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Abstract: Safety profile of nonsteroidal anti-inflammatory drugs (NSAIDs) has been widely
studied and both therapeutic and side effects at the gastric and cardiovascular level have been
generally associated with the inhibitory effect of isoform 1 (COX-1) and 2 (COX-2) cyclooxygenase
enzymes. Now there are evidences of the involvement of multiple cellular pathways in the
NSAIDs-mediated-gastrointestinal (GI) damage related to enterocyte redox state. In a previous
review we summarized the key role of melatonin (MLT), as an antioxidant, in the inhibition of
inflammation pathways mediated by oxidative stress in several diseases, which makes us wonder
if MLT could minimize GI NSAIDs side effects. So, the aim of this work is to study the effect of
MLT as preventive agent of GI injury caused by NSAIDs. With this objective sodium diclofenac (SD)
was administered alone and together with MLT in two experimental models, ex vivo studies in pig
intestine, using Franz cells, and in vivo studies in mice where stomach and intestine were studied.
The histological evaluation of pig intestine samples showed that SD induced the villi alteration,
which was prevented by MLT. In vivo experiments showed that SD altered the mice stomach mucosa
and induced tissue damage that was prevented by MLT. The evaluation by quantitative reverse
transcription PCR (RT-qPCR) of two biochemical markers, COX-2 and iNOS, showed an increase of
both molecules in less injured tissues, suggesting that MLT promotes tissue healing by improving
redox state and by increasing iNOS/NO that under non-oxidative condition is responsible for the
maintenance of GI-epithelium integrity, increasing blood flow and promoting angiogenesis and that
in presence of MLT, COX-2 may be responsible for wound healing in enterocyte. Therefore, we found
that MLT may be a preventive agent of GI damages induced by NSAIDs.
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1. Introduction

Nonsteroidal anti-inflammatory drugs (NSAIDs) world sales of last year confirm that they still
are one of the most consumed drugs (Figure 1). The safety profile of NSAIDs has been widely studied.
Therapeutic and side effects at the gastric and cardiovascular level have been popularly associated
with the inhibitory effect on endoperoxide-H synthase1 and -2 (PGHSs) also known as cyclooxygenase
enzymes (COX).
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associated with the inhibitory effect on endoperoxide-H synthase1 and -2 (PGHSs) also known as 
cyclooxygenase enzymes (COX). 

 

Figure 1. IQVIA® (IQVIA Inc., Parsippany, NJ, United States) data about the main nonsteroidal 
anti-inflammatory drugs (NSAIDs) world sales from 2012 to 2017, including Europe (Key 5 are 
Germany, France, Italy, Spain, and Britain), Asia, North, South, and Central America, Africa, Middle 
East, and Southeast Asia. 

Two isoforms of COX have been characterized, the constitutive COX (COX-1), which is 
expressed in most mammalian tissues, and the inducible COX (COX-2) [1]. Both catalyze the 
oxidation of arachidonic acid (AA) to prostaglandin G2 (PGG2), which leads to prostaglandin H2 
(PGH2) by the action of peroxidase, then the tissue-specific prostaglandin synthases lead to all the 
different prostaglandins, prostaglandin D2 (PGD2), prostaglandin F2α (PGF2α), prostaglandin E2 
(PGE2), prostaciclin (PGI2), and thromboxane A2 (TXA2) [2] (Figure 2). 

Figure 1. IQVIA® (IQVIA Inc., Parsippany, NJ, United States) data about the main nonsteroidal
anti-inflammatory drugs (NSAIDs) world sales from 2012 to 2017, including Europe (Key 5 are
Germany, France, Italy, Spain, and Britain), Asia, North, South, and Central America, Africa, Middle
East, and Southeast Asia.

Two isoforms of COX have been characterized, the constitutive COX (COX-1), which is expressed
in most mammalian tissues, and the inducible COX (COX-2) [1]. Both catalyze the oxidation of
arachidonic acid (AA) to prostaglandin G2 (PGG2), which leads to prostaglandin H2 (PGH2) by
the action of peroxidase, then the tissue-specific prostaglandin synthases lead to all the different
prostaglandins, prostaglandin D2 (PGD2), prostaglandin F2α (PGF2α), prostaglandin E2 (PGE2),
prostaciclin (PGI2), and thromboxane A2 (TXA2) [2] (Figure 2).

Classical outcomes associated COX-2 expression, with proinflammatory and pain events [3,4], Xie
et al. were the first to demonstrate that COX-2 gene expression is induced in inflammation conditions in
1991 [5], while COX-1 was described as protector of gastric mucosa since several authors had described
that prostaglandins PGE2 had cytoprotective [6], antiulcer effects [7,8], and PGE2 synthesis was found
to be more related to COX-1 than to COX-2 [9]. PGI2 was also described as a potent inhibitor of in vivo
gastric acid secretion and enhancer of mucosal blood flow when infused intravenously [10].

It was widely accepted that the main cause of non-selective NSAIDs gastrointestinal (GI) damage,
was the inhibition of COX-1 pathways, which triggered the research for selective inhibitors of COX-2
(COXIBS) [11]. Selective inhibitors of COX-2 seemed to have a safer GI profile than classical NSAIDs but
over the time it was shown an increased risk of cardiovascular side effects, decreasing the benefit-risk
balance of these drugs [12,13]. Among other reasons, the key-role of COX-2 in the synthesis of PGI2
is explained by the fact that it is an important vascular-protector with vasodilator, antithrombotic,
antiaggregant, and anti-inflammatory properties [14]. In the mid-90s Langenbach et al. reported that
inhibition of COX-1 does not cause spontaneous gastric damage [15,16], and some years later, new
findings associated COX-2 gene expression to wound healing in enterocytes via p38 mitogen-activated
protein kinases (p38 MAPK) [17] evidencing that the concept of assigning homeostatic and pathological
functions to COX-1 and COX-2 respectively was a plain approach.

Currently, there are evidences of the involvement of multiple cellular pathways in
NSAIDs-mediated-GI damage. The specific sequence is unknown but could be initiated by the
alteration of the protective gastric mucus layer [18] as result of the interaction of NSAIDs with
phospholipids (PL) as phosphatidylcholine (PC) [19,20] the main component of gastric mucus layer
and mucosa [21]. Studies proved that NSAIDs have a strong affinity to form ionic and hydrophobic,
non-covalent and reversible associations with zwitterionic PL (specifically PC) [20]. The direct
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interaction between NSAIDs and PL together with the decreased mucus secretion by inhibition of PGE2,
also mediated by the anti-inflammatory drugs [22], may lead changes in the fluidity, permeability, and
biomechanical properties of cellular membrane of the gastric epithelium. The invasion of the intestinal
mucosa by the enterobacteria would be responsible for the immune response, including adherence
and infiltrate of leucocyte (neutrophils), when lipopolysaccharide (LPS) and other endotoxins are
recognized by Toll-like receptor 4 (TLR-4), which via myeloid differentiation primary response 88
(MyD88) protein [23] results in the activation of nuclear factor Kβ (NFKβ) target genes that are
then responsible for inducible form of nitric oxide synthetase (iNOs) and COX-2 expression [24,25].
Neutrophils trigger the emergence of superoxide radicals (O2.−) that react with nitric oxide (NO)
leading in peroxynitrites (ONOO−), high reactive molecules responsible for protein oxidation, lipid
peroxidation and enzymes inactivation [26], main origin of apoptosis and necrosis of gastric epithelium.Cells 2020, 9, x 3 of 17 

 

 
Figure 2. Synthesis of prostaglandins scheme from membrane phospholipids, including enzymes, 
substrates, and receptors. PLA2 (phospholipase A2); COX1 (cyclooxygenase 1); COX2 
(cyclooxygenase 2); PGH2 (prostaglandin H2); PGD2 (prostaglandin D2); DP1 and CRTH2 (DP2) 
(D-prostanoids receptors); PGI2 (prostaciclin); IP (prostacyclin receptor); PGE2 (prostaglandin E2); 
EP1 to EP4 (prostaglandin receptors); PGF2α (prostaglandin F2α); FPA and FPB (prostanoid receptors, 
isoform A and B); TxA2 (thromboxane A2); and TPα and TPβ (thromboxane prostanoid receptors). 
Figure edited with EdrawTMMax 9.4 (Edrawsoft, Hong Kong, China, 2019). 
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Figure 2. Synthesis of prostaglandins scheme from membrane phospholipids, including enzymes,
substrates, and receptors. PLA2 (phospholipase A2); COX1 (cyclooxygenase 1); COX2 (cyclooxygenase
2); PGH2 (prostaglandin H2); PGD2 (prostaglandin D2); DP1 and CRTH2 (DP2) (D-prostanoids
receptors); PGI2 (prostaciclin); IP (prostacyclin receptor); PGE2 (prostaglandin E2); EP1 to EP4
(prostaglandin receptors); PGF2α (prostaglandin F2α); FPA and FPB (prostanoid receptors, isoform A
and B); TxA2 (thromboxane A2); and TPα and TPβ (thromboxane prostanoid receptors). Figure edited
with EdrawTMMax 9.4 (Edrawsoft, Hong Kong, China, 2019).

A parallel mechanism, also responsible for production of reactive oxygen species (ROS) and
leucocyte infiltration that feeds the cycle of ONOO− exacerbating the injuries, is a consequence
of the inhibition of Glucose-6-phosphate dehydrogenase (G6 PDH) by NSAIDs, this increases the
entry of pyruvate into the mitochondria, which finally, owing also to the inhibition of acyl -CoA
carboxylase (ACC) by NSAIDs, leads to the uncoupling of mitochondrial oxidative phosphorylation [27].
The uncoupling of oxidative phosphorylation, which finally results in depleted adenosine triphosphate
(ATP) levels [28,29], depends on the Pka (the negative base −10 logarithm of the acid dissociation
constant (Ka)) of the NSAID, the lower the pKa value, the minimum concentration is required
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to uncouple oxidative phosphorylation [30], it also explains why the stronger the acid the higher
the injuries.

The role of iNOs/NO depends on the epithelium redox state, under non-oxidative condition NO is
an endogenous molecule responsible for the maintenance of GI-epithelium integrity, increasing blood
flow and promoting angiogenesis via vascular endothelial growth factor (VEGF) pathways [31–33],
but in the presence of O2

.−, as explained before NO contributes to ONOO− production. NO has been
proved as protective molecule against NSAIDs-induced gastric ulceration by a mechanism independent
of gastric acid secretion [34] but it is known that it also plays a role as an inhibitor in the regulation of
gastric acid secretion [35].

Different studies showed a direct relation between acid and GI injuries induced by NSAIDs, in
fact the main prescribed drugs to prevent such injuries are the proton-pump inhibitors (PPI) [36,37],
Fornai suggests that beneficial effects of PPIs on mucosal injury are likely to be independent from the
COX-2/PGE2/VEGF pathway [38] so considering all the involved cellular pathways it can be deduced
that the intact mucus layer protects epithelium from the action of acid pepsin, protons, [H+] and, in
addition, when the barrier is damaged, acid aggravates gastric injuries. There are also evidences of an
increased basal gastric acid concentration mediated by NSAIDs due to the basal gastric fluid volume
reduction [39].

Regardless of selective COX-2 inhibitors (COXIBS) manifested less GI damage [40], it is known
that COX-2 has an essential role in enterocyte wound healing, through a mechanism related with NFKβ

via and p38MAPK-dependent histone 3 phosphorylation, which is an important component of the
intestinal wound-healing response [17], additionally PGE2 participates in the differentiation of human
goblet intestinal epithelial cells during homeostatic conditions [41] and PGI2 in angiogenesis [10].
Bile salts seems also be related with intestinal damage cause by NSAIDs by forming super-toxic
micelles [42,43], injuries that could be avoided by PC [44] evidencing the role of mucus barrier as
protective factor of GI mucosa from lesions generated by NSAIDs.

Although, GI safety profile depends on the dose and kind of NSAID and a benefit-risk assessment
strategy to select an anti-inflammatory drug has been described [45], GI events related to chronic
NSAID consumption must be considered.

The use of PPI is highly accepted, different studies concluded that the efficacy and safety levels are
acceptable [46] but a new trend, focused on the relationship between intestinal microbiota and several
diseases, shows up that a pH change in the GI tract, would be related to a change in the microbiota [47],
hence chronic use of proton-pump inhibitors could be related to small intestinal bacterial overgrowth
(SIBO) [48], Candida albicans infections [49], and vitamin B12 deficiency in some population groups
such as the elderly [50].

The above together with the new findings about involved pathways pH-independent in GI injury
caused by NSAIDs, lead us to think about different strategies than PPI to prevent GI damage cause
by NSAIDs.

In a previous review [51] we summarized how melatonin (MLT), as an antioxidant molecule,
inhibits inflammation processes associated to different illnesses. The link between enterocyte redox
state and NSAIDs GI pathology encouraged us to study if MLT administration would affect in some
way. To evaluate the role of MLT in GI injury prevention induced by NSAIDs, SD was selected as GI
damage model because this NSAID has a pKa of 4.15 [52] and as explained before, there is a highly
significant inverse correlation between pKa and concentration required for maximum stimulation
of mitochondrial oxidative stress. The higher the pKa value, the lower concentration required for
maximum uncoupling of mitochondrial oxidative phosphorylation [31]. When comparing with other
NSAIDs, such as acetylsalicylic acid (ASA) whose pKa is 3.5, an almost four times higher concentration
of ASA is necessary to produce the same effect as SD. Furthermore, other authors studied the role of
MLT to recover intestinal permeability after a SD treatment [53], so SD is a proper model of GI injury.

The main objective of this work is to study and to evaluate the effect of MLT as preventive agent
of GI injury caused by SD in two different models, ex vivo and in vivo.
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2. Materials and Methods

2.1. Chemical and Reagents

MLT, SD, phosphoric acid (H3PO4), disodium hydrogen phosphate (Na2HPO4), formaldehyde,
and paraffin wax were purchased from Sigma-Aldrich (Madrid, Spain). Potassium dihydrogen
phosphate (KH2PO4), potassium hydroxide (KOH), methanol (MeOH), and phosphoric acid (H3PO4)
were purchased from Panreac Quimica (Barcelona, Spain). Hanks’ Balanced Salt solution (HBSS),
hematoxylin and eosin were purchased from Merck S.L. (Barcelona, Spain). Double-distilled water was
obtained from a Milli-Q® Gradient A10 system apparatus (Millipore Iberica S.A.U., Madrid, Spain).
TRIZol reagent and RevertAid First Strand cDNA synthesis kit were purchased from Thermo Fisher
Scientific (Barcelona, Spain).

2.2. Ex Vivo NSAID/ML Administration in Pig Intestine

As the previous stage of in vivo studies, we set and validated an ex vivo model [54], which allows
the study of the local effect of SD and MLT in the small intestinal mucosa; at the same time, the model
allows the evaluation of the intestinal apparent permeability coefficient (Papp) for SD. Papp of SD
alone and in combination with MLT were compared to evaluate the influence of MLT in the intestinal
absorption of SD.

Ex vivo experiments were performed as described a previous paper [54] in the duodenum,
the most proximal portion of the small intestine, of young female pigs (Sus scrofa). Animals were
sacrificed for other purposes in the Animal Facility at Bellvitge Campus (University of Barcelona,
Barcelona, Spain) and intestinal samples were obtained according to the 3R (reduction, refinement and
replacement) principle.

Duodenum was excised, after that cleaned and preserved in HBBS at 5 ± 3 ◦C for 12 h.
Then 6 cm × 6 cm pieces were cut, mounted on Franz cells (Vidrafoc, Barcelona, Spain). To avoid
damages in the biological intestinal membrane, 0.02 M phosphate-buffered saline (PBS) pH 7.4 was
prepared as receiving media. Composition was 0.6 g of KH2PO4 and 3.17 g of Na2HPO4 per liter of
double-distilled water. pH was adjusted to 7.4 with H3PO4 or NaOH. Homogeneity and simulation of
intestinal conditions during experiments were ensured by a small Teflon® coated magnetic stir bar at
700 revolutions per minute of rotor (rpm) corresponding to a relative centrifugal force (rcf) or G-force
of 2. The diffusion cells were previously incubated in a water bath to equalize the temperature in all
cells (37 ± 1 ◦C).

Of SD 1 mg/mL in PBS pH 7.4, alone or in combination with 0.5 mg/mL of MLT in PBS pH 7.4, were
applied into the donor chamber and sealed by parafilm immediately to prevent water evaporation.
After six hours of simulated permeation duodenum samples were prepared, according Sections 2.4
and 2.5, to perform histological analysis and COX-2/iNOS determination. Different experimental group
are summarized in Table 1.

Table 1. Ex vivo experimental groups.

Group Number Permeated Drug Permeated Solution Dose

1 (n = 6) No drug (Reference group) - -
2 (n = 6) SD 1 mg/mL in PBS pH 7.4 1 mL
3 (n = 6) MLT 0.5 mg/mL in PBS pH 7.4 1 mL
4 (n = 6) SD (a) + MLT (b) 2 mg/mL (a) 1 mg/mL (b) 0.5 mL + 0.5 mL

SD (Sodium Diclofenac); MLT (Melatonin).
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2.2.1. HPLC-UV Procedure and Instrumentation

The HPLC equipment consisted of a Waters® Alliance 2695 Separation Module (Waters Co.,
Milford, MA, USA) with a 2996 Photodiode Array Detector (DAD) at a wavelength range of 190–800 nm
and sensitivity settings from 0.0001 to 2.0000 absorbance units. HPLC parameters are listed below.

SD analysis was conducted with a reverse-phase column ultrabase Nova-Pak C18, 60 Å, (150 mm
× 3.9 mm; diameter of 4 µm (Waters, Barcelona, Spain) with a UV detector set up at 276 nm. The mobile
phase, previously filtered by a 0.45 µm nylon membrane filter (Technokroma, Barcelona, Spain) and
degassed by sonication, consisted of a 68:32 ratio of MeOH and H3PO4 (pH of 3.2) under isocratic
elution at a flow rate of 0.8 mL/min. The injection volume was 50 µL.

2.2.2. Validation and Verification of Analytical Methods

Previously validated HPLC-UV method was selected for the analysis of SD. Considering that the
samples were obtained from biological sources, the specificity was studied. Specificity, expressed by
the ICH guidelines as the ability to assess an analyte in the presence of components, which may be
expected to be present, was evaluated by the absence of interference of the phosphate-buffered saline
(PBS; pH 7.4) and other components from biological membranes used as a blank at the retention times
shown by the different standard solutions.

2.2.3. Sample Analysis

The cumulative amount of SD, alone or in combination with MLT, through the small intestine
membrane from the acceptor compartment was monitored by a validated HPLC-UV methodology.
Results are reported as mean ± SD of six experiments (n = 6).

2.2.4. Data Treatment and Statistical Analysis

The permeability model has the same structure as the two-compartment classic model, composed
of donor (apical) and receptor (basal) chambers, both separated by the permeation membrane. So,
apical-to-basal Papp was calculated based on classic parameters according to Equation (1):

Papp = (dQ/dt)/(C0 × A), (1)

where (dQ/dt) is the transport rate or flux (J) (µg/min) across the biological membrane, C0 (µg/mL)
is the initial concentration of the drug in the donor chamber, and A is the surface area (cm2) of the
permeation membrane.

The cumulative amount (Q; µg) permeated through porcine duodenum was obtained by
multiplying the acquired concentration (µg/mL) of SD at the receptor chamber and the volume
(mL) of the receptor chamber. J (µg/min) was calculated as the slope at the steady state obtained by
linear regression analysis (GraphPad Prism® software, v. 5.01, GraphPad Software Inc., San Diego,
CA, USA) of Q as a function of time (min). Then, Papp (cm/min) was calculated according to Equation
(1) by dividing the J (µg/min), the permeation area (A; 2.54 cm2), and the initial drug concentration (C0;
µg/mL = µg/cm3) in the donor chamber. Finally, the units were expressed in centimeters per second.

Obtained experimental data were analyzed by unpaired Student’s t-test to compare Papp values
for both SD Papp alone and SD Papp in presence of MLT. A p-value < 0.05 was established as an
indicator of statistically significant differences.

2.3. In Vivo Studies: Oral Administration of NSAID and MLT in Mice

In vivo studies were carried out in both, female and male, Mus musculus mice weighing 25 ± 2 g.
The mice were maintained in a controlled environment at (20 ± 1) ◦C for 7 days with a 12-h light/dark
cycle and 50% ± 5% relative humidity throughout the experimental period. All mice were allowed free
access to water and chow diet.
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The nasogastric administration of SD therapeutic dose was carried out once per day for 7 days
alone or in combination with MLT. No drug was administered to the reference or control group. Table 2
summarizes different experimental groups:

Table 2. In vivo experimental groups.

Group number Group Administered Drugs Dose

1 (n = 6) REF No drug (Reference group) -
2 (n = 6) SD Sodium Diclofenac 2.5 mg/kg
3 (n = 6) MLT Melatonin 10 mg/kg

4 (n = 6) SD + MLT Sodium Diclofenac and
Melatonin 2.5 mg/kg and 10 mg/kg

REF (Reference group); SD (Sodium Diclofenac); MLT (Melatonin).

At the end of the experiment, eighth day, mice were euthanized. The studies were conducted under
a protocol approved by the Animal Experimentation Ethics Committee of the University of Barcelona
(Spain) and the Committee of Animal Experimentation of the regional autonomous government of
Catalonia (Spain) 491/18 approved on September 2019.

Intestine and stomach samples were prepared, according Sections 2.4 and 2.5, to perform
histological analysis, COX-2 and iNOS determination.

2.4. Histological Analysis

For histological observation of stomach and intestinal architecture, hematoxylin and eosin staining
were performed. For pork intestines, following the intestinal permeation study in Franz diffusion
cells the samples were fixed in 4% buffered formaldehyde at room temperature. Mice stomachs and
intestine were excised immediately after sacrifice and fixed in 4% buffered formaldehyde at room
temperature. After fixation, all samples were paraffin embedded onto cassettes, sectioned into 5 µm
slices, mounted on microscope slides and stained with hematoxylin and eosin, and finally viewed
under a microscope Olympus BX41 and camera Olympus XC50 (Olympus, Barcelona, Spain).

2.5. COX-2 and iNOS Determination

COX-2 and iNOs determination was carried out by quantitative reverse transcription PCR
(RT-qPCR), with this purpose RNA isolation was firstly carried out.

2.5.1. RNA Isolation

Total RNA from the intestine pig, intestine and stomach mice tissues was isolated using TRIZol®

method (Thermo Fisher Scientific, Barcelona, Spain). Small tissue fragments were homogenized using
1 mL of cold TRIZol reagent and 3 min under the PolytronTM Homogenizer PT1200E (Thermo Fisher
Scientific, Barcelona, Spain). Then, instructions described by the manufacturer were followed. RNA
concentration and quality were tested by NanoDropTM 2000/2000c Spectrophotometer (Thermo Fisher
Scientific, Barcelona, Spain).

2.5.2. RT-qPCR

One microgram of total RNA was reverse transcribed to cDNA using the RevertAid First Strand
cDNA synthesis kit. Subsequently, qPCR was performed using the Step One Plus Real Time PCR
(Applied Biosystem) and primers for COX-2 (Sus scrofa: Forward 5′-GGAGAGACAGCATAAACTGC-3′

and Reverse 5′-GTGTGTTAAACTCAGCAGCA-3′; Mus musculus: Forward 5′-CCACTTCAAGGG
AGTCTGGA-3′ and Reverse 5’-AGTCATCTGCTACGGGAGGA-3′) and iNOS (Sus scrofa: Forward
5′-CAACAATGGCAACATCAGG-3′ and Reverse 5′-CATCAGGCATCTGGTAGC-3′; Mus musculus:
Forward 5′-GTTCTCAGCCCAACAATACAAGA-3′ and Reverse 5′-GTGGACGGGTCGATGTCAC-3′).
β-actin was used as housekeeping and PCR cycling conditions included: 5 min at 94 ◦C for
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denaturalization, 30 cycles of amplification at 72 ◦C for 2 min, 1 min at 94 ◦C, 1 min at 60 ◦C,
and a last cycle at 72 ◦C for 10 min for final extension. Then, Ct values of each sample were recorded,
and data were analyzed by normalization to the internal control values using the formula 2-AACt.
Table 3 summarizes primers sequences.

Table 3. Primer sequences used for real time PCR in Sus scrofa and Mus musculus.

Primer Animal Model Sequence (5′ to 3′) Acc. Number

COX-2
Sus scrofa FW: GGAGAGACAGCATAAACTGC

AF207824RV: GTGTGTTAAACTCAGCAGCA

Mus musculus
FW: CCACTTCAAGGGAGTCTGGA

NM_011198.4
RV: AGTCATCTGCTACGGGAGGA

iNOS
Sus scrofa FW: CAACAATGGCAACATCAGG

U59390RV: CATCAGGCATCTGGTAGC

Mus musculus
FW: GTTCTCAGCCCAACAATACAAGA

NM_010927
RV: GTGGACGGGTCGATGTCAC

β-actin
Sus scrofa FW: GACATCCGCAAGGACCTCTA DQ845171

RV: ACACGGAGTACTTGCGCTCT

Mus musculus
FW: GGCCGGGACCTGACAGACTACCTC

NM_007393
RV: GTCACGCACGATTTCCCTCTCAGC

2.5.3. Data Treatment and Statistical Analysis

COX-2 and iNOS results were evaluated statistically by ANOVA followed of Dunnett’s Multiple
Comparison Test using GraphPad® Prism 5.01 software; all the samples were compared with control
one. p value from 0.01 to 0.05, 0.01 to 0.001, and p < 0.001 were considered statistically significant, very
significant and extremely significant, respectively. Asterisks indicate statistical significance. (* p < 0.05
> 0.01; ** p < 0.01 > 0.001; and *** p < 0.001).

3. Results

3.1. Obtained Kinetics Parameters, Papp Calculation, and Statistical Analysis

Figure 3 shows SD cumulative permeated amounts in micrograms as a function of time (min)
in steady state, for both, SD alone and SD permeated in presence of MLT. The kinetics parameters
and Papp values of SD alone and in presence of MLT and statistical correlation between both are
summarized in Table 4, which shows that no statistically significant differences (p > 0.05) were observed
correlating Papp values.

Table 4. Permeation parameters for SD alone and in presence of MLT in vertical Franz cells (n = 6) and
statistical correlation between different Papp obtained values. Papp values are expressed as mean ± SD.

Permeation Parameters SD Alone SD+MLT Unpaired t-Test (p)

Flux (µg/min) 1.21 ± 0.11 1.39 ± 0.20 -

Flux/sup (µg/(cm/min)) 0.48 ± 0.04 0.55 ± 0.10 -

Co (µg/mL) 1000 1000 -

Papp (×10−6) (cm/s) 7.92 ± 0.73 9.12 ± 0.13 0.078 (>0.05)

Abbreviation: Papp—apparent permeability coefficient; SD—Sodium Diclofenac; MLT: Melatonin.
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3.2. Histological Results: Pig Intestine and Mice Stomach and Intestine

To investigate the possible preventive effect of MLT when administered with SD the stomach and
intestine architecture were studied. The pig intestine of the permeation ex vivo studies was stained
and studied under microscope. As shown in Figure 4, a section of the small intestine without treatment
(Figure 4A) showed intact layers consisting of the mucosa and the submucosa. Intestine treated with
MLT (Figure 4B) showed a similar pattern of the control conditions with relatively intact villi with
normal adjacent structures.
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Figure 4. Histological analysis of intestine structure. Photomicrographs of hematoxylin- and
eosin-stained sections of pig small intestine without treatment (A) or treated with MLT; (B) with
SD; (C) or with SD + MLT; and (D) the effect on the histological architecture of the products was
evaluated on the freshly excised pork intestine. ×100 magnification, scale bar = 200 µm. Arrow
indicates alteration of villi.

However, when the intestine was treated with SD (Figure 4C), damage to the tips of the intestinal
villi could be observed. Abnormal epithelial cells are indicated with arrows. On the contrary, when the
intestine was treated with SD together with MLT no relevant histopathologic changes were noticed
suggesting an improvement of the intestinal injury due to SD thus preventing the damage.
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Regarding the in vivo studies, as shown in Figure 5, section of the mice stomach without treatment
(Figure 5A) showed intact layers consisting of the mucosa and the submucosa. Samples treated with
MLT (Figure 5B) showed a similar pattern of the control conditions. The results show that SD altered
stomach mucosa and induced tissue damage as it can be shown by the leucocyte infiltrate (Figure 5D),
which was prevented when MLT was administered (Figure 5C). For the mice intestinal architecture
little alterations were observed with the anti-inflammatory drug alone (Figure 5H) or in combination
with MLT (Figure 5G).
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Figure 5. Representative micrographs of hematoxylin and eosin staining of tissue sections corresponding
to the different treatments and structures: Stomach samples from mice without treatment (A) MLT;
(B) SD + MLT; (C) or SD; (D) small intestine from mice without treatment; (E) MLT; (F) SD + MLT;
(G) or SD; and (H) the effect on the histological architecture of the products was evaluated on the
stomach and intestine from p.o. administered mice. ×100 magnification, scale bar = 200 µm. * indicates
leucocytes infiltration.

3.3. COX-2 and iNOs Levels

COX-2 and iNOs obtained levels in duodenum samples of Sus scrofa are reported in Figure 6, which
shows that comparison between iNOS levels in samples corresponding to MLT and control resulted in
statistically very significant differences (** p < 0.01 > 0.001) and extremely significant (*** p < 0.001) in
the case of SD with MLT samples. On behalf of COX-2 extremely significant differences (*** p < 0.001)
were observed for SD, MLT, and SD with MLT.
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COX-2 and iNOs obtained levels for Mus musculus duodenum (intestine) and stomach are
summarized in Figures 7 and 8 respectively. Concerning mice intestine no differences statistically
significant (p > 0.05) were observed for different samples, for both COX-2 and iNOS levels.Cells 2020, 9, x 12 of 17 
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Observed levels for COX-2 in Mus musculus stomach samples for SD, MLT, and SD with MLT
were extremely significant (*** p < 0.001) different from control. With regard to iNOS only SD with
MLT samples lead to extremely significant (*** p < 0.001) differences when compared to control.

4. Discussion

Differences between gastric and intestinal damages caused by SD for an in vivo study are related
to the pH of the tissue and the pKa the NSAID. As previously discussed, there is a highly significant
inverse correlation between pKa and concentration required for maximum stimulation of mitochondrial
oxidative stress, the lower pH of the stomach together with increased acid secretion and decreased
gastric fluid volume cause by SD may lead in higher damages in mice stomach than in small intestine.

As summarized in Figure 9, the observed prevention of GI damage caused by MLT may be
involved in multiple pathways.
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The amphiphilic nature of MLT, which has lipophilic [55] and hydrophilic groups [56], allows it to
interact with PC based membranes [57] or lipidic membranes [58], in fact MLT crosses all the biological
membranes including the blood brain barrier [59] and as a result of such an interaction MLT shows a
role in preserving the integrity, permeability, and functionality of cell membranes [60,61], therefore at
the GI level MLT may interact with enterocyte cellular membrane decreasing the NSAIDs damage.
Additionally, MLT showed a stimulant effect of mucosal bicarbonate secretion [62], so MLT may also
protect the HCO3

− mucus layer.
The raised levels of iNOS in samples treated with MLT together with SD are indicative of higher

NO expression; NO may be intermediate of mucosal repair by increasing angiogenesis and blood flow,
since MLT improves enterocyte redox state at different levels working as scavenger of ROS (O2−),
avoiding the interaction between NO and ROS, and ONOO− production ultimately. Furthermore,
increased levels of COX-2 in mice samples treated with MLT together with SD are indicative of increased
levels of PGI2, which inhibits the in vivo gastric acid secretion and enhances mucosal blood flow [10]
that would add to the effect of NO on the inhibition of gastric acid secretion [35].

An alternative mechanism to the scavenger action of MLT protective agent is related with
the heme oxygenase 1 (HO-1), this enzyme encoded by the Hmox1 gene, is 32-kDa stress protein
induced in human cells by a variety of stress treatments. [63] The induction of this enzyme is part
of a protective response against oxidative damage via down-regulation of reactive oxygen species
generation [64]. The translocation from endoplasmic reticulum to mitochondria of HO-1 was shown
as a novel cytoprotective mechanism against NSAIDs drug-induced oxidative stress, apoptosis, and
gastric mucosal injury [65] and MLT was proved to be an enhancer of HO-1 activity [66] so one of the
cellular pathways involved in the protective effect of MLT against GI mucosal damage may be related
with the enhancement of this protective enzyme.

Increased levels of COX-2 in samples where MLT prevented SD damages, may be related with the
wound healing effect of COX-2 in enterocytes [17] and with an increased mucosal blood flow [10].
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Results show the role of MLT in tissue damage prevention at intestinal level in the ex vivo model
and at gastric level in the in vivo experiment. Despite of higher levels of COX-2 and iNOS in the
samples treated with MLT together with SD, they showed a prevention of GI damage, as discussed, this
prevention is mainly due to the antioxidant effect of MLT that improves and contributes to a favorable
redox status of enterocyte; although the increasing mechanism for both enzymes is unclear, because
other authors relate MLT to the inhibition of COX-2 and iNOS in different cells (murine macrophage
cell line, RAW 264.7) [67]. With respect to the preventive effect, all of our results of the individuals
within a group were homogenous and male and female results were considered together, however
some authors found that sexual hormones could influence the healing process of preexisting ulcers [68].
Other study showed that ovarian sex hormones neither worsen nor protect against aspirin-induced
gastric lesions in female rats [69].

Permeation results show that MLT would slightly increase SD Papp but according to statistical
correlation, the difference is not statistically significant (p > 0.05), therefore a joint administration of
both drugs may not affect SD absorption.

5. Conclusions

Our investigation contributes the study of the effect of MLT as a preventive agent of GI damage
caused by SD in an ex vivo model and the study of the effect of MLT as a preventive agent of GI
damage when administered jointly to SD over a period of 7 days in a mice in vivo model.

MLT showed a preventive effect of GI lesions induced by SD. Numerous pathways would outline
as responsible for this effect, the direct inhibition of ROS and as consequence the inhibition of all the
derived molecules that cause GI damage, the enhancement of mitochondrial protection factor HO-1
and a protective role on the phospholipids as PC of the GI membrane and mucus layer.

Future research could focus on a deeply study of MLT as an alternative to classical therapies based
on PPI in the prevention of GI damage caused by NSAIDs.
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