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Comparing spatial networks: A one-size-fits-all efficiency-driven approach
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Spatial networks are a powerful framework for studying a large variety of systems belonging to a broad
diversity of contexts: from transportation to biology, from epidemiology to communications, and migrations,
to cite a few. Spatial networks can be described in terms of their total cost (i.e., the total amount of resources
needed for building or traveling their connections). Here, we address the issue of how to gauge and compare
the quality of spatial network designs (i.e., efficiency vs. total cost) by proposing a two-step methodology. First,
we assess the network’s design by introducing a quality function based on the concept of network’s efficiency.
Second, we propose an algorithm to estimate computationally the upper bound of our quality function for a
given network. Complementarily, we provide a universal expression to obtain an approximated upper bound to
any spatial network, regardless of its size. Smaller differences between the upper bound and the empirical value
correspond to better designs. Finally, we test the applicability of this analytic tool set on spatial network data-sets
of different nature.
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I. INTRODUCTION

A large variety of systems, both natural and artificial, are
composed of interconnected units embedded in space. All
these systems can be mapped onto spatial networks [1,2], a
powerful framework, which provides the mathematical and
conceptual tools to study them formally. Such a framework,
built on basic common features, applies to a broad diversity
of contexts: from transportation [3–7] to biology [8,9], from
neuroscience [10] to animal behavior [11–13], from epidemi-
ology [14–16] to communications [17] and migrations [18], to
cite a few.

Spatial networks are those whose nodes have associated
spatial coordinates. Consequently, links, that is, connections
between nodes, are characterized by the distance between
the pair of nodes they connect. Such a distance usually,
translates into a cost, standing for the amount of resources
needed for building or traveling (or both) a given connection.
For example, the cost to build a road connecting two cities
increases as its extremities are farther from each other.

Most of the literature on the topic [4,19,20] considers the
case of edges’ costs directly proportional to their length (i.e.,
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distances between connected nodes). Despite other possible
options (e.g., cost proportional to a monotonically increasing
function of the connection’s length), this is generally consid-
ered a good description of almost the totality of the systems
representable as spatial networks. Notice that construction or
operative costs can also be assigned to nodes in particular
circumstances (e.g., routers in communication networks). In
this paper, we neglect such node costs. By doing this, spatial
networks can be characterized in terms of a total cost defined
as the sum of their edges’ costs.

When comparing two spatial networks with the same node
layout it is reasonable to think that the one with a higher
total link length can achieve better efficiency. Likewise, the
same total link length might not be able to communicate in an
equally efficient way two sets of nodes, which are different in
number and relative location. Our goal is to enable a mean-
ingful comparison between two spatial networks even in such
cases. To reach that goal, we assume the total cost to be an
external constraint (i.e., determined by external factors fixing
the amount of resources available for building connections),
and focus on assessing to what extent such resources have
been employed profitably. Specifically, we frame the quality
of a network with regards to the total cost and establish a
reference of how better could it be under that constraint, sim-
ilarly to what was done in Ref. [21] for nonspatial networks.
It is also a very similar approach to that of Cardillo et al. in
which real networks (urban street patterns) are compared by
rescaling both their efficiencies and costs with values obtained
from suitable null cases [22].
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Here, we propose a two-step methodology: (i) to assess the
design of different networks by means of a quality function;
(ii) to compare those values with an upper bound estimated
computationally and therefore calculate how far each system
lies from an optimal, equally constrained network.

The paper is organized as follows. After characterizing the
behavior of some reference models of spatial networks, we
introduce the concept of integrated efficiency, Eint, and set it
as our quality function (Sec. II). Then, in Sec. III we devise an
algorithm to estimate the maximum value that such a metric
can take (upper bound) for a given set of node positions (node
layout) and a given total link length (constrained total cost).
We then provide an approximate universal relation that allows
us to determine the upper bound of the integrated efficiency
as a function of the average distance between nodes and
the total link length, for any number of nodes. In Sec. IV,
we measure the quality of several empirical systems and put
them in context with their optimal counterparts, to enable a
meaningful comparison regardless of their individual charac-
teristics. Finally, as an example, we present some potential
applications.

II. GLOBAL, LOCAL, AND INTEGRATED EFFICIENCIES

Given a spatial network G with N nodes, its structure is
completely determined by the adjacency and distance ma-
trices, A and D. Their corresponding elements {ai j} take
value 1 (0) if the connection exists (does not exist), and
{di j} take finite positive values corresponding to the spatial
distance between nodes i and j [23]. These two matrices fully
determine the shortest paths matrix L, whose elements {li j}
stand for the length of the shortest path between nodes i and
j. li j is a straight sum of the weights of the links in the path,
no matter the number of steps.1

There are several ways to assess the quality of a spatial
network. We chose to use the concept of network efficiency,
which is, essentially, a comparison between the spatial dis-
tance and the shortest path. The efficiency in the commu-
nication between two nodes i and j, Ei j corresponds to the
ratio between the spatial distance and the shortest path length,
Ei j = di j/li j , commonly known as detour index or route fac-
tor [2]. By computing the average over all pairs of nodes we
obtain the global efficiency as proposed in Ref. [24], (despite
an alternative definition has been given in Ref. [25]):

Eglob = 1

N (N − 1)

∑
i �= j

di j

li j
. (1)

Eglob quantifies the ability of the system as a whole to com-
municate efficiently among its elements. Additionally, it is
also relevant to assess the fault tolerance of the system’s
communicability at local level. To this aim, Latora and Mar-
chiori [25] introduced the so-called local efficiency, Eloc. Such
an indicator measures how efficient is the communication in
the local neighborhood of a node i after its removal, thus
accounting for the robustness of the connectivity against local

1It may happen that a path including more links is shorter than
another with fewer but longer steps.

damage. In this paper, we adopt a modified Eloc proposed
by Vragovic et al. [24] that measures the efficiency of the
communication between any two neighbors j and m of node
i, no matter how far they are, considering all possible paths
connecting them:

Eloc = 1

N

N∑
i=1

1

ki(ki − 1)

∑
j �=m∈�i

d jm

l jm/i
, (2)

where �i represents the local subgraph of neighbors of node
i and l jm/i is the length of the shortest path joining nodes j
and m in absence of i, and l jm/i = ∞ when j and m belong
to disconnected components. Finally, ki is the degree (i.e.,
number of connections) of node i.

Given a certain layout of the nodes in space, there
are multiple connectivity patterns presenting (approxi-
mately) the same total length, Ltot = ∑

i, j ai j di j . Among the
plethora of spatial network models available in the literature
[4,19,26–29], we selected a few models as benchmarks, thus
encompassing a wide spectrum of possibilities:

(i) the minimum spanning tree (MST) [2];
(ii) the greedy triangulation (GT), a maximally connected

triangulation minimizing its total length [22];
(iii) the equitable efficiency model (EEM), a growth

model adding one link at a time ensuring that such move con-
stitutes the best improvement in the communication among
any pair of nodes [30];

(iv) the Gastner-Newman model (GN), a growth model
where edges have an effective length, which combines Eu-
clidean and topological distances altogether [19].

A detailed explanation of all the models (except for the
well-known minimum spanning tree) can be found in the
Appendix.

Starting from a random distribution of nodes in a unit
square, we built the corresponding MST, GT, EEM, and GN
networks and computed their Eglob and Eloc. The results are
shown in Fig. 1 and denote remarkable differences amidst
the benchmarks. Preliminary work confirmed that differences
persist when one considers different spatial distributions of
points, that is, they do not depend critically on the details
of the node positions. Additionally, the analysis of spatial
layouts of the empirical networks considered in this study
(see Sec. IV), showed that the distribution of distances
among the points is compatible with a random uniform
distribution.

In Fig. 1, points correspond to the networks grown until
their total length is almost the same as the GT one. Lines,
instead, account for the intermediate stages corresponding to
the growth phase, i.e., progressive addition of edges, of the
model (if available). A first glance at the panels reveals some
interesting features. The first one is the opposite behavior of
EEM and GT, with EEM performing better than GT in terms
of Eglob, and the other way around for Eloc. Another feature is
the fact that MST has a nonzero value of Eglob but Eloc = 0,
although this is expected since the removal of a single node
in a tree implies the impossibility of communicating between
its neighbors. Finally, the position of GN networks indicates
higher values of both efficiencies but at a higher total cost (i.e.,
total link length). This is due to the fact that GN networks are
built using a cost function different from the mere spatial one.
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FIG. 1. (a) Average global efficiency, 〈Eglob〉 and (b) average
local efficiency, 〈Eloc〉, as a function of the total length of the
system, Ltot, for different models: greedy triangulation (GT), mini-
mum spanning tree (MST), equitable efficiency model (EEM), and
Gastner-Newman (GN) with λ = 0.85 and γ = 0.06. Dots refer to
the properties of the final networks, while the solid lines account for
the evolution, whenever available,of those properties throughout the
growth process. The graphs have been built by averaging uniform
random distributions of N = 100 points considering Nreal = 50 dif-
ferent realizations.

The analysis of Fig. 1 highlights how differently the bench-
mark models behave with respect to the two efficiencies. Such
differences can be leveraged and used to characterize each
network using both Eglob and Eloc. Thus, we can represent
each network with the pair of values (Eloc, Eglob), which
corresponds to a point in a two-dimensional [0, 1] × [0, 1]
diagram.

Any topology lies inside this square, its position depending
on its specific features. For instance, a set of isolated nodes
(networks with no links) will lie at the bottom left corner
(0,0), while the top right one (1,1) corresponds to the complete
graph, which, by definition, has the maximum possible effi-
ciency. Topologies having (Eloc, 0) or (Eloc, 1) ∀Eloc ∈ ]0, 1[
are not allowed since Eglob = 0 and Eglob = 1 can be ob-
tained exclusively by a set of isolated nodes or a complete
graph, respectively. Topologies falling on the Eloc = 0 line
correspond to treelike (acyclic) graphs, while those falling
on the Eloc = 1 line are ensembles of disconnected complete
subgraphs.

Every model of link growth, i.e., a model that builds
networks by progressively adding connections to a set of
initially isolated nodes, draws a trajectory in the diagram
starting from (0,0) and, if not bounded to stop earlier, reaching
(1,1) [see Figs. 1 and 2(a)]. In this sense, we can regard
each real network as an intermediate stage of an unknown
growth model, ideally connecting the point (0,0) to (1,1).
Such a framework provides us with a metric to assess directly
how efficient a given topology is from an overall viewpoint:
the normalized distance between the point representing the
considered topology and the top right corner of the diagram
(i.e., the final target of any network growth model).

Therefore, we adopt this metric, which we call integrated
efficiency, as a comprehensive measure of the efficiency of
spatial networks:

Eint = 1 −
√

(1 − Eglob)2 + (1 − Eloc)2

2
, (3)

FIG. 2. (a) Comparison between the averages local, 〈Eloc〉, and
global, 〈Eglob〉, efficiencies for the GT, MST, EEM, and GN topolo-
gies. The values of the other parameters are the same of those used
in Fig. 1. Continuous black lines stand for Eint equilines. (b) Average
integrated efficiency, 〈Eint〉, as a function of the total length of the
system, Ltot.

which is the Euclidean distance to the (1,1) coordinates in
the two-dimensional space displayed in Fig. 2(a). The above
definition satisfies a crucial general consideration about the
efficiency of real spatial networks: They perform reasonably
well at both local and global scale [26,31]. Indeed, this spe-
cific formulation encapsulates equally both scales by reward-
ing the balance between the two efficiencies. Consider the
alternative, much simpler, measure E ′

int = (Eglob + Eloc)/2.
Three hypothetical topologies located at coordinates (0,1),
(1,0), and (0.5,0.5), respectively, would score the same in
terms of E ′

int. On the contrary, the proposed measure Eint

takes a higher value in the third case, enhancing the balance
between Eglob and Eloc. The behavior of Eint for benchmark
models as a function of Ltot is displayed in Fig. 2(b).

For simplicity, we consider a formulation of Eint where
the contributions of Eloc and Eglob are equal. However, it is
possible to alter Eq. (3) including a tunable multiplicative
factor to account for asymmetric contributions.

III. COMPARING NETWORK DESIGNS

The measure introduced in the previous section informs
whether a certain topology is more or less efficient than
another. Our final goal, however, is to compare the design of
spatial networks in terms of resource allocation, something
that is conceptually different. When we compute a network’s
integrated efficiency, we are calculating, by definition, how
far it lies from the complete graph, which is the only graph
reaching maximum values of Eloc and Eglob simultaneously.
Nonetheless, there is a limit to how close a system can get
to such an extreme, which is conditioned by the total cost
Ltot. A simple solution to this issue would be to divide the
integrated efficiency, Eint, by Ltot/Lcg, where Lcg is the cost of
the complete graph with the same node layout. However, such
a rescaling procedure implies assuming a linear dependence
of the efficiency on the total link length, which in general is
not true. For the purpose of a fair comparison, it is essential to
avoid arbitrary assumptions that may introduce biases.

A. Quasiexact comparisons: A numerical recipe

Our proposal is based on a very simple idea: to build the
best possible network for a given amount of resources (i.e.,
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FIG. 3. (a) Evolution of the local (E opt
loc ), global (E opt

glob), and

integrated (E opt
int ) efficiencies with respect to the total length of the

system, Ltot, for the networks generated using our optimal model.
(b) Evolution of the average local (〈Eloc〉), and global (〈Eglob〉)
efficiencies for the same networks. The green star denotes the values
at which 90% of the nodes belong to the giant component. Results
are averages over Nreal = 100 different layouts of N = 100 nodes
uniformly distributed on the unit square. Continuous black lines
stand for Eint equilines.

a given total cost Ltot) and fixed node layout. In this manner,
for every network under study, we can construct its optimal
counterpart and hence compute �Eint = Eopt

int − Eint, where
Eint is the integrated efficiency of the original network and
Eopt

int that of its optimal counterpart. This value quantifies the
room for improvement in a design with the same amount of
resources. More importantly, if we consider two systems with
different total cost and spatial scale, �Eint enable to perform
an indirect but fair comparison between them.

Our goal is not to build an improved version of real
networks, which should display all their ideal characteristics,
but, rather, to generate appropriate benchmarks by computing
the maximum value that a given object function could take
under certain constraints. As a consequence, we have designed
a growth algorithm that works as follows: we start considering
an empty graph G with N nodes. Then, we add edges itera-
tively until the total length of the graph reaches the desired
one. Adding edges means adding consecutive line segments
in the (L, Eint ) plane [see Figs. 3(a) and 4(a)], connecting

FIG. 4. (a) Evolution of the average integrated efficiency, 〈E opt
int 〉,

with respect to the total length Ltot for systems with different number
of nodes N . Solid lines account for the evolving systems, while sym-
bols denote the final networks. (b) Same quantity of (a), but displayed
as a function of the rescaled length L′. The curves corresponding to
different network sizes overlap perfectly.

the origin with the [Ltot, Eint(Ltot )] point. Since we want to
maximize the value of Eint(L) for L = Ltot, at each iteration
we have to look for the segment with the maximum vertical
slope, i.e., the edge maximizing the ratio between the variation
of Eint and the increase in total cost:

max

{
Ẽint − Eint

L̃ − L

}
= max

{i, j}

{
Ẽint − Eint

di j

}
, (4)

where L and Eint are the total weight of links and the integrated
efficiency at the current step, respectively, and L̃ and Ẽint

stand for the same quantities after adding the link (i, j). Since
the identification of the edge to add involves the evaluation
of the contribution of all the possible candidates, the overall
procedure is completely deterministic.

Even though it is not possible to ensure that the topologies
produced by such an algorithm reach the maximum possible
value of the integrated efficiency, there are strong hints that
they are very close to it. The optimization of Eint is a non-
Markovian process and there exists the chance that different
choices, locally not optimal, could lead to a better final result.
To address this issue, we have explored the possibility to
use alternative search methods based on simulated annealing.
Our conclusion was that slightly higher values of Eint may
be reached by a limited number of alternative topologies,
perhaps with a different balance between the local and global
efficiencies, requiring a considerably higher computational
cost (i.e., exploring the space of the configurations more
exhaustively) in order to be discovered.2

In Fig. 3, we display the average behavior of Eglob, Eloc, and
Eint against Ltot for the networks generated using our optimal
algorithm. We also report the evolution of the global and
local efficiencies across the growth process according to the
bidimensional representation adopted in Fig. 2(a). In particu-
lar, averages are computed over 100 random distributions of
N = 100 nodes within the unit square. Figure 3(a) tells us that
the algorithm first favors increases in Eloc up to a point where
it is not possible to increase Eint further at the expense of Eloc.
Unlike Eglob, this metric has a nonmonotonous behavior. For
example, a system made of separated cliques has a Eloc =
1, and adding any other link will reduce Eloc. This is the
evolution’s least interesting phase since, at this stage, systems
are mainly composed by many connected components while
the overall connectivity is extremely low. After the peak, the
algorithm begins to link these isolated components at the
expense of Eloc increasing Eglob. When the total cost is roughly
equal to that of the MST, the curves of Eloc, Eglob, and Eint

merge together and start to behave in the same way.

B. Approximated comparisons: An estimated
universal upper bound

The above algorithm provides an optimal network counter-
part usable as a reference. However, in practice, the increase
of the system size N severely affects the runtime of the
algorithm, in particular of the calculation of Eloc, jeopardizing
the applicability of our methodology to large size systems. To

2Therefore, it is technically a quasioptimal algorithm but we avoid
that nomenclature for the sake of clarity.
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overcome this limitation, we determined the expected value of
Eint for any value of Ltot and any N , in the case of layouts of
nodes randomly distributed in a square. First, we studied the
behavior of the integrated efficiency against the overall cost,
for several layouts of N ∈ {200, 300, 400} nodes. Figure 4(a)
displays the behavior of the 〈Eint〉 curves, confirming that the
results are robust across sizes. Specifically, the increase in size
translates into a shift of the Eint curve towards higher values
of Ltot.

By rescaling the x coordinate of plots in Fig. 4, we collapse
them into a single, universal one, which is the same for any
value of N . This leads to the definition of a normalized total
cost of a network G, L′, which reads:

L′ = Ltot/〈d〉
(Lcg/〈d〉)α

, (5)

where 〈d〉 stands for the average spatial distance among nodes
and Lcg is the length of the complete graph having the same
node layout as G. Such a normalized length can be rewritten
as a combination of two variables: 〈d〉 and N , since the length
of a complete graph is Lcg = 〈d〉 · N (N−1)

2 ≈ 〈d〉N2

2 . Hence, we
obtain:

L′ � Ltot

〈d〉 · N2α
. (6)

We have found that α = 1/3. As we can observe in Fig. 4(b),
the rescaling of Ltot returns perfectly overlapped curves. Such
a new, universal, curve allows us to compute the expected
maximum value of Eint for a system with a given L′, pro-
viding an approximate upped bound to perform an indirect
comparison between different systems. Specifically, given an
empirical network with a certain L′, we can use the differ-
ence between its actual value of integrated efficiency and
its expected maximum value, as a proxy of the system’s
performance.

To improve the usability of this upper bound in real-
world applications, it would be extremely useful to provide
an analytical expression for the dependence of the expected
maximum value of Eint on L′. However, for L′ < 1, networks
are usually disconnected and the behavior of the optimal
integrated efficiency is very noisy [see also Fig. 3(a)]. In order
to avoid this difficulty, we restricted the range of admissible
values of the normalized length to L′ � 0.91 (thus discarding
the region where the slope of the curve is almost zero) and
fitted our numerical data to the relation:

Ēopt
int (L′) = 1 − c1(L′ − c2)−c3. (7)

Using nonlinear least squares, we found that c1 = 0.187,
c2 = 0.406, and c3 = 1.211. In this way, given any real net-
work, it is possible to calculate the expected upper bound
for its integrated efficiency without generating any artificial
network, but simply from the average distance between its
nodes and its total cost, through L′ and Eq. (7). Including
shorter total link lengths (i.e., L′ � 0.91) would need a sep-
arate specific discussion, which goes beyond the scope of the
present work.

IV. APPLICATIONS

To illustrate the applicability of the proposed analytical
tools, here we use them to compare some real spatial networks
based on their integrated efficiency. Specifically, we consider
seven different collections of networks, a few of them (UK
Flights, Cities, and Latium Vetus/Southern Etruria) corre-
spond to successive snapshots of the same evolving system.
The collections are as follows.

UK Flights: Time-varying network of domestic flights in
the United Kingdom between years 1990 and 2003 [32].
Nodes correspond to airports, while an edge between two
airports accounts for the distance among them. For each
year/graph, we keep only those routes with, at least, 5000
carried passengers across the year.

Cities: The evolution of urban street patterns of a small
region in northern Italy, captured in four snapshots between
1955 and 2007 [33]. Nodes correspond to the intersection
between two streets or dead ends, while the weight of an
edge corresponds to the length of the street connecting two
nodes. For computational reasons, we consider only a small
rectangular sample of the whole data set centered around a
single village.

Latium Vetus/Southern Etruria: The networks of trails
among settlements between 950 and 509 BC (Iron Age) in two
regions of Italy, namely: Latium Vetus (LV) [34] and Southern
Etruria (SE) [30]. Nodes represent settlements, while an edge
denotes a direct route connecting them. From older to earlier,
we have five snapshots for both regions: Early Iron Age 1
Early, Early Iron Age 1 Late, Early Iron Age 2, Orientalizing
Age, and Archaic Age. We label these snapshots chronologi-
cally as (LVx/SEx) with x ∈ [1, 5]. The snapshots do not have
the same duration, but the properties of the system are more
or less stable within each snapshot.

Catalonia railway: This network describes the current
regional railway network in Catalonia. Nodes correspond to
aggregated groups of contiguous towns, while edges denote
the length of the railway line connecting them.

Hispania roads: The networks of trails among cities and
towns in Hispania (Iberian peninsula) during the Roman Em-
pire. As for the Latium Vetus and Etruria collections, nodes
represent settlements, while an edge denotes a direct route
connecting them.

Rome railway: The network of rail connections in Rome,
where nodes represent stops or stations and link constitutes
a direct connection between two nodes [35]. Weights cor-
respond to the geodesic distance between both ends of the
link. The original data-set splits many stops in two, each one
corresponding to the two ways of the line. We simplify the
network by merging stops having the same name into a single
node.

Power grid: A simplified model of the power grid network
of Italy, where transmission lines are assumed bidirectional
and identical. It is a subset of a model of the continental
European electricity system, comprising 1494 buses and 2156
lines [36].
The main topological features of all these networks are re-
ported in Table I. Such table reveals the diversity of the
networks under analysis.
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TABLE I. Summary of the topological indicators for all the empirical datasets. For each network, we report its number of nodes, N , of
edges, K , the edge density, ρ, the total length for the empirical, Ltot, and complete graph, Lcg, as well as the average spatial distance among
the nodes, 〈d〉, the rescaled length of the system, L′, and their local Eloc, global Eglob, and integrated Eint efficiencies. Finally, for each network
dataset, we report the bibliographic source of the data.

ρ Lcg

N K (%) Ltot (Km) or (m) 〈d〉 L′ Eloc Eglob Eint Ref.

UK Flights [32]
1992 41 130 15.85 44833.310 328656.403 400.800 12.149 0.663 0.636 0.649
1995 39 141 19.03 50215.194 304749.131 411.267 13.729 0.688 0.680 0.684
1998 41 146 17.80 54019.694 333391.976 406.576 14.431 0.664 0.669 0.666
2001 39 141 19.03 52949.882 305950.002 412.888 14.419 0.553 0.614 0.582

Cities [33]
1955 29 36 8.87 4474.270 148386.739 365.485 1.692 0.343 0.819 0.518
1980 71 98 3.94 12383.492 1417732.535 570.516 1.618 0.407 0.824 0.563
1994 80 110 3.48 13111.289 1763976.734 572.534 1.587 0.432 0.818 0.579
2007 90 124 3.10 14152.991 2385978.985 609.290 1.485 0.423 0.819 0.572

Latium Vetus [34]
LV1 93 198 4.63 1359.614 111083.691 25.966 3.249 0.678 0.890 0.760
LV2 93 198 4.63 1318.020 108710.242 25.411 3.218 0.648 0.875 0.736
LV3 107 239 4.21 1625.535 143007.035 25.217 3.637 0.679 0.871 0.755
LV4 93 220 5.14 1637.569 102742.846 24.017 4.231 0.687 0.876 0.762
LV5 78 189 6.29 1471.613 75232.370 25.052 4.107 0.731 0.917 0.801

Southern Etruria [30]
SE1 116 199 2.98 1586.445 271499.897 40.705 2.082 0.507 0.875 0.641
SE2 115 207 3.16 1660.375 265460.422 40.497 2.204 0.571 0.887 0.686
SE3 130 235 2.80 1811.973 344291.037 41.060 2.183 0.606 0.869 0.706
SE4 168 311 2.22 2062.108 605568.932 43.169 1.989 0.851 0.649 0.730
SE5 179 366 2.30 2300.959 679017.117 42.622 2.153 0.868 0.714 0.777

Catalonia
Railway 34 37 6.60 1040.580 54481.616 97.115 1.299 0.233 0.637 0.400

Hispania
Roads 89 127 3.24 10115.003 1742076.283 444.861 1.453 0.460 0.812 0.595

Rome [35]
Railway 80 103 3.26 377.297 39333.959 12.447 2.066 0.246 0.538 0.375

Power grid [36]
Italy 139 207 2.16 11914.776 4087233.378 426.153 1.316 0.467 0.794 0.596

A. Direct comparison of efficiencies

Efficiency values in Table I shows interesting features
among the variety of datasets. First, we see that Eloc and
Eglob in the UK Flights fall within a narrow range of values
centered around 0.6, despite the edge density ρ is fairly high.
On the other side, we noticed that the rest of networks are
all terrestrial, and tend to be more efficient at a global rather
than local scale. This is in line with the principles behind
the design and growth of such kind of networks, which tend
to privilege treelike structures spanning the whole system
at the expenses of resilience [26,28,31,37]. In this sense,
terrestrial infrastructure networks are likely to show fairly
high Eglob, since they provide paths among all nodes with
little chance to large route factors. Nevertheless, exceptions
are found. For example, the rail network of the city of Rome
shows two connected components, dragging down the value
of Eglob compared to other similar systems. On the other end,
terrestrial networks are more vulnerable at the local level,
as denoted by their values of Eloc. Beyond comparing the

efficiencies of the different spatial networks in a descriptive
way, our methodology allows for a systematic comparison of
diverse spatial networks considering both their Eint and Ltot .

B. Systematic comparison considering total length

For each empirical network, we generate an optimized one
using the algorithm presented in Sec. III while preserving
the node layout (i.e., their position) and the total length,
Ltot. First, we analyze the differences on both local and
global efficiencies separately. We compute the differences
�EX = Eopt

X − EX , X ∈ {loc, glob} among the efficiencies of
the empirical and optimal networks. In Fig. 5(a) we report the
values of �Eloc and �Eglob for all the cases under scrutiny.
It is worth noting that �Eloc is always negative, while this
is not the case of �Eglob. With the exception of UK Flights
and Rome Railway, all the other collections tend to have
values of Eglob close to the optimal counterpart one (i.e.,
�Eglob = 0). A closer inspection to �Eglob highlights inter-
esting features. One is that for Cities, Hispania, and Catalonia
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FIG. 5. (a) Global efficiency difference, �Eglob = E opt
glob − Eglob,

with respect to the same quantity calculated for the local efficiency,
�Eloc for all the data set reported in Table I. The hue of the color is
used to order the dataset in a chronological way. (b) Ranking of the
empirical systems according to the integrated efficiency difference
�Eint = E opt

int − Eint. Points for data SE4 and SE5 are not shown
since, as mentioned in Sec. III B, we were unable to generate the
optimal counterparts.

Railway networks �Eglob < 0 (i.e., they are more efficient
than their optimized counterparts). Latium Vetus, Etruria, and
the Italian Power Grid, instead, fall very close to the optimum.
Another interesting feature is that UK Flights and Rome
Railway networks are sub optimal both locally and globally,
confirming our guess about the existence of criteria behind
their design other than merely spatial ones.

We sort all the data sets according to their �Eint =
Eopt

int − Eint and check how far the real networks lie from the
upper bound [Fig. 5(b)]. The extent of efficiency’s difference
tells us how much better the systems could have performed
consuming the same amount of resources. The differences
range from �Eint ≈ 15% (City 2007, LV5) to above 50%
(Rome Railway), while the majority of the real networks are
about 20% less efficient than their optimal counterparts.

We have thus proven that it is relevant to consider the upper
bound of the integrated efficiency of each real network since
it provides novel, complementary information with respect to
the mere value of Eint. However, as discussed in Sec. III B,
the computational cost of determining such upper bound
increases rapidly with the size and total cost of the system
under scrutiny. Therefore, it is interesting to assess whether
replacing the value of Eopt

int with its expected value provided
by Eq. (7) leads to similar results. By doing so, we are disre-
garding the details of the node layouts, while still considering
their overall characteristics through the average node distance.
In Fig. 6 we report the values of the empirical Eint as a function
of the rescaled length L′. As expected, all the values of Eint

in empirical systems lie way below the optimal curve. Gen-
erally speaking, networks with higher connectivity are more
efficient than those with less links, albeit being more costly.
However, this is not always true. By looking at Fig. 6 we no-
tice that UK Flights networks attain approximately the same
efficiency of Southern Etruria ones, but with a much higher
cost. We rank networks according to �E ′

int = Ēopt
int − Eint,

the difference between their Eint and the corresponding value

FIG. 6. Integrated efficiency, Eint as a function of the rescaled
length L′ for the same data sets. The filled area for L′ � 0.91 denotes
the region for which the system has not fully percolated yet. The hue
of the color is used to order the data set in a chronological way. The
continuous black line stand for the optimal curve E opt

int (L′).

computed through Eq. (7). We find that rankings based on
�E ′

int and on �Eint provide a Spearman rank correlation of
rs = 0.618 (p-val = 0.0037). This indicates that the curve
is a valid alternative to ranking networks according to the
actual difference between optimal and empirical integrated ef-
ficiencies. Nevertheless, the correlation’s value highlights non
negligible discrepancies between the rankings. The reason for
such differences is that real spatial layouts differ from layouts
in our simulations. Random distribution of nodes in a square
show very little fluctuations as indicated by the shadow of the
curve. On the contrary, a real network’s layout can be far from
this distribution, thus affecting the output of a spatial network
model [38].

C. Application to networks’ comparison
in meaningful scenarios

We have shown that our methodology can be used with
diverse spatial networks in a plethora of application domains.
Now, we aim at presenting how such comparison can be
used to address relevant research questions. In the following,
we use some of the empirical networks presented above to
highlight two meaningful ways of applying our methodology.
The first example is an archaeological case of study based
on the Latium Vetus and Southern Etruria data sets [30,34].
These two data sets describe the pathway networks connecting
settlements in two neighboring regions with similar charac-
teristics through time. Since there are obvious differences in
terms of covered distance, system size, and total cost (length)
among the ten data sets, the networks corresponding to the
two regions cannot be compared directly. On the contrary,
our methodology allows assessing which region hosted better
designed infrastructures by looking at the efficiency differ-
ence to their optimal counterparts. A second example would
involve analyzing the evolution of roads in the Cities data set.
There, we can assess the efficiency in the area and the evolu-
tion of a system that increases both in size and total cost, but
for which we initially cannot know how much better it could
have performed under those constraints. Despite the strong
changes in structural terms (e.g., size increase and density
decrease), our methodology would allow for a longitudinal
comparison throughout the temporal snapshots in the data set.
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Even when the computation of the optimal is jeopardized by
the system size (like in 1994 and 2007) we could use the upper
bound curve to obtain their estimation.

V. CONCLUSIONS

This paper provides tools to compare the design of dif-
ferent spatial networks in terms of the duality resources
employed and quality reached. Following an approach similar
to Ref. [21], such a comparison is performed indirectly by
contrasting the quality improvement that each one of the
networks’ designs could reach.

The paper presents the different components of our tool
set progressively. First, we have introduced the notion of inte-
grated efficiency, Eint, as a metric to quantify spatial networks
performance at global and local scale simultaneously, while
rewarding the balance between the two. Second, we propose
an algorithm to computationally estimate the upper bound of
our quality function for a given specific network: we have
devised an algorithm to generate networks with maximal Eint

(Eopt
int ) with the same node layout and total cost as in the orig-

inal network. The smaller is the difference between such an
upper bound and the empirical value, the higher we consider
the design quality of the network under analysis to be.

Since the high computational cost of the optimal network
algorithm may hinder its applicability on large networks,
we provide a universal expression for approximated upper
bound to any network. Considering a setting of N nodes ran-
domly distributed in a unit square, we computed the expected
maximal value of Eint (Ēopt

int ) as a function of the total cost
Ltot. Then, by defining a rescaled total link length, L′, we
successfully collapsed the Ēopt

int versus Ltot curves for different
sizes onto a single one. In this way, we have been able to
express Ēopt

int as a function of the number of nodes N , the
average distance between nodes 〈d〉, and the total cost Ltot of
the network under study.

Finally, to test the applicability of our method, we have
analyzed the performance of a heterogeneous set of spatial
networked systems. We have checked that our approach pro-
vides new information beyond the mere comparison between
two networks’ efficiency. We provide also several examples
of application among the included data sets, showing how it
helps to compare networks with different size and total length
in a meaningful way.

In conclusion, we have shown that a meaningful compari-
son of spatial networks cannot be exempt from the definition
of proper upper bounds with specific cost constraints. This can
be done (almost) exactly, by running our maximal efficiency
algorithm, or approximately, thanks to the universal curve.
The latter constitutes a good approximation for systems whose
size does not make the computation of Eopt

int feasible. However,
the particularities of the layout (especially for low L′) may
affect the precision of the method. In the future, it will
be worth exploring how the specificities of a layout affects
a systems’ Eopt

int with respect to the value provided by the
curve. Another direction to pursue is to explore the effect of
weighting differently the contributions of the local and global
efficiencies in the computation of Eint.

The following data sets are available as complemen-
tary files at [39]: Latium Vetus, Southern Etruria, Catalonia

railway and Hispania roads. The rest of the data sets are avail-
able online in the following references: Rome railway [35]
and Power grid [36]. Regarding Cities data sets, please contact
the author (see Acknowledgments section). The code used for
running the algorithm can also be found in Ref. [39].
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APPENDIX A: GASTNER-NEWMAN MODEL

We present here a brief description of the Gastner-Newman
(GN) model to generate spatial networks introduced in
Ref. [19]. The main idea behind the model is that there are
two types of costs associated with a given network: one related
with the construction of the infrastructure, and another related
with its usage. Given a graph with N nodes and K edges,
G(N, K ) [40], we consider its embedding in the bidimensional
space, R2. We denote with di j the Euclidean distance between
nodes i and j, respectively. Therefore, the total cost of con-
struction of graph G, T , reads:

T =
N∑

i=1

N∑
j=i+1

ai j di j . (A1)

Where ai j is the element of the adjacency matrix, A, of the
graph [23]. The total usage cost, Zλ, instead, is

Zλ =
N∑

i=1

N∑
j=i+1

l̃i j (λ), (A2)

with l̃i j being the shortest path length between nodes i and j,
which, in turn, is the sum of the lengths of the edges forming
the path between i and j [23]. The path length depends on a
parameter λ such that:

l̃i j (λ) = λ
√

N di j + (1 − λ), (A3)

with 0 � λ � 1. Parameter λ accounts for the users’ per-
ception of distances. For λ = 0, users give more importance
to paths made of few hops, while for λ = 1 they pay more
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attention to shorter paths (in terms of distance). Finally, the
total cost, C, of the whole graph is

C(G) = T + γ Zλ, (A4)

where parameter γ ∈ [0, 1] determines the relative weight
between construction and usage cost. The GN algorithm gen-
erates optimal spatial networks minimizing cost C. The cost
optimization can be implemented using either greedy or sim-
ulated annealing techniques [41]. We decided to implement
the latter, since it ensures higher probabilities of finding the
optimal network. In our case, we were interested in building
GN networks with a given total cost. Hence, given a spatial
network G�, we compute its cost C� according to Eq. (A4).
Considering the same nodes layout of G�, we build a GN
network G through the following steps.

(1) Create the complete graph G0, and compute its cost
C(0).

(2) At each step, t , perform with equal probability one of
these two operations:

(a) Add/Remove an edge: Choose a random pair of
nodes i and j, and if they are connected (i.e., ∃ ei j) we
remove the corresponding edge. Otherwise, we add the
edge. The removal can take place unless one of the two
nodes has degree one (i.e., otherwise the node will get
disconnected).

(b) Rewiring: Choose an edge ei j at random. Then,
choose a node k �= i, j at random and create the edge (i, k)
or ( j, k) – if it does not exist already. Finally, remove the
edge ei j .
(3) Compute the cost of the resulting graph, C(t ), and

then:
(a) Accept the move with the following probability p:

p =
{

exp[−β(C(t ) − C(t − 1))] if C(t ) > C(t − 1)

1 otherwise

(b) increase the value of β of a quantity �β =
1 + 3 · 10−6 (with β(0) = 0.1

CMST
, and being CMST the cost

of the minimum spanning tree of the nodes layout).
(4) Repeat stages 2 and 3 either t∞ = 1.5×106 times, or

until C � C�.

APPENDIX B: GREEDY TRIANGULATION

Here we provide a brief description on how to compute
the greedy triangulation graph of a given layout of nodes
embedded into a bidimensional metric space R2. Given a
set of N nodes embedded into a two dimensional space,
the most connected (planar) triangulation graph GP has, at
most, K = 3N − 6 edges [42]; and the maximally connected
triangulation minimizing its total length, L, is called the min-
imum weighted triangulation (MWT). Since no polynomial
time algorithm is known to compute the MWT, following
Refs. [22,43] we consider, instead, its greedy approximation
known as greedy triangulation (GT). Taking N points em-
bedded into a bidimensional Euclidean space, we compute
first the corresponding complete weighted graph G0 with
K = N (N−1)

2 edges. Then, we prepare a list of G0’s edges,
sorted in ascending order of length (e.g., using quicksort [44]).
Given the schematization displayed in Fig. 7, for each edge

FIG. 7. Schematic representation of a segment AB.

or segment, AB, connecting nodes A, B ∈ G0 we store the
following information:

{IDA, xA, yA, xM , yM , IDB, xB, yB, r, m}.
Where IDi, xi, yi are the ID, and x, y coordinates of node or
point i, M is the middle point of AB, r = dAB

2 is its semilength,
and m is its angular coefficient (i.e., the tangent of the angle
between AB and the x axis). In its essence, the algorithm to
compute the GT graph, GGT , parses the sorted edge list of
G0 and checks whether each candidate edge e� ∈ G0 belongs
to the GT or not. After adding the shortest edge or segment
of G0 to the empty set of edges of GGT , we check if any
other edge of G0’s edge list intersects (and eventually how)
with those of GGT . To check if two segments AB ∈ GGT and
CD ∈ G0 intersect, and assuming that xA � xB and xC � xD,
we compute the distance between their middle points d12 =
dMAB MCD

. Then:
(1) If d12 > (rAB + rCD) the two segments do not intersect,

and thus CD potentially belongs to GGT .
(2) If d12 � (rAB + rCD) the two segments may intersect,

and we need to perform further checks to include or exclude
the edge from GGT .
To perform such checks, we have to compute the coordinates
of the intersection point, (X,Y ), which are:

X = y1 − mAB x1 − (y2 − mCD x2)

mCD − mAB
,

(B1)

Y = mCD y1 − mAB y2 + mAB mCD(x2 − x1)

mCD − mAB
.

Where xα, yα α ∈ {1, 2} are the coordinates of the
middle point of AB if α = 1, or CD if α = 2. If
X ∈ [min(xA, xC ), max(xB, xD)], then the two segments
will cross for sure [since d12 � (rAB + rCD)] and CD could be
discarded (a similar criterion could be established for Y ). For
each candidate edge CD, we repeat the procedure described
above for all the edges AB already present in GGT .

However, there are some exceptions to the intersection
rule. In particular, segments sharing one vertex do technically
intersect, but without breaking GGT ’s planarity and, hence,
might belong to GGT . Another case requiring special attention
is that of segments either parallel to one axis or perpendicular
to them. In such case the check on either X or Y alone is not
enough, and we must ensure that both X and Y fall outside
their respective intervals, instead. Lastly, for parallel segments
(i.e., mCD = mAB), the relations in Eqs. (B1) have a singularity
and, thus, cannot be used to compute the coordinates of the
intersection point. If segment CD does not cross any of those
of GGT , it can be added to GGT and we proceed to check
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the next candidate of G0’s edge list. The algorithm stops
either when 3N − 6 edges have been added to GGT , or if no
more candidates to check are available. In the latter case, the
number of edges of the GT will be lesser than 3N − 6. This
is due to the fact that some edges between nodes laying at the
outskirts of the node layout might be added without breaking
the planarity. However, such edges cannot be represented as
straight lines, and thus their intersection cannot be computed
using the above-mentioned method. The amount of missing
edges is approximately in the order of

√
N � 3N − 6.

APPENDIX C: EQUITABLE EFFICIENCY MODEL

In this section, we present the essential traits of the equi-
table efficiency model (EEM) introduced by Prignano et al. in
Ref. [30]. EEM is a growth model that builds networks from
empty and static spatial node layouts. In its essence, the model
adds one link at a time ensuring that such addition constitutes
the best improvement in the efficiency of communication
among any pair of nodes.

Given a node layout embedded in a two-dimensional space,
R2, at each step we calculate the route factor, Ei j , (i.e., the
ratio between the spatial distance, di j , and the shortest path

length, li j) between all the pair of nodes i and j. According to
its definition, Ei j ∈ [0, 1] ∀ i, j; where Ei j = 0 when i and j
belong to different components of the system (i.e., li j = ∞),
and Ei j = 1 when they are directly connected, instead. After
computing all the values of Ei j , we sort them in ascending
order. The connection having the smallest Ei j is added to
the network, and the above procedure is repeated iteratively
until the graph has a total length, Ltot, equal to the desired
one. However, it is worth noting that, according to the def-
inition of route factor, Ei j = 0 for all nodes belonging to
different components, regardless of their distance. To ensure
a parsimonious usage of resources, and avoid an arbitrary
selection of one of the unconnected pairs, we ideally replace
li j = lim
→∞ 
 with li j = 
 where 
 � Lcg is a large, but
finite, length. This replacement implies that the route factor
between pairs of nodes belonging to different components will
be ranked according to their spatial distance. Therefore, until
the graph has one single component, the algorithm will select
connections between unreachable nodes, starting from those
that are physically closer to each other. This means that the
set of links connecting the nodes into a single component is
nothing else than the minimum spanning tree (MST) of the
layout under consideration.
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