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Abstract 14 

In this work we combine simple extraction and HPLC-UV methodologies with 15 

chemometric pattern-recognition strategies in order to obtain characteristic fingerprints 16 

of phenolic compounds that allow the authentication of paprika samples. To illustrate 17 

the potential of the proposed approach, two different adulteration scenarios were 18 

considered, namely adulteration of paprika based on its type (sweet, bittersweet and 19 

spicy) as well as on its region (Murcia, la Vera and Czech Republic). Upon preparation 20 

of a proper set of samples, they were analysed using a C18 reversed-phase column and 21 

registered chromatograms were then compressed employing fast Fourier transform 22 

(FFT) to reduce the large dimensionality of the data set, while preserving all relevant 23 

features. Next, data were analysed using linear discriminant analysis (LDA) for the 24 
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qualitative discrimination of adulterated samples, followed by partial least-squares 25 

regression (PLS) modelling to quantitatively assess the adulteration degree. 26 

 27 

Keywords: paprika; food authentication; adulteration; liquid chromatography; partial 28 

least-squares regression 29 
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1. Introduction 30 

In an effort to promote and protect the quality of regional foods, geographical 31 

indications (e.g. protected designation of origin, PDO), regulatory boards assess that 32 

producers comply with the specific technical production conditions and performs 33 

regular controls (including sensory and analytical examinations, as well as stock 34 

statements and verification of movements) (Dias & Mendes, 2018). However, despite 35 

these controls, there is a demand of new analytical low-cost methods needed to assess 36 

both authenticity and fulfilment of quality standards (Danezis, Tsagkaris, Camin, 37 

Brusic, & Georgiou, 2016; Galvin-King, Haughey, & Elliott, 2018). Particularly, this is 38 

critical when trying to assess the authenticity of local natural foods. Unfortunately, there 39 

is a lack of methods able to classify food samples, since usually there is not any specific 40 

compound directly related to food origin or quality that could be determined using 41 

conventional analytical techniques. 42 

A system capable to perform such task should simultaneously detect a large 43 

spectrum of compounds and provide comprehensive information of the sample. In this 44 

regards, current approaches for quality control are shifting from compound-oriented to 45 

pattern-oriented strategies (Cavanna, Righetti, Elliott, & Suman, 2018; Cuadros-46 

Rodríguez, Ruiz-Samblás, Valverde-Som, Pérez-Castaño, & González-Casado, 2016; 47 

Esteki, Shahsavari, & Simal-Gandara, 2019; Zeng et al., 2008). This means developing 48 

methodologies for the simultaneous detection of many compounds and the further 49 

pattern recognition analysis of the data, instead of focusing on the quantification of a 50 

few specific substances. The main advantage of pattern-oriented approaches is that they 51 

do not require any prior knowledge of the sample composition in order to succeed, but 52 

even more, they can be used to assess those key (bio)markers. 53 
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In recent years, there has been an increased interest and knowledge on the presence 54 

of bioactive compounds in food, as well as on the role of such substances on the quality 55 

and health benefits of food products, which has to be guaranteed (Johanningsmeier, 56 

Harris, & Klevorn, 2016; Kris-Etherton et al., 2002). Bioactive compounds distribution 57 

in most natural foods can be related to the specific products varieties, processing 58 

technologies, production regions and climate conditions (Baenas, Belović, Ilic, Moreno, 59 

& García-Viguera, 2019; Mudrić et al., 2017). Most of these compounds are powerful 60 

antioxidants needed for the functioning of plant cells, with huge health benefits upon its 61 

ingestion as they can act as free radical scavengers and inhibitors of lipoprotein 62 

oxidation, providing a protective effect against aging pathologies like cardiovascular 63 

diseases or cancers mutation (Kim et al., 2016; Quideau, Deffieux, Douat-Casassus, & 64 

Pouységu, 2011). 65 

Paprika, sometimes also referred to as chilli pepper, is a characteristic red seasoning 66 

powder obtained from the drying and grinding of certain varieties of red peppers 67 

(Capsicum annuum L.) (Pérez‐Gálvez, et al., 2005). There are three important varieties 68 

of paprika: sweet, bittersweet, and spicy. The two most known varieties of paprika in 69 

Spain, and the only ones with a PDO, come from the region of “la Vera” in Cáceres 70 

(Extremadura) and from “Murcia” (Commission Regulation (EEC), 11 February 2000, 71 

24 November 2006). Among the different bioactive substances found in paprika, 72 

phenolic compounds are especially important, and their distribution may be related to 73 

the different red pepper varieties (Baenas et al., 2019; Mudrić et al., 2017; Quideau et 74 

al., 2011). 75 

In this context, herein we investigate on the capabilities of combining liquid 76 

chromatography, to obtain a profile of the phenolic content of paprika’s, with 77 

chemometric methods such as linear discriminant analysis (LDA) or partial least-78 
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squares regression (PLS) for the extraction of a characteristic fingerprint that allow the 79 

authentication of paprika samples. 80 

 81 

2. Experimental 82 

2.1 Reagents and materials 83 

Methanol (UHPLC-gradient grade), formic acid 98%, acetonitrile, absolute ethanol 84 

and acetone were purchased from Panreac (Barcelona, Spain). Standards of phenolic 85 

compounds were obtained from Sigma-Aldrich (St. Louis, MO, USA), from which 86 

stock solutions of 1000 mg/L were prepared in methanol and stored in amber glass 87 

vials. Deionized water was obtained from a Milli-Q system (Millipore, Billerica, MA, 88 

USA). 89 

 90 

2.2 Paprika samples 91 

Authentication of paprika was studied from two different points of view. On the one 92 

side, adulteration with paprika from other regions was considered, whereas on the other 93 

side, adulteration with paprika from other varieties was also evaluated. 94 

To this aim, paprika samples from three different regions (La Vera, Murcia and 95 

Czech Republic) were considered. Among the samples of every region, there were 96 

different types of paprika (sweet, bittersweet and spicy in the samples from La Vera, 97 

and sweet and spicy in the samples from Murcia and Czech Republic). The samples 98 

were purchased directly from producers or from different local shops. Adulteration of 99 

paprika was made in two ways. In the study about paprika types, 24 mixtures were 100 

prepared with different proportions of the varieties sweet, bittersweet and spicy of 101 

paprika from La Vera. For each variety, 12 different proportions were considered (0, 102 

0.01, 0.02, 0.1, 0.2, 0.4, 0.6, 0.8, 0.9, 0.98, 0.99 and 1), according to the design of 24 103 
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experiments summarised in Table 1. Every mixture was prepared twice, which means 104 

48 samples to be analysed. In the study about paprika regions, 24 mixtures were 105 

prepared with samples of the type spicy from the regions of La Vera, Murcia and Czech 106 

Republic. As in the previous study, the experimental design of Table 1 was used and the 107 

samples were prepared twice, also producing a total of 48 samples. 108 

Prior to its analysis, paprika samples were subjected to a extraction stage by 109 

sonication and centrifugation in water:acetonitrile (20:80 v/v) (Cetó et al., 2018). 110 

Briefly, 0.3 g of paprika were weighted, dispersed in 3 mL of solution and vortexed for 111 

1 min. Next, samples were sonicated for 15 min and centrifuged at 4500 rpm for 30 112 

min. Finally, the supernatant was filtered through 0.45 μm nylon filters, and samples 113 

stored at 4 ºC until their analysis. 114 

 115 

2.3 Chromatographic analysis 116 

HPLC analysis was carried out in an Agilent 1200 Series instrument (Palo Alto, CA, 117 

USA) equipped with a G1311A quaternary pump, a G1322A vacuum degasser, a 118 

G1329A autosampler and a G1314B ultraviolet-visible detector; all of them controlled 119 

with the Agilent ChemStation software package.  120 

Chromatographic fingerprints were obtained with a reverse phase Kinetex C18 121 

column (2.6 µm C18 100 Å, 100 x 4.6 mm) from Phenomenex (Torrance, CA, USA) at 122 

room temperature. For the elution, a mixture of Milli-Q water containing 0.1% formic 123 

acid (solvent A) and methanol (solvent B) were used as the mobile phase components at 124 

a flow rate of 1 mL/min, and with the following gradient: 0-2 min, isocratic step at 5% 125 

B; 2-4 min linear gradient from 5 to 25% B; 4-12 min, at 25% B; 12-14 min, from 25 to 126 

45% B; 14-16 min, at 45% B; 16-18 min, from 45 to 95% B; 18-20 min, at 95% B; 20-127 

21 min, back to initial conditions at 5% B; and from 21-30 min, at 5% B for column re-128 
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equilibration (Cetó et al., 2018). Injection volume was 20 μL, and UV absorption 129 

registered at 280 nm every 291 ms.  130 

Every paprika sample was injected by triplicate, which generated 144 131 

chromatograms in the study about paprika types and 144 chromatograms more in the 132 

study about paprika regions. 133 

 134 

2.4 Chemometric analysis 135 

The resulting chromatograms were first baseline corrected by polynomial fitting and 136 

subtraction of the background and compressed using fast Fourier transform (FFT), and 137 

then submitted to linear discriminant analysis (LDA) and partial least squares regression 138 

(PLS) by means of home-made programs implemented in Matlab 7.1 (MathWorks, 139 

Natick, MA, USA) (Cetó, Céspedes, & del Valle, 2013).  140 

Briefly, FFT was used to reduce the large dimensionality of the recorded data, while 141 

LDA was used to actually attempt its categorization based on the adulteration degree. 142 

Finally, in order to numerically quantify the degree of adulteration, PLS was employed. 143 

In both cases, the set of samples was randomly split between two subsets: training and 144 

testing, in the ratio 2:1 to ensure unbiased results were obtained from the models. 145 

 146 

3. Results and Discussion 147 

As discussed earlier, it is very complicated to achieve the authentication of food 148 

samples from the concentration profiles of specific compounds obtained from their 149 

targeted analysis. Oppositely, completely non-targeted analysis has also the drawback 150 

that much more features or descriptors will be required (including many that will turn to 151 

be non-relevant), thus hindering the data processing stage as well as possibly demoting 152 

model performance.  153 
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In this direction, we have developed and applied a chromatographic method for the 154 

profiling of phenolic compounds present in paprika (Figure 1), and we hypothesize on 155 

the potential of this method in combination with chemometric analysis for the 156 

authentication of paprika samples. To illustrate its potential, two different scenarios 157 

were explored taking into account paprika classification, namely the adulteration with 158 

different varieties and the adulteration with paprika from different regions (PDO’s). 159 

Moreover, not only the qualitative authentication was considered, but also the 160 

quantification of the adulteration degree was attempted. The results obtained are 161 

presented over the next sections. 162 

 163 

3.1 Authentication of paprika based on its type 164 

The first study case was to attempt the authentication of adulterated sweet, 165 

bittersweet and spicy paprika samples from La Vera according to the levels reported in 166 

Table 1. Upon preparation of the set of adulterated samples, they were subjected to the 167 

extraction procedure and the chromatographic analysis described above, which 168 

produced a set of 144 chromatograms with characteristic fingerprints as these shown in 169 

Figure 1. 170 

Upon measurement of all the set of samples, the next step was to attempt its 171 

discrimination with the aid of chemometric methods. However, given the large 172 

dimensionality of the recorded data, chromatograms were first compressed down to 512 173 

coefficients with the aid of FFT algorithm. This allowed a reduction of over 95.8% on 174 

the pattern matrix without any loss of significant information and also a notorious 175 

decrease in the instrumental noise (Cetó et al., 2013). 176 

The chosen pattern recognition method to attempt the discrimination of the 177 

adulterated samples was LDA, taking the different adulteration levels (i.e, the 24 178 
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mixture proportions) as the classes into which the samples were divided and the 179 

calculated Fourier coefficients as the pattern matrix. To further remove non-relevant 180 

variables with lower or none relevance to the classification task, a stepwise inclusion 181 

method was used so as to select the minimum set of coefficients to perform the 182 

prediction task with the optimum performance (Johnson & Wichein, 2007). 183 

The two dimensional score plot obtained after LDA is shown in Figure 2. Despite its 184 

complexity given the large number of classes considered (24), there are some interesting 185 

trends that can be observed. Firstly, it is important to note how the three classes 186 

corresponding to the pure (non-adulterated) paprika samples are the ones taking the 187 

extreme values for both discriminating functions (DFs), or in other words, appear at the 188 

extremes of the plot. That is, C1 corresponding to sweet samples in the right bottom of 189 

the plot, opposite to it there is C17 corresponding to spicy samples and on the top in 190 

between those two there is C9 corresponding to bittersweet samples. More interestingly, 191 

it can also be observed how two big clusters appear distinguishing spicy adulterated 192 

samples from sweet and bittersweet adulterated ones. That is, if we imagine a line going 193 

from the top left to the bottom right, we can see how those clusters would be separated 194 

by it. Even more, we can notice how intra-clusters distance is bigger for this subset of 195 

samples compared to the other, thus indicating that adulteration of spicy paprika 196 

samples with other types of paprika is much more noticeable. This fact might be due to 197 

the much higher concentrations of capsaicinoids in spicy paprika in comparison to the 198 

other two types, which leads to a significant decrease of its concentration in the 199 

mixtures. Lastly, despite the apparent overlapping that might be seen with some classes 200 

in this 2D representation (e.g.  C18/C20), this is not an issue as when also DF3 is 201 

plotted (which represents 9.48% of the total model variance), it can be seen how the 202 

clusters are clearly discriminated (with respective centroids coordinates of ca. 15 and -5, 203 
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respectively). In this regard, it has to be kept on mind that the actual model has a total of 204 

23 DFs, which are the ones used to numerically assign the samples to each of the 205 

classes. 206 

Next, in order to numerically assess the performance of the model, confusion 207 

matrixes were built (data not shown). Classification rate for the training and testing 208 

subsets was 100% and 81.3%, respectively; the latter being slightly lower due to some 209 

miss-classification between sweet and bittersweet adulterated samples at the lower 210 

considered levels. Moreover, performance of the model was also evaluated in terms of 211 

sensitivity, specificity and precision values (averaged for the classes) (Cetó, Voelcker, 212 

& Prieto-Simón, 2016), achieving a 81.3%, 99.2% and 85.4%, respectively.  213 

Upon confirmation of the capability of the method to discriminate adulterated 214 

samples, and even more, to actually discriminate between different levels of 215 

adulteration, the next step was to attempt to numerically predict the actual degree of 216 

adulteration. To this aim, PLS was used instead of LDA as the modelling tool, using as 217 

before the calculated Fourier coefficients as the pattern matrix, but taking the actual 218 

percentage of adulteration rather than the classes as the target matrix. 219 

As an example, the comparison graph of the predicted vs. expected percentage of 220 

adulteration for the mixtures of sweet and bittersweet samples is shown in Figure 3. As 221 

can be seen, a good trend is obtained, with fitted regression lines for both training and 222 

testing subsets almost indistinguishable from the ideal comparison line (y=x). That is, 223 

with slope and correlation coefficients close to 1, and intercept value close to 0; being 224 

the theoretical values included in the 95% confidence interval. In this way, confirming 225 

the potential of the approach not to only qualitatively discriminate between pure and 226 

paprika adulterated with other varieties, but also to numerically quantify the degree of 227 

adulteration. 228 
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 229 

3.2 Authentication of paprika based on its region 230 

To further assess the suitability of the proposed method for the authentication of 231 

paprika, not only adulteration within different varieties was considered, but also the 232 

potential fraud of not respecting the PDOs. That is, mixing paprika produced in 233 

different regions. As done with the previous scenario, the same experimental design was 234 

employed, considering spicy samples from three different regions: Murcia, la Vera and 235 

Czech Republic. 236 

As before, upon measurement of all samples, the set of 144 chromatograms was 237 

compressed employing FFT and a qualitative LDA model was built to attempt its 238 

discrimination. The resulting scores plot is shown in Figure 4. In this case a very clear 239 

trend was observed in the score plot, with the different classes taking almost a perfect 240 

triangular shape where each vertex corresponds to the unadulterated paprika samples 241 

and the mixed samples are distributed along the faces of the triangle, being sorted 242 

according to the degree of adulteration. That is, la Vera samples (C1) is in the left top of 243 

the plot and opposite to Murcia samples (C9), which appear on the right sharing similar 244 

scores for DF2; meanwhile Czech Republic samples appear on the bottom, in between 245 

those two, with clear different values for DF2 evidencing that that coordinate basically 246 

discriminates Spanish and Czech samples. Very significant is also the increase in the 247 

percentage of accumulated variance only with the first two DFs, as in this case, the 248 

value goes up to ca. 91.6%. A huge value that helps to explain why such a clear trend 249 

has been obtained in the scores plot. 250 

In order to numerically assess such a promising output, a confusion matrix was built  251 

(data not shown), from which the classification rate for the training and testing subsets 252 

was estimated as 100% and 95.8%, respectively. Performance of the model was also 253 
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evaluated in terms of sensitivity, specificity and precision values (averaged for the 254 

classes) (Cetó et al., 2016), achieving a 95.8%, 99.8% and 97.2%, respectively. All 255 

these metrics confirm what could be somehow expected from the LDA score plot, i.e. 256 

the fact that a clear identification is obtained for the authentication of paprika’s region. 257 

In this direction, we suspect that the superior performance observed in this case as 258 

compared to the previous one might be due to the higher impact on the phenolic profile 259 

derived from the different geographical climate conditions, but also to the fact that 260 

different varieties might be cultivated over different areas, which exalts further this 261 

different profiling (Mudrić et al., 2017). 262 

Finally, a PLS model was also built to confirm what seems to be very clear from the 263 

LDA scores plot in this case, and is the fact that the proposed chromatographic 264 

approach has huge potential to be used to numerically predict the degree of adulteration. 265 

As an example, the comparison graph of the predicted vs. expected percentage of 266 

adulteration for the mixtures of la Vera and Murcia samples is shown in Figure 5. A 267 

very good trend is obtained, with fitted regression lines for both training and testing 268 

subsets almost indistinguishable from the ideal comparison line (y=x), containing the 269 

theoretical values of slope (1) and intercept (0) in the 95% confidence interval. Thus, 270 

the proposed methodology allows both the qualitative identification and the quantitative 271 

determination of the degree of adulteration of paprika with paprika from other regions. 272 

 273 

4. Conclusions 274 

Based on these results, we can confirm the huge potential of chromatographic 275 

methods in combination with chemometric analysis for the authentication of paprika 276 

samples. More specifically, we can confirm the hypothesis that the broad phenolic 277 

profile of paprika is significant enough to allow the discrimination of paprika samples 278 
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given that phenolic distribution and content in natural food products seems to be related 279 

to food features such as the plant/fruit/seed variety, the geographical climate conditions 280 

of their production area, and the cultivation and manufacturing practices, among others. 281 

Consequently, they could be a rich source of analytical information to carry out the 282 

characterization, classification and authentication of food products as well as to detect 283 

possible adulterations. 284 

Overall, this work aims to demonstrate the advantages derived from the use of 285 

chemometric methods as an alternative to specific-compound targeted classical analysis. 286 

In this way, a biomimetic approach generates an overall fingerprint of the food products 287 

analysed which allows to overcome the lack of knowledge of the compounds 288 

responsible for certain characteristics and/or perceptions.  289 
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 1 

Table 1. Composition of the set of samples prepared to evaluate paprika adulteration 

based on its type [(A) sweet, (B) bittersweet and (C) spicy] as well as on its region [(A) 

La Vera, (B) Murcia and (C) Czech Republic]. 

Class A B C  Class A B C  Class A B C 

1 1 0 0  9 0 1 0  17 0 0 1 

2 0.99 0.01 0  10 0 0.99 0.01  18 0.01 0 0.99 

3 0.98 0.02 0  11 0 0.98 0.02  19 0.02 0 0.98 

4 0.9 0.1 0  12 0 0.9 0.1  20 0.1 0 0.9 

5 0.8 0.2 0  13 0 0.8 0.2  21 0.2 0 0.8 

6 0.6 0.4 0  14 0 0.6 0.4  22 0.4 0 0.6 

7 0.4 0.60 0  15 0 0.4 0.60  23 0.60 0 0.4 

8 0.2 0.8 0  16 0 0.2 0.8  24 0.8 0 0.2 

 

 

Table 1
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FIGURE CAPTIONS 

 

Figure 1. Representative raw chromatograms obtained for spicy paprika samples 

extracts of (top to bottom) La Vera, Murcia and Czech Republic under the conditions 

described in section 2.3. 

 

Figure 2. Score plot obtained after LDA analysis for the authentication of paprika’s 

type. In this study 144 chromatograms were analysed, corresponding to 24 different 

proportions of the sweet, bittersweet and spicy types of paprika from La Vera (two 

samples for every proportion and three injections per sample). Numbers indicate the 

class of every sample (i.e., the proportion of paprika types) according to Table 1. 

Coloured filled symbols correspond to the training subset and black empty ones to the 

testing subset, whereas the centroid for each of the classes is also plotted (★). 

 

Figure 3. Performance of the optimized FFT-PLS model for the authentication of 

paprika’s type. For every sample, the predicted versus expected percentage of 

adulteration of sweet paprika from La Vera with the bittersweet variety of the same 

PDO is shown, including training (●, solid line) and testing (○, dotted line) subsets. The 

dashed line corresponds to the theoretical diagonal line. 

 

Figure 4. Score plot obtained after LDA analysis for the authentication of paprika’s 

region. In this study 144 chromatograms were analysed, corresponding to 24 different 

proportions of the spicy type of paprika from La Vera, Murcia and Czech Republic (two 

samples for every proportion and three injections per sample). Numbers indicate the 

class of every sample (i.e., the proportion of paprika types) according to Table 1. 

Figure Captions
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Coloured filled symbols correspond to the training subset and black empty ones to the 

testing subset, whereas the centroid for each of the classes is also plotted (★). 

 

Figure 5. Performance of the optimized FFT-PLS model for the authentication of 

paprika’s region. For every sample, the predicted versus expected percentage of 

adulteration of spicy paprika from La Vera with the same variety from Murcia is shown, 

including  training (●, solid line) and testing (○, dotted line) subsets. The dashed line 

corresponds to the theoretical diagonal line. 
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