¹ Calcite/aragonite ratio fluctuations in Aptian rudist

- 2 bivalves: Correlation with changing temperatures
- 3 Enric Pascual-Cebrian^{1,2}, Stefan Götz^{2†}, Telm Bover-Arnal³, Peter W. Skelton⁴,
- 4 Eulàlia Gili⁵, Ramon Salas³, and Wolfgang Stinnesbeck²
- ¹GeoScience Limited, Falmouth Business Park, Bickland Water Road, Falmouth TR11
- 6 4SZ, UK
- 7 ²Institut für Geowissenshaften, Universität Heidelberg, Im Neuenheimer Feld 234, 69120
- 8 *Heidelberg, Germany*
- 9 ³Facultat de Geologia, Universitat de Barcelona, Martí i Franquès s/n, 08028 Barcelona,
- 10 Spain
- ⁴Department of Environment, Earth and Ecosystems, Walton Hall, The Open University,
- 12 Milton Keynes MK7 6AA, UK
- 13 ⁵Departament de Geologia, Facultat de Ciències, Universitat Autònoma de Barcelona,
- 14 Edifici Cs, 08193 Bellaterra, Spain
- 15 [†]Deceased.

16 ABSTRACT

Understanding how bivalves responded to past temperature fluctuations may help
us to predict specific responses of complex calcifiers to future climate change. During the
late-early Aptian, aragonite-rich rudist bivalves decreased in abundance in northern
Tethyan carbonate platforms, while rudists with a thickened calcitic outer shell layer
came to dominate those of Iberia. Seawater cooling and variations in calcium carbonate
saturation states may have controlled this faunal turnover. However, our understanding of

23	how rudist lineages responded to changing environmental conditions is constrained by a
24	lack of quantitative data on the evolution of thickness, size, and mineralogy of the shell.
25	This study is based on volumetric measurements of the shell and shows the transition in
26	lineages of the family Polyconitidae from aragonite-rich mineralogy in the earliest
27	Aptian, to low-Mg calcite-dominated mineralogy in the middle Aptian, returning to
28	aragonite-dominated composition in the latest Aptian. The platform biocalcification crisis
29	that occurred at the early-late Aptian boundary in the Tethys was marked by a relative
30	increase of calcite and a decrease in skeletal thickness and commissural diameters. The
31	highest calcite/aragonite (Cc/A) ratios in polyconitid rudists accompanied the late Aptian
32	cold episode, [[SU: no quotes marks needed]] and the lowest values were reached
33	during the warmer intervals of the earliest and latest Aptian. These results imply a
34	correlation between Cc/A ratio values and temperature and suggest that some bivalves
35	adapted to less favorable calcification conditions by changing calcite and aragonite
36	proportions of their bimineralic shells and decreasing skeletal thickness, thereby reducing
37	the metabolic cost of shell growth.

38 INTRODUCTION

The effects of the present variations in calcium carbonate saturation states and seawater temperature on benthic marine calcifiers, especially on bivalves, are still poorly understood, making it difficult to predict the responses of modern carbonate-producing biota to climate change. Previous studies have shown that bivalves exposed to their thermal tolerance limits reduce metabolic activity (Pörtner, 2008). Decrease in calcium carbonate saturation is known to have detrimental effects on marine calcifying organisms; consequences in bivalves include depressed rates of calcification and growth

46	(Beniash et al., 2010). Evolutionary responses to thermal extremes and reduced
47	conditions for calcification have not yet been detected in the field or laboratory due to
48	temporal constraints on observation (e.g., Ries et al., 2009). Alternatively, the question of
49	evolutionary adaptation to biocalcification crises can be addressed by studying the
50	geologic past. Most time intervals of the Phanerozoic had higher atmospheric CO_2
51	concentrations than today, exceeding those predicted for upcoming centuries. For
52	example, high atmospheric CO_2 levels during the Aptian (125–112 Ma) arose from the
53	emplacement of large igneous provinces and led to major oscillations of temperature
54	(Steuber et al., 2005; McAnena et al., 2013), and hypothetically of oceanic pH and
55	carbonate ion concentrations in seawater (Weissert and Erba, 2004). In addition, Aptian
56	seas were characterized by low Mg/Ca ratios (Steuber and Rauch, 2005). The interaction
57	of these environmental constraints has been identified as the prime cause of postulated
58	Aptian calcification crises among calcareous plankton (Erba et al., 2010) and benthic
59	calcifiers (Masse, 1989) in the mid-early Aptian and mid-Aptian, respectively. Rudist
60	bivalves (Order Hippuritida) possessed large shells consisting of an outer calcitic and an
61	inner aragonitic layer (see Fig. DR1 in the GSA Data Repository ¹); they underwent
62	extinctions and radiations closely associated with changes in their mode of life and
63	composition of the shell (Skelton, 2003).
64	Changes through time of shell size, mineralogy, and thickness were investigated
65	in Polyconites and Horiopleura, two lineages of polyconitid rudists, in order to determine

66 evolutionary responses of these bivalves to calcification crises, and long-term changing

- 67 temperatures. Quantitative trends in calcite/aragonite (Cc/A) and shell/cavities (Sh/Cav)
- 68 ratios were measured and plotted against a summarized paleotemperature curve for the

69 Aptian, within a well-constrained chronostratigraphic framework based on

70 biostratigraphy and Sr isotope dating.

71 GEOLOGICAL SETTING OF THE STUDIED SPECIMENS

72 Specimens of the rudist genera *Polyconites* and *Horiopleura* analyzed here were 73 sampled from Aptian platform carbonates across Iberia (Fig. 1), from the Cresmina 74 section (Fig. DR2A) in the Lusitanian Basin in Portugal (Burla et al., 2008), the Barranco 75 de la Hoz (Fig. DR2B) and Pico Rope (Fig. DR2B) sections in the South Iberian Basin in 76 Spain (Mas, 1981), and the Las Mingachas (Fig. DR2C), Barranco de las Corralizas (Fig. 77 DR2D), Barranco de la Serna (Fig. DR2E), and Las Cubetas sections in the Maestrat 78 Basin in Spain (Bover-Arnal et al., 2010). These sedimentary successions were calibrated 79 by Sr isotopic age estimates (Fig. DR2; Table DR1). The Sr isotope data were 80 complemented by rudist and benthic foraminiferal and ammonite biostratigraphy (Mas, 81 1981; Masse et al., 1998; Masse, 2003; Burla et al., 2008; Moreno-Bedmar et al., 2010; 82 Skelton et al., 2010).

83 METHODS

84 Cc/A and Sh/Cav ratios were measured on 16 specimens of polyconitids (Tables 85 DR2 and DR3). The specimens were serially ground and scanned by a flatbed scanner 86 (see details in Pascual-Cebrian et al., 2013). The state of preservation of the shells was 87 evaluated optically. Shells with major breakage and dissolution were rejected. Calcitic 88 shell layers preserve the original fibrous-prismatic microstructures while originally 89 aragonitic shell layers are replaced by blocky calcite cements. The areas corresponding to 90 internal cavities and to outer calcitic and inner aragonitic shell layers of 1064 tomograms 91 were digitized (Figs. DR3 and DR4). Pixels matching the internal cavities and the calcitic

92	and aragonitic shell layers were counted separately (Figs. DR1 and DR3), and used to
93	calculate the Cc/A and Sh/Cav ratios (Figs. 2A and 3). To estimate specimen size
94	variations in the successive chronospecies of the Polyconites lineage (P. hadriani and P.
95	verneuili), the average values between the dorso-ventral and antero-posterior
96	commissural diameters of 214 specimens were calculated for each sample (Fig. DR5).
97	RESULTS
98	Cc/A ratios range between 0.24 and 0.65 for Horiopleura and between 0.66 and
99	2.37 for Polyconites (Fig. 2A; Table DR2). The lowest values were identified for
100	<i>Horiopleura</i> during the earliest and latest Aptian ($Cc/A = 0.27, 0.24$), whereas the highest
101	values were shown by the genus <i>Polyconites</i> during the early-late Aptian ($Cc/A = 2.37$).
102	On average, there was an 83.6% positive shift in the Cc/A ratio in <i>Polyconites</i> between
103	122.3 Ma and 120.9–118.5 Ma, followed by a 52.8% decrease at 114.1 Ma. The <i>P</i> .
104	hadriani shells analyzed from the late-early Aptian are significantly more calcitic (Cc/A
105	ratio mean = 1.11; $n = 6$) than shells of <i>H. dumortieri</i> , for which the measured mean
106	Cc/A ratio is 0.46 (n = 2). The Sh/Cav ratio values in <i>Polyconites</i> vary between 0.46 and
107	2.27, and in <i>Horiopleura</i> vary between 0.86 and 1.85 (Table DR2; Fig. 3). Average ratio
108	values were constant in Horiopleura and Polyconites between the earliest Aptian and the
109	early-late Aptian (Sh/Cav ~ 1; Figs. 3C–3E), but values increased to >1.9 during the
110	latest Aptian, which corresponds to the time interval with highest values observed for
111	both genera (Figs. 3A and 3B).
112	During the Aptian, commissural diameters of Polyconites ranged between 20 and
113	77 mm (Fig. DR5). The smallest commissural diameters were identified during the first

114 appearance of the taxon during the middle-early Aptian, and were followed by an

115	increase of 42 mm during the latest early Aptian. From the latest early Aptian to the
116	earliest late Aptian, the commissural size decreased to mean and maximum values of 25
117	mm and 36 mm, respectively. Subsequently, they showed a progressive increase until the
118	latest Aptian; mean and maximum values of 72 and 77 mm, respectively, were measured.
119	DISCUSSION
120	During the earliest Aptian, rising relative sea level, climatic warmth, and low-
121	latitude aridity permitted a phase of widespread carbonate platform growth that extended
122	northward around the Atlantic and northern Tethyan margins (Burla et al., 2008; Skelton
123	and Gili, 2012; Masse and Fenerci-Masse, 2013). While platform-top environments
124	hosted abundant requieniid rudists of clinger [[SU: no quote marks]] morphotype, in
125	which thickening of the outer (calcitic) shell layer was most likely adaptive for broad
126	shell attachment, the platform margins were dominated by large, free-lying recumbent or
127	shallowly implanted caprinids, with a thinned outer shell layer and therefore with low
128	Cc/A ratios (Masse, 2003; Skelton and Gili, 2012).
129	The environmental changes leading to oceanic anoxic event 1a (OAE1a) were
130	associated with a reduction of calcium carbonate saturation states (Weissert and Erba,
131	2004), followed by an increased rate of burial of organic carbon (Fig. 2B; late OAE1a)
132	and associated drawdown of atmospheric CO_2 that may have caused colder conditions
133	(Kuhnt et al., 2011; Mutterlose et al., 2014). The late-early Aptian increase in Cc/A ratios
134	observed in Iberia can directly be associated with changing temperatures; as in lower
135	paleolatitudes with warmer seawater (e.g., Arabia), platform-margin rudist communities
136	were still dominated by caprinids (e.g., Hughes, 2000), and thus remained aragonite
<mark>137</mark>	dominated (Skelton and Gili, 2012). In Iberia, however, a progressive decline in the

138	relative abundance of caprinids on the platform margins was associated with cooling
139	(Bover-Arnal et al., 2015). Polyconitids, by contrast, thrived in the late-early Aptian seas
140	with the appearance of a new genus, Polyconites, derived from the previously somewhat
141	sparsely represented Horiopleura (Skelton et al., 2010). Polyconites hadriani increased
142	the proportion of calcite in the shell (average Cc/A ratio = 1.5) with respect to its
143	ancestor. This new calcite-dominated mineralogy could explain its successful adaptation
144	to the new environmental conditions, as indicated by its abundance on the carbonate
145	platforms of Iberia. Moreover, a rapid phyletic size increase is observed in the
146	Polyconites lineage, from its first appearance to the latest Aptian (Fig. DR5).
147	The late Aptian was likely a period with intensified cooling (Kuhnt et al., 2011;
148	Bottini et al., 2015; Fig. 2B). This change in climatic conditions was accompanied by a
149	biocalcification crisis around the boundary between the early and late Aptian (Masse,
150	1989). Across this boundary, rudist biodiversity decreased (Steuber, 2002), and
151	aragonite-rich rudist bivalves largely disappeared from the Tethyan record until the latest
152	Aptian (Masse, 1989; Skelton and Gili, 2012). In Iberia, Polyconites maintained its
153	abundance, although individual shell size decreased (Fig. DR5), and Cc/A ratio values
154	increased from <1.39 to >1.58 (Fig. 2A). Colder seawater, possibly accompanied by a
155	biocalcification crisis, likely favored calcite-rich families, while low Mg/Ca ratio values
156	of the seawater may have contributed to this mineralogical turnover (Steuber, 2002).
157	An increase in temperature during the latest Aptian (Steuber et al., 2005; Bottini
158	et al., 2015; Fig. 2B) was accompanied by an increase in rudist diversity in Iberia (Masse
159	et al., 1998), favoring aragonite-rich taxa such as the genus Horiopleura that reappeared
160	in the record (Fig. 2C) after $\sim 6-8$ m.y. of absence. Ameliorating conditions for

161	biocalcification are inferred from the highest Sh/Cav ratio values, recorded in both
162	Horiopleura and Polyconites (Figs. 3A, 3B), and the increase of the proportion of
163	aragonite in the shell of <i>Polyconites</i> (average Cc/A \sim 0.95). Temperature curves for the
164	Aptian correlate to the measured Cc/A ratio values (Figs. 2A and 2B). High Cc/A ratio
165	values were detected for the colder conditions of the middle Aptian, and low Cc/A ratios
166	were detected for the earliest and latest Aptian warmer periods.
167	The relative increase, during colder periods, in the Cc/A ratio is consistent with
168	the thermal potentiation hypothesis of Carter et al. (1998), who suggested that cold
169	waters kinetically favor the precipitation of calcite, a polymorph that may subsequently
170	be promoted due to its mechanical advantages. However, this hypothesis alone cannot
171	explain the mineralogical changes, as bivalves have a strong biological control on
172	mineralization. A direct correlation between cooling and calcite-dominated shells is not
173	necessarily given in the geological record (Hautmann, 2006), and additional factors such
174	as seawater chemistry, ecological factors, specific demands of a mode of life, and
175	metabolic costs of biomineralization must be considered. The mineralogical changes
176	observed here support a relative increase of calcite during a cold episode, without
177	shedding enough light on the possible promotion of calcite due to mechanical advantages.
178	Skelton et al. (2010) proposed that the expansion of the calcitic outer shell layer of
179	Polyconites with respect to Horiopleura, along with other morphological changes,
180	allowed for a wider growth extension of the ventral valve margin and hence closer
181	packing of clustered individuals. Nevertheless, this possible ecological advantage would
182	not explain mineralogical fluctuations documented here for the Polyconites lineage.

183	Thickening of the outer calcitic shell layer could also confer a selective advantage
184	against dissolution, by virtue of the greater resistance of calcite to dissolution in
185	aragonite-undersaturated seawater (Taylor and Reid, 1990). If so, a thickened outer
186	calcitic shell layer, as seen in Polyconites with respect to its ancestor, could have favored
187	this genus in the theorized scenario of latitudinal cooling owing to CO ₂ drawdown, in the
188	context of still relatively high atmospheric CO ₂ levels and therefore lowered aragonite
189	saturation. The latter hypothesis remains to be tested, but recent studies indicate high
190	atmospheric CO ₂ levels during the Aptian, $4-6\times$ pre-industrial levels, with peaks during
191	the earliest and latest Aptian (Li et al., 2014). Shell microstructures and periostracum
192	may also play an important role in controlling shell dissolution, rather than the
193	polymorph type alone (Harper, 2000).
194	The geological record suggests that rudist bivalves had narrow thermal tolerance
195	windows, and thus were sensitive to thermal shifts. For example, cooling episodes during
196	the Hauterivian and Barremian restricted some families to low latitudes (Masse and
197	Fenerci-Masse, 2008). Physiologically, bivalves exposed to their thermal tolerance limits
198	respond by changing their geographical distribution or by reducing their metabolic
199	activity (Pörtner, 2008). This may explain why aragonite-rich bivalves, mostly the
200	caprinoid clade of rudists (Skelton, 2013), spread around the Atlantic-Tethyan-Pacific
201	platforms during relatively warm periods (Skelton et al., 2013), whereas colder
202	temperatures led to a contraction of their geographical range to the central and southern
203	Tethyan margins (Skelton and Gili, 2012). The Aptian cold episode [[SU: no quote
204	marks]] (Fig. 2B) may thus have metabolically stressed the precipitation and
205	maintenance of thick aragonite-rich shells, especially on the northern margin of the

206	Tethys, and favored calcite-rich shells that offered the advantage of lowering metabolic
207	costs of shell secretion (Hautmann, 2006). The progressive increase in Cc/A ratio values
208	observed in <i>Polyconites</i> may therefore explain the successful adaptation of this lineage to
209	the Aptian cold interval. Phyletic size decrease (Fig. DR5) may also reflect the necessity
210	of balancing metabolic costs. Consequently, the change from aragonite-dominated to
211	calcite-dominated shells would mainly represent an evolutionary adaptation to adverse
212	thermal regimes. This hypothesis is also reinforced by the coeval proliferation of the
213	Radiolitidae, with a thickened calcitic outer layer as well as an innovative mesostructure
214	of hollow cells, interpreted as an adaptive strategy to minimize the metabolic cost of shell
215	secretion (Fenerci-Masse et al., 2006).
216	The reappearance in Iberia of the genus Horiopleura, postdating the late Aptian
217	cold episode (Fig. 2C), and the contemporaneous decrease in Cc/A ratios and shell
218	thickening observed in <i>Polyconites</i> (Figs. 2A and 3) suggest that with the return of
219	favorable conditions, aragonite-rich shells were preferred, because they offered better
220	properties for their mode of life.

221 CONCLUSIONS

Our results indicate that an inverse correlation existed between Cc/A ratios in polyconitid rudists and paleotemperatures. A progressive increase in Cc/A ratios is observed during the mid-Aptian cold episode, while lower Cc/A ratios and shell thickening are correlated to warmer periods. Temperature variability is considered **a** major environmental stress factor in an Aptian world characterized by low and stable Mg/Ca ratios and high but variable pCO_2 concentrations. This is especially the case for hypercalcifying bivalves with thick aragonite-rich shells and narrow thermal tolerance

- 229 windows that responded to adverse temperatures by changing geographical ranges or
- reducing costs for shell growth.

231 ACKNOWLEDGMENTS

- 232 This work is dedicated to Stefan Götz, who motivated this publication and passed
- away in July 2012. His early death has not only robbed us of a good friend, but also our
- discipline of an exceptionally original and inspiring researcher and teacher. We are
- 235 grateful to T. Steuber, R.W. Scott, S. Huck, and other anonymous reviewers for their
- 236 helpful comments. The research was supported by the Heidelberg Center for the
- 237 Environment, Deutsche Forschungsgemeinschaft project GO1021/3–2, the German
- 238 Academic Exchange Service and Acciones Integradas HD2008–0075, and the
- 239 Ministerium für Wissenschaft, Forschung und Kunst Baden-Württemberg (RiSC-
- 240 Research seed capital).

241 **REFERENCES CITED**

- 242 Beniash, E., Ivanina, A., Lieb, N.S., Kurochkin, I., and Sokolova, I.M., 2010, Elevated
- 243 level of carbon dioxide affects metabolism and shell formation in oysters
- 244 Crassostrea virginica: Marine Ecology Progress Series, v. 419, p. 95–108,
- doi:10.3354/meps08841.
- 246 Bottini, C., Erba, E., Tiraboschi, D., Jenkyns, H.C., Schouten, S., and Sinninghe Damsté,
- J.S., 2015, Climate variability and ocean fertility during the Aptian Stage: Climate of
- 248 the Past, v. 11, p. 383–402, doi:10.5194/cp-11-383-2015.
- 249 Bover-Arnal, T., Moreno-Bedmar, J.A., Salas, R., Skelton, P.W., Bitzer, K., and Gili, E.,
- 250 2010, Sedimentary evolution of an Aptian syn-rift carbonate system (Maestrat Basin,

- 251 E Spain): Effects of accommodation and environmental change: Geologica Acta,
- 252 v. 8, p. 249–280, doi:10.1344/105.000001533.
- 253 Bover-Arnal, T., Pascual-Cebrian, E., Skelton, P.W., Gili, E., and Salas, R., 2015,
- 254 Patterns in the distribution of Aptian rudists and corals within a sequence-
- stratigraphic framework (Maestrat Basin, E Spain): Sedimentary Geology, v. 321,
- 256 p. 86–104, doi:10.1016/j.sedgeo.2015.03.008.
- 257 Burla, S., Heimhofer, U., Hochuli, P.A., Weissert, H.J., and Skelton, P.W., 2008,
- 258 Changes in sedimentary patterns of coastal and deep-sea successions from the North
- 259 Atlantic (Portugal) linked to Early Cretaceous environmental change:
- 260 Palaeogeography, Palaeoclimatology, Palaeoecology, v. 257, p. 38–57,
- doi:10.1016/j.palaeo.2007.09.010.
- 262 Carter, J.G., Barrera, E., and Tevesz, M.J., 1998, Thermal potentiation and mineralogical
- evolution in the Bivalvia (Mollusca): Journal of Paleontology, v. 72, p. 991–1010,
- doi:10.1017/S0022336000027359.
- 265 Erba, E., Bottini, C., Weissert, H.J., and Keller, C.E., 2010, Calcareous nannoplankton
- 266 response to surface-water acidification around Oceanic Anoxic Event 1a: Science,
- 267 v. 329, p. 428–432, doi:10.1126/science.1188886.
- 268 Fenerci-Masse, M., Masse, J.P., Arias, C., and Vilas, L., 2006, Archaeoradiolites, a new
- 269 genus from the Upper Aptian of the Mediterranean region and the origin of the rudist
- 270 family Radiolitidae: Palaeontology, v. 49, p. 769–794, doi:10.1111/j.1475-
- 271 4983.2006.00573.x.

- Harper, E.M., 2000, Are calcitic layers an effective adaptation against shell dissolution in
- 273 the Bivalvia?: Journal of Zoology, v. 251, p. 179–186, doi:10.1111/j.1469-
- 274 7998.2000.tb00602.x.
- 275 Hautmann, M., 2006, Shell mineralogical trends in epifaunal Mesozoic bivalves and their
- 276 relationship to seawater chemistry and atmospheric carbon dioxide concentration:
- 277 Facies, v. 52, p. 417–433, doi:10.1007/s10347-005-0029-x.
- Hughes, G.W., 2000, Bioecostratigraphy of the Shu'aiba Formation, Shaybah field, Saudi
 Arabia: GeoArabia, v. 5, p. 545–578.
- 280 Kuhnt, W., Holbourn, A., and Moullade, M., 2011, Transient global cooling at the onset
- of early Aptian oceanic anoxic event (OAE) 1a: Geology, v. 39, p. 323–326,
- doi:10.1130/G31554.1.
- Li, X., Jenkyns, H.C., Zhang, C., Wang, Y., Liu, L., and Cao, K., 2014, Carbon isotope
- signatures of pedogenic carbonates from SE China: Rapid atmospheric *p*CO₂
- changes during middle–late Early Cretaceous time: Geological Magazine, v. 151,
- 286 p. 830–849, doi:10.1017/S0016756813000897.
- 287 Mas, R., 1981, El Cretácico inferior de la región noroccidental de la provincia de
- 288 Valencia [Ph.D. thesis]: Madrid, Universidad Complutense de Madrid, 409 p.
- 289 Masse, J.P., 1989, Relations entre modifications biologiques et phénomènes géologiques
- sur les plates-formes carbonatées du domaine périméditerranéen au passage
- 291 Bédoulien-Gargasien: Geobios, v. 22, p. 279–294, doi:10.1016/S0016-
- **292 6995(89)80063-4**.

- 293 Masse, J.P., 1996, Lower Cretaceous rudist biostratigraphy of southern France: A 294 reference for Mesogean correlations: Revista Mexicana de Ciencias Geológicas, 295 v. 12, p. 236–256. 296 Masse, J.P., 2003, Integrated stratigraphy of the Lower Aptian and applications to 297 carbonate platforms: A state of the art, in Gili, E., et al., eds., North African 298 Cretaceous carbonate platform systems: NATO Science Series IV, Earth and 299 Environmental Sciences, Volume 28: Amsterdam, Springer, p. 203-214, 300 doi:10.1007/978-94-010-0015-4 12. 301 Masse, J.P., and Fenerci-Masse, M., 2008, Time contrasting palaeobiogeographies among 302 Hauterivian-lower Aptian rudist bivalves from the Mediterranean Tethys, their 303 climatic control and palaeoecological implications: Palaeogeography, 304 Palaeoclimatology, Palaeoecology, v. 269, p. 54-65, 305 doi:10.1016/j.palaeo.2008.07.024. 306 Masse, J.P., and Fenerci-Masse, M., 2013, Drowning events, development and demise of 307 carbonate platforms and controlling factors: The late Barremian-early Aptian record 308 of southeast France: Sedimentary Geology, v. 298, p. 28-52, 309 doi:10.1016/j.sedgeo.2013.09.004. 310 Masse, J.P., Arias, C., and Vilas, L., 1998, Lower Cretaceous rudist faunas of southeast 311 Spain: An overview: Geobios, v. 31, p. 193-210, doi:10.1016/S0016-312 6995(98)80077-6. 313 Masse, J.P., et al., 2000, Map 13: Early Aptian (112–114 Ma), *in* Dercourt, J., et al., eds.,
- 314 Atlas Peri-Tethys: Palaeoenvironmental maps: Paris, Beicip-Franlab, p. 119–127.

315	McAnena, A., Flögel, S., Hofmann, P., Herrle, J.O., Griesand, A., Pross, J., Talbot, H.M.,
316	Rethemeyer, J., Wallmann, K., and Wagner, T., 2013, Atlantic cooling associated
317	with a marine biotic crisis during the mid-Cretaceous period: Nature Geoscience,
318	v. 6, p. 558–561, doi:10.1038/ngeo1850.
319	Moreno-Bedmar, J.A., Bover-Arnal, T., Salas, R., Delanoy, G., Maurrasse, F., Grauges,
320	A., and Martínez, R., 2010, Lower Aptian ammonite biostratigraphy in the Maestrat
321	Basin (Eastern Iberian Chain, eastern Spain): A Tethyan transgressive record
322	enhanced by synrift subsidence: Geologica Acta, v. 8, p. 281-299,
323	doi:10.1344/105.00001534.
324	Mutterlose, J., Bottini, C., Schouten, S., and Damsté, J.S.S., 2014, High sea-surface
325	temperatures during the early Aptian Oceanic Anoxic Event 1a in the Boreal Realm:
326	Geology, v. 42, p. 439–442, doi:10.1130/G35394.1.
327	Paquier, V., 1905, Les rudistes urgoniens. II. Série inverse: Mémoires de la Societé
328	Géologique de France, Paléontologique, v. 29, p. 47-102.
329	Pascual-Cebrian, E., Hennhöfer, D.K., and Götz, S., 2013, 3D morphometry of
330	polyconitid rudist bivalves based on grinding tomography: Facies, v. 59, p. 347–358,
331	doi:10.1007/s10347-012-0310-8.
332	Pörtner, HO., 2008, Ecosystem effects of ocean acidification in times of ocean
333	warming: A physiologist's view: Marine Ecology Progress Series, v. 373, p. 203-
334	217, doi:10.3354/meps07768.
335	Ries, J.B., Cohen, A.L., and McCorkle, D.C., 2009, Marine calcifiers exhibit mixed
336	responses to CO ₂ -induced ocean acidification: Geology, v. 37, p. 1131–1134,

337 doi:10.1130/G30210A.1.

338	Skelton, P.W., 2003, Rudist evolution and extinction—A North African perspective, <i>in</i>
339	Gili, E., et al., eds., North African Cretaceous carbonate platform systems: NATO
340	Science Series IV, Earth and Environmental Sciences Volume 28: Amsterdam,
341	Springer, p. 215–227, doi:10.1007/978-94-010-0015-4_13.
342	Skelton, P.W., 2013, Rudist classification for the revised Bivalvia volumes of the
343	'Treatise on Invertebrate Paleontology': Caribbean Journal of Earth Science, v. 45,
344	p. 9–33.
345	Skelton, P.W., and Gili, E., 2012, Rudists and carbonate platforms in the Aptian: A case
346	study on biotic interactions with ocean chemistry and climate: Sedimentology, v. 59,
347	p. 81–117, doi:10.1111/j.1365-3091.2011.01292.x.
348	Skelton, P.W., Gili, E., Bover-Arnal, T., Salas, R., and Moreno-Bedmar, J., 2010, A new
349	species of <i>Polyconites</i> from the lower Aptian of Iberia and the early evolution of
350	polyconitid rudists: Turkish Journal of Earth Sciences, v. 19, p. 557-572,
351	doi:10.3906/yer-0901-7.
352	Skelton, P.W., Sano, S., and Masse, JP., 2013, Rudist bivalves and the Pacific in the
353	Late Jurassic and Early Cretaceous: Journal of the Geological Society [London],
354	v. 170, p. 513–526, doi:10.1144/jgs2012-017.
355	Steuber, T., 2002, Plate tectonic control on the evolution of Cretaceous platform-
356	carbonate production: Geology, v. 30, p. 259-262, doi:10.1130/0091-
357	7613(2002)030<0259:PTCOTE>2.0.CO;2.
358	Steuber, T., and Rauch, M., 2005, Evolution of the Mg/Ca ratio of Cretaceous seawater:
359	Implications from the composition of biological low-Mg calcite: Marine Geology,
360	v. 217, p. 199–213, doi:10.1016/j.margeo.2005.02.012.

- 361 Steuber, T., Rauch, M., Masse, J.P., Graaf, J., and Malkoč, M., 2005, Low-latitude
- 362 seasonality of Cretaceous temperatures in warm and cold episodes: Nature, v. 437,
- 363 p. 1341–1344, doi:10.1038/nature04096.
- 364 Taylor, J.D., and Reid, D.G., 1990, Shell microstructure and mineralogy of the
- 365 Littorinidae: Ecological and evolutionary significance: Hydrobiologia, v. 193,
- 366 p. 199–215, doi:10.1007/BF00028077.
- 367 Weissert, H.J., and Erba, E., 2004, Volcanism, CO₂ and palaeoclimate: A Late Jurassic-
- 368 Early Cretaceous carbon and oxygen isotope record: Journal of the Geological
- 369 Society [London], v. 161, p. 695–702, doi:10.1144/0016-764903-087.

370 FIGURE CAPTIONS

- 371 Figure 1. Paleogeography of the Aptian showing the localities of collected specimens
- 372 (modified from Skelton and Gili, 2012; map based on Masse et al., 2000). A—Lusitanian

373 Basin; B—South Iberian Basin; C—Maestrat Basin.

- 374
- 375 Figure 2. A—Calcite/aragonite (Cc/A) fluctuations in polyconitids. B—Generalized
- 376 paleotemperature trends modified from Skelton and Gili (2012) and incorporating the late
- 377 Aptian cold episode from Bottini et al. (2015). *T*—temperature. **[[SU: ok? italicize T in**
- 378 figure]] C—Stratigraphic ranges: (*) Skelton et al. (2010); (†) Masse et al. (1998), and
- 379 including Paquier (1905), who described Horiopleura almerae Paquier in Castellví de la
- 380 Marca; (§) Masse (1996). P.—*Polyconites*, Gray dashed line is mid-Aptian
- 381 biocalcification crisis.
- 382

- 383 Figure 3. Correlation summary of mean values of shell mineralogy (calcite and aragonite)
- and internal cavities expressed in relative percentages; shell/cavities ratios (Sh/Ca R.);
- 385 representative tomograms (scale 10 mm). A: *Horiopleura lamberti*: RP01. B: *Polyconites*
- 386 verneuili: CH01 and CH02. C: P. hadriani: CH10, CH15, AZ08, BC01, and BC02. D: P.
- *hadriani*, LSM01, LSM02, LSC01, LM01, LM02 and LM03. E: *H. dumortieri*: Dm01
- and Dm02. **[[SU: in C, D, and E, should be lowercase Late and Early before Aptian,**]
- 389 and should be hyphenated (e.g., "early-late Aptian")]]
- 390
- ¹GSA Data Repository item 2016xxx, digitalized tomograms, stratigraphic position of
- 392 studied specimens, ontogenetic Cc/A ratio value variations, all Cc/A ratios by tomogram
- 393 throughout time, size changes in *Polyconites*, Sr isotopes, summary table with Cc/A and
- 394 Sh/Cav ratios, and Cc/A ratio statistics, is available online at
- 395 www.geosociety.org/pubs/ft2016.htm, or on request from editing@geosociety.org or
- 396 Documents Secretary, GSA, P.O. Box 9140, Boulder, CO 80301, USA.