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ABSTRACT 30

31

Two hundred and twenty-one strains representative of all Aeromonas species were characterized using the 32

recA gene sequence, assessing its potential as a molecular marker for the genus Aeromonas. The inter-33

species distance values obtained demonstrated that recA has a high discriminatory power. Phylogenetic 34

analysis, based on full-length gene nucleotide sequences, revealed a robust topology with clearly separated 35

clusters for each species. The maximum likelihood tree showed the Aeromonas bestiarum strains in a well-36

defined cluster, containing a subset of four strains of different geographical origins in a deep internal branch. 37

Data analysis provided strong evidence of recombination at the end of the recA sequences in these four 38

strains. Intergenomic recombination corresponding to partial regions of the two adjacent genes recA and recX39

(248 bp) was identified between A. bestiarum (major parent) and A. eucrenophila (minor parent). The low 40

number of recombinant strains detected (1,8 %) suggests that horizontal flow between recA sequences is 41

relatively uncommon in this genus. Moreover, only a few nucleotide differences were detected among these 42

fragments, indicating that recombination has occurred recently. Finally, we also determined if the recombinant 43

fragment could have influenced the structure and basic functions of the RecA protein, comparing models 44

reconstructed from the translated amino acid sequences of our A. bestiarum strains with known E.coli RecA 45

structures.46
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60

INTRODUCTION 61

62

The main goal of bacterial phylogenetic studies is to reconstruct the correct genealogical relationships among 63

the strains analysed, estimate when their divergence occurred, and determine the sequence of events along 64

the evolutionary lineages. Nevertheless, not all the genes commonly used for this purpose are always 65

suitable, and their properties need to be considered before their application in a phylogenetic study [11]. The 66

gene should be conserved, encode essential cell functions, have only a single copy, and be present in all 67

species of the genus [52].68

69

Bacteria reproduce asexually, giving two identical individuals after their division, with the exception of changes 70

produced by mutation or recombination. Although this reproduction process is not associated with 71

recombination, in contrast with eukaryotes, bacteria have acquired three basic mechanisms by which they can 72

incorporate genes from other bacterial species. Nevertheless, their genomes are not simply arbitrary 73

assortments of genes of mixed heritage. Recombination in bacteria is always restricted to small DNA 74

fragments, is unidirectional and independent of reproduction, and occurs with a relatively low frequency, 75

although genes codifying virulence factors or antibiotic resistance experiment more frequent recombination 76

changes [10, 12]. 77

78

The impact of recombination on bacterial phylogenies has been the subject of considerable discussion [10, 79

13, 17, 36, 41, 56]. Recently, with the availability of sequencing techniques and the analytical power of new 80

programs, the detection of recombination events has increased dramatically. This has led to the questioning 81

of existing phylogenies and the methods used for their construction, such as Maximum Likelihood (ML) and 82

Maximum Parsimony (MP), which assume that the analyzed sequences have the same evolutionary history. 83

Due to the importance of recombination in evolutionary analysis, it is essential to be able to identify whether a 84

given set of sequences has undergone recombination events, define the boundaries of the recombinational 85

units, and evaluate the impact of recombination on our ability to reconstruct evolutionary histories and 86

estimate population genetic parameters [12, 27].87

88



Page 4 of 32

Acc
ep

te
d 

M
an

us
cr

ip
t

4

Traditionally, recombination in a given set of sequences has been identified by the incongruence of the 89

different gene trees analyzed, the presence of mosaic structures, and variations in the G+C content or the 90

codon bias. Several new methods have been developed to test the presence of recombination, as well as to 91

identify the parental and recombinant individuals or the recombination break-points. Those methods can be 92

classified in different categories: similarity, distance, phylogenetic, compatibility, and nucleotide substitution 93

distribution [23, 40]. Their performance varies, depending on the level of recombination, but in general most of 94

them are efficient, and although they can have trouble in detecting recombination when the level of 95

divergence is low, their discriminatory power increases when the level of recombination is high [41]. 96

97

The genus Aeromonas Stanier 1943 belongs to the family Aeromonadaceae within the class 98

Gammaproteobacteria [29]. Aeromonads are autochthonous inhabitants of aquatic environments, including 99

chlorinated and polluted waters, although they can also be isolated from a wide variety of environmental and 100

clinical sources. They are usual microbiota (as well as primary or secondary pathogens) of fish, amphibians 101

and other animals. Some species, mainly A. caviae, A. hydrophila and A. veronii bv. Sobria, are opportunistic 102

pathogens of humans [19]. Several attempts have been made to generate phylogenies using DNA gene 103

sequences to reconstruct the correct genealogical ties among species in Aeromonas [9, 11, 30, 46]. However, 104

the genes chosen for this purpose are not always suitable, and do not necessarily give congruent phylogenies 105

[21, 51].106

107

In our study we investigated the discriminatory power of the recA gene sequences at inter- and intra-specific 108

levels for application in Aeromonas phylogenetic studies. Any cluster showing incongruences was analyzed 109

looking for the presence of potential recombinant fragments in their recA gene sequences.110

111

MATERIAL AND METHODS112

113

Data set114

221 Aeromonas strains were analyzed based on the nucleotide sequences of the recA gene: 125 belonged to 115

the “Aeromonas hydrophila Species Complex” (study 1), and 150 (54 strains from study 1) represented all the 116

species and subspecies of this genus described to date, including the type strains as well as some strains 117

considered as synonymous (study 2) (Table S1). The strains were obtained from several culture collections 118
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(CECT, Colección Española de Cultivos Tipo, Universitat de València, Valencia, Spain; CIP, Collection de 119

l’Institut Pasteur, Paris, France; JCM, Japan Collection of Microorganisms, RIKEN BioResource Center, 120

Ibaraki, Japan; LMG, Culture Collection of the Laboratorium voor Microbiologie Gent, Universiteit Gent, 121

Ghent, Belgium), kindly supplied by different authors or research groups (Katri Berg, University of Helsinki, 122

Helsinki, Finlandia; Yogesh Shouche, Molecular Biology Laboratory, National Centre for Cell Science, Pune, 123

India; Margarita Gomila, Universitat de les Illes Balears, Palma de Mallorca, Spain; Mª José Figueras, 124

Universitat Rovira i Virgili, Reus, Spain; Antonio Martínez-Murcia, Universidad de Alicante, Spain), or obtained 125

by our group from freshwater and food samplings [35]. Strains were grown aerobically on tryptone soy agar 126

(TSA; Pronadisa, Laboratorios Conda) supplemented with 1% (w/v) NaCl for 24-48h at their optimum 127

temperature, which ranged between 25 and 30°C. For long-term storage, pure cultures were stored frozen at -128

40 and - 80 ºC in triptone soy broth (TSB; Oxoid, Thermo Fisher Scientific Inc.) containing 20% glycerol and 129

on Protect™ cryobeads (Technical Service Consultants Ltd.). Species affiliation, source, geographical origin 130

and the type of phylogenetic study of all the strains analysed are listed in Table S1.131

132

DNA extraction, primers, and PCR conditions133

Genomic DNA was extracted and purified with the REALPURE® Genomic DNA extraction kit (Durviz) and 134

stored at -20°C until use. Primer3 software was used to design PCR and sequencing primers 135

(http://primer3.sourceforge.net/, [55]). Oligonucleotide primers were designed from published genome 136

sequences of Aeromonas hydrophila ATCC 7966T (GenBank accession number: CP000462, [50]) and 137

Aeromonas salmonicida subsp. salmonicida A449 (GenBank accession number: CP000644, [43]). All primers 138

used in this study are shown in Table S2. Six different primer sets were used to amplify by PCR the complete 139

recA gene and its flanking regions (Table S2). Additional internal primers were designed for the sequencing of 140

recA. The oligonucleotides were synthesized by Invitrogen™ (Thermo Fisher Scientific). The conditions of 141

amplification by PCR were optimized in a 50 μL final volume reaction, containing 0.5 ‒ 10 μL of genomic DNA 142

as the template, 0.2 ‒ 2 μM each primer, 0.2 mM each dNTP, 0.5 mM MgCl2, 5% dimethyl sulfoxide (DMSO) 143

(optional), 1X Buffer I  (10X Buffer I: 100 mM Tris-HCl, pH 8.3, 500 mM KCl, 15 mM MgCl2, 0.01% (w/v) 144

gelatin) and 1.25 U of AmpliTaq Gold® DNA polymerase (Applied Biosystems). Amplifications were performed 145

in Veriti® (Applied Biosystems) and Applied Biosystems® 2720 thermal cyclers using the following program: 146

initial denaturation at 95°C for 5 min, followed by 35 cycles of denaturation at 94°C for 45 s, annealing at 53–147

58°C for 1 min and elongation at 72°C for 2 min, and a final extension at 72°C for 10 min. The PCR products 148
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were resolved by electrophoresis in 1% agarose gels stained with GelRedTM (Biotium) and visualized by UV 149

transillumination. Amplicons were purified with a MSB® Spin PCRapace kit (STRATEC Molecular). Purified 150

PCR products were directly sequenced on both strands using either the PCR or internal primers. Sequencing 151

reactions were performed with the BigDye® Terminator v3.1 Cycle Sequencing kit (Applied Biosystems) and 152

analyzed on an ABI PRISM® 3700 DNA sequencer (Applied Biosystems) by the Genomics Unit of the 153

Scientific and Technological Centers of the University of Barcelona (CCiTUB).154

155

Phylogenetic and sequence analysis156

Multiple sequence alignments were performed using the ClustalW program [22] implemented in MEGA6 157

software [54]. We also applied the graphical dots plot method for the exploratory sequence analysis. This 158

method was carried out with functions included in phyclust [7] and ape [38] packages using the R 159

programming language [42]. Maximum likelihood (ML) phylogenetic analyses were performed using the 160

PhyML 3.1 program [16] with 1000 bootstrap replicates to assess tree topology robustness. Phylogenetic 161

trees were reconstructed based on the best fit model of evolution for each dataset estimated in the MEGA6. 162

Phylogenetic trees were visualized using the NJPlot program [39]. 163

164

Recombination detection methods165

To detect potential recombination events, we analysed the incongruences in the tree topology, examined the 166

sequence alignments and the dots plots, determined the G+C content (mol %) with the DnaSP program 167

(version 5, [24]), and calculated the codon usage bias with MEGA6 software. In addition, we evaluated the 168

possible recombination events, and identified  potential major and minor parents and the location of possible 169

recombination breakpoints, using seven methods implemented in the RDP4 program [28]: RDP [26], 170

GENECONV [37], BOOTSCAN [47], MAXCHI [34], CHIMAERA [40], SiScan [15] and 3SEQ [5] with their 171

default parameters. Sequences statistically supported by at least two detection methods (P-value < 0.05) were 172

considered as potential recombinants.173

174

A phylogenetic network was constructed with the SplitsTree4 program (version 4.13, [18]), using the median 175

joining method [2] from a multiple sequence alignment. The existence of recombination was also evaluated 176

using the Phi Test (Pairwise homoplasy index, [6]), implemented in SplitsTree4, which is significant at a 95% 177

confidence interval (P-value < 0.05).178
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179

Protein homology modelling180

Protein prediction of the query sequences was carried out by homology modelling [48], using the resolved 181

structure of a known related protein. This method identifies one or more known protein structure related to the 182

target sequence (templates), aligns the template with the translated target sequence, builds a three-183

dimensional model based on the alignment, and finally, evaluates the model obtained. To find the best 184

template structure, we searched for bacterial RecA proteins available in the RCSB Protein Data Bank (PDB; 185

http://www.rcsb.org/pdb/). Homology modelling was performed using the structure prediction servers Phyre2186

(Protein Homology/analogY Recognition Engine version 2.0, [20]) and SWISS-MODEL [1]. Predicted models 187

were visualized with the PyMol molecular graphics system (version 0.99rc6, Schrödinger, LLC.). Protein 188

disorder prediction was carried out with the DISOPRED server [57], using a method to predict dynamically 189

disordered regions from the amino acid sequence.190

191

RESULTS 192

193

Phylogenetic studies194

We sequenced the complete recA gene in 221 Aeromonas strains, including all the species formally accepted 195

to date (Table S1), in order to assess its potential as a molecular marker for the genus Aeromonas, 196

particularly to solve incongruences and obtain a better discrimination between closely related species. In the 197

first of two phylogenetic studies based on the full-length nucleotide sequences of the recA gene, we analyzed 198

125 strains belonging to the “Aeromonas hydrophila species complex” (AHC) (A.hydrophila, A.dhakensis, 199

A.bestiarum, A.piscicola, A.popoffii, A.salmonicida) (study 1), a taxonomically complex group that includes 200

closely genetically related species with a difficult phenotypical discrimination. Secondly, we performed a 201

phylogenetic analysis (study 2) with 150 strains representative of all the species of this genus. Sequence 202

length varies between 1,059 (A. diversa, A. popoffii, A. schubertii, A. simiae, A. sobria, and A. taiwanensis) 203

and 1,068 (A. cavernicola) bp depending on the species.204

205

The recA gene-based ML phylogenetic tree obtained in study 1 (Fig. 1A) shows a robust topology with clearly 206

separated clusters for each species, which is very similar to that previously obtained from the concatenated 207
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sequences of six genes [14]. The ML tree corresponding to study 2 (Fig. 1B) was similarly robust and all the 208

strains were clearly grouped according to the species. 209

210

Intra- and inter-specific distance values estimated from sequence data obtained from studies 1 and 2 are 211

shown in Tables S3 and S4. The mean intra- and inter-pairwise distance values for species included in study 212

1 were 0.0159 + 0.0061 and 0.0749 + 0.0134, respectively, and in study 2, 0.0165 + 0.0082 and 0.1065 +213

0.0190, respectively. Additionally, distance density plots are shown in Fig. S1. In all cases, the inter-specific 214

values obtained allowed a clear separation of species. In species with only one strain (A. australiensis, A. 215

cavernicola, A. fluvialis, A. sanarellii, A. taiwanensis), it was obviously not possible to calculate the distance 216

variation values at intra-specific level. 217

218

The ML phylogenies showed the strains of the different species studied grouped in coherent clusters. The A. 219

bestiarum group appeared clearly separated from other species, with a subset of four strains in a deep 220

internal branch. Notably, these 4 strains were isolated from distinct geographical origins (CECT 5741: 221

environment, Germany; CECT 5742: water, Switzerland; LMG 13667: water, USA; AE147: lake water, 222

Finland) and obtained from different culture collections or authors. We analyzed their recA sequences to 223

investigate why these strains appeared separated from the rest.224

225

Recombination in the recA gene226

We conducted a preliminary exploratory analysis of the recA sequences, using graphic methods such as 227

multiple sequence alignments and dots plots. These graphical representations provide a quick and intuitive 228

data analysis, and make the overall trends and local variations easier to visualize. Figure 2 presents the dots 229

plots generated from all the sequences corresponding to the phylogenetic studies 1 (A) and 2 (B). The graph 230

shows the polymorphic (segregating) sites detected along the sequences, showing in a different colour those 231

bases that vary from the consensus sequence (top of the graph). Both plots allowed us to graphically see 232

separated groups of species that were in clear concordance with those obtained in the phylogenetic trees 233

(Fig. 1). Moreover, both graphs detected a particular region with a nearly identical sequence at the end of the 234

recA gene in the four strains belonging to the A. bestiarum cluster, which was clearly different from the other 235

strains of the species. 236

237
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In order to analyze the possible exogenous origin of the sequence fragment detected, we applied seven 238

recombination detection methods implemented in the RDP4 program to the data set (Table 1). The analysis 239

provided statistical support for a unique recombination event in the 4 A. bestiarum strains, identifying the 240

beginning breakpoint at position 979. The presumptive recombinant region therefore comprises a fragment of 241

81 bp (alignment positions: 979-1065, excluding the stop codon). The changes detected in this fragment are 242

identical in the 4 strains, except at position 1,014 for the strain LMG 13667. In addition, all methods identified 243

A. bestiarum as the major parent (the contributor of the non-recombinant region) with high probability values 244

(> 97%). No minor parent (source of the recombinant region) was identified, although two methods suggested245

A. eucrenophila.246

247

To confirm if the region detected at the end of the recA is a fragment acquired by recombination, we 248

determined the G+C content of the total gene and that corresponding to the non-recombinant (positions 1-249

978), and recombinant (positions 979-1,062) regions (Table 2). The G+C content obtained for the terminal 250

region in the recombinant strains was clearly higher (64%) than in the remaining A. bestiarum strains (61.7%), 251

providing evidence of an exogenous origin. The results of a codon usage bias study showed no significant 252

differences among the regions analysed (Table S5).253

254

All these results were confirmed when we generated ML trees from the non-recombinant (Fig. 3A) and 255

recombinant (Fig. 3B) regions of these sequences. The tree constructed from the recombinant fragment 256

sequences (Fig. 3B) showed the four strains grouped in a cluster separated from A. bestiarum but closely 257

related to A. eucrenophila and A. tecta.258

259

In order to determine the recombinant fragment endpoint, we enlarged the sequenced fragment to the 260

adjacent gene, recX, in a set of 18 strains, which included the four recombinants and a group of strains 261

representative of A. bestiarum, as well as A. eucrenophila and A. tecta (Table 2), the probable sources of the 262

recombinant fragment. For each strain, we obtained the nucleotide sequence with the full-length recA gene, 263

the intergenic region and the partial recX gene, which was called recA-recX. From a multiple sequence 264

alignment of 18 recA-recX sequences (positions 1-1,522), we analyzed the recombination with the RDP4 265

program. Five methods detected the recombinant fragment (with statistical support) in the same four A. 266

bestiarum strains (Table 1; Fig. S2). In this case, we were able to determine the minor parent, an A. 267
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eucrenophila strain, with more than 94% similarity. The end point of the recombinant fragment was located at268

position 1,235. Therefore, this region begins at position 979 of the recA gene and ends at position 129 of the 269

recX gene, with a total length of 248 bp (Fig. S3), all fragments being nearly identical, differing only in 1 to 8 270

bp (Fig. S4).271

272

These results were confirmed by the dots plot (Fig. 2B), since the pattern in the recombinant region of the four 273

strains was highly homologous with the A.eucrenophila species, and very different from the A. bestiarum274

strains. However, the pattern in the non-recombinant regions of both genes was similar to A. bestiarum.275

276

The G+C content (Table 2) and the codon usage determination (Table S5) was also in agreement with these 277

results. When considering the complete recA gene and the non-recombinant regions of the recA-recX278

sequences, the values obtained were very similar to A. bestiarum, but in the recombinant region, these values 279

were close to those of A. eucrenophila.280

281

Finally, a split decomposition analysis of the recA-recX sequences gave a reticulated structure (Fig. 4), 282

providing evidence for recombination. This network identified the parent strains (A. bestiarum and A. 283

eucrenophila) of the recombinant sequences (in red). The Phi Test provided additional statistically significant 284

recombination evidence (P = 1.7 x 10-16).285

286

Predicted RecA protein structure287

In order to determine if the recombinant region detected could affect the structure or function of the RecA 288

protein, we constructed three-dimensional structures of RecA of the A. bestiarum (CECT4227T) type strain 289

and a recombinant isolate (CECT5741) by homology modelling. Based on these query sequences, we 290

searched for homologous proteins of bacterial RecA in the PDB protein database, obtaining a total of 60 291

structures that corresponded to the following species: Mycobacterium smegmatis (30), Mycobacterium 292

tuberculosis (14), Escherichia coli (14), Thermotoga maritima (1), Deinococcus radiodurans (1), and a partial 293

structure of the C-terminal region of E. coli K12. All structures were resolved experimentally using different 294

techniques. The search results for template structures using the program SWISS-MODEL identified E. coli295

structures as the best for modelling the A. bestiarum RecA protein, with the highest percentages of identity 296

(77.5 - 80.3%), similarity (52 - 53%) and coverage (92-96%). We chose three E.coli structures obtained by X-297
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ray diffraction to be used as templates: the first was crystallized without DNA (PDB ID: 2REB, [53]), the 298

second with a single-strand DNA (PDB ID: 3CMW, [8]) and the third with a double strand (PDB ID: 3CMT, [8]).299

The E. coli template without DNA (2REB) was a free monomer, while the templates with DNA were 300

polymerized into filaments, taking an inactive (3CMW) or active state (3CMT). 301

302

Figure S5 compares the deduced amino acid sequences and the predicted protein secondary structure 303

corresponding to the type strain of A. bestiarum and the recombinant CECT5741 using E. coli 2REB as a 304

template. The amino acid sequences of both A. bestiarum strains showed high homology over the entire 305

translated region except at the end, which corresponds to the recombinant region with a high sequence 306

variation. The figure also highlights the differences between both strains in this region. The secondary 307

structure of the RecA protein was identical for both strains, with ten α-helices and twelve β-sheets, but some 308

differences were observed compared with E. coli. For example, β0 and β5 sheets were absent in A. 309

bestiarum, but present in E. coli, and two β-sheets (β5 and β6) in the A. bestiarum protein before the F helix 310

were not observed in E. coli (Fig. S5). However, these differences correspond to predicted regions with a low 311

degree of confidence. Similarly, some small discrepancies were observed when using the 3CMW and 3CMT 312

models as templates (data not shown).313

314

Three E. coli structures (2REB, 3CMW and 3CMT) were used as a template for the construction of three-315

dimensional models, with identical results for both A. bestiarum strains. Figure S6 shows the three-316

dimensional models obtained (type strain in green and recombinant in violet) using the E. coli 2REB as a 317

template, with high similarity for both protein structures. When we overlapped the E.coli and A. bestiarum318

structures (Fig. 5), four remarkable differences were detected. First, E.coli presented a β0 sheet at the N-319

terminal region, which was absent in A. bestiarum. Second, only A. bestiarum presented two β-sheets in 320

Loop-1, which corresponds to one of the DNA binding sites. Third, the β5 sheet of E.coli was not present in A. 321

bestiarum. Lastly, the recombinant region located in the C-terminal end could not be visualized in the 322

predicted structure because it corresponds to a non-crystallized region in the E.coli RecA protein. 323

324

It was impossible to predict the tertiary structure of the C-terminal region, which contains the recombinant 325

fragment, because in the E. coli structures used as a template this region was either disorderly (2REB) or not 326
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crystallized (3CMW and 3CMT), and therefore without any structure. Currently, there are no available RecA E. 327

coli structures with this C-terminal region resolved. 328

329

We analyzed the predicted RecA protein disordered profile plot of the recombinant strain (Fig. S7), which 330

showed a higher probability of disorder in the C-terminal region (the recombinant fragment). A detailed 331

analysis of the last 25 amino acids of this region corresponding to the type strain of A. bestiarum, the 332

recombinant isolate and the different E.coli templates showed that despite the variation in sequences, they 333

have in common a high number of negatively charged amino acids (Fig. S5).334

335

DISCUSSION336

337

In this study, we assessed the suitability of the recA gene as a molecular marker for Aeromonas. Partial 338

sequences (348-600 bp) of this gene have been previously used for the identification of Aeromonas strains. 339

Sepe et al. [49] concluded that recA was useful for the construction of reliable phylogenies, but they were 340

unable to develop a simple PCR procedure because the primers used were not sufficiently specific and 341

resulted in multiple bands. These partial sequences of recA have also been used in different MLST or MLSA 342

studies [3, 30, 32, 33]. In a phylogenetic study, it is important to analyse the full sequence of the chosen 343

genes because not all the regions in a protein-coding gene are subject to the same selective pressure, some 344

accumulating changes more freely, while others are more conserved. If we analyze only a fragment, it may 345

not be representative of the full-length gene sequence variation. To avoid possible under-estimations of the 346

total changes in the sequence, in our work we sequenced the entire gene. In addition, our analysis included a 347

high number of strains, 125 (study 1) and 150 (study 2), representative of all the species and subspecies of 348

the genus Aeromonas, which allowed us to determine the intra-specific distance values. The inter-specific 349

distance values obtained demonstrated that recA has a high discriminatory power among the Aeromonas350

species.351

352

Phylogenetic analysis of the genus Aeromonas based on recA gene sequences confirmed the monophyletic 353

origin of this bacterial group [25]. As in previous work using other molecular markers [14, 30, 32], we obtained 354

a perfect clustering of the strains belonging to the same species, including those considered synonymous. 355
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Moreover, the robustness of the ML trees was statistically supported by high bootstrap values in the majority 356

of the group nodes.357

358

In the cluster corresponding to A. bestiarum we detected a group of four strains with a recombinant fragment 359

at the end of the sequence. Enlarging the sequenced fragment to the adjacent gene (recX), we were able to 360

determine the end and the total length of the recombinant region, as well as the major and minor parent. The 361

fact that the recombinant sequences in the 4 strains were quite similar (only a maximum of 8 nucleotide 362

differences) indicates that the recombination event is a recent phenomenon.  363

364

In the literature, some recombination events in Aeromonas linked to the recA and other conserved or 365

accessory genes are described. Silver et al. [51] were the first to report an episode of recombination in this 366

genus. In their study, they considered only clinical isolates belonging to the A.veronii species complex, in 367

which they found phylogenetic inconsistencies in the trees obtained from different individual genes (gyrB, 368

recA, dnaJ, chiA, ascFG, ascV, aexT and aexU) compared with the tree constructed from the concatenated 369

sequences. These incongruences were interpreted as a consequence of a possible recombination event later 370

confirmed by two different methods, PhiTest and GARD, which detected recombination in some genes 371

(ascFG, aexU, gyrB and dnaJ). Martino et al. [32] also determined the presence of recombination in an MLST 372

study analyzing 6 genes (gyrB, groL, gltA, metG, ppsA and recA) from a collection of 77 Aeromonas strains 373

isolated from fish and shellfish, including all the species type strains. In this case, recombination was 374

determined by generating a split tree network and calculating the Phi Test using the SplitTree program, and 375

applying 5 recombination detection methods with the RDP3 program. In two recent studies [12, 45], 376

recombination was suspected from the inconsistencies detected in the phylogenies, and was later confirmed 377

by several programs. In contrast with these studies, we also characterized the recombinant fragment and 378

determined its origin. In all these cases, recombination affects a low number of strains and the acquired 379

region is generally small, so the cohesion of the main groups in the phylogenies is not seriously affected and 380

most bacterial species remain delineable as discrete evolutionary lineages, as in our work. 381

382

We tested if the acquisition of the recombinant fragment can affect the structure and function of the RecA 383

protein by constructing three-dimensional protein models for the A. bestiarum (CECT 4227T) type strain and a 384

recombinant strain (CECT 5741) from their recA sequences. Despite possible errors in comparative models 385
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(in the packaging or conformation), for example, incorrect alignment of the sequence modelling with known 386

related structures, this methodology has proven very useful [48]. Among the few RecA protein structures of 387

prokaryotic origin available in the databases, those of E. coli were selected as a template, based on the 388

identity and similarity percentages obtained after comparison with our translated sequences. 389

390

RecA protein has an important biological role, being responsible for homologous recombination processes 391

and the DNA repair system, which activates the emergency or SOS response in prokaryotes. Three structural 392

domains can be distinguished in the protein: N-terminal, central and C-terminal. The amino acid sequence 393

alignment showed differences between the two A. bestiarum strains and E. coli, especially in the C-terminal 394

fragment, which appears to be a region that accumulates more synonymous and non-synonymous changes. 395

No significant differences were observed between the two A. bestiarum sequences in the secondary and 396

tertiary predictions obtained using different crystallized structures, with or without DNA, as a template. Some397

discrepancies were detected between the three-dimensional structures of E. coli and A. bestiarum, but they 398

did not affect the major RecA protein functional domains, the ATP (Walker A, Walker B and MAW) and  DNA 399

binding sites (Loop-1 and Loop-2), except in the case of the Loop-1, in which A. bestiarum showed two β-400

sheets absent in E. coli. Nevertheless, this result should be considered with caution because it could be an 401

artefact of the modelling method.402

403

In summary, we evaluated the usefulness of recA as a molecular marker for the genus Aeromonas, and the 404

importance of the presence of recombination events and their influence on phylogenies. We characterized the 405

recombinant fragment detected in four A.bestiarum strains and determined its origin. Our study reveals that 406

although recombination is present in some Aeromonas strains (17,4 % of the A.bestiarum species), it is 407

infrequent, and its impact on the phylogenies is low (1,8% of the total strains analyzed). This challenges the 408

postulation that HGT is so common in bacterial populations that it precludes the existence of biological 409

species [44].410

411

412

413

414

415
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APPENDIX A. SUPPLEMENTARY DATA421

422

The following are Supplementary data to this article:423

424

Table S1425

Aeromonas strains studied in this work and recA sequences GenBank accession numbers.426

427

Table S2428

recA primers and PCR settings used in this work.429

430

Table S3431

Intra- and inter-specific genetic distances obtained from the recA sequences of the Aeromonas hydrophila432

Complex (AHC) species (study 1).433

434

Table S4435

Intra- and inter-specific genetic distances determined from the recA sequences of all the species of the genus 436

Aeromonas (study 2).437

438

Table S5439

Comparison of codon usage between recombinant strains and closely related species in non-recombinant and 440

recombinant regions of recA and recX genes.441

442

Figure S1443

Within species (black) and between species (grey) p-distance distribution obtained from the recA gene 444

sequence data (A: study 1 and B: study 2).445
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446

Figure S2447

Recombination analysis with the RDP4 program.448

449

Figure S3450

Gene cluster and recombinant fragment detected for the four A. bestiarum recombinants. 451

452

Figure S4453

Comparison of nucleotide variation in the complete recombinant fragment recA-recX corresponding to the four 454

A. bestiarum recombinant strains.455

456

Figure S5457

Comparative amino acid sequence analysis and predicted RecA secondary structure of the type strain of A. 458

bestiarum and the recombinant CECT5741 (both in green) with E. coli (PDB ID: 2REB) as a template (in blue) 459

using the program Phyre2.460

461

Figure S6462

Predicted RecA structures of the A. bestiarum type strain (A, green) and the recombinant CECT5741 (B, 463

violet).  464

465

Figure S7466

Predicted RecA protein disordered profile plot of the recombinant strain CECT5741, generated using the 467

DISOPRED2 server.468

469

File S1470

recA gene multiple sequence alignment by ClustalW (MEGA6) of 125 strains belonging to the Aeromonas 471

hydrophila species complex (study 1) in FASTA format.472

473

474

475
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File S2476

recA gene multiple sequence alignment by ClustalW (MEGA6) of 150 Aeromonas strains, including all the 477

species in the genus (study 2), in FASTA format.478

479

File S3480

recA+recX multiple sequence alignment by ClustalW (MEGA6) of 18 Aeromonas strains in FASTA format.481

482

483
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TABLES682

683

Table 1684

Recombinant analysis (RDP4). Upper: results obtained with the complete recA gene sequences (1,068 685

positions) from 150 strains. Lower: recA-recX region sequences (1,522 positions) from 18 strains, including 686

the recombinant strains and those species closely related.687

688

689
a Recombination events statistically supported by at least two recombinant detection methods (P-value < 0.05).690
b Position in alignment691

692

693

694

Breakpointb
Recombinant 

strains
Detection 
methods

Eventsa

Begin End
Major parent Minor parent P- value

Sequence analysis of recA gene

RPD 1 899 / 939 Undetermined
A.bestiarum

(98.5 – 99.0 %)
Unknown 9.6 x 10-7

GENECONV 1 899 / 939 Undetermined
A.bestiarum

(98.1 – 99.9 %)
Unknown 1.9 x 10-5

BOOTSCAN 1 899 / 939 Undetermined
A.bestiarum

(98.1 – 99.9 %)
Unknown 2.6 x 10-7

MAXCHI 1 869 Undetermined
A.bestiarum

(98.1 – 99.9 %)
A.eucrenophila
(92.9 – 94.7 %)

9.8 x 10-4

CHIMAERA 1 899 / 939 Undetermined
A.bestiarum

(98.1 – 99.9 %)
Unknown 2.9 x 10-5

Siscan 1
794 / 833 

/ 834
Undetermined

A.bestiarum
(97.6 – 98.0 %)

Unknown 1.8 x 10-8

AE147
CECT5741
CECT5742
LMG13667

3SEQ 1 869 Undetermined
A.bestiarum

(98.1 – 99.9 %)
A.eucrenophila
(94.7 – 95.7 %)

4.5 x 10-7

Sequence analysis of recA - recX fragment

GENECONV 1 969
1,188 / 1,202 / 

1,235
A.bestiarum

(98.7 – 99.3 %)
A.eucrenophila
(96.7 – 97.3 %)

1.3 x 10-17

BOOTSCAN 1 885 / 986
1,188 / 1,205 / 

1,235
A.bestiarum

(98.8 – 99.1 %)
A.eucrenophila
(94.9 – 97.5 %)

8.8 x 10-14

MAXCHI 1 969
1,202 / 1,214 / 

1,235
A.bestiarum

(98.2 – 99.6 %)
A.eucrenophila
(96.2 – 97.3 %)

5.4 x 10-13

CHIMAERA 1 971
1,188 / 1,202 / 

1,235
A.bestiarum

(98.2 – 99.6 %)
A.eucrenophila
(96.7 – 97.3 %)

3.1 x 10-12

AE147
CECT5741
CECT5742
LMG13667

3SEQ 1 969
1,188 / 1,205 / 

1,235
A.bestiarum

(98.7 – 99.3 %)
A.eucrenophila
(96.7 – 97.3 %)

3.4 x 10-25
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Table 2694

Comparison of the G+C content, corresponding to different regions of recA and recX genes, among 695

recombinant strains and closely related Aeromonas species.696

697

698

699

700

701

702

703

704

705

706

707

708

709
a Reference strains of A. bestiarum (CECT4227T, 112A, 559A, LMG13663, HE73), recombinant strains of A. bestiarum710

(AE147, CECT5741, CECT5742, LMG13667), strains of A. eucrenophila (CECT4224T, CECT4827, CECT4853, 711

CECT4854, CECT4855) and A. tecta (MDC91T, MDC92, MDC93, MDC94); n, number of isolates.712

713
b recA-recX sequences (GenBank accession numbers: KM260547 – KM260564). 714

715

716

717

718

719

720

721

Mean G+C content (mol %)

recAb recXb
Aeromonas speciesa

Gene
Positions

1-978
Positions
979-1062

Positions
1-129

Recombinant 
fragmentb

248 pb

A. bestiarum  (n = 5) 59.1 58.9 61.7 63.7 60.7

A. bestiarum recombinants  (n = 4) 59.2 58.8 64.0 63.0 62.9

A. eucrenophila  (n = 5) 60.2 59.7 66.4 62.9 63.2

A. tecta  (n = 4) 59.9 59.3 67.0 61.4 62.5
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FIGURE LEGENDS 721

722

Figure 1723

Maximum likelihood phylogenies based on recA gene sequences: A (study 1) Aeromonas hydrophila Complex 724

strains, including the relative positions of the four recombinant A. bestiarum strains (in bold); B (study 2) 725

strains representing all the Aeromonas species. Species included in study 1 and 2 are indicated in bold on the 726

right. The A. bestiarum cluster, including the four recombinant strains, is shaded in grey. Bootstrap values 727

higher than 70% are given at the corresponding nodes. Scale bar represents the number of substitutions per 728

site.729

730

Figure 2731

Dots plots showing the segregating sites of: A) the complete recA gene sequence for each strain analysed in 732

the phylogenetic study 1, and B) the recA-recX sequences corresponding to 18 strains, including the 733

recombinant (Table 2). The consensus sequence is shown at the top. Polymorphic sites for each sequence 734

are marked with a different colour depending on the base (A, yellow; G, blue; C, green; T, red) in relation to 735

the consensus sequence. The uppercase letters on the left indicate the sequence clusters corresponding to 736

the following species: A, A.bestiarum; B, A.piscicola; C, A.popoffii; D, A.salmonicida; E, A.dhakensis; F, 737

A.hydrophila; G, A.bestiarum; H, A.eucrenophila; I, A.tecta. Recombinant strains were included in the 738

A.bestiarum cluster.739

740

Figure 3741

Maximum likelihood phylogenies based on non-recombinant (A, positions 1-978) and recombinant (B, 742

positions 979 to the end) recA gene region sequences. The relative positions of the four recombinant 743

A.bestiarum strains are in bold. Bootstrap values higher than 70% are given at the corresponding nodes. 744

Scale bar represents the number of substitutions per site.745

746

Figure 4747

Phylogenetic network constructed with the recA gene sequences showing the relationships (in red) of the four 748

recombinant strains with a set of 14 strains corresponding to the most closely related species (A.bestiarum, 749

A.eucrenophila, A.tecta). 750
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751

Figure 5752

Three-dimensional E. coli RecA protein (PDB: 2REB; blue) and A. bestiarum CECT4227T (green) structural 753

alignment predicted using the PyMOL program. Differences are marked with red circles.754

755

756
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