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Abstract 

 

This work describes the morphology, corrosion resistance, and antibacterial performance of 

copper coating deposited onto carbon steel by cold gas spray (CGS). Cross-sectional images 

of the coating showed a dense microstructure, with porosity lower than 1%. XRD analysis 

revealed no oxides or phases different to pure copper. The results of electrochemical tests 

demonstrated the efficient barrier properties and the compact microstructure of the coating, 

which protected the substrate against corrosion in chloride solution for more than 1000 h.  

The copper coating was effective as an antimicrobial agent for inhibiting the growth of 

Staphylococcus aureus, with bacterial growth being completely inhibited after 10 min of 

direct contact between the bacteria and the coating surface. 

 

Keywords: Metallic coating, cold gas spray, copper, antibacterial surface, Staphylococcus 

aureus. 

  



1. Introduction 

Bacterial contamination of the surfaces of materials, especially in public places and 

hospitals, poses a serious threat [1]. Therefore, huge efforts are made to control infection, 

aiming at the maximum possible elimination of pathogenic microorganisms, as well as 

limiting their transfer. The strategies adopted include the use of antimicrobial drugs, hand 

washing, disinfection, and antibacterial surfaces [1]. On surfaces, many types of 

microorganisms can persist for long periods of time, with some of them being able to survive 

for longer than one month [2]. Consequently, surfaces represent a risk in terms of pathogen 

transmission. In public places and hospitals, some types of components can be manufactured 

using antimicrobial materials, with the aim of making surfaces self-disinfecting. For this 

purpose, a recent trend in the management of potentially contaminating environments is to 

revisit the use of copper alloys or coatings with medical equipment and hospital materials [3].  

The mechanism responsible for the antibacterial activity of copper has not yet been 

completely elucidated [1-10]. However, copper ions released from the copper-containing 

material are effective in killing bacteria due to the collapse of the outer cell membrane [5]. 

Copper ions adhere to the bacteria cell surfaces, causing harm to the structure of the proteins 

[5]. As reported by Grass et al. [5, 6, 9, 10], the main factor for obtaining effective 

antibacterial copper surfaces is a high copper content on the surface. However, the 

antimicrobial activity diminishes when treatments that decrease the corrosion rate of copper 

(such as corrosion inhibitors or thick copper oxide layers) are applied [4, 10]. The literature 

[1-10] has shown that different copper alloys and copper-containing coatings are able to 

decrease the risk of bacteria emergence and the spread of multi-resistant organisms. 

Several coating technologies have been successfully employed with metallic 

components for antibacterial purposes [7, 8]. Wu et al. [7] evaluated the antibacterial 

performance of Ti-Cu-N coatings deposited onto titanium substrates by magnetron sputtering 



with plasma nitriding. The coatings completely killed S. aureus after 24 h of contact. 

Although the Ti-Cu-N coatings showed excellent antibacterial performance, the deposition 

methodology is expensive and the process is quite long. Goudarzi et al. [8] used an 

atmospheric plasma spraying system to deposit metallic copper coatings onto 316 stainless 

steel substrates. Analyses showed a microstructure with pores, cracks, and high oxides 

content. Antibacterial tests showed reduction of E. coli and S. aureus after 24 h. Although 

such copper coatings present good antibacterial performance, they are susceptible to severe 

corrosion, due to the pores and defects in the microstructure, which allow electrolytes to reach 

the coating/substrate interface. The proportion of copper (antibacterial agent) on the surface is 

of great importance for antibacterial activity, while the coating thickness and a less porous 

surface are most important in terms of corrosion and wear resistance performance. 

The cold gas spray (CGS) technique is a useful methodology for obtaining surfaces 

covered by copper, enabling the preparation of thick copper coatings with high adhesion and 

good resistance to corrosion and wear, at low cost [11-20]. CGS is a solid-state process in 

which particles are heated below their melting point at temperatures that can vary according 

to the nozzle design, gas, and spraying parameters used [13, 21-24]. The substrate and particle 

can be plastically deformed by the impact of the particle, when its velocity exceeds a certain 

value [13, 25]. The main mechanism postulated for bonding of metals onto metals is adiabatic 

shear instability (ASI), which occurs when the particle softening overcomes its work 

hardening [13, 22, 25]. In some cases, the particle shells have been observed to melt, resulting 

in strong bonds between the coating constituents [13]. As a consequence of the characteristics 

of the CGS process [25], oxygen-sensitive materials such as aluminum, magnesium, and 

copper can produce high performance coatings with low residual stress, low oxide formation, 

and high corrosion resistance [13, 26]. 



CGS coatings are used in a wide range of industries [14, 22, 24, 27-29] and allow the 

spraying of different feedstock powders including metals, polymers, composites, and 

ceramics, with good reproducibility [24, 25]. The coatings have been used as thermal barriers, 

for corrosion protection, as biomaterials, and in electronic devices [14, 30-34]. In addition, 

CGS coatings have shown photocatalytic activity [35], antifouling properties [36, 37], and 

biocompatibility with cells and human tissues [25, 27, 38]. The CGS process improves the 

performance and functionality of many commercial products, providing them with added 

value [21-24]. This technique also allows in situ repairing of many materials and industrial 

parts, increasing their lifetimes and decreasing the need for replacements [21-24]. 

Furthermore, CGS offers the possibility of producing effective coatings without adverse 

environmental impacts or generation of toxic waste [21-24]. Considering all these positive 

aspects, the aim of this research was to study the microstructure, corrosion resistance, and 

antibacterial activity of copper coatings prepared by CGS on carbon steel. 

  

2. Experimental 

2.1. Feedstock powders and substrate 

The feedstock powder (Cu ≥99%) was produced by gas atomization in an air 

atmosphere, by Flame Spray Technologies (Duiven, The Netherlands). Laser diffraction 

spectroscopy (LDS) was used to determine the particle size distribution of the powder. The 

substrate was a carbon steel alloy with the composition described previously [32].  Flat (5 cm 

 2 cm  0.5 cm) substrates were cleaned with acetone and were then grit blasted using 

alumina corundum (Al2O3, 82±12 μm particle size), which resulted in a surface roughness 

(Ra) of ~4.7 µm, measured as described elsewhere [32]. 

 

2.2 Coatings preparation 



The copper coatings were obtained as described previously [39]. The conditions used 

were a traverse speed of 500 mm/s, standoff distance of 40 mm, nitrogen gas temperature of 

400 °C and pressure of 30 bar, and five-layer deposition. Fig. S1 (SD) shows the surface of 

the as-prepared copper coating. 

 

2.3 Structural and morphological analyses 

The phase compositions and microstructures of the coatings were investigated by X-

ray diffraction (XRD), using a Siemens Model D5000 diffractometer. The morphologies and 

chemical compositions of the powders and coatings were analyzed by scanning electron 

microscopy (SEM), using a JEOL JSM-5310 microscope coupled to an X-ray microanalysis 

(EDS) system. Cross-sectional SEM images (minimum of 10) were analyzed using ImageJ 

software to determine the mean thickness value. In order to reveal the morphology of the 

coating surface, the sample was etched using a solution produced with 7 mL H2O, 3 mL HCl, 

and 0.3 g Fe(NO3)3. The surface was analyzed using optical micrographs acquired with a 

Leica CTR 4000 microscope. Optical images were also used to determine the coating porosity 

(ASTM E2109-01). Details about the instrumentation used can be found elsewhere [32]. The 

hardness of the coatings was determined using a Vickers indenter (ASTM E384-99), with 

mean values obtained from 15 indentations. 

 

 2.4 Corrosion measurements 

The protection provided by the coating was investigated by recording the EOCP and 

EIS responses during 120 h (substrate) and 1100 h (copper coating), between 100 kHz and 5 

MHz, at 10 mV (rms) vs. EOCP. The EIS measurements were performed after 1 h and then at 

24-h intervals during the immersion. Further details of the experimental procedure can be 

found elsewhere [32, 39]. The consistency of the experimental data was evaluated using the 



Kramers-Kronig transform (KKT) and electrical equivalent circuit (EEC) fitting was 

performed with Z-view® software. 

 

2.5 Antibacterial assays 

Staphylococcus aureus strain ATCC 25923 was kept at -70 oC in Müller Hinton broth 

containing glycerol (20% v/v) (QEEL, São Paulo, Brazil). The bacteria suspension was 

prepared by adding 40 μL of the bacteria strain to 4 mL of brain heart infusion (BHI) broth 

and keeping at 37 °C for 24 h. Afterwards, a bacteria solution with turbidity of 0.5 McFarland 

was prepared, resulting in a concentration of ~1.5 x 108 colony-forming units (CFU) per mL.  

Prior to the antibacterial assay, all the materials used were autoclaved at 127 °C for 20 

min. The coating samples were sonicated in 70% ethyl alcohol for 20 min, placed in Petri 

dishes, and dried at 37 °C for 30 min. The antibacterial assay was performed by adding 50 μL 

of bacterial inoculum, at a concentration of 1.5 x 108 CFU/mL, to the surfaces of the copper 

coating and control (glass surface) samples. After spreading the bacteria solution on the 

surfaces using a sterile spreader, the samples were incubated at 37 °C until being tested for 

the growth inhibition activity. After the incubation time (0, 5, and 10 min), the sample 

surfaces were washed with 1000 μL of phosphate buffer saline (PBS) solution at pH 7.3, after 

which 1 μL of the washing solution was used for plating the bacteria. It should be noted that 

the incubation time represents the time of contact between the bacteria and the coating 

surface, so for an incubation time of 0 min, the bacteria solution was spread on the surface, 

which was then immediately washed. The plate spreading method was used to determine the 

total bacteria number by counting of the colony-forming units. The assays were performed in 

triplicate. 

 

3. Results and Discussion 



3.1 Structure, morphology and chemical characterization of the powder and coating 

The powder showed a micrometric particle size range (20-50 µm), with a mean size of 

31±2 µm (Fig. S2, SD). The SEM images (Fig. 1) indicated that satellite particles with sizes in 

the submicron range were formed during solidification in the gas atomization process [41]. 

The particle morphology was rounded, but not completely spherical, and without pores (Fig. 

1). These characteristics confirmed that the feedstock material had ideal size and morphology 

for being sprayed by CGS. A narrow particle size distribution is desirable, since it results in 

more uniform particle velocities, while relatively small particles can achieve higher speeds 

during spraying, hence reaching the substrate with higher kinetic energy, leading to greater 

plastic deformation and the creation of dense and compact coatings [21, 22]. The XRD pattern 

of the feedstock powder (Fig. 2) revealed only one phase, which was assigned to copper.  

 

 
 

Fig. 1. SEM images showing the surface morphology of the copper feedstock powder and the 

cross section of a particle (insert). 
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Fig. 2. XRD patterns of the feedstock powder and the coating. 

 

The diffractograms of the coating and the powder showed the same characteristic 

peaks (Fig. 2). Therefore, the compositions of the feedstock material and the coating were 

similar, being homogeneous and almost oxide-free. Since CGS is a solid-state deposition 

technique, the high kinetic and low thermal energies produce coatings with low oxide 

contents and without fragile phases [25, 26, 43].  

The SEM images of the coating cross section (Fig. 3 and Fig. S3, SD) revealed a 

microstructure in which the particles were strongly deformed, without the presence of oxides, 

cracks, or interconnected porosity [23, 42]. As reported previously [31], the bottom layer of 

the coating was typically compact, due to the tamping effect of incoming particles, while the 

top layer was more porous. The dark particles that can be seen at the coating/substrate 

interface were alumina particles that adhered to the substrate surface during the grit blasting 

preparation process. 



 

 

Fig. 3. Cross-sectional SEM image of the copper coating. 

 

The main properties of the copper coating are listed in Table 1. The thickness was 

632±11 µm, which was higher than previously reported for copper coatings on carbon steel 

[44] and other substrates [17, 45]. The porosity was lower than 0.5%, so the copper coating 

could be considered compact [32, 46]. The adherence of the coating to the substrate was 

found to be 30 MPa, according to the ASTM C-633 protocol. In the adhesion tests, the 

coatings failed at the substrate/coating interface, indicating that the interlayer bonding was 

stronger than that of the substrate-coating interface. The hardness was 147 HV, which was 

close to the values reported elsewhere [16, 17, 47, 48]. 

 

 

 



Table 1. Main properties of the copper coating. 

Properties Copper coating 

Thickness (µm) 632±11 

Porosity (%) 0.5±0.1 

Adhesion (MPa) 30±2 

Hardness (HV) 147±4 

 

3.2 Corrosion studies 

3.2.1 Open circuit potential (EOCP) measurements 

The EOCP values for the carbon steel and the coating were determined during 120 h 

(substrate) and 1100 h (copper coating). In the case of the carbon steel substrate, the EOCP 

values decreased during the first hours of immersion (Fig. 4), which could be attributed to 

dissolution of the native oxide film [32, 51]. Oscillations of EOCP were associated with the 

reaction of chloride ions with the thin oxide layer at the substrate surface, leading to 

precipitation/dissolution of corrosion products [49, 50]. The potential of the substrate tended 

to stabilize at ~-0.70 V/Ag|AgCl|KCl3mol/L. 
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Fig. 4. Plots of EOCP, according to time, for the copper coating and the substrate in 3.5 wt.% 

NaCl solution, at 25 oC. 

 

In the case of the copper coating, the EOCP values remained at around  

-0.2 V/Ag|AgCl|KCl3mol/L throughout the period, as expected for massive copper in chloride 

solution [52], with oscillations no higher than ±0.05 V. These results indicated that the 

coating protected the carbon steel from chloride attack for at least 1100 h, due to the barrier 

effect of the dense copper coating. At the end of the experiment, the cross-sectional SEM 

image (Fig. 5) and the EDS analyses (Figs. S4 and S5, SD) confirmed the integrity of the 

coating/substrate interface. Only copper was detected near the substrate surface by EDS (Fig. 

S4, SD), corroborating the observed evolution of EOCP with time. Copper oxides were 

observed at the surface of the coating (Fig. S5, SD), but no iron was detected. The EDS 

analysis is semi-quantitative and therefore only suggested the presence of the oxides, since 

oxygenated salts cannot be formed in these systems. 

 



 

Fig. 5. Cross-sectional SEM image of the copper coating after 1100 h in 3.5 wt.% NaCl. 

 

The detection of copper and oxygen by the EDS analysis suggested that the corrosion 

mechanism involved the dissolution of copper from the coating, forming cuprous oxide and 

soluble copper species. The process of copper corrosion in a chloride medium involves a 

number of steps. Firstly, chloride ions are adsorbed on the copper, according to the reaction 

[53]: 

  Cu + Cl- → CuClad + e-     (1) 

This adsorbed species has low solubility and can therefore accumulate to form a CuCl film 

[54-56] and/or react with a chloride ion to form a soluble species [57, 58]: 

CuClad + Cl- → CuCl2
-     (2) 

It is well known that the CuCl film at the film/solution interface can be partially dissolved to 

form CuCl2
- [59, 60], while at [Cl-] >1 mol/L NaCl, there can be formation of CuCl3

2- and 

CuCl4
3- complexes, depending on the chloride ion concentration [61]. For example, the 

following reaction can occur: 



   CuClfilm + Cl- → CuCl2
-     (3) 

On the other hand, in the presence of O2 and excess of CuCl2
- , the following reaction can take 

place at the electrode surface [56]: 

   4CuCl2
- + O2 + 4H2O → 2Cu2Cl(OH)3 + 2H+ + 4Cl- (4) 

Reaction (4) is responsible for the powdery patina of Cu2Cl(OH)3 on archeological bronzes. 

The sum of reactions (1) and (2) can also give the following reaction [52]: 

   Cu + 2Cl- ↔ CuCl2
- + e-     (5) 

In the presence of an excess of CuCl2
- at the electrode surface and in the absence of O2, the 

following reaction has been suggested [56]: 

   2CuCl2
- + H2O ↔ Cu2O + 4Cl- + 2H+   (6) 

The oxygen reduction is the cathodic reaction during the corrosion of copper and produces 

predominantly hydroxide groups on the copper surface [63]: 

   O2 + 2H2O + 4e- → 4OH-     (7) 

 

3.3.2 EIS results 

Figs. 6 and 7 show the EIS impedance diagrams for the substrate and coating, 

respectively, in neutral aerated sodium chloride solution, as a function of time. For the steel 

substrate, the EIS measurements showed a semicircle in the Nyquist diagrams  

(Fig. 6a) and one asymmetric time constant, in the medium frequency (MF) range, in the 

Bode phase angle diagrams (Fig. 6b). The shapes of the Bode phase plots suggested the 

presence of two time constants, which were discriminated when the experimental data were 

treated using equivalent electrical circuits (EEC). The semicircle of the complex plane 

decreased from 48 h to 120 h, suggesting dissolution of the oxide layer and/or desorption of 

ions [32]. Accordingly, the impedance modulus values also decreased in the low frequency 



(LF) range, which could be attributed to iron oxidation and dissolution of the iron oxides 

porous film [64].  

For the copper coating, the complex plane diagrams (Fig. 7a) showed one incomplete 

and asymmetric semicircle, while the Bode phase angle diagrams (Fig. 7b) showed one 

asymmetric curve with a maximum at -50o (~200 Hz), which was suggestive of the presence 

of two overlapping time constants. Two time constants needed to be considered when treating 

the experimental EIS data. 
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Fig. 6. (a) Nyquist diagrams and (b) Bode phase diagrams for the substrate in 3.5 wt.% NaCl 

solution, at 25 oC. The symbols correspond to the experimental data. The fittings are shown 

by the solid lines. 
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Fig. 7. (a) Nyquist diagrams and (b) Bode phase diagrams for the copper coating in 3.5 wt.% 

NaCl solution, at 25 oC. The symbols correspond to the experimental data. The fittings are 

shown by the solid lines. 

 

The EIS diagrams were fitted using EECs (Figs. 8 and 9), which were selected based 

on the microstructures of the coating and the substrate, the quality of the fitting, and the 

lowest error of each parameter composing the EECs (Table S1, SD). The EEC shown in Fig. 

8a was used to fit the substrate data. The time constant at MF was described by the CPEdl//Rct 

sub-circuit attributed to oxygen reduction and iron oxidation, where CPEdl is the constant 

phase element proportional to the capacitance of the electrical double layer, and Rct is the 

charge transfer resistance. The data at LF were described by the CPEfilm/Rfilm sub-circuit 

attributed to formation/dissolution of a non-protective iron-based film, with desorption of iron 

ions. The CPEfilm element is the constant phase element associated with the capacitance of the 



film (adsorbed species and iron oxides-hydroxides), while the Rfilm element is associated with 

the resistance of the film and the electrolyte inside the defects and pores of the film [32]. 

 

Fig. 8. Electrical equivalent circuit used to fit the EIS data for the substrate. 

 

Fig. 9 shows the scheme used to represent the coating and the corresponding electrical 

equivalent circuits used to fit the EIS data obtained at different immersion times. The coating 

was composed of a porous upper layer with defects, together with a compact layer at the 

bottom, as observed in the SEM images (Fig. 2 and Fig. S5, SD). The oxidation of copper in 

chloride solution occurs within short time intervals and at HF-MF frequencies (Fig. 9a). The 

corresponding time constant is described by the CPEdl//Rct sub-circuit. The localized 

dissolution of copper in some regions created the pores, whose electrochemical response was 

fitted by the CPEpo//Rpo sub-circuit related to the response of the solution inside the pores [65-

70]. The pores were formed due to the dissolution of copper at specific sites [32, 46, 71-78], 

as well as at some defects of the coatings (Fig. 5). For immersion times longer than 630 h, the 

following features were considered for selection and justification of the EECs: (a) cross-

sectional SEM images (Fig. 5) and EDS results (Figs. S5 and S6, SD), obtained after long 

immersion times, which showed no corrosion at the coating/substrate interface; (b) the EOCP 

remained constant at ~-0.20 V/Ag|AgCl|KCl3mol/L for the entire duration of the test (Fig. 4), 

indicating that the coating/substrate interface was not reached by the electrolyte; and (c) the 

pores became deeper, but did not reach the coating/substrate interface. 



Based on the observations described previously for the system at t ≥630 h and for 

quantitative treatment of the EIS data, a third time constant (CPEbott//Rbott) was required to fit 

the impedance diagrams. This time constant was assigned to the capacitance and to the charge 

transfer resistance due to the copper oxidation reaction at the bottom of pores, where some 

corrosion products could accumulate. 

 

(a) 

 

(b) 

 

(c) 



Fig. 9. Scheme representing the coatings before (a) and after (b and c) different times of 

immersion, and the EECs used to fit the impedance diagrams. 

 

Table S1 (SD) and Fig. 10 show the evolution of the Rct and Rpo values, according to 

the immersion time. For the copper coating, the Rct value remained at 140 Ω cm2 until 100 h 

of immersion, after which it abruptly decreased to 40 Ω cm2 and remained steady near this 

value until the end of the experiment. At the beginning of the test, the coating surface 

presented a native copper oxide film with defects, which was responsible for the high charge 

transfer resistance values. Since this oxide layer was attacked by chloride, its resistance 

decreased, which exposed copper to the solution and led to an abrupt decrease of the Rct 

values. The Rpo values oscillated between 1 and 5 kΩ cm2 for immersion times from 1 h to 

600 h. For t >600 h, Rpo increased to ~120 kΩ cm2 and remained close to this value until the 

end of the experiment. The oscillations of Rpo could have been associated with the number, 

size, and depth of pores, until reaching certain values. The npo values were around 0.5 during 

this time interval, which could be attributed to the diffusion of oxygen, chloride ions, or 

products of copper corrosion through the pores.  

 



Fig. 10. Values of Rct and Rpo, according to time, for the copper coating in 3.5% NaCl 

solution, at 25 oC. 

 

At 630 h, a third time constant, Rbott, was added in order to fit the experimental data 

(Table S1, SD). The Rbott value at 630 h was 11 kΩ cm2 and then remained at 121 kΩ cm2 up 

to 1100 h. The oscillation of Rbott could be explained by the growth and dissolution of the 

corrosion products at the bottom of the pores. 

 

3.3.3 Antibacterial assay 

The antibacterial activity of the copper coating was determined using the plate count 

method. Representative images of bacteria colonies in the Petri dishes at 0, 5, and 10 min of 

the contact test are shown in Fig. 11. The results showed that the copper surface coating was 

able to successfully inactivate Staphylococcus aureus after a few minutes of contact. There 

was a 2 orders of magnitude inhibition of bacterial growth after the first 5 min of contact, 

followed by complete mortality of the bacteria after 10 min. In contrast, no inhibition of 

bacterial growth was observed for the control (a glass surface), demonstrating that the 

experimental conditions permitted normal growth of the bacteria. Fig. 12 shows the results of 

quantitative analyses of the growth response of Staphylococcus aureus. The growth of the 

bacteria decreased from 1.97  108 to 0.97  106 CFU/mL (by ~2 orders of magnitude) after 5 

min, while 100% inhibition of bacterial growth was observed after 10 min. Therefore, the 

copper coating presented high antibacterial activity against Staphylococcus aureus. As 

described previously, the surface of this coating was almost oxide-free (Fig. 3 and Fig. S4, 

SD), which allowed direct contact between the metal surface and the bacteria. In contact with 

humidity and bacteria, the metallic copper on the coating surface was oxidized to copper ions, 

which were responsible for destroying the cell walls of the bacteria and inhibiting their 



growth [79, 80]. As mentioned above, it is also possible that the released Cu ions caused 

collapse of the outer cell membranes, killing the bacteria or damaging the structure of 

proteins, as a consequence of adhesion of the ions to the surfaces of the cells [5, 80]. 

Therefore, the quantity of copper ions released, which was directly related to the dissolution 

of copper from the coating, determined the antibacterial activity [5]. 

 

 

Fig. 11. Growth of Staphylococcus aureus colonies in Petri dishes after 24 h at ~25 °C. 

 

The copper coatings deposited by CGS showed higher antibacterial efficiency against 

Staphylococcus aureus, compared to other antibacterial surfaces [10, 81, 82]. Xiang-Yu et al. 

[81] reported that stainless steel covered by a copper layer showed complete inhibition of 

Staphylococcus aureus growth after 3 h. In other work, brass (20 wt.% Zn and 80 wt.% Cu) 

caused a reduction of Staphylococcus aureus growth after 6 h, without complete inhibition 

[82]. Therefore, the CGS technique was able to produce antibacterial copper surfaces that 

offered higher performance. 



 

 

Fig. 12. Mean CFU values for Staphylococcus aureus after different times of exposure to the 

copper coating. After 10 min, no bacteria colonies were found on the copper surface. 

 

4. Conclusions 

In this study, the cold gas spray method produced copper coatings with excellent 

corrosion resistance and high antibacterial activity. The dense microstructure, high thickness, 

and low porosity improved the barrier effect of the copper coating and enabled protection of 

carbon steel against corrosion for ~1100 h of immersion in chloride solution. No corrosion 

was detected at the coating/substrate interface after ~1100 h, due to the compactness of the 

coating obtained by cold gas spray. The results of antibacterial assays showed that the copper 

coating presented strong antibacterial activity against Staphylococcus aureus, with 100% 

mortality of the bacteria after 10 min. 
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