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Abstract 

The extent of crystallization and transformation of lipids, and their network formation, 

play decisive roles in determining physical properties (e.g., hardness, texture, rheology, 

and spreadability) of lipid-based food products. In these products, the lipid materials are 

present in rather complicated physical states such as mixtures of solid and liquid lipids or 

emulsified with water phases. In addition, various external influences are applied during 

actual production in a factory.  Therefore, exploration of lipid crystallization under 

multiple external influences is necessary to improve the functionality of lipid-based food 

products.  

 

Introduction 

Lipids are major nutrients widely employed as lipophilic materials in confections, 

butter/spreads, ice creams, etc. Controlling physical properties of lipids has become 

increasingly significant both from the fundamental and applied points of view. Physical, 

chemical, biochemical, and biotechnological approaches have been developed to cope 

with current diversified market demands in the lipids industry, e. g., replacing trans-fatty 

acids with alternatives, reducing saturated fatty acids, and improving functionality of end 

products under processing, storage, and consumption conditions.  

Major physical properties of lipid-based food products are gloss, hardness/softness, 

melting, texture, rheology, and spreadability. These physical properties are primarily 



influenced by three main factors: crystallization and transformation behavior, 

microstructures of lipid crystals, and rheological and textural properties exhibited by lipid 

crystal networks. Crystallization and transformation of lipids constitute an important 

body in the research of the physical properties of food lipids, which are mostly 

represented by triacylglycerols (TAGs) called fats. Lipids exhibit highly complicated 

crystallization behavior, and their physico-chemical properties (e.g., melting, rheology, 

morphology, and texture) are mainly determined by their fatty acid structures and 

compositions, which are most typically revealed in polymorphism.  In addition, all lipid-

based foodstuffs are made of aggregated poly-crystalline lipid crystals, whose networks 

are formed by crystallization conditions to reveal optimal size, shape, and orientation of 

lipid crystals having nanometer and millimeter dimensions. Otherwise, deterioration of 

the food products occurs in fat bloom in confections, draining of liquid oil from spreads, 

and water-oil separation in emulsion systems. 

Thus, controlling the physical properties of lipids becomes an important challenge for 

industrial fields to obtain the desired product characteristics (Figure 1). Many studies 

have focused on determining molecular and crystalline structures, the influence of 

external factors on the crystallization and transformation mechanisms, the formation of 

lipid-crystal networks from nano-scale to meso- and macro-scale structures and 

rheological and textural properties. Extensive research considering these four areas has 

been conducted on the influence of external factors on the polymorphism and 

crystallization of lipids, such as using additives, shear, sonication, emulsification, or 

temperature variation. Applying such external influences may modify crystallization 

kinetics of lipids, so that the microstructures of lipid crystals and, ultimately, the 

functional properties of the end food product (e.g., texture and melting) may also be 

changed.  

In this review, we briefly focus on the effects of such external factors as the application 

of dynamic temperature variation, template effects, shear, and emulsification to form 

water-in-oil (W/O) emulsion systems. For this purpose, we may focus on the recent 

research performed in the past several years since previous reviews [1-3].  

For sonication effects on lipid crystallization, the readers should refer to a recent 

monograph [4] and research articles [5-8]. For the crystallization of lipid phases in oil-in-

water (O/W) emulsion systems, recent research of nucleation kinetics of lipid crystals in 

oil droplets was reviewed by Povey [9]. Douaire et al. also reviewed recent advances in 



the research of lipid crystallization near water-in-oil interfaces with the aid of emulsifiers 

in the O/W and W/O emulsion phases [10].  

 

Effects of dynamic temperature variations  

The occurrence of metastable and more stable polymorphic forms of lipids is largely 

influenced by dynamic temperature variations such as the rates of cooling and heating. 

These effects can modify the occurrence of specific polymorphic forms by tailoring the 

most efficient thermal treatments, and such forms should be maintained over long periods 

by preventing their conversion into other less functional polymorphic forms.  

The influence of thermal treatment on lipid crystals has recently been applied from 

single pure triacylglycerol (TAG) components [11-14] and their mixtures [15, 16] to end 

food products [17-21]. The effects of cooling and heating rates on the polymorphic 

behavior of TAG components have been related to some structural aspects, such as the 

chain length of fatty acid moieties and the symmetric/asymmetric structures of TAG 

molecules.  Differences observed in kinetic crystallization have also been analyzed in 

lipid binary mixtures by considering molecular structures and interactions between 

component TAGs. For more complex systems, variations in the thermal treatment can 

largely determine final textural characteristics of the end food product, such as 

spreadability and mouthfeel, as reported on the polymorphism, microstructure, and 

rheology of butter [20-21]. Using different cooling rates resulted in similar polymorphic 

forms, but different microstructures of butter: butter produced from slowly cooled cream 

had a wider size distribution, whereas rapidly cooled cream resulted in more uniform 

crystals. The study of kinetic effects on the polymorphic crystallization of lipids may also 

provide valuable information for industrial applications improvement and optimization. 

In this sense, Rincón-Cardona et al. characterized the polymorphic behavior of sunflower 

oil fractions when different thermal treatments were applied to be used as trans-fat 

replacers and cocoa butter equivalents with optimized processing conditions [19]. 

The crystallization of lipid systems under non-isothermal conditions (variation of the 

cooling and heating rates) becomes quite complex due to the presence of different 

component TAGs and their multiple polymorphic forms. In order to monitor the 

polymorphic behavior in such dynamic conditions, synchrotron radiation X-ray 

diffraction techniques coupled to differential scanning calorimetry become extremely 

useful, as they enable rapid thermal programs to provide highly accurate structural 

information. By following this methodology, the effects of the cooling and heating rates 



on the nucleation and transformation of polymorphic forms have been studied for several 

TAGs [22-24]. In all cases, larger quantities of more stable forms were obtained when the 

samples were slowly cooled and heated, whereas less stable polymorphs predominated 

with increased cooling and heating rates. Polymorphic transformations occurred in either 

solid-state or melt-mediation and were influenced by heating rates. 

 

Template effects of additives  

The recent ban on using lipids containing trans-fatty acids has meant that the current 

and future development of lipid-based food products will have to rely more on the  lipids 

without partly-hydrogenated fatty such as natural lipids with highly saturated lipid 

content (palm oil, coconut oil etc.). Since the crystallization rates of trans-lipids are 

inherently higher than those of non-hydrogenated lipids in the current scenario, more 

effort needs to be focused on exploring ways to hasten the process of lipid crystallization. 

The use of hydrophobic additives can be considered as one promising approach, because 

the additives are known to influence the bulk properties including consistency, texture, 

yielding force, solid lipid content, and post-hardening phenomena [25] in addition to  

promoting (or inhibiting in some cases) lipid crystallization (including nucleation, crystal 

growth, polymorphic transitions, and consequent morphology of crystals) [25-27].  

The positive effect of hydrophobic additives on lipid crystallization is mostly attributed 

to the “templating effect,” which simply refers to the phenomenon where a higher melting 

additive with significant structural and chemical similarities to the lipid (similarity in fatty 

acid composition, carbon chain length of acyl groups, saturation/unsaturation levels, 

polymorphic correspondence, and thermal stability) serves as a template (seeding nuclei) 

for heterogeneous crystallization of lipids. This results in earlier onset of crystallization 

because of the crystal nucleation at higher temperatures [28, 29], co-crystallization of 

additive and TAGs if the concentration of the additive is high enough [30], increased cut-

off temperatures of lower polymorph formation by promoting the formation of more 

stable polymorphs [31], and fractional crystallization [30].  

Recently, the templating effect of additive-monoplamitin on crystallization of palm oil 

was studied using a state-of-the-art synchrotron radiation microbeam X-ray diffraction 

(SR-μ-XRD) technique, and it was concluded that high-melting TAG crystals of palm oil 

were oriented by previously formed monopalmitin crystals that acted as templates due to 

their structural similarities with TAGs in palm oil [32]. Furthermore, the positive effect 

of polyglycerol fatty acid esters (PGFEs) on crystallization of palm stearin was also 



considered due to the templating effect [26]. When an additive is used above its 

equilibrium solubility concentration, it crystallizes ahead of the bulk lipid and promotes 

crystallization by serving as a template.  

Interestingly, new findings have shown that inorganic (talc, carbon nanotube, and 

graphite) and organic (theobromine, ellagic acid dihydrate, and terephthalic acid) 

materials  can also exhibit templating effects  of lipid crystallization [33, 34]. Such 

additives have great potential for promoting lipid crystallization by both hydrophobic and 

hydrophilic molecular interactions between the lipids and additives. 

 

Effects of shear 

The application of shear increases the rates of polymorphic crystallization and 

transformation of lipids and modifies the aggregation of nanocrystals of the lipid crystal 

network, as fully reviewed in [2]. Further clarification of the effects of shear on 

crystallization and physical properties of lípid-crystal aggregates has been attempted from 

various viewpoints: combined effects of temperature variation and shear application [35],  

oil binding properties of fat blends of fully hydrogenated soybean oil  in soybean oil [36-

38], morphological changes of lipid crystals of fully hydrogenated canola oil blended with 

canola oil caused under shear at different cooling rates [39], improved physical properties 

of fat blends composed of soybean oil, coconut oil and palm stearin  [40], and organogels 

[41] under high shear. 

  Since the first systematic work on shear effects, cocoa butter has been the most 

extensively examined lipid material. This is because (1) control polymorphism, 

morphology and network structures of cocoa butter crystals is a prerequisite to reveal 

snap, gloss, and sharp melting of chocolate, and (2) preceding research has shown that 

application of an optimal shear rate promotes the polymorphic crystallization in stable 

form and improves the crystal network of cocoa butter crystals [2].  Further studies have 

provided new information on the shear-induced cocoa butter crystallization behavior [42-

45]. 

The rates of oil migration from liquid-oil-containing filling to chocolate were 

quantitatively assessed by crystallizing cocoa butter with and without shear [42]. Optical 

microscopy revealed that the secondary nucleation was promoted and cocoa butter 

crystals formed clusters under shear [43].  

When shear was applied just below the melting point of form V, the crystallization of 

form VI has been detected.  Therefore, the shear-induced polymorphic transformation of 



cocoa butter crystals would not be limited with the metastable form V but progress until 

the most stable form VI [44].  

 

Water-in-oil emulsion droplets 

Crystal-stabilized water-in-oil (W/O) emulsions are increasingly used in food and other 

applications ranging from controlled release applications [46, 47] to novel confectionery 

products [48, 49] and lipstick formulations [46, 50, 51]. Yet, the impact of a dispersed 

phase on fat crystallization remains virtually unexplored. For example, during the 

manufacture of table spreads such as margarines which typically exist as W/O emulsions, 

the presence of interfacially-active species on aqueous droplets may impact the nucleation 

and growth of TAGs in the surrounding bulk phase. Such exploration is relatively recent 

[52-55].  

Continuing efforts are providing further evidence of interfacial templating at the surface 

of water droplets in W/O emulsions. Observation of the lipid crystals with a synchrotron 

radiation microbeam X-ray diffraction technique is quite useful for this purpose [56]. 

Figure 2A is a polarized light image of two water droplets surrounded by a hydrogenated 

fat/vegetable oil blend, with the surfactant glycerol monostearate (GMS) used given the 

structural similarity of its fatty acid moiety with that of the stearic acid chains in the 

hydrogenated fat. Both droplets are surrounded by a mixture of solid fat spherulites and 

surface crystallization, given the slight droplet deformation observed. Figure 2B is a 

close-up of the lower edge of Droplet 2 explored for interfacial crystal orientation, along 

with the regions scanned using synchrotron microbeam x-ray diffraction. Figure 2C 

presents the corresponding x-ray diffraction scans revealing a high degree of interfacial 

crystal orientation in squares 2-6 compared to squares 1 and 7 where little or no 

orientation is observed. Finally, Fig. 2D is a 3D representation of region 4 further 

emphasizing fat crystal alignment. 

 

In the molten state, the GMS molecules will self-assemble at the water droplet surface 

during emulsification, resulting in a disordered interfacial brush arrangement, with its 

polar groups (hydroxyl and carbonyl groups) residing in the aqueous side of the 

interface and the acyl chains exposed to the oil phase. Presuming molecular 

complementarity, the fatty acid chains present in the surrounding TAGs will associate 

with those of the surfactant via van der Waals and hydrophobic interactions. Below 

their respective crystallization temperatures, the associated acyl chains in the GMS and 



TAGs will undergo a gauche-trans transition leading to interfacial heterogeneous 

nucleation of the fat [57]. Templated crystal growth of highly-aligned TAGs at the oil-

water interface will proceed as the crystals thicken, spread, and cover the entire droplet 

with a solid fat crystal shell. Given its importance to the texture and stability of fat-

containing products, continuing efforts are necessary to fully clarify the mechanisms of 

interfacial lipid crystallization in W/O systems as well as its effects on morphology and 

polymorphism of lipid crystals. 

  

Conclusion 

Recent strong market demands, based on nutritional concerns, require reducing trans 

and saturated fatty acids in lipid-based food products. Despite this, functionality of the 

lipid crystals cannot be completely reproduced with other ingredients because various 

physical and chemical properties of sharp melting behavior, texture, retention of oil-

soluble ingredients, stabilization of air bubbles etc. are specific to lipids containing 

saturated fatty acid moieties.  

Basic and application research may thus be directed to the following areas: (1) 

exploring ways of enhancing the crystallization rates and strengthening the crystal 

network of low-saturated products by applying external factors influencing the 

crystallization of lipids, (2) finding alternatives to trans-fats and saturated-fats such as 

organogels, and (3) finding ways to hybridize “traditional” lipids and saturates-

alternatives. 

The present review has highlighted recent topics of (2) above, and we expect to develop 

further research in this and other areas in the near future. 
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Figure legend: 

Figure 1 

Illustrations to relate external influences to crystallization of lipids 

 

Figure 2 



A) Polarized light image of a 20 wt% water-in-oil emulsion, with the oil phase consisting of 69 

wt% canola oil, 10 wt% hydrogenated canola oil and 1 wt% glycerol monostearate.  Size bar = 

50 μm. B) Close-up view of the dotted rectangle in A). Squares 1-7 are the areas scanned via 

synchrotron microbeam X-ray diffraction. C) X-ray scans corresponding to squares 1-7 in B.  

Note clear evidence of oriented interfacial crystallization in scans 2-6 and lack thereof in images 

1 and 7. D) 3-D view of scan region 4 further highlighting existence of orientation.   
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