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ABSTRACT: 40 

 41 

The kinetics of the reaction of [PtIV(4X-Cph,N,N’)Cl(Y)2] complexes (2-X-Y) (X=Cl or F and Y=OH 42 

or Cl) with biological thiols (glutathione, cysteine, thiolactic acid) and methionine, has been monitored 43 

by UV–Vis spectrophotometry. The reactions have been followed at varying pHs and chloride 44 

concentrations (within the physiological range) and different temperatures and pressures. The bis-45 

chlorido derivatives, 2-X-Cl, have been found to react with cysteine, glutathione and thiolactic acid, 46 

while the bis-hydroxido 2-X-OH derivatives are not reduced due to the high potential of the PtIV/PtII 47 

pair, as measured in aqueous solution. The lack of reactivity of methionine is related with its tioether 48 

nature preventing deprotonation of the S donor. In all remaining cases, two consecutive reaction steps 49 

have been found to occur. For cysteine the two steps can be kinetically resolved, the first step being  50 

neatly related to a PtIV to PtII reduction and the second step corresponding to the substitution of the 51 

remaining Cl− ligand by cysteine. The nature of the second step has been also confirmed by ESI-MS, as 52 

well as by the associative character of the activation parameters determined (low ΔH╪ and very negative 53 

ΔS╪ and ΔV╪). For glutathione and thiolactic acid, the rate and thermal and pressure activation 54 

parameters for the reduction step has been found similar to that obtained for the reaction with cysteine, 55 

but the substitution step could not be resolved kinetically. The substitution step, as measured from the 56 

reduced [PtII(4X-Cph,N,N’)Cl] complex, is faster than the reduction process, and also much faster than 57 

that observed for the reaction with cysteine. In both cases the final product resulting for the reduction 58 

reactions corresponds thus to the final substituted complex as found for the reaction with cysteine. 59 

..60 



1. INTRODUCTION 61 

 62 

Since the discovery of the anticancer effects of cisplatin (cis- [PtCl2(NH3)2]) by Rosenberg, the 63 

antitumor activity of certain PtIV compounds such as cis-[PtCl4(NH3)2] was also noticed [1–3]. In 64 

recent years, platinum complexes with non-classical structures such as PtIV compounds or with 65 

different mechanisms of action than cisplatin have been thoroughly investigated [4–5]. Nevertheless, 66 

despite the worldwide application of PtII complexes such as cisplatin, carboplatin and oxaliplatin, there 67 

is no PtIV complex approved for clinical use so far [6]. Given the inertness of PtIV compounds, it is 68 

generally accepted that the PtIV compounds may be reduced in vivo by molecules present in the cell, 69 

such as glutathione, L-cysteine, L-methionine or ascorbic acid, to PtII compounds which, in turn, could 70 

exert their cytotoxic activity. Properly designed PtIV complexes display several advantages since their 71 

inertness diminishes side effects and prevents deactivation before entering the cancer cell, and their 72 

higher lipophilicity renders them more suitable for oral administration. The prototype of PtIV anticancer 73 

agents involves, in addition to two non-leaving groups and two substitutionally active groups as for 74 

cisplatin analogues, the presence of two axial ligands which can dissociate after biological reduction. 75 

These ligands can be used to modulate the reduction parameters, kinetic stability, lipophilicity and 76 

pharmacological properties of the prodrug. Therefore, a versatile strategy is to combine clinically 77 

relevant PtII drugs with adequate axial ligands [2,6–12]. A common route to introduce these two 78 

additional axial ligands consists of a two-electron oxidation of a PtII precursor and the most widely used 79 

oxidizing agents are hydrogen peroxide and chlorine, which give trans addition products [3]. 80 

Since PtIV compounds act as prodrugs which are activated by reduction, the reduction potential is a key 81 

pharmacological parameter to predict the activity of these compounds. On one hand, very high redox 82 

potentials might lead to straightforward fast reduction and severe side effects, as those found for 83 

cisplatin, thus representing a serious drawback despite its original more benign design. On the other 84 

hand, a lack of anticancer activity might be related with too low reduction potentials which would keep 85 

the complex with rather inert characteristics, thus not allowing its interaction with the DNA molecule 86 

[7]. The reduction potentials are dependent on the nature of both axial and equatorial ligands, but in 87 

general the effect of the leaving axial ligands is more relevant. In particular, for a series of PtIV 88 

compounds with axial chlorido, acetato and hydroxido ligands, the ease of reduction follows the trend Cl 89 

> OAc > OH [13,14]. Hydroxido ligands possess strong electron donating properties and the resulting 90 

complexes are difficult to be reduced [15]. 91 

It was originally assumed that a correlation exists between the biological activity of the PtIV prodrugs, 92 

the reduction potentials and the rates of reduction. However, the reduction potentials have been found to 93 

not necessarily correlate with the rates of reduction of PtIV complexes [16,17]. In fact, the rates of 94 

reduction depend on the ability of the ligands in the coordination sphere of the PtIV species to associate 95 

with the reducing agent which facilitates the electron transfer [18]. Moreover, although the reduction of 96 

PtIV complexes produces the loss of axial ligands to form the corresponding square-planar PtII 97 



complexes [19], several studies indicate that reductants such as glutathione might coordinate to the 98 

resulting PtII species, thus resulting in an already substituted cisplatinum analogue that might, or might 99 

not, interact with the DNA molecules [20–22]. Therefore, in spite of the great deal of attention recently 100 

devoted to PtIV antitumor drugs, more studies aimed at disclosing the nature and substitutional 101 

reactivity of the produced PtII compounds are needed. By doing so, it should be possible to fully 102 

understand the precise mechanisms of the reduction process and thus develop a rational design of new 103 

compounds with better pharmacokinetic tuning properties which have been found to be the keystone for 104 

its activity. 105 

On the other hand, recent studies indicate that organometallic compounds are promising anticancer 106 

agents in spite of the initial idea that these compounds would be unstable under physiological 107 

conditions. The presence of some strong M−C bonds improves the stability of these compounds and 108 

greatly influences the lability of the other bonds present. In addition, organometallic compounds are 109 

easily modified and thus suitable for the establishment of structure–activity relationships [23–25]. In 110 

particular, cyclometallated compounds [26] are appealing since they are easily obtained for a wide range 111 

of different ligands and metals; furthermore, they can be rather stable versus hydrolysis in aqueous 112 

media and present a good tuning of the polarity needed for going across membranes. In this respect the 113 

careful choice of complexes with just one Pt-C bond is extremely relevant for the maintenance of the 114 

substitutional associative activation of the final PtII complex formed, thus enabling its reactive 115 

discrimination among the wealth of potential substituting ligands in the reaction medium. 116 

Following our interest in cyclometallated platinum compounds, we have recently shown that PtIV 117 

metallacycles present cytotoxic properties [27], and, on the other hand, they are adequate platforms for 118 

kinetico-mechanistic studies of oxidative addition and reductive elimination processes [28]. Therefore, 119 

cyclometallated PtIV compounds are excellent candidates to study their reactivity towards reductants 120 

such as glutathione and other biologically relevant thiols. Furthermore, the resulting PtII species can be 121 

independently prepared and its substitutional activity also monitored under the same conditions. 122 

Although several kinetico-mechanistic studies of reactions of PtIV compounds with this type of 123 

reductants have been reported [19,29–33], to the best of our knowledge this is the first one which 124 

involves cyclometallated compounds which can be easily tuned, both in the reduction potential and in 125 

the substitutionally reactivity aspects of the reduced PtII species obtained. The aim of this work is to use 126 

[C,N,N′] cyclometallated compounds as models to establish the reactivity sequence of PtIV compounds 127 

with biologically relevant reductants in order to provide a deeper understanding of these processes so 128 

that more efficient PtIV prodrugs can be designed. 129 

 130 

131 



2. RESULTS 132 

 133 

2.1. Compounds 134 

The syntheses of [C,N,N’] cyclometallated PtII compounds containing a chloro (1-Cl in Scheme 1) [34] 135 

or a fluoro (1-F in Scheme 1) [35] substituent have been previously reported. As for cisplatin, these 136 

cyclometallated PtII compounds contain two substitutionally active positions: the chlorido ligand and 137 

the dimethylamino moiety of the terdentate [C,N,N’] ligand. This has been evidenced upon the reactions 138 

of 1-Cl with monodentate and bidentate phosphines which lead respectively to dissociation of the NMe2 139 

moiety to produce a neutral compound, or to dissociation of both the NMe2 and the chlorido ligand to 140 

produce an ionic compound [34]. Oxidative addition of either Cl2 or H2O2 on these compounds has 141 

been carried out in this work following reported procedures [36,37] and gave the desired 142 

cyclometallated PtIV compounds 2-Cl-Cl, 2-Cl-OH and 2-F-Cl depicted in Scheme 1. 143 

The structure of compound 2-Cl-Cl was determined (CCDC deposition number 1828170) by single 144 

crystal XRD and is shown in Fig. 1. As expected from NMR studies, the platinum atom displays an 145 

octahedral coordination with a meridional tridentate [C,N,N’] ligand. An equatorial and two axial 146 

chlorido ligands complete the coordination around the platinum, and the axial chlorido ligands form a 147 

Cl-Pt-Cl angle of 174.55 °. Although three distinct Pt-Cl bond distances are observed, all values are in 148 

the same range within experimental error and do not give conclusive evidence of the relative strength of 149 

these bonds. The main distortion from the ideal octahedral coordination is due to the small bite angle of 150 

the metallacycles (80.9 (2) °). The metallacycle is flat and nearly coplanar with both the coordination 151 

plane and the mean plane of the (N,N’) chelate. A comparison of the bond distances with those for 152 

previously reported PtII compound 1-Cl reveals [34] that the equatorial Pt-Cl, Pt-Namine and Pt-C bond 153 

lengths are moderately longer, and the Pt-Nimine bond length decreases for the PtIV compound. As a 154 

result, the Pt-Namine distance is consistently longer than the Pt-Nimine distance, which suggests a 155 

weaker bond with the NMe2 moiety. 156 

The 1H NMR spectrum of compound 2-Cl-Cl in CDCl3 show the features expected, in particular both 157 

NMe2 and imine protons are coupled with platinum and the J(H-Pt) values are smaller than those of the 158 

parent PtII compound. Analogous results were obtained for the 1H NMR spectrum recorded in d6-159 

DMSO; addition of deuterated water to the NMR sample in d6-DMSO did not produce significant 160 

changes. Moreover, the addition of an excess of NaCl did not produce any changes in the NMR 161 

spectrum which, in all cases, only shows one set of resonances. Analogous results were obtained for 2-162 

F-Cl and 2-Cl-OH. According to the NMR studies, all three compounds are stable in the DMSO-water 163 

media used for the kinetic study. 164 

In this work, complexes 2-Cl-Cl, 2-Cl-OH and 2-F-Cl were investigated by cyclic voltammetry in 165 

DMSO-D2O solution. All compounds showed an irreversible reduction peak, a common feature for 166 



PtIV compounds resulting in loss of the axial ligands. As previously observed for non-cyclometallated 167 

similar compounds [1], reduction occurs most readily for chlorido than for hydroxido axial ligands (see 168 

Table 1 and Fig. 2). In contrast only a small difference of the potential is obtained upon changing a 169 

chloro for a fluoro substituent in the meridional [C,N,N’] ligand with the fluoro derivative 2-F-Cl being 170 

slightly less stable towards reduction. Consecutive cycles also shown the presence of an oxidation signal 171 

around 1.25 V associated to the oxidation of some reduced platinum complex, as described in similar 172 

systems. 173 

 174 

2.2. Reaction with cysteine and methionine 175 

The reactivity of the PtIV complexes shown in Scheme 1 with cysteine and methionine have been 176 

studied kinetically at pH values between 6.5 and 8.0, using HEPES buffer at 0.1M ionic strength 177 

(NaClO4); different chloride concentrations were also used, as described in the Experimental section. As 178 

it may be expected from the values determined for the reduction potential of the PtIV complexes (see 179 

before, Table 1), only the bis-chlorido derivatives of the organometallic skeleton were found to be 180 

reactive under the conditions of the study; the bis-hydroxido complexes were unreactive under the same 181 

conditions. The lack of reactivity of the bis-hydroxido compound 2-Cl-OH was confirmed by 1H and 182 

mass spectra (see Experimental section) of the residue obtained after reacting for 24 h with an excess of 183 

the biomolecules in a DMSO-water solvent mixture. 184 

Furthermore, although the reaction with cysteine was readily monitored for the chlorido 2-Cl-Cl and 2-185 

F-Cl derivatives, all attempts to have these complexes reacted with methionine were unsuccessful, the 186 

UV–Vis spectrum of the initial bis-chlorido PtIV complexes were found invariable for hours at room 187 

temperature at pH=7.0. Fig. 3a shows the typical spectral changes observed for the chlorido reacting 188 

systems (2-Cl-Cl and 2-F-Cl). From the time-resolved spectral changes, and using the Specfit or 189 

ReactLab software, two consecutive steps could be assigned to the reactivity sequence observed. The 190 

pattern of the spectral changes agrees with an initial PtIV to PtII reduction (decrease of the charge 191 

transfer band at ca. 300 nm and increase of that at ca. 350 nm), followed by a reaction (probably 192 

substitution, see below) occurring on the PtII derivative produced. 193 

The values of the pseudo-first order rate constants observed (kobs1=kobs red; kobs2=kobs subst) were 194 

found to depend linearly on the cysteine concentration, as well as on pH, as shown in Fig. 3b; no 195 

significant intercept has been observed. From these plots the second order rate constants (kred and kPtII 196 

subs) indicated in Table 2 were obtained, and from its dependence with temperature and pressure the 197 

thermal and pressure activation parameters, also shown, were derived. 198 

Given the fact that the reduction with thiol-containing biomolecules on similar PtIV [PtCl4(NN)] 199 

complexes is known to take place via a reductive elimination process [18] leading to RSCl molecules, 200 



plus chloride, and the corresponding [PtIICl2(NN)] compounds, the reactivity of the corresponding PtII 201 

reduced complexes 1-Cl and 1-F with cysteine was also pursued. In all cases the spectral changes 202 

observed for the reaction of the compounds with cysteine at pH=7.0, under the same conditions than 203 

those used for the reduction of the PtIV complexes, match exactly with the second step observed. Even 204 

the rate constants derived agree within error with those obtained for kobs2, being thus clear that the full 205 

process shown in Fig. 3a corresponds to the expected sequence of reduction reaction plus substitution 206 

indicated above Scheme 2). The associative character of the activation for the substitution process is also 207 

corroborated by the thermal and pressure activation parameters associated, shown in Table 2 (low ΔH╪ 208 

and very negative ΔS╪ and ΔV╪). Interestingly, the differences in the values of ΔH╪ and ΔS╪ for the 209 

substitution processes can only be associated with changes at the peripheral site of the bound ligand. 210 

This fact suggests that the resonance effect of fluorine is de facto increasing the electron density of the 211 

platinum centre in the para position, thus making the substitution processes less associative (higher ΔH╪ 212 

and less negative ΔS╪). The product of the reaction of the PtII compound 1-Cl with cysteine in DMSO-213 

water mixtures was too insoluble to be characterised by 1H NMR, but the final residue obtained after 214 

reacting for 24 h a 1:2 (PtIV:cysteine) mixture was analysed by ESI (+)-MS {H2O:CH3CN (1:1)}. Its 215 

mass spectra shows a peak at 539.0926 with an isotopic distribution corresponding to 216 

[Pt(CNN)(cysteine)] (calc. for C15H23ClN3O2PtS 539.043) [M−Cl+cys]+. 217 

The dependence of the second order rate constants of the PtIV complexes reduction, as well as those for 218 

the PtII substitution, on pH was also studied for a comprehensive understanding of the reactivity 219 

observed. The pH-dependence is similar for both processes, and is associated with the deprotonation of 220 

the –SH group of cysteine at pHs close to its pKa (≈ 8.0); Fig. 4a shows the trend observed for the 221 

reduction process as an example. No further quantification of these trends has been carried out due to the 222 

fact that pKa values are much higher than the physiological pH range where the systems have been 223 

studied, Fig. 4a being the initial branch of a typical pKa titration curve. With respect to the dependence 224 

on chloride added to the reaction medium, Fig. 4b indicates clearly that for the PtIV complex reduction 225 

process no significant dependence is observed, in line with the absence of substitution reactions 226 

occurring on PtIV compounds containing a single Pt-C bond within the reduction time range [38–40]. 227 

 228 

2.3. Reaction with glutathione 229 

Once the reduction of the PtIV complexes with cysteine was found relevant for the generation of more 230 

substitutionally active organometallic PtII complexes, the use of glutathione (another reducing 231 

biomolecule) was also studied with complex 2-Cl-Cl using the same methodology. Given the fact that 232 

the biomolecule reacts with DMSO (in DMSO-water mixtures as those used in this study), the 233 

concentration conditions to be used had to be carefully screened. Effectively, under the concentration 234 

conditions used for the reaction with cysteine, although the reduction process from PtIV is obvious from 235 



the pattern of the UV–Vis spectral changes, the process is masked by a secondary slower reaction, 236 

occurring even in the absence of the platinum complex. As a consequence, the platinum complex and 237 

glutathione concentrations were diminished to 25–33% of those previous used. Under these conditions a 238 

clearly defined PtIV to PtII process is observed (kobs=kobs red, Fig. 5a), which could be resolved from 239 

the secondary glutathione- DMSO/water reaction, observed as a small drift in the final absorbance 240 

readings as described in the Experimental section (Fig. 5a, inset). Fig. 5b collects the linear dependence 241 

of the pseudo-first order rateconstants for reaction with concentration of the reductant, chloride and pH. 242 

The trends observed fully agree with those of the reaction with cysteine with no significant intercept 243 

observed. In order to ascertain any possible substitution by glutathione on the PtII reduced complex, the 244 

reaction of the PtII complex 1-Cl with glutathione was pursued under the same concentration conditions 245 

at pH=7.0 and 25 °C. Fig. 5b also shows the glutathione concentration dependence observed for this 246 

process, kobs=kobs subs. Interestingly, the substitution reaction monitored is much faster than the 247 

reduction process indicated above, which implies that the final product upon reduction of the 2-Cl-Cl 248 

PtIV is, de facto, the 1-Cl PtII substituted complex. Table 3 collects the relevant kinetic and thermal 249 

activation parameters for the two series of reactions observed. 250 

 251 

2.4. Reaction with thiolactic acid 252 

Finally the reaction on compound 2-Cl-Cl with a smaller and less acidic thiol with no amine groups, 253 

thiolactic acid, was also tried at pH=7.0. The purpose was to study the possible changes of activity due 254 

to its pKa, the effect of the absence of amine groups in the biomolecule, and the possible chelation on 255 

the final reduced 1-Cl PtII complex formed. As a whole, the time-resolved spectral changes proved to be 256 

much slower, and much more complex, than for the systems studied before, once the parent PtII 1-Cl 257 

complex was considered. For the simple reduction reaction of the 2Cl-Cl PtIV compound, a final 258 

decomposition of the biomolecule under the conditions of the study had to be quantified in the absence 259 

of PtIV compound (and further eliminated as explained in the Experimental section from the reactivity 260 

pattern) as already done for the glutathione molecule. Even under these conditions, though, the spectral 261 

pattern of a single PtIV to PtII reduction reaction was clearly observed (Fig. 6a), and the corresponding 262 

pseudo-first order rate constants, kobs=kobs red, were derived by the standard Specfit or ReactLab 263 

software [41,42]. From its linear variation with thiolactic concentration, the values of kred at different 264 

temperatures (Fig. 6b) and pressures were derived, as well as the associated activation parameters at 265 

pH=7.0 (Table 4). 266 

In view of the data obtained, it is clear that either no reaction of thiolactic acid occurs on the 1-Cl PtII 267 

reduced compound or this is faster that the reduction process determined, as found for glutathione (see 268 

before). Consequently the reaction of the PtII complex with thiolactic acid under the same conditions 269 

was pursued (avoiding the final decomposition of the biomolecule). Fig. 7a shows the spectral changes 270 



associated with a set of two consecutive reactions observed; in Fig. 7b the dependence of the derived 271 

two pseudo-first order rate constants, kobs1 and kobs2 (kobs subst1 and kobs subst2), on the thiolactic 272 

acid concentration are also shown at pH=7.0 and 25 °C. Table 4 collects also the summary of these data. 273 

From the data is seems clear that the process associated with kobs1 is a clearly defined substitution 274 

process on the PtII 1-Cl species. Nevertheless, the reaction associated with kobs2 has to correspond to a 275 

chelation of the thiolactic molecule on the PtII species independent on the concentration of ligand; the 276 

smaller bite angle with the already deprotonated carboxylate moiety of the molecule can easily explain 277 

this fact. 278 

279 



3. DISCUSSION 280 

 281 

From the data collected in the Results section (plus the available data corresponding to the acidity and 282 

redox characteristics at pH=7.0 of the free biomolecules used in this study and collected in Table 5), it is 283 

clear that the observed lack of reactivity of the methionine molecules with the PtIV complexes could not 284 

be associated with the reduction potential. Methionine is, in fact, the most readily oxidised of the thiol 285 

derivatives used [43], which indicates, as stated before, that the thermodynamic oxidation of these 286 

biomolecules does not correspond to the processes by which the reduction of PtIV complexes are 287 

reduced [16–18,44]. Neither the formation of SeS bonds nor sulfoxide formation are relevant for the 288 

reaction observed, the process being already described as a reductive elimination S-Cl reaction occurring 289 

on the PtIV starting material (Scheme 2) [17]. The fastest reaction observed corresponds, in fact, to the 290 

less thermodynamically favourable redox process, thus reinforcing the importance of the study of the 291 

proper mechanistic reaction paths for biologically relevant reactivity [45]. 292 

The only clear reactivity trend observed within the data collected corresponds to that associated with 293 

acidity changes of the biomolecules. The reaction rates for the reduction process increase on increasing 294 

the amount of thiolate present in the reaction medium at pH 7.0 [16–18]; even so, the amount of free 295 

thiolate units at the physiological pH range studied is rather small thus indicating the high reactivity 296 

involved (see Table 5). This fact is in line with the expected, provided an attack of the thiolate group on 297 

a chlorido ligand to produce the reductive elimination of RSCl is the responsible of the reduction 298 

process (see Fig. 4a and Scheme 2). Taking this fact into account the lack of reactivity observed with 299 

methionine, despite the highly favourable potential, can be easily related with its thioether nature that 300 

does not allow for a thiolate attack to the bound chlorido ligand. In this line, the values of the entropies 301 

and volumes of activation are rather negative due to the ordering (and contraction) of an external thiol-302 

containing molecule when interacting with the chlorido ligand to produce the leaving –SCl unit; the 303 

reaction being de facto the reverse of a SN2 oxidative addition process. The effect of the intra- and 304 

extra-cellular chloride concentration gradient has been found to be irrelevant for the redox reactivity 305 

observed, thus indicating that no chlorido aquation from the PtIV complexes is occurring during the 306 

reactivity studied. Thus the fact that the original PtIV complex keeps as such before the reduction 307 

process studies is reinforced, in important contrast with what occurs with the cisplatin analogues [45]. 308 

Much more interesting are the dramatic changes observed in the thermal and pressure activation 309 

parameters when the amine groups present in cysteine and glutathione are absent, as in thiolactic acid 310 

(see Table 5). The value on the activation enthalpy decreases noticeably, while the entropy and volume 311 

of activation become much more negative. Given the fact that the difference in pKa between cysteine 312 

and glutathione is of the same magnitude than that between glutathione and thiolactic acid, and that only 313 

minimal reactivity changes are observed, this effect cannot be related solely to acidity tuning. Clearly a 314 

higher degree of ordering and contraction is occurring for the RSH group to reach the chlorido ligand 315 



(producing simultaneously a less enthalpy demanding RSCl reductive elimination) on its way to the 316 

final PtII complex with this biomolecule. Taking into account that the final PtII reduced complex has 317 

been proved kinetically to contain a thiolactate chelate unit (see Results section), probably the bite angle 318 

of this biomolecule allows for an extra Pt-O interaction with the reducing PtIV centre when losing one 319 

of the axial chlorido groups on reduction [19].  320 

In this respect the study of the substitution processes of the resulting 1-Cl PtII complex with the same 321 

biomolecules, and under the same pH and concentration conditions, has been extremely revealing. Only 322 

for cysteine the substitution process has been found slower than that of reduction (see Table 2), thus 323 

allowing for the reduced 1-Cl complex to associatively discriminate between the ligands present in the 324 

reaction medium even in the presence of the soft thiol containing biomolecule. The process is clearly 325 

associatively activated [40], as expected for a square planar complex containing a single Pt-C bond, and 326 

as also indicated by the activation parameters collected [54]. For glutathione and thiolactic acid the 327 

substitution reaction on complex 1-Cl is ca. one order of magnitude faster than the reduction reaction 328 

(see Tables 3 and 4) which implies that the PtII species resulting from the reduction of the PtIV 329 

precursor may very well have the biomolecule already coordinated. In this case the final compound, 330 

although being discriminating due to the associative substitution mechanism expected to be operating 331 

for these organometallic single Pt-C containing complexes [40], has a definitive clear kinetic preference 332 

for these two biomolecules, thus affecting an effective selective coordination with the rest of bioligands 333 

that could be present in the reaction medium. 334 

335 



4. CONCLUSIONS 336 

 337 

Only the tris-chlorido derivatives from the cyclometallated skeleton indicated in Scheme 1 can be 338 

reduced by cysteine, glutathione and thiolactic acid. The mono-chlorido, bis-hydroxido derivatives from 339 

the same cyclometallated unit are not reduced due to the high potential of the PtIV/PtII pair, as measured 340 

in aqueous solution. The reduction reaction is found to be clearly dependent on the amount of 341 

deprotonated thiolate present in the medium, which agrees with a reductive elimination process 342 

involving an attack of thiolate to one of the chloride ligands to produce RSCl. No intervening chlorido 343 

substitution reactions are involved during this process, thus ensuring the maintenance of the PtIV 344 

complex structure before its reduction. The thermal and pressure activation parameters agree with this 345 

assumption, as well as the fact that methionine is found unreactive under the same conditions, despite 346 

the more favourable redox potential. Interestingly for the reduction reaction with thiolactic acid an 347 

unexpected increase in ordering and contraction is observed from the data collected; the fact that the 348 

ligand can actuate as a perfect chelating unit to one of the other PtIV coordination positions losing a 349 

chlorido ligand can be held responsible for this fact. 350 

The study of the substitution reactions occurring at the [PtII(CNN’)Cl] reduced species has also 351 

provided support for the reactivity observed. While for the reduction with cysteine, the PtII complex can 352 

be detected in solution under the conditions of the study, for the reduction with glutathione and 353 

thiolactic acid the consecutive substitution process is very fast. For these reactions the final PtII complex 354 

after reduction already has the reducing agent present in solution coordinated to the metal centre (even 355 

in a chelate fashion for thiolactic acid reduction). Despite the associativeness character of the 356 

substitution reactions occurring on these single Pt-C containing organometallic complexes, these 357 

reactions become less capable of distinguishing between ligands. The thermal and pressure activation 358 

parameters of the substitution reaction have been determined for the reaction with cysteine provides 359 

further corroboration of the latter assumption. 360 

The results obtained confirm the expected reactivity sequence of the PtIV compounds with thiols 361 

consisting of reduction and substitution, and, in addition, the present study reveals that the relative rates 362 

of these reactions are relevant for the design of more efficient PtIV prodrugs. 363 

364 



5. EXPERIMENTAL 365 

 366 

5.1. General 367 

Microanalyses were performed at the Centres Científics i Tecnològics (Universitat de Barcelona). Mass 368 

spectra were performed at the Unitat d’Espectrometria de Masses (Universitat de Barcelona) in a 369 

LC/MSD-TOF spectrometer using H2O-CH3CN 1:1 to introduce the sample. NMR spectra were 370 

performed at the Unitat de RMN d’Alt Camp de la Universitat de Barcelona using a Mercury-400 (1H, 371 

400 MHz; 13C, 100.6 MHz; 19F, 376.5 MHz) or a Bruker 400 MZ AvanceIII Avance (1H, 400 MHz) 372 

and referenced to SiMe4 (1H and 13C) or CFCl3 (19F). δ values are given in ppm and J values in Hz. 373 

Abbreviations used: s=singlet; d=doublet; t=triplet; m=multiplet; sh=shoulder.  374 

 375 

5.2. Compounds 376 

[PtCl3{(CH3)2N(CH2)3NCH(4-ClC6H3)}] (2-Cl-Cl) was obtained from 0.050 g (0.090 mmol) of the 377 

cyclometallated [PtCl{(CH3)2N (CH2)3NCH(4-ClC6H3)}] and the equimolar amount of PhICl2 in 378 

acetone (15 mL) following the method described in the literature for similar compounds [37]. Yield: 35 379 

mg (60%). 1H NMR (400 MHz, CDCl3): δ=8.22 [s, 3J(Pt-H)=8.0, 1H, He], 8.05 [d, 4J(HeH)=2.0, 380 

3J(Pt-H)=24.0, 1H, Hh], 7.43 [d, 3J(HeH)=8.0, 1H, Hf], 7.23 [dd, 3J (HeH)=8.0, 4J(HeH)=2.0, 1H, Hg], 381 

4.00 [m, 2H, Hd], 2.97 [s, 3J(Pt- H)=11.2, 6H, Ha], 2.95 [m, 2H, Hb], 2.26 [q, 3J(HeH)=4.8.0, 2H, Hc]. 382 

1H NMR (400 MHz, d6-DMSO): δ=8.79 [s, 3J(Pt-H)=96.0, 1H, He], 7.69 [d, 4J(HeH)=2.0, 1H, Hh], 383 

7.69 [d, 3J(HeH)=8.0, 1H, Hf], 7.37 [dd, 3J(HeH)=8.0, 4J(HeH)=2.0, 1H, Hg], 3.95 [m, 2H, Hd], 2.8.05 384 

[m, 2H, Hb], 2.8.00 [s, 3J(Pt-H) ca. 8.0 (sh), 6H, Ha], 2.06 [m, 2H, Hc]. 13C NMR (100.6 MHz, d6-385 

DMSO): δ=178.03 [Ce], 141.63, 140.42, 136.61, 132.10 [Cf], 131.41 [Ch], 126.76 [Cg], 62.11 [Cb],  386 

57.29 [Cd], 49.79 [Ca], 25.21 [Cc]. Anal. Calc. for C12H16Cl4N2Pt (%): C, 27.45; H, 3.07; N, 5.33. 387 

Found (%): C, 27.27; H, 3.02; N, 5.15. 388 

[PtCl(OH)2{(CH3)2N(CH2)3NCH(4-ClC6H3)}] (2-Cl-OH) was obtained from 0.050 g (0.090 mmol) 389 

of the cyclometallated [PtCl{(CH3)2N (CH2)3NCH(4-ClC6H3)}] and the equimolar amount of H2O2 390 

in dichloromethane (15 mL) following the method described in the literature for similar compounds 391 

[36]. Yield: 27 mg (50%). 1H NMR (400 MHz, CDCl3): δ=8.30 [s, 3J(Pt-H)=108.0, 1H, He], 8.00 [d, 4J 392 

(HeH)=2.0, 3J(Pt-H)=28.0, 1H, Hh], 7.41 [d, 3J(HeH)=8.0, 1H, Hf], 7.26 [dd, 3J(HeH)=8.0, 393 

4J(HeH)=2.0, 1H, Hg], 3.98.0 [t, 3J (HeH)=5.2, 2H, Hd], 2.91 [m, 2H, Hb], 2.78.0 [s, 6H, Ha], 2.17 [m, 394 

2H, Hc]. 1H NMR (400 MHz, d6-DMSO): δ=8.46 [s, 3J(Pt-H)=104.0, 1H, He], 7.75 [d, 4J(HeH)=2.0, 395 

1H, Hh], 7.52 [d, 3J(HeH)=8.0, 1H, Hf], 7.28.0 [dd, 3J(HeH)=8.0, 4J(HeH)=2.0, 1H, Hg], 3.8.02 [m, 396 

2H, Hd], 2.76 [m, 2H, Hb], 2.56 [s, 6H, Ha], 1.98.0 [m, 2H, Hc]. 13C NMR (100.6 MHz, d6-DMSO): 397 

δ=178.33 [Ce], 143.32, 142.77, 135.35, 131.64 [Cf], 131.13 [Ch], 125.94 [Cg], 62.05 [Cb], 57.12 [Cd], 398 



47.44 [Ca], 25.02 [Cc]. ESI(+)-MS {H2O:CH3CN (1:1)}, m/z: 471.0343 (calc. for C12H17Cl2N2OPt 399 

471.0444) [M−OH]+, 48.09.0448.0 (calc. for C12H19Cl2N2O2Pt 48.09.0449) [M+H]+. Anal. Calc. for 400 

C12H18.0Cl2N2O2Pt·CH2Cl2 (%): C, 27.24; H, 3.52; N, 4.8.09. Found (%): C, 27.04; H, 3.30; N, 5.27. 401 

[PtCl3{(CH3)2N(CH2)3NCH(4-FC6H3)}] (2-F-Cl) was obtained from 0.050 g (0.090 mmol) of the 402 

cyclometallated [PtCl{(CH3)2N (CH2)3NCH(4-FC6H3)}] and the equimolar amount of PhICl2 in 403 

acetone (15 mL) following the method described in the literature for similar compounds [37]. Yield: 33 404 

mg (57%). 1H NMR (400 MHz, d6-DMSO): δ=8.74 [s, 3J(Pt-H)=96.0, 1H, He], 7.77 [dd, 3J(HeH)=8.4, 405 

4J(HF)= 6.0, 1H, Hf], 7.43 [dd, 3J(H-F)=9.6, 4J(HeH)=2.0, 1H, Hh], 7.14 [td, 3J(HeH)=3J(H-F)=8.4, 406 

4J(HeH)=2.0, 1H, Hg], 3.94 [m, 2H, Hd], 2.8.06 [m, 2H, Hb], 2.8.00 [s, 6H, 3J(Pt-H)=8.0, Ha], 2.06 [m, 407 

2H, Hc]. 19F NMR (376.5 MHz, d6-DMSO): δ =−100.73 [td, 3J(FH)= 9.0, 4J(F-H)=5.9]. Anal. Calc. 408 

for C12H16Cl3FN2Pt (%): C, 28.33; H, 3.17; N, 5.51. Found (%): C, 28.32; H, 3.24; N, 5.32.  409 

 410 

5.3. Instruments and methods 411 

Buffer solutions were prepared using the standard procedures using HEPES; in all cases the 412 

concentration of the buffer was at least 10-fold (0.01 M) that of the reactants and the ionic strength was 413 

set at 0.1 with NaClO4.  414 

Electrochemistry experiments were carried out with a BioLogic SP- 150 instrument using a glassy 415 

carbon working electrode, a Ag/AgCl (3M KCl) reference electrode, and platinum wire counter 416 

electrode; potential values are given versus SHE. The samples were dissolved in 1:1 a water-DMSO 417 

mixture at the 1×10−3M level concentration and using 0.1M (Bu4N)ClO4 as supporting electrolyte. 418 

 419 

5.4. X-ray diffraction 420 

Suitable crystals of compound 2-Cl-Cl were grown at room temperature in dichloromethane-methanol. 421 

X-ray diffraction data were collected for a yellow prism-like specimen on a D8.0 VENTURE system 422 

equipped with a multilayer monochromator and a Mo microfocus source (λ=0.71073 Å) at 100 K. The 423 

structures were solved and refined using the Bruker SHELXTL Software package [55]; crystallographic 424 

details are given in CCDC 1828170.  425 

 426 

5.5. Kinetics 427 

The time-resolved kinetic profiles for the reactions at ambient pressure with were followed by UV–Vis 428 

spectroscopy in the full 700–275 nm range on HP8.0453 or Cary50 instruments equipped with 429 

thermostated multicell transports. For runs carried out at elevated pressures the evolutions of the systems 430 



were followed with an already described pressurizing cell system setup was used connected to a TIDAS 431 

J&M instrument. The general technique used for these experiments where a linear dependence on the 432 

concentration is observed has already been described [56]. The kinetic experiments were conducted 433 

under pseudo-first order conditions by mixing the appropriate amounts of aqueous buffer stock solution, 434 

0.1M NaClO4 (or 0.1M NaCl) aqueous solutions, aqueous solution of the appropriate reductant, water, 435 

DMSO, and a stock solution of the PtIV complex in neat DMSO. In all cases the final DMSO volume 436 

percentage of the solutions was 20% to allow the full solution of the PtIV complexes used. Observed 437 

rate constants were derived from the absorbance versus time traces at the wavelengths where a 438 

maximum increase and/or decrease of absorbance were observed. Calculation of the observed rate 439 

constants from the absorbance versus time monitoring of reactions were carried out using the SPECFIT 440 

or ReactLab software packages [40,41]. In all cases the systems were set to a single: A→B or a two: 441 

A→B→C step scheme. For systems showing a final drift of the absorbance due to undesired 442 

decomposition processes of the reductant in the reaction medium, a final linear drift step was also 443 

included for final refinement. All post-run fittings were carried out by the standard available commercial 444 

programs. 445 

446 
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Legends to figures 526 

 527 

Scheme 1 Synthesis of the PtIV compounds involved in this study including the numbering scheme for 528 

NMR assignments (see Experimental section). 529 

 530 

Figure. 1. Molecular structure of compound 2-Cl-Cl showing 50% probability ellipsoids; hydrogen 531 

atoms were omitted for the sake of clarity. Selected bond lengths (Å) and angles (°) with estimated 532 

standard deviations: Pt(1)-C(1): 2.002(6); Pt(1)-Cl(2): 2.3116(15); Pt(1)-N(1): 2.032(5); Pt(1)-N(2): 533 

2.259(6); Pt (1)-Cl(3): 2.3192(15); Pt(1)-Cl(4): 2.3184(15); C(1)-Pt(1)-N(1): 80.9(2);C(1)-Pt (1)-N(2): 534 

177.0(2); N(1)-Pt(1)-N(2): 96.5(2); C(1)-Pt(1)-Cl(2): 88.22(18); N(1)-Pt(1)-Cl(2): 88.67(15); N(2)-535 

Pt(1)-Cl(2): 90.26(15); C(1)-Pt(1)-Cl(4):93.73(19); N(1)-Pt(1)-Cl(4): 174.43(15); N(2)-Pt(1)-Cl(4): 536 

88.95(15); Cl(2)-Pt (1)-Cl(4): 92.50(6); C(1)-Pt(1)-Cl(3): 86.80(17); N(1)-Pt(1)-Cl(3): 88.35(15); N 537 

(2)-Pt(1)-Cl(3): 94.60(15); Cl(2)-Pt(1)-Cl(3): 174.55(6); Cl(4)-Pt(1)-Cl(3): 90.05(5). 538 

 539 

Figure. 2. 1st cycle of the cyclic voltammograms of compounds 2-Cl-Cl and 2-Cl-OH in DMSO-water 540 

solution at a scan rate of 100 mV/s and the electrochemical setup described in the Experimental section. 541 

 542 

Figure. 3. a) UV–Vis spectral changes obtained on the reaction of PtIV complex 2-F-Cl, 4×10−5 M, 543 

with cysteine, 4×10−4 M, at pH 7.0 and 25 °C. b) Plot of the rate constants derived for the two steps 544 

observed (kobs1 and kobs2) for the 2-Cl-Cl complex, 1×10−5 M, as a function on the cysteine 545 

concentration at different pH values and 25 °C. 546 

 547 

Scheme 2. Reduction plus substitution reactivity sequence expected for the processes studied. 548 

 549 

Figure. 4. a) pH-dependence of the second order rate constants for the reduction of the PtIV complexes 550 

2-Cl-Cl and 2-F-Cl at 25 °C. b) Plot of the rate constants obtained for the reduction reaction of the same 551 

complex with cysteine as a function of cysteine and chloride concentration at pH 7.0 and 25 °C. 552 

 553 

Figure. 5 a) UV–Vis spectral changes obtained on the reaction of PtIV complex 2-Cl-Cl, 1×10−5 M, 554 

with glutathione, 1×10−4M at pH 7.0 and 25 °C. b) Plot of the pseudo-first order rate constants derived 555 

for the reduction observed on complex 2-Cl-Cl (kobs red) at different pHs (empty square points 556 

correspond to 0.1M NaCl added), and those of the substitution (kobs subs) occurring on the 1-Cl PtII 557 

complex at pH=7.0, with the same ligand and as a function on glutathione concentration at 558 

25 °C. (For interpretation of the references to colour in this figure legend, the reader is referred to the 559 

web version of this article.) 560 

 561 



Figure. 6 a) UV–Vis spectral changes obtained on the reaction of the PtIV complex 2-Cl-Cl, 1×10−6 M, 562 

with thiolactic acid, 1×10−4M at pH 7.0 and 25 °C. b) Plot of the rate constants derived for the 563 

reduction observed on the same complex, kobs=kobs red, at pH=7.0 (empty points correspond to 0.1M 564 

NaCl added) at different temperatures. (For interpretation of the references to colour in this figure 565 

legend, the reader is referred to the web version of this article.) 566 

 567 

Figure. 7 a) UV–Vis spectral changes obtained on the reaction of the PtII complex 1-Cl, 3×10−6 M, 568 

with thiolactic acid, 1×10−4M at pH 7.0 and 25 °C. b) Plot of the rate constants derived for the two 569 

sequential processes observed at pH=7.0 and 25 °C. 570 

571 
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Table 1 Reduction potentials versus SHE for the PtIV compounds studied in this work. Relevant 618 

literature data are is also included. 619 

 620 
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Table 2 Summary of the kinetic (298.0 K) and thermal and pressure activation parameters for the 623 

processes occurring on complexes 2-Cl-Cl and 2-F-Cl with cysteine at pH 7.0. 624 

 625 

 626 
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Table 3 Summary of the kinetic (298.0 K) and thermal and pressure activation parameters for the 628 

processes occurring on complexes 2-Cl-Cl and 1-Cl with glutathione at pH 7.0. 629 

 630 

 631 
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Table 4 Summary of the kinetic (298.0 K) and thermal and pressure activation parameters for the 633 

processes occurring on complexes 2Cl-Cl and 1-Cl with thiolactic acid at pH 7.0. 634 

 635 

 636 
637 



Table 5 Summary of redox, acidity, kinetic and thermal and pressure activation data for the processes 638 

occurring on the redox reaction between PtIV 2-Cl-Cl complex and the different thiol-containing 639 

biomolecules utilised in this work. 640 

 641 
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