X'Celerator Detector. The equipment also included an Oxford Cryostream Plus 220V	
188	(temperature 80 to 500K). Monochromatic Cu K α_1 ($\lambda = 0.154059$ nm) radiation was	
189	selected by means of a Hybrid Monochromator. This diffractometer operated with	

Con formato: Fuente: Symbol
Con formato: Subíndice
Con formato: Fuente: Symbol

- 190 Debye-Scherrer transmission geometry <u>and</u>-<u>t</u>The sample was introduced in a 1mm-
- 191 diameter Lindemann glass capillary. The latter was rotated about its axis during the
- 192 experiment to minimize preferential orientations of the crystallites. The step size was
- 193 0.013° from 1.004° to $28^{\circ} 2\theta$ and the measuring time was 150 seconds per pattern.
- 194 <u>X'Pert HighScore software was used to process XRD data.</u>
- 195

196 3. Results and Discussion

- 197
- 198 Figure 1 qualitatively shows compositional modifications of multicomponent mixtures
- 199 when component TAGs were progressively added.
- 200

- 201 202
- 203 Figure 1. HPLC chromatograms of multicomponent TAG mixtures containing from 2 to 6 TAGs.
- 204
- 205
- 206 <u>Although very slight differences were detected in some cases</u>, HPLC results confirmed
- the TAG concentrations of the previously prepared mixtures, although slight differences

208 were detected in some cases, which were within the experimental error. Table 2

summarizes the TAG composition of the prepared mixtures, determined by HPLC.

210

211 Table 2. TAG composition (% wt/wt) of multicomponent mixtures determined by HPLC.

	2 TAGs	3 TAGs	4 TAGs	5 TAGs	6 TAGs
000	54	44	37	36	35
POO	46	33	29	28	26
OOL		23	21	21	21
POL			12	10	10
PPO				5	4
SOO					4
	1				

212

213 The DSC thermograms obtained when samples containing from 1 to 6 TAG

214 components and EVOO sample were cooled from 25<u>°C °C</u> to -80<u>°C °C</u> at 2<u>°C °C</u>/min

and subsequently heated at the same conditions are shown in Figure 2. Table 3

216 summarizes onset temperatures (T $_{onset}$) and enthalpy (ΔH) values associated to each

217 thermal phenomenon. Figure 3 depicts the temperature-dependent laboratory-scale XRD

218 patterns, corresponding to mixtures containing from 2 to 5 TAG components.

224 OOO + 31% POO + 22% OOL). d) 4 TAGs (41% OOO + 27% POO + 20% OOL + 12% POL). e) 5

TAGs (39% OOO + 26% POO + 19% OOL + 11% POL + 5% PPO). f) 6 TAGs (38% OOO + 25% POO
+ 19% OOL + 11% POL + 4% PPO + 3% SOO). g) EVOO.

Table 3. DSC data corresponding to the crystallization, polymorphic transformation and melting
processes of OOO (1 TAG), TAG mixtures from 2 to 6 TAGs and EVOO (Arbequina variety) obtained
when samples were cooled and heated at 2°C °C/min. Letters *c* and *m* mean *crystallization* and *melting*,
respectively. DSC peaks were labelled according to their exothermic (*exo*) or endothermic (*endo*) nature.

		Cooling (2 °C °C/min)		Heating (2º	<mark>€<u>°C</u>/min)</mark>				
		_ /							
		1 (01 (.))		$2(\beta_2 \rightarrow$	$\mathcal{J}(\beta_2 \rightarrow$	10.0			
		Ι (β ² (c))		β_2 β_l		$4 (p_2 + p_1)$	$4(p_2 + p_1(m))$		
1 74.0	T _{onset} (℃	$-26.6 \pm$	$-33.4 \pm$	25.0 ± 1.7	11.2 ± 1.7	22 ± 0.7	2.0 ± 1.2		
TIAG	<u>°C</u>)	1.2	0.7	-23.0 ± 1.7	-11.5 ± 1.7	-2.2 ± 0.7	2.9 ± 1.5		
		70 ± 1		n đ	27 ± 4	$128 \pm$			
	Δп (J/g)	-70±1		n.d.	-27 ± 4	5**			
		1 (exo)		2 (exo)	3 (endo)	4 (exo)	5 (endo)	6 (endo)	
2	T _{onset} (℃	-18.6 ±	$-26.8 \pm$	12.2 1 0 5	0.1.1.0.7			() 1 (
TAGs	<u>°C</u>)	1.7	0.2	-13.3 ± 0.5	-8.1 ± 0.7	-3.3 ± 0.7	1.4 ± 0.5	6.3 ± 1.0	
	$\Delta H (J/g)$	-76 ± 3		-3 ± 1	31 ± 3	-11 ± 7	$69\pm9^{**}$		
		1 (exo)		2 (endo)	3 (endo)				
3	T _{onset} (℃	-25.1 ±		10 () 0 1		24100			
TAGs	<u>°C</u>)	1.4		-10.6 ± 0.4	-4.7 ± 1	3.4 ± 0.8			
	$\Delta H (J/g)$	-76 ± 3		90±3**					
		1 (exo)		<u>3-2 (</u> endo)	<u>4-3(</u> endo)				
4	T _{onset} (≌	$-26.6\pm$	-31.9 ±	11.4 ± 0.5	66+16	16 ± 0.9			
TAGs	<u>°C</u>)	0.4	0.3	-11.4 ± 0.5	-0.0 ± 1.0	1.0 ± 0.8			
	$\Delta H \left(J/g \right)$	-70 ± 2		$88 \pm 4^{**}$					
		1 (exo)	2 (exo)	3 (endo)	4 (endo)				

	5 TAGs	T _{onset} (℃	-9.0 ± 0.4	-30.0 ± 0.3	-10.3 ± 0.5	-2.8 ± 0.5			
		$\Delta H (J/g)$	$-70\pm3^{**}$		85 ± 2**				
-			1 (exo)	2 (exo)	3 (exo)	4 (endo)	5 (endo)		
	6	T _{onset} (℃	-10.6 \pm	$-30.5 \pm$	-14.0 ± 0.6	-10.2 ± 0.5	-1.6 ± 0.5		
	TAGs	<u>°C</u>)	0.5	0.3					
		$\Delta H (J/g)$	-70 ± 3**		-1 ± 1	85 ± 3**			
-			1 (exo)	2 (exo)	3 (endo)	4 (exo)	5 (endo)		6 (endo)
	FVOO	Tonset (℃	-12.4 \pm	-35.4 ±	-28.5 \pm	-252 + 13	-17.2±	-	$-3.7 \pm$
	2,00	<u>°C</u>)	0.4	0.3	0.8*		0.3	11.5±0.7	0.6
	Sample	ΔH (J/g)	-65 ± 8**			-4 ± 1	77 ± 4**		

234 n.d. Not determined

 $235 \qquad \text{Two T_{onset} values were assigned to some DSC peaks due to the presence of shoulders, although some $$ of $$}$

them could not be clearly appreciated through Figure 2. *The peak top temperature was determined in this

237 case. No ΔH value was given for this peak, as the onset and end temperatures could not be clearly

238 defined. ** These enthalpy values correspond to the global enthalpy of the overlapped peaks.

240 Figure 3. Laboratory-scale XRD patterns of multicomponent TAG mixtures from 2 to 5 TAG

241 components. a) 2 TAGs (58% OOO + 42% POO). b) 3 TAGs (47% OOO + 31% POO + 22% OOL). c) 4

TAGs (41% OOO + 27% POO + 20% OOL + 12% POL). d) 5 TAGs (39% OOO + 26% POO + 19%
 OOL + 11% POL + 5% PPO).

245	Previous work reported by our group analyzed the influence of dynamic thermal
246	treatments on the complex polymorphic behavior of OOO (Bayés-García, Calvet,
247	Cuevas-Diarte, Ueno, and Sato-et al., 2013b). The SR-XRD data revealed that, when
248	OOO was cooled from the melt at $2^{\circ}C_{\circ}$ /min, the crystallizing polymorph was β'_2 .
249	However, the DSC cooling curve showed a complex phenomenon consisting of a main
250	exothermic peak with T_{onset} at -33.4° <u>C</u> °C having a shoulder at -26.6° <u>C</u> (peak 1 in
251	Figure 2a), which revealed the beginning of the crystallization process (see Table 3).
252	When β'_2 crystals were subsequently heated at $2^{\circ}C$ /min, two consecutive transitions
253	occurred: β'_2 form transformed into β_2 form at around -25.0°C (peak 2 in Figure 2a)
254	and, on further heating, a solid-state transformation from β_2 to most stable β_1 form was
255	detected at -11.3 [°] € <u>°</u> (peak 3 in Figure 2a). Finally, two slightly separated melting
256	phenomena were observed, corresponding to the melting of some remaining β_2 form
257	$(T_{onset}=-2.2^{\circ}\underline{\mathbb{C}})$ and β_1 form $(T_{onset}=2.9^{\circ}\underline{\mathbb{C}})$.
258	By adding more TAG components to OOO, the complexity of the polymorphic behavior
259	increased considerably. Thus, when POO was added to OOO (2 TAGs mixture
260	composed by 58% OOO and 42% POO) and the mixture was cooled at 2 ^e <u>C</u> · min ⁻¹ , a
261	broad exothermic peak with two onset temperatures, at -18.6° <u>C</u> and -26.8° <u>C</u> ,
262	appeared in the DSC cooling curve (peak 1 in Figure 2b and Table 3). Therefore, the
263	addition of POO caused a shifting of the crystallization peak to higher temperatures.
264	The corresponding XRD pattern (Figure 3a) revealed the occurrence of a β ' form (short
265	spacing values of 0.45 nm, 0.43 nm, 0.40 nm and 0.39 nm), having a double chain
266	length structure (long spacing value of 4.5 nm). This β ' form, having a double chain

267	length structure, was tentatively called β'_1 -2L form, as an additional β' -2L form
268	occurred when TAGs were successively added, as will be discussed further on. No new
269	XRD peaks were observed during the cooling process. Thus, we may think that OOO
270	and POO did not crystallized separately, so that an alloy between the two component
271	TAGs may have been formed. Complicated transformation processes were observed in
272	the DSC curve corresponding to the subsequent heating step. A small exothermic DSC
273	peak, with an enthalpy value of -3 J/g, was observed at a T_{onset} of -13.3°C °C. This peak
274	was followed by an endothermic peak at -8.1°C (peak 3 in Figure 2b), an exothermic
275	phenomenon with T_{onset} at -3.3°C °C (peak 4), and two consecutive endothermic peaks
276	at 1.4° <u>C</u> ° <u>C</u> and 6.3° <u>C</u> ° <u>C</u> (peaks 5 and 6, respectively). The XRD data only showed, at
277	approximately $-10^{\circ}C$, the occurrence of a triple chain length structure peak at 6.7 nm,
278	corresponding to a β '-3L form (new wide angle region peaks appeared at 0.45 nm, 0.43
279	nm, 0.42 nm, 0.41 nm and 0.39 nm). On further heating, the double chain length peak at
280	4.5 nm totally vanished at $2^{\circ}C$ (corresponding to the β'_1 -2L form melting), and the
281	β'-3L peaks disappeared at around $15^{\circ}C$ (β'-3L melting). One may consider that the
282	long spacing value of the last melting form could correspond to a $\beta^{\prime}{}_{POO}$ form (Bayés-
283	García, Calvet, Cuevas-Diarte, and Ueno et al., 2016b). As to OOO, chain length
284	structures of all polymorphic forms of OOO are double, having a long spacing value of
285	4.5 or 4.4 nm (Bayés-García, Calvet, Cuevas-Diarte, Ueno, and Sato-et al., 2013b), so
286	judging from the short spacing values, some β'_{000} should be present. However, only
287	one crystallizing polymorph was obtained from the melt by cooling the 2 TAGs mixture
288	at 2°C_°C/min. A possible explanation of the phenomena observed is the crystallization
l 289	of a metastable alloy of the two component TAGs. When heating, this alloy probably
290	melted and individual TAGs crystallized (melt-mediated transformation). Finally, β'_{000}

291 melted at around $1.4^{\circ}C^{\circ}C$ (peak 5), followed by the melting of β'_{POO} at $6.3^{\circ}C^{\circ}C$ (peak 292 6) (Tonset values). 293 By adding OOL, the DSC heating curve became simpler than that of the 2 TAGs 294 mixture, and more similar to that of EVOO. As to the laboratory-scale XRD patterns, 295 they became almost identical to that of the 2 TAGs mixture. Thus, by cooling the 3 296 TAGs mixture at $2^{\circ} \underline{\mathbb{C}} \cdot \min^{-1}$, a clear exothermic peak, with a single onset temperature 297 at -25.1°<u>C</u>, appeared in the DSC cooling curve (peak 1 in Figure 2c). Simultaneously, 298 laboratory-scale XRD data showed the occurrence of the β'_1 -2L form previously 299 described, which was identified by a double chain length peak at 4.5 nm and wide short 300 angle diffraction peaks at 0.45 nm, 0.43 nm, 0.40 nm and 0.39 nm. When the sample 801 was heated, an endothermic peak appeared at around $-10.6^{\circ} \underline{C}$ (peak 2) and it was 802 followed by a broader one (peak 3) characterized by two onset temperatures at -4.7°<u>C</u>°<u>C</u> 803 and 3.4[°]<u>C</u>, respectively. XRD data revealed, at approximately -5[°]<u>C</u>, the 304 occurrence of a new β' -3L form at the expense of β'_1 -2L form. The newly formed β' -3L 805 phase was detected by the presence of a triple chain length peak at 6.7 nm and wide 806 short angle diffraction peaks at 0.45 nm, 0.43 nm, 0.41 nm at 0.40 nm. XRD peaks of 807 this β '-3L form totally vanished at 15°C °C. Similarly to the 2 TAGs mixture case, when 308 the sample was cooled, probably some molecular alloy of the three TAG components 309 (OOO, POO and OOL) was formed. However, it transformed to a more stable β '-3L 310 form when heated. By considering the phenomena observed in the DSC heating 311 thermogram and the slight increase of background in the corresponding XRD diffraction 312 patterns, one may conclude that this $\beta'_1 - 2L \rightarrow \beta' - 3L$ polymorphic transformation most 313 probably may have occurred through the liquid state (melt-mediated transformation). No important changes were observed when POL was added. Figures 2d and 3c depict 314 315 the DSC thermogram of the 4 TAGs mixture and the corresponding XRD patterns,

316	respectively. When the 4 TAGs mixture was cooled at $2^{\circ}C_{-}$ /min, again β'_1 -2L form
317	was detected by the corresponding XRD peaks at 4.5 nm, and 0.45 nm, 0.43 nm, 0.41
318	nm and 0.39 nm in the short-small and wide angle regions, respectively. The
319	corresponding exothermic DSC peak became different from that of the 3 TAGs mixture,
320	as it consisted of a double crystallization peak with two clear onset temperatures at -
321	26.6° <u>C</u> and -31.9° <u>C</u> . Furthermore, the addition of POL caused a shifting of the
322	main crystallization peak to lower temperatures (see Figure 2). As to the heating
323	process, again only two endothermic peaks appeared in the DSC curve. The first one
324	was detected at a T _{onset} of -11.4° <u>C</u> ° <u>C</u> , and two different onset temperatures (-6.6° <u>C</u> ° <u>C</u>
325	and $1.6^{\circ}\underline{\mathbb{C}}$ were determined for the second endothermic peak (peak 3 in Figure 3d).
326	Similarly to all the previous mixtures discussed, the XRD data revealed the occurrence
327	of a β '-3L form at the expense of β ' ₁ -2L form, at around 0° <u>C</u> ° <u>C</u> . In this case, the long
328	spacing value of the triple chain length structure was 6.5, instead of 6.7, and β ' peaks at
329	0.45 nm, 0.43 nm and 0.40 nm were also present. Finally, the β '-3L XRD peaks
330	vanished at 10° <u>C °C</u> .
331	By comparing the DSC thermograms of multicomponent TAG mixtures containing
332	from 2 to 4 TAGs, one may notice progressive changes as TAGs were successively
333	added. Most important variations were observed when OOL was included in the system,
334	as three endothermic peaks appeared in the DSC heating curve of the 2 TAGs mixture,
335	whereas only two were observed in the 3 TAGs mixture case. As already noted, the
336	metastable alloy formed when the 2 TAGs mixture was cooled may have transformed
337	into individual β ' forms of TAG components during the subsequent heating process.
338	However, this behavior was not observed when OOL was added, as the initially formed
339	β'_1 -2L polymorph may have transformed into a single β' -3L when heated, which finally
340	melted on further heating. The same polymorphic behavior was observed when the 4

341	TAGs mixture was analyzsed. At this point, one may take into account the structural
342	similarity between some of the TAG components. A similar polymorphic behavior was
343	observed, on the one hand, in triunsaturated TAGs (such as OOO and OOL) (Bayés-
344	García, <u>Calvet</u> , <u>Cuevas-Diarte</u> , <u>Ueno</u> , and <u>Sato</u> et al., 2013b) and, on the other hand, in
345	saturated-unsaturated-unsaturated TAGs (like POO and POL) (Bayés-García, Calvet,
346	Cuevas-Diarte, and Ueno-et al., 2016b). Thus, in general, with the addition of new
347	TAGs to the mixtures, no considerable changes were appreciated, especially in the XRD
348	patterns. Only β'_1 -2L and β' -3L forms were detected in the laboratory scale XRD data,
349	due to different polymorphic behavior caused by two groups of TAGs: triunsaturated
350	OOO and OOL and saturated-unsaturated-unsaturated POO and POL.
351	More appreciable changes were noted when a saturated-saturated-unsaturated (PPO)
352	TAG was added. Figures 2e and 3d show the DSC thermogram and the corresponding
353	XRD patterns of the 5 TAGs mixture (composed by OOO, POO, OOL, POL and PPO),
354	respectively. Two crystallization processes were observed in the DSC cooling curve.
355	The first one occurred at -9.0°C_°C, which corresponded to higher temperatures than
356	those of mixtures up to 4 TAG components, as described above. Simultaneously, the
357	XRD wide small angle region exhibited a double chain length peak at 5.3 nm, whereas
358	β' form peaks appeared in the wide angle region, at 0.42 nm and 0.37 nm. This β' form,
359	named β_{2}^{2} -2L form, may be caused by the presence of PPO. On further cooling, at -
360	30.0°C°C, β '1-2L crystallization was observed, as XRD data revealed by the occurrence
361	of a double chain length peak at 4.5 nm and short wide angle peaks at 0.45 nm, 0.43 nm,
362	0.41 nm and 0.39 nm. When heating, at -10°C °C, β ' ₂ -2L form peaks vanished, due to
363	its melting or some polymorphic transformation. Right after, at -6° <u>C</u> °C, new β '-3L
364	XRD peaks appeared, at the expense of β'_1 -2L peaks, at 6.5nm in the wide small -angle
365	region, and at 0.45 nm, 0.43 nm and 0.40 nm in the short wide angle region. No XRD
1	

366	peaks were present at $10^{\circ}C$, revealing the melting of β '-3L form. As to the DSC data,
367	only two broad endothermic peaks with T_{onset} at -10.3°C (peak 2 in Figure 2e) and -
368	2.8°C (peak 3), respectively, appeared in the DSC heating curve. Thus, complex
369	phenomena took place within the same temperature ranges, obtaining broad responses
370	by the DSC. One may pay attention to the flatness of the DSC signals if they are
371	compared to those of the 4 TAGs mixture.
372	As to the 6 TAGs mixture, no considerable differences were observed when SOO was
373	added. We should remind the saturated-unsaturated-unsaturated structure of this TAG,
374	which may display a similar polymorphic behavior to that of POO and POL. Figure 2f

depicts the corresponding DSC thermogram, whereas time-dependent XRD patterns are
shown in Figure 4a. For this sample, SR-XRD with SAXD and WAXD measurements
were carried out (Figures 4b and 4c), and the results obtained could be compared with
those of laboratory-scale XRD data.

Figure 4. XRD patterns of multicomponent TAG mixture of 6 TAG components (38% OOO + 25% POO
+ 19% OOL + 11% POL + 4% PPO + 3% SOO). a) Laboratory-scale XRD. b) SR-SAXD pattern. c) SRWAXD pattern.

385

386 Similarly to the mixture containing 5 TAG components, by cooling the 6 TAGs mixture 387 at 2°<u>C</u>/min, a β'₂-2L crystallization occurred at -10.6°<u>C</u>. Both laboratory-scale 388 XRD and SR-XRD data revealed a double chain length structure peak at 5.4 nm, and the 389 small angle region showed typical β ' form peaks at 0.42 and 0.37 nm. On further 890 cooling, another exothermic peak at $-30.5 \stackrel{\circ}{\leftarrow} \stackrel{\circ}{\underline{\circ}}$ was detected in the DSC cooling curve 391 (see Figure 2f), corresponding to an additional β'_1 -2L form crystallization, with long 392 and short spacing values of 4.5nm, and 0.45 nm, 0.43 nm and 0.39 nm, respectively 393 (Figure 4). As to the heating step, and differently from the previous TAGs mixtures 394 examined, an exothermic DSC peak (peak 2 in Figure 2f), having an onset temperature 395 of -14.0°€ °C, preceded the first broad endothermic peak at -10.2°€ °C. Within this 396 temperature range, at -13°<u>C</u>, the SR-XRD data clearly revealed the extinction of β '₂-897 2L peaks at 0.42 nm and 0.37 nm. At approximately -5℃, triple chain length 398 structure peak at 6.5 nm, corresponding to a β '-3L form, appeared at the expense of the 399 double chain length structure peak at 4.5 nm. The broad endothermic DSC signal, 400 labelled as peak 5 in Figure 2f, had a Tonset of -1.6^eC. XRD data revealed the total 401 extinction of β'_1 -2L peaks at around $1^{\circ} \underline{\mathbb{C}}$, whereas β' -3L peaks disappeared at 402 approximately 11[°]€<u>°</u>C. 403 Finally, EVOO sample was examined by following the same procedure (Figure 5). No 404 significant differences were detected in the corresponding DSC cooling and heating 405 curves (Figure 2g) compared to the thermal response of the 6 TAGs mixture sample

406 (Figure 2f), and the respective XRD patterns were almost identical (compare Figures 4

407 and 5). This fact revealed a weak influence of the minor compounds present in the olive

408 oil sample.

409

411

⁴¹⁵ By cooling the EVOO sample at a rate of $2^{\circ}C/min$, β'_2-2L form crystallized from the 416 melt at -12.4°C (peak 1 in Figure 2g). Short spacing values of this β'_2 -2L form were 417 the same as those of the 6 TAGs mixture (0.42 nm and 0.37 nm), whereas the long 418 spacing value became higher (5.8 nm), as confirmed by both laboratory-scale XRD and 419 SR-XRD. On further cooling, the main crystallization peak, corresponding to the 420 crystallization of β'_1 -2L form (4.5nm, and 0.45 nm, 0.43 and 0.39 nm) appeared at 421 lower temperatures (T_{onset} = -35.4°<u>C</u>) compared to that of the mixture of 6 TAG 422 components. When the crystallized olive oil was subsequently heated at 2°C °C/min, a

423	broad endothermic peak, with peak top temperature of $-28.3^{\circ}C^{\circ}C$, followed by an
424	exothermic peak with T_{onset} of -25.2°C were observed. The DSC heating thermogram
425	also exhibited an endothermic peak with a shoulder, which defined two onset
426	temperatures of $-15.5^{\circ}\underline{\mathbb{C}}$ and $-11.3^{\circ}\underline{\mathbb{C}}$. Within this temperature range, at $-13^{\circ}\underline{\mathbb{C}}$,
427	XRD peaks at 5.8 nm, 2.9 nm, and 0.42 nm, 0.37 nm, corresponding to $\beta^{\prime}{}_{2}\text{-}2L$ form,
428	vanished. Later, at -5° <u>C</u> , triple chain length structure peak at 6.6 nm (β '-3L)
429	appeared after the intensity of the double chain length structure peak at 4.5 nm
430	decreased. Simultaneously, the SR-XRD data clearly showed, through the WAXD
431	pattern, the occurrence of β ' peak at 0.40 nm. On further heating, a broad DSC signal
432	with T_{onset} of -3.7° <u>C</u> (peak 5 in Figure 2g) was observed. In addition, XRD results
433	revealed the total disappearance of β ' ₁ -2L and β '-3L forms at around 1° <u>C</u> °C and 11° <u>C</u>
434	<u>°C</u> , respectively.
435	Barba, <u>Arrighetti, and Calligaris</u> et al. (2013) reported on the crystallization and melting
436	behavior of extra virgin olive oil by using DSC and SR-XRD. In the mentioned work,
437	only very approximate conclusions were extracted from the experimental data. The
438	results showed in the present study are in discordance with those discussed by Barba.
439	Arrighetti, and Calligaris (2013)-et al., due to different interpretation of the SR-XRD
440	data. The authors described the crystallization of two β ' forms when an extra virgin
441	olive oil sample was cooled at $2^{\circ} c'$ /min, which partly transformed into most stable β
442	form when heating. This polymorphic transformation was identified through the WAXD
443	pattern, as no new SAXD peaks were detected. In the present work, no β form was
444	detected during the heating step, as the hypothetic most stable β form described by
445	Barba <u>Arrighetti, and Calligaris (2013)</u> et al. was interpreted as β '-3L form in the present
446	work. However, one may also consider that the different polymorphic behavior
447	observed could also be due to a different TAG composition of the two EVOO samples.
1	

- 448 The study of multicomponent TAG mixtures by using the main TAGs of olive oil
- 449 permitted to understand in more detail the polymorphic behavior of such a complex
- 450 sample.
- 451 Figure 6 depicts a summary of the polymorphic crystallization and transformation
- 452 pathways exhibited by 1 TAG to 6 TAGs mixture and EVOO samples when they were
- 453 cooled and subsequently heated at $2^{\circ}C/min$.
- 454

- 459 The DSC results plotted in Figure 2 graphically showed the influence of every TAG
- 460 component. Most important differences were observed when OOL was added to the 2
- 461 TAGs mixture (composed by OOO and POO), as the complex DSC heating curve
- 462 including exothermic and endothermic peaks (see Table 3) changed to a DSC profile
- 463 based on two broad endothermic peaks. The different thermal behavior observed may be

⁴⁵⁶ Figure 6. Polymorphic crystallization and transformation pathways of 1 TAG to 6 TAGs mixture and 457 EVOO samples.

464	explained by considering the different polymorphic pathways shown in Figure 6. When
465	the molten 2 TAGs mixture was cooled at $2^{\circ}C/min$, a β'_1-2L metastable alloy formed
466	by OOO and POO crystallized, which melted when heated, and individual TAGs
467	crystallized (melt-mediated transformation) in β '-2L (OOO) and β '-3L (POO) forms.
468	The same crystallization behavior was observed when the molten 3 TAGs mixture was
469	cooled. However, a single melt-mediated polymorphic transformation occurred from
470	β ' ₁ -2L to β '-3L. The same polymorphic behavior was observed when the 4 TAGs
471	mixture was subjected to the same experimental conditions.
472	More variations were detected when PPO (a saturated-unsaturated-unsaturated TAG)
473	was added to the 4 TAGs mixture (OOO, POO, OOL and POL). At this point, a new
474	exothermic DSC peak appeared at around $-30^{\circ}C^{\circ}C$, which was due to the crystallization
475	of an additional $\beta^{\prime}{}_2\mbox{-}2L$ form, as laboratory-scale XRD and SR-XRD data confirmed.
476	The increasing complexity of the multicomponent TAG mixtures was reflected in the
477	DSC thermograms, as broader and flatter signals appeared while increasing the number
478	of TAGs. The same polymorphic pathways were observed in samples of 6 TAGs
479	mixture and EVOO.
480	The complex polymorphic behavior observed in multicomponent TAG mixtures can be
481	understood by considering three main groups of TAG components: triunsaturated TAGs
482	(OOO and OOL), saturated-unsaturated-unsaturated TAGs (POO, POL, SOO) and
483	saturated-saturated-unsaturated TAGs (PPO). As confirmed by our previous work
484	(Bayés-García, Calvet, Cuevas-Diarte, Ueno, and Sato, et al. 2011, 2013a, 2013b,
485	Bayés-García, Calvet, Cuevas-Diarte, and Ueno, 2016b), TAGs belonging to the same
486	structural group display a highly similar polymorphic behavior.
487	Finally, by comparing the results obtained after analyzing the mixture of 6 TAG
488	components and EVOO, one may realize that, despite of some differences, the general

489	response, determined by DSC and XRD experiments, became considerably similar.
490	Thus we may conclude that the 6 main TAGs present in olive oil, which are OOO,
491	POO, OOL, POL, PPO and SOO, and approximately configure the 92% of its
492	composition, mostly determine their main polymorphic behavior. As to minor
493	components, they may not exert a strong influence in this case.
494	
495	

496 4. Conclusions

- 497 The characterization of the polymorphic behavior of multicomponent TAG mixtures,
- 498 formed by 2 to 6 TAGs permitted to make an approach to the understanding of a
- 499 complex natural lipid system, such as olive oil. The polymorphic behavior observed in
- 500 multicomponent TAG mixtures was interpreted by considering three main groups of
- 501 TAG components having different saturated-unsaturated molecular structures. We
- 502 observed that the polymorphic behavior of extra virgin olive oil obtained from the
- 503 Arbequina olive variety was mainly influenced by its main TAGs, whereas apparently
- 504 minor components did not develop a crucial role.
- 505 This may become a first step for defining the polymorphic behavior of olive oil to be
- 506 applied, for instance, for product authentication, the determination of food frauds or the
- 507 fractionation of this vegetable oil.
- 508

509 Acknowledgements

- 510
- 511 The authors acknowledge the financial support of the Ministerio de Economía y
- 512 Competividad through Project MAT2015-65756-R. SR-XRD experiments were
- 513 conducted with the approval of the Photon Factory Program Advisory Committee

514	(proposals 2013G650, 2014G120, 2014G662). The authors also acknowledge the	
515	Generalitat de Catalunya through the Grup Reconegut 2014SGR1208.	
516		
517	References	
518		
519	Akita, A., Kawaguchi, T., & Kaneko, F. (2006). Structural Study on Polymorphism of	
520	Cis-Unsaturated Triacylglycerol: Triolein. <u>The J-ournal of Physical</u> - Chemistry- B, 110,	Con formato: Fuente: Cursiva
521	4346-4353.	
522		
523	Barba, L., Arrighetti, G., & Calligaris, S. (2013). Crystallization and melting properties	
524	of extra virgin olive oil studied by synchrotron XRD and DSC. <u>European Journal of</u>	Con formato: Fuente: Cursiva
525	Lipid Science and Technology Eur. J. Lipid Sci. Technol., 115, 322-329.	
526		
527	Bayés-García, L., Calvet, T., Cuevas-Diarte, M. A., Ueno, S., & Sato, K. (2011). In situ	
528	synchrotron radiation X-ray Diffraction study of crystallization kinetics of polymorphs	
529	of 1,3-dioleoyl-2-plamitoyl glicerol (OPO). CrystEngComm-, 13, 3592-3599.	
530		
531	Bayés-García, L., Calvet, T., Cuevas-Diarte, M. A., Ueno, S., & Sato, K. (2013a). In	
532	situ observation of transformation pathways of polymorphic forms of 1,3-dipalmitoyl-2-	
533	oleoyl glycerol (POP) examined with synchrotron radiation X-ray diffraction and DSC.	
534	CrystEngComm., 15, 302-314.	
535		
536	Bayés-García, L., Calvet, T., Cuevas-Diarte, M. A., Ueno, S., & Sato, K. (2013b).	
537	Crystallization and Transformation of Polymorphic Forms of Trioleoyl Glycerol and	

538	1,2-Dioleoyl-3-rac-linoleoyl Glycerol. <u>The Journal of Physical Chemistry BJ. Phys.</u>	Con formato: Fuente: Cursiva
539	<i>Chem. B</i> , 117, 9170-9181.	
540		
541	Bayés-García, L., Calvet, T., Cuevas-Diarte, M. A., Ueno, S., & Sato, K. (2015). Phase	
542	Behavior of Binary Mixture Systems of Saturated-Unsaturated Mixed-Acid	
543	Triacylglycerols: Effects of Glycerol Structures and Chain-Chain Interactions. <u>The</u>	
544	Journal of Physical Chemistry B.J. Phys. Chem. B, 119, 4417-4427.	
545		
546	Bayés-García, L., Tres, A., Vichi, S., Calvet, T., Cuevas-Diarte, M. A., Codony, R.,	
547	Boatella, J., Caixach, J., Ueno, S., & Guardiola, F. (2016a). Authentication of Iberian	
548	dry-cured ham: New approaches by polymorphic fingerprint and ultrahigh resolution	
549	mass spectrometry. Food Control, 60, 370-377.	
550		
551	Bayés-García, L., Calvet, T., Cuevas-Diarte, M. A., & Ueno, S. (2016b). In situ	
552	crystallization and transformation kinetics of polymorphic forms of saturated-	
553	unsaturated-unsaturated triacylglycerols: 1-palmitoyl-2,3-dioleoyl glycerol, 1-stearoyl-	
554	2,3-dioleoyl glycerol, and 1-palmitoyl-2-oleoyl-3-linoleoyl glycerol. <u>Food Research</u>	Con formato: Fuente: Cursiva
555	InternationalFood Res. Int., 85, 244-258.	
556		
557	Boodhoo, M. V., Bouzidi, L., & Narine, S. S. (2009). The binary phase behavior of 1,3-	
558	dipalmitoyl-2-stearoyl-sn-glycerol and 1,2-dipalmitoyl-3-stearoyl-sn-glycerol.	
559	<u>Chemistry and Physics of LipidsChem. Phys. Lipids</u> , 160, 11-32.	Con formato: Fuente: Cursiva
560		

561	Bouzidi, L., Boodhoo, M. V., Kutek, T., Filip, V., & Narine, S. S. (2010). The binary
562	phase behavior of 1,3-dilauroyl-2-stearoyl-sn-glycerol and 1,2-dilauroyl-3-stearoyl-sn-
563	glycerol. Chemistry and Physics of LipidsChem. Phys. Lipids, 163, 607-629.
564	
565	Chiavaro, E., Vittadini, E., Rodriguez-Estrada, M. T., Cerretani, L., & Bendini, A.
566	(2008). Differential scanning calorimeter application to the detection of refined hazelnut
567	oil in extra virgin olive oil. Food Chemistry-, 110, 248-256.
568	
569	Chiavaro, E., Vittadini, E., Rodriguez-Estrada, M. T., Cerretani, L., Capelli, L., &
570	Bendini, A. (2009). Differential scanning calorimetry detection of high oleic sunflower
571	oil as an adulterant in extra-virgin olive oil. Journal- of Food Lipids, 16, 227-244.
572	
573	Ferrari, C., Angiuli, M., Tombari, E., Righetti, M. C., Matteoli, E., & Salvetti, G.
574	(2007). Promoting calorimetry for olive oil authentication. <i>Thermochim-<u>ica</u> Acta.</i> , 459,
575	58-63.
576	
577	Harwood, J. L., & Yaqoob, P. (2002). Nutritional and health aspects of olive oil.
578	European Journal of Lipid Science and TechnologyEur. J. Lipid Sci. Technol., 104, 685-
579	697.
580	
581	Jiménez Márquez, A., & Beltrán Maza, G. (2003). Aplicación de la Calorimetría
582	Diferencial de Barrido (CDB) en la caracterización del aceite de oliva virgen. Grasas y
583	Aceites, 54, 403-409.
584	

585	Jiménez Márquez, A., Beltrán Maza, G., Aguilera Herrera, M. P., & Uceda Ojeda, M.
586	(2007). Calorimetría diferencial de barrido. Influencia de la composición del aceite de
587 588	oliva virgen en su perfil térmico. Grasas y Aceites, 58, 122-129.
589	Ikeda, E., Ueno, S., Miyamoto, R., & Sato, K. (2010). Phase Behavior of a Binary
590	Mixture of 1,3-dipalmitoyl-2-oleoyl-sn-glycerol and 1,3-dioleoyl- 2-palmitoyl-sn-
591	glycerol in n dodecane Solution. The Journal of Physical Chemistry BJ. Phys. Chem. B,
592	114, 10961 – 10969.
593	
594	Larsson, K., Quinn, P., Sato, K., & Tiberg, F. (Eds.). (2006). Lipids: Structure, physical
595	properties and functionality. Bridgewater: The Oily Press.
596	
597	Marangoni, A. G., & Narine, S. S. (Eds.). (2002). Physical Properties of Lipids. New
598	York: Marcel Dekker.
599	
600	Mizobe, H., Tanaka, T., Hatakeyama, N., Nagai, T., Ichioka, K., Hondoh, H., Ueno, S.,
601	& Sato, K. (2013). Structures and Binary Mixing Characteristics of Enantiomers of 1-
602	Oleoyl-2,3-dipalmitoyl-sn-glycerol (S-OPP) and 1,2-Dipalmitoyl-3-oleoyl-sn-glycerol
603	(R-PPO). Journal of the American Oil Chemists' SocietyJ. Am. Oil Chem. Soc., 90,
604	1809-1817.
605	
606	Salas, J. J., Bootello, M. A., Martínez-Force, E., & Garcés, R. (2011). Production of
607	stearate-rich butters by solvent fractionation of high stearic-high oleic sunflower oil.
608	<i>Food Chem<u>istry</u></i> , 124, 450-458.
609	

610	Sasaki, M., Ueno, S., & Sato, K. (2012). Polymorphism and Mixing Phase Behavior of
611	Major Triacylglycerols of Cocoa Butter. In N. Garti, & N. R. Widlak (Eds.), Cocoa
612	Butter and Related Compounds (pp. 151-172). Urbana: AOCS Press.
613	
614	Timms, R. E. (2005). Fractional crystallization – the fat modification process for the
615	21 st century. <u>European Journal of Lipid Science and Technology</u> Eur. J. Lipid Sci.
616	Technol. , 107, 48-57.
617	
618	van Mechelen, J. B., Peschar, R., & Schenk, H. (2008). Structures of mono-unsaturated
619	triacylglycerols. IV. The highest melting β '-2 polymorphs of <i>trans</i> -mono-unsaturated
620	triacylglycerols and related saturated TAGs and their polymorphic stability. Acta
621	<u>Crystallographica</u> Cryst., B64, 249-259.
622	
623	Yano, J., Kaneko, F., Kobayashi, M., Kodali, D., Small, D. M., & Sato, K. (1997).
624	Structural Analyses and Triacylglycerol Polymorphs with FT-IR Techniques. 2. β '1-
625	Form of 1,2-Dipalmitoyl-3-myristoyl-sn-glycerol. The Journal of Physical Chemistry
626	<u>BJ. Phys. Chem. B</u> , 101, 8120-8128.
627	