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Abstract 14 

Desphenylchloridazon (DPC), the main metabolite of the herbicide chloridazon (CLZ), is more water 15 

soluble and persistent than CLZ and frequently detected in water bodies. When assessing DPC 16 

transformation in the environment, results can be non-conclusive if based on concentration analysis 17 

alone, because estimates may be confounded by simultaneous DPC formation from CLZ. This study 18 

investigated the fate of DPC by combining concentration-based methods with compound-specific C and 19 

N stable isotope analysis (CSIA). Additionally, DPC formation and transformation processes were 20 

experimentally deconvolved in a dedicated lysimeter study considering three scenarios. First, surface 21 

application of DPC enabled studying its degradation in the absence of CLZ. Here, CSIA provided evidence 22 

of two distinct DPC transformation processes: one shows significant changes only in 13C/12C, whereas the 23 

other involves changes in both 13C/12C and 15N/14N isotope ratios. Second, surface application of CLZ 24 

mimicked a realistic field scenario showing that during DPC formation, 13C/12C ratios of DPC were depleted 25 

in 13C relative to CLZ, while 15N/14N ratios remained constant. Finally, CLZ depth injection simulated 26 

preferential flow and demonstrated the importance of the topsoil for retaining DPC. The combination of 27 

the lysimeter study with CSIA enabled insights into DPC transformation in the field that are superior to 28 

studies of concentration trends. 29 
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 30 

Introduction 31 

Groundwater is one of the most important drinking water resources1 and, therefore, constantly screened 32 

for contaminants2-5. Due to their extensive application in agriculture, pesticides and their metabolites6 are 33 

commonly detected in ground and surface water. A prominent example is desphenylchloridazon (DPC), 34 

the main metabolite of the herbicide chloridazon (CLZ). CLZ is a selective systemic herbicide that is used 35 

to control broad-leaved weeds in the agricultural production of swiss chard, red beet and sugar beet6-11. 36 

The metabolite DPC is a compound of concern as it is continuously formed from CLZ. The continuous input 37 

of newly formed DPC makes it challenging to evaluate its environmental transformation from 38 

concentration data over time. Detection of DPC has increasingly been reported exceeding concentrations 39 

of 10 µg/L in natural water bodies6, 11-14. DPC can be transported into ground and surface water by 40 

precipitation events as it is water-soluble (490 mg/L), and has a lower tendency to bind to the soil 41 

(Freundlich constant Kfoc of 50 mL/g) than CLZ (Kfoc of 199 mL/g). Additionally, DPC has a high leaching 42 

potential, which is indicated by the groundwater ubiquity score (GUS) of 5.5, a parameter used to evaluate 43 

pesticides for their potential to seep into the groundwater 9, 15, 16. Thus, there is great interest in the 44 

question whether DPC can be subject to further transformation. The fate of DPC, however, is not well 45 

understood yet 2, 17, 18. It is known that DPC is a persistent and polar compound. In soil, it can be further 46 

transformed into methyldesphenylchloridazon (MDPC, Figure S1)10, 12, 19, 20. Whether there is a wider range 47 

of degradation pathways, remains unclear. 48 

Current attempts to quantify degradation of organic micropollutants are often based on metabolite-to-49 

parent-compound ratios. This is an analytical approach based on concentration measurements. It is 50 

advantageous to quantify degradation even at low concentration ranges, and is simple to use21. However, 51 

in case of DPC, which may be simultaneously formed while undergoing further transformation (Figure S1), 52 

metabolite-to-parent ratios can lead to erroneous interpretations22. An additional confounding factor is a 53 

different drainage-dependent re-mobilization of the parent compound and the metabolite due to 54 

differences in their mobility. Thus, concentrations may fluctuate in a non-trivial manner making it difficult, 55 

if not impossible, to inform about how much of the DPC has been transformed. Consequently, a 56 

complementary method is needed to detect transformation if metabolite analysis alone is not conclusive. 57 

Compound-specific stable isotope analysis (CSIA) allows to identify degradation processes by analyzing 58 

variations of natural stable isotope abundances of different isotopic elements during (bio)degradation 59 
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and transformation of organic contaminants23-26. While CSIA of polar micropollutants has rarely been 60 

performed at field scales26, analytical methods for the analysis of carbon (13C/12C) and nitrogen (15N/14N) 61 

isotope ratios of DPC have recently become available27. So far, isotope studies of DPC have been carried 62 

out neither in laboratory experiments nor in field applications, however. As illustrated in Figure S1, unique 63 

insight on the formation and subsequent transformation of DPC can be expected. On the one hand, 13C/12C 64 

and 15N/14N ratios of DPC are expected to show the isotopic signature of the pyridazinone ring in the 65 

precursor CLZ. When CLZ is transformed, its phenyl-ring is first oxidized and then cleaved off. Thus, any 66 

isotope effect-induced changes in 13C/12C and 15N/14N ratios will be manifested in the molecular average 67 

of CLZ and in the oxidized phenyl-part that is cleaved off. In contrast, none of the molecular positions of 68 

the pyridazinone-ring are involved in the reaction, meaning that only secondary kinetic isotope effects 69 

occur so that the isotope ratios within the pyridazinone-ring remain mainly unaffected when they end up 70 

in DPC (Figure S1). If, however, further transformation of DPC takes place, this process is expected to 71 

result in pronounced changes in isotope ratios in DPC, because now, carbon and nitrogen atoms are 72 

directly involved (primary isotope effect). This would lead to carbon and nitrogen isotope fractionation in 73 

DPC giving a strong indication of further DPC transformation28. CSIA of DPC, therefore, holds promise to 74 

identify both processes, formation of DPC from CLZ, as well as independent further transformation of DPC. 75 

According to the current mechanistic picture, DPC is only formed from CLZ and transformed through N-76 

methylation19, 20, 29. Thus, the combined analysis of carbon and nitrogen isotope ratios of DPC may offer 77 

new insights into its fate in soil leachate. 78 

Evidence from CSIA may be inconclusive, however, if physical processes (e.g., multiple sorption-79 

desorption steps, dissolution from non-aqueous phase, volatilization/diffusion, dispersion) or the 80 

heterogeneity of the system, the soil in this case, affect degradation-induced changes in isotope ratios. 81 

For example, a freshly dissolved compound, which has not been transformed yet, can mix with water 82 

containing the contaminant that has already undergone varying degrees of degradation and thus isotope 83 

fractionation30-32. Consequently, the transformation-induced isotope ratios in the degraded fraction might 84 

not be discernible any longer33, 34. When applying CSIA to a field site either for the interpretation of a 85 

compound’s environmental fate or to monitor the success of remediation processes, it is therefore 86 

suggested to combine it with complementary approaches in order to obtain as many lines of evidence as 87 

possible30, 35, 36. 88 

Thus, the aim of this study was to explore different complementary and innovative approaches for 89 

assessing the environmental long-term fate of DPC in drainage water after agricultural application over a 90 
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period of 3 years. To that end, we combined concentration measurements with the analysis of carbon and 91 

nitrogen isotope ratios in a comprehensive and systematic study in a well-characterized model lysimeter 92 

system.  This lysimeter system mimics pesticides fate in natural soil environment under high control over 93 

environmental and hydrological factors (i.e. soil type and humidity, precipitation levels, temperature, 94 

evapotranspiration, etc.). In order to separate the relevant transport and transformation processes, these 95 

complementary approaches were integrated into a dedicated experimental design where CLZ and DPC 96 

were applied in three different scenarios (Figure S2): (i) DPC was applied to the lysimeter directly, without 97 

the presence of CLZ, to investigate whether further DPC transformation is observable in drainage water 98 

and whether this transformation is detectable from analyzing carbon and nitrogen isotope signatures of 99 

DPC when interfering simultaneous formation of DPC can be excluded. (ii) The concurrent formation of 100 

DPC from CLZ and potential DPC transformation were evaluated through surface application of CLZ to the 101 

lysimeters. (iii) To simulate the preferential flow and to study whether DPC formation and transformation 102 

is also occurring below the top soil, CLZ was injected below the root zone. For each scenario, these 103 

complementary approaches were tested with two different soil types through a replication of the 104 

lysimeter studies with moraine and gravel soil, respectively. 105 

 106 

Experimental / Methods 107 

Experimental Set-up of Lysimeter Experiments. For this study, the lysimeter facility from Agroscope was 108 

used, located in Zurich-Reckenholz, Switzerland. The facility itself and the characteristics of the lysimeters 109 

are described in detail by Torrentó et al.37. Briefly, the site consisted of 12 gravitation lysimeters (L) (3.14-110 

m2 surface area, 2.5 m depth, approximately 14 000 kg of soil in each) filled with two soil types 111 

(gravel/moraine). Both soil types consisted of repacked Cambisol. Cambisols, widely and intensively used 112 

as agricultural land, are among the most extensive soil types on earth, extending over about 11 % of the 113 

global land surface38. The soils used in this study differed in the B horizon and the draining properties of 114 

the parent material, and thus they were expected to show a different extent of preferential flow37. Gravel 115 

soil was represented by well-drained sandy loamy Cambisol (L1-L6), while moraine soil consisted of a 116 

poorly drained loamy Cambisol (L7-L12) (Table S1). Six of these lysimeters were used for this study (three 117 

of each soil type). The lysimeters were planted in 2014 with corn (Zea mays L.) followed by sugar beet 118 

(Beta vulgaris ssp. vulgaris var. altissima Doel) in 2015, with corn (Zea mays L.) again in 2016 and finally 119 

with broccoli, Chinese cabbage, lettuce and leek in 2017. 3.0 kg/ha (0.96 g/lysimeter) of CLZ were applied 120 
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on the surface of two lysimeters (L4 and L8) simulating the scenario of pesticide application at the three- 121 

to four-leaf stage in the field10. To simulate preferential transport through topsoil, two additional 122 

lysimeters were used (L6 and L7), where 2.0 g of CLZ were injected in each lysimeter at a depth of 40 cm 123 

at eleven injection points uniformly distributed over the area of each lysimeter by using a metal rod 124 

connected to a gear pump through a Teflon tube. Additionally, 3.2 kg/ha (1.0 g/lysimeter) DPC was applied 125 

on the surface of two lysimeters (L1 and L12). In addition to CLZ or DPC, the following tracers were applied 126 

at the same time as the pesticides: uranine (1.3 kg/ha) and NaBr (500 kg/ha) to lysimeters L1 and L12, 127 

uranine (1.3 kg/ha) to lysimeters L4 and L8, and uranine (0.4 g injected in each lysimeter) to lysimeters L6 128 

and L7. Bromide was used as conservative tracer and uranine (Kfoc of 120 mL/g) as a marker for preferential 129 

leaching shortly after pesticide application37. A detailed set-up is shown in the Supporting Information 130 

(sections II.2 and II.3). Details about application methods can be found in Torrentó et al.37. All lysimeters 131 

were irrigated artificially and the seepage water was collected for analysis over a time period of 3 years 132 

(Table S2). 133 

Concentration Measurements of CLZ, DPC and MDPC. For concentration measurements of CLZ, DPC and 134 

MDPC, an Ultimate® 3000 RS high-pressure liquid chromatography (HPLC) (Dionex, Thermo Fisher 135 

Scientific, Waltham, MA, USA) coupled to a 4000-hybrid triple quadrupole-linear ion trap mass 136 

spectrometer (QTRAP®, ABSciex, Framingham, MA, USA) was used. Five microliters were injected on an 137 

Acquity UPLC BEH Shield RP18 column (100 × 2.1 mm, 1.7 μm, Waters, Milford, MA, USA) maintained at 138 

25 °C. The separation was performed at a flow rate of 0.4 mL/min using a binary mobile phase system 139 

consisting of 0.05% formic acid in water (mobile phase A) and 0.05 % formic acid in acetonitrile (mobile 140 

phase B) according to the following gradient program: 5-15 % phase B in 2 min, 15-100 % phase B in 4 min, 141 

holding at 100 % phase B for 2 min, and re‐equilibration at 2 % phase B for 6 min. Detection was 142 

performed in electrospray positive ionization (ESI+) using the multiple reaction monitoring (MRM) mode 143 

by monitoring both a quantifier (Q) and a qualifier (q) transition ion for each compound. Precursor and 144 

fragment ions (m/z) were 222.1 and 104.0 (Q) or 77.0 (q) for CLZ, 146.0 and 117.0 (Q) or 66.0 (q) for DPC, 145 

160.0 and 117.0 (Q) or 88.0 (q) for MDPC, and 227.0 and 108.0 (Q) or 81.0 (q) for CLZ-d5, respectively 146 

(Table S3). Quantification was performed using standard curves calculated from standard solutions of CLZ, 147 

DPC and MDPC at 0.25, 0.5, 1, 3, 5 and 10 ng/mL, each containing deuterated CLZ-d5 as internal standard 148 

at a constant concentration of 2 ng/mL. The limits of quantification were 0.05 µg/L for CLZ, 0.4 µg/L for 149 

DPC and 0.1 µg/L for M-DPC. For those drainage water samples with CLZ, DPC and MDPC concentrations 150 

lower than 0.2 µg/L, solid-phase extraction (SPE) of 20-mL samples was performed using 6 mL cartridges 151 

packed with 0.2 g of Bakerbond SDB-1 sorbent and 0.2 g of Sepra ZT sorbent, as described by Torrentó et 152 



 6 

al.39. After SPE, the extracts were analyzed by UHPLC-QTOF-MS. The method is briefly described in the 153 

Supporting Information (II.5.). 154 

Large Volume Solid-Phase Extraction. For isotope analysis, all lysimeter samples were filtered through 155 

0.7-µm glass fiber filters and were concentrated by SPE using the method described in Torrentó et al.39, 156 

as detailed in the Supporting Information (II.6.). 157 

Elemental Analyzer-Isotope Ratio Mass Spectrometry Measurement for Determination of Reference 158 

Values. Carbon and nitrogen isotope reference values of our in-house standards of CLZ, DPC and MDPC 159 

were determined by elemental analysis – isotope ratio mass spectrometry (EA-IRMS) according to the 160 

method of Meyer et al.40. The system consisted of an EuroEA (Euro Vector, Milano, Italy) coupled with a 161 

Finnigan MAT 253 IRMS via a FinniganTM ConFlow III interface (Thermo Fisher Scientific, Bremen, 162 

Germany). For calibration, USG 40, USG 41 (L-glutamic acid) and IAEA 600 (caffeine), supplied by the 163 

International Atomic Agency (IAEA), were used as organic reference materials. 164 

Carbon (δ13C) and nitrogen (δ15N) isotope signatures are usually expressed using the Delta notation in per 165 

mille as described in equation 1 and 2. There, the isotope ratios (13C/12Csample and 15N/14Nsample) are stated 166 

relative to the international references PeeDee Belemnite (V-PDB) for carbon and air for nitrogen. 167 

 
δ C13 =

C13 / CSample- C13 / CReference
1212

C13 / CReference
12  

(1) 

 168 

 
δ N15 =

N15 / NSample- N15 / NReference
1414

N15 / NReference
14  

(2) 

 169 

Carbon Isotope Analysis of DPC by LC- IRMS. For carbon isotope analysis of DPC we applied the method 170 

of Melsbach et al.27. Briefly, 10 to 100 µL of SPE extracts reconstituted in ultrapure water were injected 171 

into an LC-IRMS Dionex system consisting of an Ultimate 3000 HPLC pump and an Ultimate 3000 172 

autosampler (Thermo Fisher Scientific) coupled via an LC-Isolink interface with a Delta V Advantage IRMS 173 

(Thermo Fisher Scientific). Chromatography was accomplished using a Sentry guard column (3 µm, 174 

20 mm) and an Atlantis T3 column (3 µm, 100 mm, Waters) at a flow rate of 500 µL/min. Phosphoric acid 175 

at pH 2 was chosen as mobile phase. The method was run isocratically at room temperature. The analytes 176 

were converted by wet oxidation at a temperature of 99.9 °C after the separation unit. Thereto, 90 g/L 177 
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Na2S2O8 and phosphoric acid (1.5 M H3PO4) were introduced at a flow rate of 30 µL/min. The vacuum 178 

inside the IRMS was 2×10-6 mbar. Its ion source was set to an accelerating voltage of 3 kV and an electron 179 

ionization energy of 124 eV. The isotope ratios were calibrated using our laboratory monitoring gas (CO2), 180 

which had previously been calibrated against the international standard RM8563 (CO2), supplied by the 181 

IAEA. 182 

Derivatization of DPC for Nitrogen Isotope Analysis. Nitrogen isotope analysis was conducted using the 183 

derivatization procedure proposed by Melsbach et al.27. Briefly, DPC was methylated to MDPC by adding 184 

an excess of greater than 160 nanalyte/nTMSD (140 μL of a 2 M TMSD solution) into a vial containing a 185 

standard or a SPE extract reconstituted in 1 mL methanol. The vial was crimped tightly before putting it 186 

into a 70°C water bath for 2 h. For samples from lysimeters with CLZ depth injection, the volume of the 187 

2 M TMSD solution added to the reconstituted SPE extracts was increased to 200 μL to ensure complete 188 

derivatization, as concentrations of DPC were up to an order of a magnitude higher compared to the other 189 

lysimeter samples. Afterwards, the solvent was evaporated to dryness. The sample was then reconstituted 190 

in 50 µL acetone. 191 

Separation of Drainage Sample Fractions for Analysis of DPC and MDPC. For drainage water samples 192 

from the lysimeters where CLZ was applied on the surface and for which the ratio of DPC to naturally 193 

formed MDPC was greater than 10 %, preparative HPLC was used prior to derivatization to isolate this 194 

naturally formed MDPC and thus to avoid interferences in the isotopic signature of DPC when subjected 195 

to methylation in the derivatization procedure. The method is briefly summarized in the Supporting 196 

Information (II.7.)27. Additionally, both DPC and MDPC fractions were used for δ15N isotope analysis when 197 

possible. For samples with an MDPC to DPC ratio <10 %, no preparative HPLC method was applied prior 198 

to derivatization, as the influence of the isotope ratio of MDPC on the isotope ratio of derivatized DPC is 199 

negligible and lies within the measurement error for nitrogen CSIA (±1 ‰) of the developed 15N GC-IRMS 200 

method27. 201 

Nitrogen Isotope Analysis of DPC and MDPC. The method is described by Melsbach et al.27 Briefly, a 202 

TRACE GC Ultra gas chromatograph (Thermo Fisher Scientific, Milan, Italy) coupled with a Finnigan MAT 203 

253 IRMS (Thermo Fisher Scentific, Bremen, Germany) was used. A Finnigan Combustion III interface 204 

(Thermo Fisher Scientific) connected both instruments. The analytes were combusted at a temperature 205 

of 1030 °C with a NiO tube/CuO-NiO reactor (Thermo Fisher Scientific). The gas chromatograph contained 206 

a DB-1701 column (30 m × 0.25 mm × 1 µm, J&W Scientific, Santa Clara, CA). Helium (grade 5.0) at a flow 207 

rate of 1.4 mL/min was used as carrier gas. Injection was carried out with a GC Pal autosampler (CTC, 208 
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Zwingen, Switzerland). A sample volume ranging between 1 and 3 µL was injected into a splitless liner 209 

(Thermo Fischer Scientific, Australia) at a temperature of 250 °C. The GC oven was programmed to start 210 

at a temperature of 100 °C (held for 1 min), ramped with 25 °C/min to 240 °C, and with 10 °C/min to 280 °C 211 

(held for 5 min). The isotope ratios were calibrated using our laboratory monitoring gas (N2), which had 212 

previously been calibrated against the international standard NSVEC (N2), supplied by the IAEA. 213 

Correction Procedure for Isotope Analysis. Analogous to the correction procedure described by Melsbach 214 

et al.27, all samples and standards were measured in triplicate and their isotope ratios are reported as the 215 

arithmetic means with their respective estimated standard deviations (± σ). In addition to the calibration 216 

of the measurement gas, samples are bracketed within the sequences by in-house standards of DPC and 217 

MDPC, whose isotopic signature had been determined with EA-IRMS (Table S4). Here, the principle of 218 

identical treatment by Werner and Brand41 was applied to correct for trueness by identifying drifts and 219 

off-sets, caused by different combustion efficiency. δ15N correction was performed using MDPC 220 

synthesized by LGC Standards GmbH, while an authentic DPC standard was used for δ13C correction of the 221 

LC-IRMS method. 222 

Concentration Measurement of CLZ and DPC from Soil Samples. CLZ and DPC residues were measured 223 

within the first soil layers (0 to 10 cm) approximately one year after herbicide/metabolite application. To 224 

obtain a representative and homogenous sample, subsamples for soil analysis were collected in 225 

quadruplets and combined afterwards. The total amount was at least 100 g soil per sample. Sample 226 

extraction and analysis were carried out by Eurofins Sofia GmbH using LC-MS/MS. 227 

Statistical Analyses. Pearson correlation analysis and one-way analyses of variance (ANOVA) tests were 228 

performed to identify patterns and to measure the statistical significance of the relationship between 229 

variables. ANOVA tests were performed to assess the differences between soil types and pesticide 230 

application methods regarding total accumulated drainage, total DPC mass leached, maximum change of 231 

carbon and nitrogen isotope signatures 900 days after pesticide application/injection. Separate Pearson 232 

linear correlations were performed to evaluate the relationship between irrigation and drainage, between 233 

soil humidity and drainage, between drainage and DPC mass leached, and between evapotranspiration 234 

and DPC mass leached. All tests were performed using the statistical package Minitab 13.31 (Minitab Inc., 235 

State College, PA). All statistical differences were set to the α = 0.05 significance level (p ≤ 0.05). 236 

Results and Discussion  237 
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Water Dynamics. Total accumulated drainage 900 days after CLZ or DPC application/injection was 238 

between 488 to 656 mm for gravel soil and between 337 and 502 mm for moraine soil. In relation to the 239 

water input, drainage represented 25-39 % and 18-27 % of the total irrigation, respectively. Increased 240 

drainage coincided with periods of high irrigation intensity and high soil water content. A significant 241 

positive correlation (Pearson’s correlation coefficient – r – from 0.30 to 0.49, p < 0.0001) between 242 

intensity of daily irrigation and daily drainage was observed for the six lysimeters. As detailed by Torrentó 243 

et al.37, who used the same lysimeters to assess the fate of the herbicide atrazine and its metabolites, soil 244 

humidity data revealed that large irrigation events resulted in a greater contribution of preferential flow 245 

to drainage, and that this effect was more significant for the moraine than for the gravel soil. A statistically 246 

significant (p < 0.05) correlation was observed between soil humidity and drainage for both gravel and 247 

moraine soil at all depths where capacitance sensors were installed (at 16, 36, 56, 76, and 96 cm for 248 

moraine soil and at 11, 51, and 71 cm for gravel soil)37. This correlation was stronger for moraine (r 249 

between 0.15 and 0.22, except for one depth with r = 0.08) than for gravel soil (r between 0.06 and 0.16), 250 

and is in accordance with the fact that fluctuations in the soil water content were smaller for the latter, 251 

especially at greater depths37. The total accumulated drainage after 900 days was influenced by the 252 

application method (higher drainage for depth injection, p = 0.331) and by the soil type (higher for gravel 253 

soil, p = 0.426). Large amounts of drainage from the gravel soil are probably a consequence of the higher 254 

water permeability and low water content at field capacity of this soil37. 255 

The average monthly and annual irrigation, drainage, and evapotranspiration values for the lysimeters 256 

used in this study are shown in Table S5. Annual evapotranspiration, estimated by the water balance 257 

computation as explained by Torrentó et al.37, was for the four years of study (2014 to 2017) higher for 258 

moraine (315 to 633 mm) than for gravel soil (266 to 585 mm), although the effect was not statistically 259 

significant (p = 0.718). A significant effect (p = 0.002) on annual evapotranspiration was however observed 260 

for crop type: evapotranspiration was higher for sugar beet and corn than for broccoli, Chinese cabbage, 261 

lettuce and leek. The effects of soil type and pesticide application method on evapotranspiration 900 days 262 

after pesticide application were not statistically significant (p = 0.093 and p = 0.579, respectively). The 263 

influence of the cover vegetation on drainage and pesticides fate was not assessed, since no significant 264 

differences in the plants development were observed between lysimeters. For details, see Supporting 265 

Information section III.2. 266 

Trends in Compound Concentrations after DPC Surface Application. Neither CLZ, nor DPC had ever been 267 

applied to any of the lysimeters prior that study so that trends for CLZ and DPC concentrations could be 268 
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uniquely attributed to our experimental design. Through application of the metabolite DPC to the surface 269 

of the lysimeters, it was possible to investigate the fate of DPC separately, in the absence of CLZ and 270 

without interference of constantly formed DPC. The breakthrough of DPC in the seepage water differed 271 

between the soil types (Figure 1b). In the lysimeter with moraine soil (L12), concentrations changed more 272 

rapidly in relation with drainage events than for gravel soil (L1). For gravel soil (L1), DPC was detected in 273 

the drainage water for the first time after 137 days, while it broke through only 15 days after application 274 

in moraine soil (L12). In these lysimeters, a positive correlation was observed between drainage and DPC 275 

mass leached, being more significant for gravel (r = 0.36, p = 0.029) than for moraine soil (r = 0.31, p = 276 

0.113). The observed dependency of the drainage response, and the analytes’ concentration therein, on 277 

the irrigation agrees with Torrentó et al.37 for the fate of the herbicide atrazine and its metabolites in 278 

these lysimeters. Table S6 summarizes the observed breakthrough parameters for each lysimeter. Two 279 

main DPC concentration peaks were detected in the drainage water of these two lysimeters after 280 

approximately 550 and 850 days (Figure 1e). They coincided with two intense irrigation events (November 281 

2016 and September 2017, Table S2). In moraine soil (L12, 303 and 441 mm), less accumulated drainage 282 

had occurred at peak concentration of DPC than in the gravel soil (L1, 458 and 852 mm). Concentrations 283 

in the gravel soil were approximately one order of magnitude higher than in moraine soil. In contrast to 284 

our previous study37, no rapid breakthrough peak was observed shortly after application, neither for DPC 285 

nor for uranine (Figure S4). Bromide mass recovery curves (Figure S5) showed an asymmetric sigmoidal 286 

shape, which is characteristic for transport through a porous matrix with some retardation. Smoother 287 

trends for DPC compared to the tracers indicate retardation by sorption and/or attenuation by 288 

degradation. DPC leaching was therefore mainly driven by porous matrix flow, although intense irrigation 289 

events resulted in a greater contribution of preferential flow. This was observed mainly in moraine soil. 290 

For example, after 425 and 670 days, sharp increases in DPC concentrations were measured (Figure S4). 291 

This might be a consequence of transport by preferential flow induced by intense irrigation events (July 292 

2016 and March 2018, respectively, Table S2). 293 

The transformation product of DPC, MDPC, was first detected after 256 days and 425 days for gravel and 294 

moraine soil, respectively. At the end of the monitoring period (950 days after DPC application), 6.0 % of 295 

the DPC mass was recovered in the drainage water of the gravel soil and only 0.3 % in the moraine soil 296 

(details about the calculation of analyte recovery can be found in the Supporting Information section II.9). 297 

MDPC accounted for 0.55 % and 0.06 % of the applied DPC, respectively. One year after application, a DPC 298 

residue of approximately 3 % and 7 % of the applied DPC was quantified within the first soil layers (0 to 299 

10 cm) of gravel and moraine soil, respectively (Table S7). Thus, an incomplete mass balance was 300 
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observed. Here, possible explanations might be: (i) sorption of DPC to lower soil layers within the root 301 

zone, where further sampling was not possible without disturbing the lysimeter, (ii) the uptake and 302 

metabolism of DPC by plants 42,43, and (iii) the presence of DPC-fulvic acid complexes, as their functional 303 

groups can bind DPC. This has been demonstrated by Gatzweiler44, who conducted lysimeter experiments 304 

with 14C-labelled CLZ. Using thin-layer chromatography and analyzing the radioactivity, Gatzweiler44 305 

detected DPC in fulvic acid fractions verifying the existence of these DPC-fulvic acid complexes. 306 

Nevertheless, the MDPC/DPC concentration ratio suggests that further DPC degradation to MDPC 307 

occurred in both soils, mainly after 425 days. (As both DPC and MDPC have a similar GUS leaching 308 

potential and show only minor differences in their mobility, no major retardation effect on the transport 309 

of either compound is expected so that the use of metabolite-to-parent compound ratios appears justified 310 

in this case)9. This further degradation agrees with the findings of Schuhmann et al.42 and the 311 

environmental degradation pathway predicted by Roberts et al.19. This demonstrates that transformation 312 

of DPC is occurring only slowly. For the moraine soil, a local maximum for the MDPC/DPC concentration 313 

ratio was reached after 750 days (Figure 1, L12e). To obtain additional insight into DPC transformation, 314 

we, therefore, evaluated the results from CSIA of the lysimeter experiment. 315 

Insights into DPC Transformation by Isotope Analysis of DPC from Surface Application. Initially, the δ13C 316 

and δ15N values of the leached DPC were close to the original isotope signature of the applied DPC 317 

(Figures 1, L1d and L12d). Over the course of the observation period carbon isotope signatures of DPC 318 

showed significant enrichment in 13C (Δδ13CDPC) of approximately +4 ‰ in both soil types. The heavy 319 

irrigation event 672 days after DPC surface application (March 2017, Table S2) caused a new small DPC 320 

breakthrough peak, in which DPC isotope values returned to the original isotopic composition, most likely 321 

because new DPC was mobilized, which had not yet been subject to transformation. This effect was more 322 

significant in moraine soil, where a greater contribution of preferential flow in response to this heavy 323 

irrigation event was observed, resulting in a recovery of up to 20 % of the total mass of DPC leached in 324 

the drainage water after the monitoring period. Additionally, significant changes of nitrogen isotope 325 

signatures (Δδ15NDPC) of +2 ‰ to +3 ‰ were observed – however, mainly in the gravel soil (L1). 326 

Furthermore, these shifts were observed at a later time point than the enrichment in 13C, approximately 327 

450 days after application. The fact that during the first 450 days DPC was only becoming enriched in 13C, 328 

and then in both 13C and 15N, suggests that DPC was transformed by two distinct processes and that only 329 

the latter one starting after 450 days involved a reaction of a nitrogen atom. The transition between the 330 

two trends coincides with an increase in the MDPC/DPC concentration ratio (Figure 1, L1e). As there had 331 

never been any application of CLZ or DPC to these lysimeters, the carbon and nitrogen isotope values of 332 
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DPC can be uniquely attributed to the substance applied in this study, and changes in these isotope 333 

signatures are attributable to its further degradation. Interestingly, due to the high concentrations of 334 

MDPC in the drainage water, it was possible to measure the δ15N of formed MDPC after purification by 335 

preparative HPLC (Tables S9 and S10). In both lysimeters, the δ15N of MDPC was significantly more 336 

negative (approximately by 4‰) compared to the δ15N value of the DPC at that time (Figure 1d). Since 337 

DPC contains three nitrogen atoms out of which only one is methylated, it can be estimated that the 338 

methylation of DPC causes a nitrogen isotope effect of approximately 3 × 4 ‰ = +12 ‰ at the reactive 339 

atom. Our data for the DPC surface application show an enrichment in 13C and, to a lesser extent, in 15N 340 

for DPC in both soils, which was significantly masked in the moraine soil due to the leaching of fresh DPC 341 

after heavy irrigation events. Transformation extent can thus be underestimated. Here, transformation of 342 

DPC may be easier to detect using the metabolite-to-parent concentration ratio, at least for the pathway 343 

involving MDPC formation. On the other hand, using the metabolite-to-parent concentration ratio only to 344 

investigate the transformation of DPC, the evidence of an additional transformation mechanism would 345 

have remained undetected. Additionally, CSIA appears to be more robust as the integrated isotope signal, 346 

which indicates degradation remains measurable, even if the metabolite might be subject to sorption or 347 

further transformation. 348 
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 349 

Figure 1. Lysimeters with DPC application on surface (a single application in May 2015): L1 in gravel soil (left panels) and L12 350 
in moraine soil (right panels). a) Daily irrigation (black bars) and cumulative drainage (grey line); b)-c) Concentration of DPC 351 
(blue diamonds) and MDPC (black triangles), note that different scales are used for both soil types; d) Carbon (black diamonds) 352 
and nitrogen (red diamonds) isotope ratios of DPC and nitrogen isotope values of MDPC (petrol triangles), error bars show the 353 
associated uncertainties (±0.5 ‰ for carbon, ±1.0 ‰ for nitrogen isotope analysis; or when exceeding this uncertainty, 354 
standard deviations of triplicate measurements are given , EA isotope values of the applied DPC are shown as lines, whereas 355 
associated uncertainties (±0.5 ‰ for carbon, ±1.0 ‰ for nitrogen isotope analysis) are shown as dashed lines in the 356 
corresponding color, respectively; e) metabolite-to-parent compound molar ratio of MDPC/DPC (black diamonds); f) season 357 
corresponding to the time since application – spring (green horizontal lines), summer (red vertical lines), autumn (yellow dots), 358 
winter (blue diagonal lines); the grey dashed lines repeated in each sub-figure represent the start of a new year. 359 

 360 

CLZ Surface Application Mimicking A Realistic Field Scenario. For the surface application of CLZ (Figure 2, 361 

L4 and L8), the metabolites DPC and MDPC were detected in the seepage water 425 days after CLZ 362 

application, coinciding with a heavy irrigation event (July 2016, Table S2), while the applied parent 363 
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compound remained below or close to the limit of detection of 0.05 µg/L during the time of monitoring 364 

(970 days). Analytes breakthrough curves and concentrations differed between the soil types. For uranine, 365 

a rapid breakthrough shortly after application was detected in moraine soil (Figure S4). During the 366 

monitoring period, the maximum uranine concentration was measured within the first day, after only 4 367 

mm of accumulated drainage (Table S6), suggesting that it was mainly transported through preferential 368 

flow, bypassing large fractions of the soil matrix. Furthermore, a pronounced uranine peak tailing was 369 

observed, which is typical for preferential flow (Figure S4). Furthermore, the DPC mass recovery curves 370 

were significantly different for the two soils (Figure S5), giving further evidence of a greater contribution 371 

of transport through preferential flow for moraine soil. This difference in soil type agrees with the results 372 

of the lysimeters with surface application of DPC as well as well as with the findings for other compounds 373 

described in Torrentó et al.37. 374 

Approximately 0.5 % and 0.13 % of the applied CLZ was leached as DPC after 950 days in gravel and 375 

moraine soil, respectively. When analyzing the CLZ and DPC content in the upper soil, for none of the 376 

lysimeters a closed mass balance was obtained. While no CLZ was detected in the first soil layer (0 to 377 

10 cm) approximately 1 year after CLZ application to the lysimeter surface (consistent with Pestemer & 378 

Malkomes45), DPC amounts corresponding to 5 to 9 % of the applied CLZ were found (Table S7). CLZ and 379 

DPC are expected to be incorporated into maize plants based on the findings of Schuhmann et al.42 and 380 

Stephenson & Ries43. In addition, Barra et al.46 showed that during the first 90 days after CLZ application, 381 

CLZ dissipation was mainly due to volatilization and degradation, whereas later on, when CLZ was already 382 

in the subsurface, its disappearance from soil occurred mainly due to degradation. Higher DPC/CLZ 383 

concentration values were measured in the drainage water of the gravel soil compared to moraine soil. 384 

These results suggest that either DPC leached more rapidly through the soil matrix in the gravel soil 385 

because of higher permeability. Or, alternatively, the extent of CLZ degradation was higher for the gravel 386 

soil compared to moraine soil, as there is a greater contribution of preferential flow in moraine soil, which 387 

bypasses the top layer where degradation is mostly expected to take place. When preferential flow occurs, 388 

pesticides bypass large fractions of the soil matrix, reducing the degradation and sorption potential, as 389 

the topsoil is microbiologically more active and with higher organic matter content. CSIA results provide 390 

additional insights about these two hypotheses (see below). Concentration ratios and isotope results 391 

point to a higher extent of CLZ degradation in gravel than in moraine soil. Nevertheless, some metabolite-392 

to-parent ratio values may be underestimated, because CLZ was below the limit of detection and, 393 

therefore, CLZ concentrations corresponding to the detection limit were chosen for calculation, resulting 394 

in a minimum estimated ratio in that case. 395 
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 396 

Figure 2. Lysimeters with CLZ application on surface (a single application in May 2015), L4 (left panels) and L8 (right panels). a) 397 
Daily irrigation (black bars) and cumulative drainage (grey line), b)-d) Concentration of CLZ (green circles), DPC (blue diamonds) 398 
and MDPC (black triangles) over time, e) metabolite-to-parent compound molar ratio of DPC/CLZ (black hexagon), f) carbon 399 
(black diamonds) and nitrogen (red diamonds) isotope ratios of DPC, error bars show the associated uncertainties (±0.5 ‰ for 400 
carbon, ±1.0 ‰ for nitrogen isotope analysis; or when exceeding this uncertainty, standard deviations of triplicate 401 
measurements are given, EA isotope values of the applied CLZ are shown as lines, whereas associated uncertainties (±0.5 ‰ 402 
for carbon, ±1.0 ‰ for nitrogen isotope analysis) are shown as dashed lines in the corresponding color, respectively; g) 403 
metabolite-to-parent compound molar ratio of MDPC/DPC (black diamonds), h) season corresponding to the time since 404 
application – spring (green horizontal lines), summer (red vertical lines), autumn (yellow dots), winter (blue diagonal lines); 405 
the grey dashed lines repeated in each sub-figure represent the start of a new year. 406 



 16 

In lysimeters with CLZ surface application (Figure 2, L4f and L8f), some carbon isotope values of DPC show 407 

a shift to more negative δ13C values compared to the carbon isotope signature of the applied CLZ (Table 408 

S4). This behavior is observable in both lysimeters, especially after heavy rain events such as that one 409 

performed 550 days after CLZ application (November 2016, Table S2), which resulted in a depletion in 13C 410 

by 3.4 ‰ for gravel soil (L4). This shift may be attributed to the mobilization of freshly formed DPC, which 411 

is formed from CLZ by loss of the aromatic moiety through C–N bond cleavage. Presuming that the phenyl-412 

ring contains more 13C atoms than the average molecule (Figure S1), which may have been introduced by 413 

the synthesis process, this would result on a 13C-depletion. Alternatively, the shift may be due to 414 

secondary normal carbon isotope effects. Once transformation of DPC starts – as evidenced by the 415 

detection of MDPC – this 13C-depletion may be masked compared to the carbon isotope composition of 416 

the applied CLZ, as an enrichment in 13C in DPC is expected. Consistently, observed δ13CDPC values are close 417 

to or higher than the EA-IRMS value of the applied CLZ. 418 

In moraine soil (L8), no evidence of DPC degradation was obtained based on carbon isotope values, as 419 

changes of δ13C values were within the uncertainty of the method (Figure 2, L8f). In contrast, carbon 420 

isotope values of DPC in gravel soil (L4) showed an enrichment in 13C by up to +8.4 ‰ (Figure 2, L4f) 421 

indicating that DPC was further transformed. At a subsequent time point (930 days after application), 422 

however, the δ13CDPC value changed back close to the original isotopic signature detected at the beginning 423 

of monitoring. This indicates that the change in δ13C DPC values was “diluted” by the input of newly 424 

mobilized DPC, as supported by a concomitant increase of the DPC/CLZ concentration ratio (Figure 2, L4e). 425 

Hence, the two lines of evidence (isotope and DPC/CLZ concentration ratios) were found to complement 426 

each other in the assessment of DPC degradation – when one line of evidence was about to fail, the other 427 

was able to provide conclusive evidence. 428 

The more substantial changes in both δ13CDPC values and DPC/CLZ concentration ratios indicate that DPC 429 

degradation was higher in L4 (gravel soil) than in L8 (moraine soil) leading to the hypothesis that 430 

differences in the transformation rate of CLZ to DPC existed. This is supported by the findings of Capri et 431 

al.47, who reported that the extent of CLZ degradation is influenced by the moisture content of the soil. 432 

As described by Torrentó et al.37, there is a higher soil water content and less fluctuation of the water 433 

content in the gravel soil than in moraine soil. On the other hand, for both moraine and gravel soil, δ15N 434 

values of the DPC formed are, as hypothesized in Figure S1, close to the nitrogen isotope signature of the 435 

applied CLZ. Based on the findings of Lingens et al.20, the pyridazinone-ring of the CLZ molecule is not 436 

involved in the first transformation steps (dioxygenation of the phenyl-ring, Figure S1) so that no 437 
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significant nitrogen isotope fractionation is expected during CLZ transformation to DPC 27, 29, 48, 49. As the 438 

isotope effect during multi-step reactions is reflected by the rate-limiting steps, our results indicate that 439 

the amidase-driven cleavage of the moiety (2-hydroxymuconate) at the C–N bond, may be not rate-440 

limiting. As a result, changes in nitrogen isotope values of DPC can be uniquely attributed to its further 441 

degradation. 442 

 443 

Transformation-Potential after Herbicide Injection Below the Root Zone. Finally, two lysimeters (L6 and 444 

L7) were chosen to simulate the preferential flow after a heavy irrigation event by injecting CLZ into a 445 

depth of 40 cm, following the approach described by Torrentó et al.37. In contrast to surface application 446 

observations, CLZ and DPC broke through a few days after CLZ was injected (Figure S6). The second 447 

metabolite MDPC was detected in the drainage water after 130 days. The detection of the metabolites 448 

indicated that CLZ degradation occurred, even when it was injected below the root zone. Additionally, 449 

significantly greater concentrations of CLZ, DPC and MDPC (1 to 2 orders of magnitude higher) were 450 

measured in the drainage water of the lysimeter with CLZ depth injection compared to the CLZ surface 451 

applications. In contrast to surface application observations, early breakthrough of injected uranine and 452 

CLZ occurred for the two soil types within a few days (< 11 days for gravel and 6 hours for moraine soil) 453 

and after a small amount of accumulated drainage (< 55 mm and 8 mm, respectively). This rapid response 454 

and the peak tailing for both solutes are typical for preferential flow. More than 80 % of the total uranine 455 

recovered mass was received during this early breakthrough. These results confirm that preferential flow 456 

was enhanced by depth injection. In agreement with Torrentó et al.37, the response to intense irrigation 457 

events was more significant than for surface applications. It results in several fluctuations of CLZ and DPC 458 

concentrations in the drainage water during the first 370 days for both soils (Figure S4). A great increase 459 

in CLZ and DPC concentrations occurred in both lysimeters after 330-345 days (at 225-320 mm of 460 

accumulated drainage), coinciding with the heavy irrigation events in May 2015 (Table S2). After this 461 

pulse, no CLZ was recovered, while a steady increment in accumulated mass recovery was observed for 462 

DPC for both soils (Figure S5). 463 

At the end of the monitoring period (1250 days after CLZ injection), total leached analytes accounted for 464 

24 and 22 % of the injected CLZ mass, respectively. Even though comparison between the two application 465 

methods may be limited (eleven uniformly distributed CLZ injections versus broad surface application), 466 

higher recoveries were obtained for CLZ injection after the same time of monitoring (950 days): from 2.0 467 

to 3.4 % of CLZ, between 16.4 and 17.2 % of DPC and from 0.2 to 0.4 % of MDPC compared to no CLZ 468 
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leaching, 0.13 to 0.15 % of DCP and below 0.02 % of MDPC with surface application. As the mass balance 469 

remains incomplete for CLZ injection, there is evidence that additional processes occurred. With surface 470 

application, processes such as volatilization46, additional transformation pathways19 and uptake by 471 

plants42 likely accounted for the mass losses. Additional influences on the low recovery, which might also 472 

occur after CLZ depth injection, might be the low mobility for CLZ50 and the formation of putative fulvic 473 

acid complexes of DPC44. The DPC/CLZ concentration ratio in these lysimeters with CLZ depth injection 474 

shows that the main fraction of DPC seems not to be involved in sorption as this concentration ratio has 475 

a single global maximum starting approximately 600 days after CLZ injection (Figure S6). This global 476 

concentration maximum is two orders of magnitude greater than DPC/CLZ concentration ratios observed 477 

for CLZ surface application. It shows the importance of the topsoil to retain DPC. As indicated by the 478 

MDPC/DPC concentration ratio, further transformation of DPC occurred, although its extent and nature 479 

is unknown. 480 

ANOVA tests were performed to assess the differences between the two soil types and the CLZ application 481 

method (i.e. surface application vs. depth injection) regarding DPC leaching and its carbon and nitrogen 482 

isotope fractionation. The results showed that the DPC mass leached after 900 days was significantly 483 

influenced by the CLZ application method (p < 0.0001). A 90- to 260-fold increase in DPC leaching was 484 

observed for depth injection compared to surface application. Although the effect of soil type was not 485 

statistically significant (p = 0.998), CLZ surface application resulted in higher DPC mass leached for gravel 486 

than for moraine soil. 487 

Similar to observations in lysimeters with CLZ surface application, carbon isotope data of DPC show an 488 

enrichment in δ13C of 3.8 ‰ after 648 days of herbicide injection below the root zone in the gravel soil, 489 

while no significant change is observed in moraine soil (Figure S6). There, up to 648 days, no significant 490 

changes in 13C/12C and 15N/14N ratios were measured. The δ15N value of DPC shows the initial isotope 491 

composition of the CLZ applied to the lysimeter. In very few cases, it was possible to measure δ15N values 492 

of MDPC formed from DPC (Figure S6 and Table S11). Nitrogen isotope values of MDPC were by 493 

approximately 6 ‰ more negative than δ15N signature of its parent compound DPC. This shift agrees with 494 

the findings in DPC transformation experiments (Figure 1, L1 and L12) and, thus, supports the nitrogen 495 

isotope effect of DPC methylation of approximately +12 ‰ as estimated above (Table S9 and S10). 496 

According to the ANOVA results, isotope fractionation was mainly influenced by the soil type (higher 13C 497 

and 15N enrichment for gravel soil) rather than by the CLZ application method. 498 

 499 
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Dual-Element Isotope Plot to Identify DPC Formation and Transformation. A dual-element plot was used 500 

for an overview of observed trends in carbon and nitrogen isotope signatures of DPC (i) either from 501 

formation from CLZ, or (ii) when DPC was further transformed. In Figure 3a, isotope data of all lysimeters 502 

with DPC surface application are combined, whereas in Figure 3b, data of all lysimeters with CLZ 503 

application/injection are shown. In Figure 3a, where DPC represents the original applied compound, a 504 

general trend towards more positive δ15N and δ13C values is observable. This observation is consistent 505 

with the well-established phenomenon that, in most cases, heavy isotopes become enriched in the 506 

remaining substrate during (bio)degradation. As detailed above, DPC in first drainage samples (first 507 

450 days) of the gravel soil showed a significant enrichment in 13C but not in 15N, indicating that two 508 

distinct processes for DPC transformation occurred. In contrast, Figure 3b shows two opposing trends 509 

pointing to the occurrence of both DPC formation and transformation. On the one hand, similar to the 510 

lysimeters with DPC application, a trend is observed towards more positive δ13C and δ15N values during 511 

the transformation of DPC. On the other hand, numerous data points show more negative δ13C and δ15N 512 

isotope values. As this trend is only observable for lysimeters with CLZ application and injection, we 513 

attribute it to the formation of DPC. As discussed above, possible explanations for the observed depletion 514 

in 13C (more negative δ13C values) is (i) an artefact of an uneven 13C isotope distribution in the cleaved 515 

phenyl-ring during DPC formation; or (ii) that the formation of DPC from CLZ (Figure S1) may be 516 

accompanied by a small and normal secondary carbon isotope effect. 517 

 518 

Figure 3. Dual-element isotope plot of a) DPC degradation in lysimeters L1 and L12, where DPC was applied on the surface, and 519 
b) formation and degradation of DPC in the lysimeters where CLZ was either applied (L4 and L8) or injected in a depth of 40 cm 520 
(L6 and L7); the red circles represent the isotopic signature of the applied/injected a) DPC and b) CLZ – position of CLZ and DPC 521 
differ within the dual-element isotope plots due to their different isotopic source signatures (Table S4). 522 

 523 
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Environmental Significance and Outlook 524 

The isotope fractionation in DPC observed for the three tested scenarios is particularly important because 525 

(i) the change in carbon and nitrogen isotopic signature of DPC evidenced transformation of an apparently 526 

persistent metabolite, and (ii) these changes provide evidence that likely more than one transformation 527 

pathway is involved in DPC transformation. In soil, only methylation of DPC to MDPC is known and thus 528 

our data suggest the need for further laboratory experiments and mechanistic studies on DPC 529 

(bio)degradation to gain further insight into possible additional transformation pathways. (iii) Formed 530 

DPC, which had not been subject to further transformation yet, showed the same nitrogen isotope 531 

signature as its precursor CLZ. Hence, δ15N values may serve as isotopic fingerprints to identify the origin 532 

of such compounds in groundwater. 533 

When applying CSIA, the combination with conventional methods was found to be complementary and 534 

advantageous, especially when formation and transformation of the metabolite was occurring 535 

simultaneously. Once introduction of newly formed metabolite dominated, evidence from CSIA was not 536 

necessarily conclusive because transformation-related changes in isotope ratios were masked by the 537 

continuous input of DPC. Here, additional information was gained by metabolite-to-parent concentration 538 

ratios, which became greatest and could provide evidence of DPC formation. Vice versa, when metabolite-539 

to-parent-ratios were small because DPC was further transformed, it was the changes in isotope ratios of 540 

DPC which still carried the isotopic imprint of the reaction and, hence, made transformation visible. For 541 

further understanding of the environmental fate of DPC, reference experiments focusing on the 542 

determination of stable isotope fractionation factors as well as microbial processes during DPC 543 

transformation are required in order to identify transformation mechanisms and quantify them. 544 

For the future, our approach with CSIA in combination with concentration measurements and systematic 545 

long-term lysimeter experiments holds promise to answer questions about transformation pathways and 546 

the extent of soil / vadose zone (bio)transformation not only for DPC – one of the most widely detected 547 

substances – in groundwater, but also for other micropollutants of concern and their metabolites. 548 

Additionally, this study confirmed that the application of CSIA in combination with solid-phase 549 

extraction27, 39 is feasible for the analysis of polar micropollutants in drainage water at environmentally 550 

relevant concentrations. Thus, it can be also applied to studies in agricultural soil and groundwater from 551 

common unconsolidated sand and/or gravel aquifers with catchment areas within agricultural production. 552 
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