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Abstract 

Background 

Low-density lipoprotein receptor-related protein 1 (LRP1) plays a key role in fatty acid 

metabolism and glucose homeostasis. In the context of dyslipemia, LRP1 is 

upregulated in the heart. Our aim was to evaluate the impact of cardiomyocyte LRP1 

deficiency on high fat diet (HFD)-induced cardiac and metabolic alterations, and to 

explore the potential mechanisms involved. 

 

Methods 

We used TnT-iCre transgenic mice with thoroughly tested suitability to delete genes 

exclusively in cardiomyocytes to generate an experimental mouse model with 

conditional Lrp1 deficiency in cardiomyocytes (TNT-iCre+-LRP1flox/flox). 

 

Findings 

Mice with Lrp1-deficient cardiomyocytes (cm-Lrp1-/-) have a normal cardiac function 

combined with a favorable metabolic phenotype against HFD-induced glucose 

intolerance and obesity. Glucose intolerance protection was linked to higher hepatic 

fatty acid oxidation (FAO), lower liver steatosis and increased whole-body energy 

expenditure. Proteomic studies of the heart revealed decreased levels of cardiac pro-

atrial natriuretic peptide (pro-ANP), which was parallel to higher ANP circulating levels. 

cm-Lrp1-/- mice showed ANP signaling activation that was linked to increased fatty acid 

(FA) uptake and increased AMPK/ ACC phosphorylation in the liver. Natriuretic peptide 

receptor A (NPR-A) antagonist completely abolished ANP signaling and metabolic 

protection in cm-Lrp1-/- mice.  

 

Conclusions 

These results indicate that an ANP-dependent axis controlled by cardiac LRP1 levels 

modulates AMPK activity in the liver, energy homeostasis and whole-body metabolism. 

 

 

Key Words: Cardiomyocyte, Lrp1, ANP, heart, liver, AMPK, fatty acid oxidation 
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Nonstandard Abbreviations and Acronyms 

ACC  Acetyl-CoA carboxylase 

Akt  Protein Kinase B 

AMPK  AMP-activated protein kinase 

ANP  Atrial natriuretic peptide 

AUC  Area under the curve 

BAT  Brown adipose tissue 

BSA  Phosphate buffered saline 

BNP  Brain natriuretic peptide 

CE  Cholesteryl esters 

cGMP  Cyclic guanosine monophosphate 

CLAMS Comprehensive lab animal monitoring system  

CPT1  Carnitine palmitoyltransferase I 

DAPI  4',6-diamidino-2-phenylindole 

eWAT  Epididymal fat 

FA  Fatty acid 

FAO  Fatty acid oxidation 

FASP  Filter Aided Sample Preparation  

FC  Free cholesterol 

FFA  Free fatty acid 

GDF15 Growth and differentiation factor 15 

GLUT  Glucose transporter 

GTT  Glucose tolerance test 

HDL  High density lipoprotein 

HF  Heart failure 

HFD  High fat diet 

IR  Insulin resistance 

LDLR  Low density lipoprotein receptor 

LIPG  Endothelial lipase 

LpL  Lipoprotein lipase 

LRP1  Low-density lipoprotein receptor-related protein 1 

LV  left ventricle 

LVAWd LV anterior wall at end cardiac diastole 

LVEDV  LV end-diastolic volume 

LVEF  LV ejection fraction 

LVESV LV end-systolic volume 

LVFS  LV fractional shortening 
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LVIDd  LV internal diameter diastole 

LVIDs  LV internal diameter systole 

LVPWd LV posterior wall at end cardiac diastole 

NP  Natriuretic peptide 

NPR-A  Natriuretic peptide receptor A 

NPR-C  Natriuretic peptide receptor C 

OFG  Oral fat gavage 

 Mitochondrial Oxidative Phosphorylation System 

pAMPK Phosphorylated AMP-activated protein kinase 

pNpp  p-nitrophenyl phosphate 

Pro-ANP Pro-atrial natriuretic peptide 

Pro-BNP Pro-brain natriuretic peptide 

pVASP Phosphorylated VASP 

q-RT-PCR Quantitative real-time reverse transcriptase-polymerase chain reaction 

RER  Respiratory exchange ratio 

SCX  Strong Cation Exchange 

TG  Triglyceride 

TLC  Thin layer chromatography 

TMT  Tandem mass tags 

TnT  Troponin T 

UCP3  Mitochondrial uncoupling protein 3 

VASP  Vasodilator-stimulated phosphoprotein 

VCO2  CO2 production 

VO2  Oxygen consumption 

VLDLR Very low-density lipoprotein receptor 

ZDF  Zucker Diabetic Fatty  
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1. Introduction 

The metabolic syndrome preceding type 2 diabetes is mainly caused by an inefficient 

coordination of energy utilization by key organs [1]. It is known that alterations in fatty 

acid (FA) metabolism play a crucial role in inter-organ dyscoordination and insulin 

resistance (IR) [2]. Further, in metabolic diseases, the heart shows an exacerbated 

uptake of free FAs (FFAs) [3] and lipoproteins [4] underlying neutral lipid accumulation 

in cardiomyocytes. 

The low-density lipoprotein receptor-related protein 1 (LRP1) is a key receptor that 

modulates energy utilization by different tissues. LRP1 is both a carrier and a signaling 

receptor that regulates processes related with lipid metabolism and glucose 

homeostasis [5,6]. In the hallmark of lipid metabolism, LRP1 is involved in the uptake 

of unmodified and modified lipoproteins in different tissues causing alterations in the 

lipid content, generally associated with dyslipemic conditions. LRP1 is involved in the 

lipid transport from lipoproteins to hepatocytes [5], coronary vascular smooth muscle 

cells [7,8], cardiomyocytes [9,10] and adipocytes [11]. Specifically, adipocyte LRP1 

modulates not only lipid transport but also glucose homeostasis through the control of 

insulin sensitivity and energy expenditure [11]. In the context of glucose homeostasis, 

LRP1 has a regulatory action on the insulin receptor and GLUT4 activation in different 

tissues and organs including the brain [12,13]. Interestingly, insulin favors LRP1 

translocation to the cell membrane in the liver, increasing thus postprandial lipoprotein 

uptake [14]. Recently, it has been shown that hepatic LRP1 protects against IR and 

hepatic steatosis [13,15]. 

The liver plays a central role in the regulation of metabolism, receiving signals from 

multiple organs such as the pancreatic islets, the central nervous system, adipose 

tissue and kidneys [16]. It has also been suggested that the heart may also exert 

control over the metabolism of peripheral organs through the secretion of certain 

molecules called cardiokines. These cardiokines can affect the metabolic function of 

various cell types influencing whole-body homeostasis [17–19]. However, it is unknown 

at this moment whether lrp1 in cardiomyocytes modulates the production and release 

of cardiokines potentially involved in whole-body metabolism. The objectives of this 

study have been to 1) generate a murine experimental model of conditional Lrp1 

deficiency in cardiomyocytes by using the TnT-iCre transgenic mice with thoroughly 

tested suitability to delete genes exclusively in cardiomyocytes [20]; 2) study the impact 

of cardiomyocyte Lrp1 deficiency in whole-body metabolism; 3) analyze the differential 

proteins in the heart of cm-Lrp1-/- mice and controls and 4) examine the impact of 
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differential proteins, in particular of cardiokines, on target-tissue fatty acid uptake and 

metabolism. 

 

2. Material and methods 

cm-Lrp1-/- transgenic mice generation and characterization 

We generated an experimental mouse model with conditional and cardiomyocyte-

specific Lrp1 deficiency (TNT-iCre+-LRP1flox/flox or cm-Lrp1+/+) by treatment with 

doxycycline [20]. The specific controls for this animal model are TNT-iCre--Lrp1flox/flox or 

cm-Lrp1-/-. The generation of cm-Lrp1-/- transgenic mice is described in online Figure 

S1. To achieve cardiomyocyte-specific LRP1 inactivation, we use a cardiomyocyte-

specific Cre deletor and a floxed allele of Lrp1. We crossed commercial LRP1flox/flox 

mice (B6;129S7-Lrp1tm2Her/J; stock: #012604, Jackson Laboratories) carrying loxP sites 

within the LRP1 gene with TNT-iCre transgenic mice (kindly provided by Prof. Bin 

Zhou, Albert Einstein College of Medicine, USA) [20], for eight generations (Figure 1A). 

Transgenic founder mice were genotyped by PCR analysis on tail tip genomic DNA 

using primers for LRP1, Cre and Nrt (Figure 1B). Genomic DNA was extracted with a 

Wizard® SV Genomic DNA Purification System (Promega, Madison, WI, USA) and 

PCR analysis was performed with oligonucleotides synthesized by IDT (Integrated 

DNA Technologies, Inc; Coralville, IA, USA), using an Expand High Fidelity PCR 

System (Roche Molecular Systems). The oligonucleotides used are specified in Table 

S1.  

Mice were housed in specific pathogen-free facilities with a 12-hour light/12-hour dark 

cycle. Both groups, ten-week-old males cm-Lrp1+/+ and cm-Lrp1-/-, were treated daily 

with doxycycline cyclate (Sigma-Aldrich) (Dox) through their drinking water (1.5 

mg/mL/kg) ad libitum to assess the conditional Lrp1 inhibition in cardiomyocytes. The 

control group (cm-Lrp1+/+) was also treated with Dox to avoid interference with the 

treatment. Robertson et al., showed that Dox has a long half-life [21]. 

In the first experimental setting (online Figure S1A), after checking cardiac function, 

cm-Lrp1+/+ and cm-Lrp1-/- ten-week-old mice were fed high-fat cholesterol-containing 

diet (HFD TD.88137; Harlan Teklad) for six weeks. In the second experimental setting, 

cm-Lrp1+/+ and cm-Lrp1-/- ten-week-old mice were randomized to placebo (PBS) or to 

NPRA antagonist (A71915, 200 g/Kg in PBS, volume 100 uL) treatment during the 6 

weeks on HFD (online Figure S1B). Age-matched littermates were used for all 

experiments and at least 6 mice per group were analyzed considering α=0.05, 

power=80%, and an effect size of 2 mM glucose and 0.1 µg/L insulin. 
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Blood samples were taken in fasting conditions in the fourth week (150 l) and after 

sacrificing (400 L). The serum was frozen at -20ºC and used to measure glucose, 

insulin and lipid levels. The mice were euthanized at week six and samples from liver, 

skeletal muscle, heart, epididymal fat (eWAT), and brown adipose tissue (BAT), were 

kept frozen at -80ºC for lipid and molecular analysis. A piece of these tissues was also 

embedded in OCT for immunohistochemistry. All experimental protocols were 

approved by the Institutional Animal Care and Use Committees at the Research 

Institute (IR)-Sant Pau, and complied with all guidelines concerning the use of animals 

in research and teaching as defined by the Guide for the Care and Use of Laboratory 

Animals (NIH Publication Nº.80-23, revised 1996). 

Biochemical analysis 

Insulin serum levels were measured using a Mouse Insulin ELISA (Mercodia) following 

the manufacturer’s instructions. The HOMA index, an estimation of insulin resistance, 

was calculated as: [fasting serum insulin (ng/ml) x fasting serum glucose (mM)]/22.5. 

Serum lipids and lipoproteins, including cholesterol, triglyceride (TG) (corrected from 

free glycerol), phospholipids, FFAs, high density lipoprotein (HDL) cholesterol and 

phospholipids, were enzymatically determined using commercial kits adapted to a 

COBAS 6000 autoanalyzer (Roche Diagnostics) [22]. 

 

Analysis of ventricular function 

Transthoracic echocardiography was conducted under light sedation (1% isoflurane in 

oxygen) three days after starting doxycycline treatment (baseline). A second 

echocardiography was conducted six weeks later, at the end of the experimental 

procedure [23]. Standard functional parameters were measured, including left ventricle 

(LV) internal diameter diastole (LVIDd) and LV internal diameter systole (LVIDs), LV 

end-diastolic volume (LVEDV), LV end-systolic volume (LVESV), LV ejection fraction 

(LVEF), LV fractional shortening (LVFS), LV anterior wall at end cardiac diastole 

(LVAWd), LV posterior wall at end cardiac diastole (LVPWd), and heart rate. 

 

Glucose tolerance test (GTT)  

The glucose tolerance test (GTT) was performed at week six of the dietetic intervention 

in fasting conditions. Basal blood glucose levels were measured from a tail nick 

through ACCU-CHEK® Aviva glucometer (Roche Molecular Systems). The mice were 

then intraperitoneally injected with glucose (1.3mg/g BW). Blood glucose was 

measured at 15, 30, 60, 120 and 180 min after glucose injection. The area under the 
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curve (AUC) of the response curve was then calculated using the software Prism 4.0 

[24]. 

 

Distribution of intragastrically-administered [3H]-TG 

Mice were given an oral fat gavage (OFG) consisting of 20 μCi [3H]-labeled triolein 

(glycerol tri[9, 10(n)-3 H]oleate, 21.0Ci/mmol; Amersham Biosciences, 

Buckinghamshire, UK) in 150 μL of olive oil [24]. Mice were bled by cardiac puncture at 

1.5 hours. Serum and target tissues (liver, eWAT, heart, leg muscle and BAT) were 

collected after perfusion with NaCl solution 0.9%. Radiolabeled serum and tissue TG 

were separated from the FA using methanol:chloroform:heptane 1.4:1.25:1 (v:v:v) and 

0.1 mol/L H3BO3-KCO3 at pH 10.5. The radioactivity in the TG and FA fraction, in total 

serum and target tissues was determined by scintillation counting. 

 

Cardiomyocyte isolation 

Cardiomyocytes were obtained from the heart of our in vivo animal model by the 

Langendorff method. First, the heart was surgically removed and washed with a Ca2+ 

free Tyrode solution at 4ºC and oxygenated. The aorta was suspended in the 

Langendorff apparatus and the heart was perfused via the aorta with Ca2+ free Tyrode 

solution at 37ºC to clean blood remnants. The Ca2+ free Tyrode solution was then 

carefully removed, and the enzyme solution composed of Ca2+ free Tyrode solution 

with bovine serum albumin, collagenases and proteinases was added. Two reperfusion 

cycles (3 ml/min during 6 min) were performed to add the stop solution (Ca2+ free 

Tyrode solution without collagenases and proteinases). Once the perfusion was 

finished, the heart was removed from the Langendorff system and treated with an 

enzymatic solution for 5 min at 37ºC under shaking. The pieces of tissue were 

extracted with tweezers and, with shaking, submerged into stop solution to continue 

disaggregation. Tissue pieces were then removed and the solution containing the 

cardiomyocytes was centrifuged for 5 min at 450 rpm. The cell pellet was resuspended 

in stop solution or TripureTM Isolation Reagent®, depending on the further methodology 

used. 

 

Tissue homogenization 

Frozen tissues (25 mg) (heart, liver, skeletal muscle, eWAT and BAT) were pulverized 

in liquid nitrogen using a mortar and a pestle. Samples were then homogenized in 

TriPureTM isolation reagent (Roche Molecular Systems) for total RNA and protein 

extraction according to the manufacturer’s instructions. Total RNA from skeletal muscle 
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was extracted using the RNeasy mini kit (Qiagen) according to the manufacturer’s 

instructions after the previous addition of Proteinase K. For RNA extraction from 

eWAT, the tissue was processed with the kit RNeasy Mini Kit (Qiagen). DNA was 

digested with DNase I (Invitrogen). Extracted RNA was eluted in 25 L of nuclease-free 

water. The yield and quality of RNA was tested by agarose electrophoresis and 

spectrophotometry. Isolated RNA was stored at –80C until use. 

 

LRP1-deficient cardiomyocyte cell culture 

Murine LRP1-deficient HL-1 cells were generated and kept in culture as previously 

described [9,10,25,26]. 

 

Hepatocyte (Hepa 1-6) cell culture 

Hepa 1-6 cells were cultured in DMEM supplemented with 10% FCS, 2 mmol/L L-

glutamine, 100 U/mL penicillin G, and 100 μg/mL streptomycin. Quiescent cells were 

used for two different experimental approaches. First, quiescent Hepa 1-6 were 

exposed to supernatants from LRP1- and LRP1- HL-1 cells. Second, quiescent Hepa 

1-6 were exposed to increasing dose of ANP (0 to 10 nM). 

Gene expression analyses by RT-PCR 

Total RNA (1 g) was used for cDNA synthesis according to the protocol provided with 

the High Capacity cDNA Reverse Transcription kit (Applied Biosystems). cDNA was 

stored at –20C until its use. Gene expression analyses of Lrp1 (Mm00464608_m1), 

Vldlr (Rn01498166_m1), Ldlr (Mm01151339_m1), Cd36 (Mm01135198-m1), Nppa 

(Mm01255747_g1), Nppb (Mm01255770_g1), Cpt1 (Mm00550438), Fasn 

(Mm00662319_m1), Acaca (Mm01304257_m1), Acsl3 (Mm01255804_m1), Cav1 

(Mm00483057_m1), Slc27a2 (Mm00449517_m1) and Slc27a4 (Mm01327405_m1) 

were performed by quantitative real-time reverse transcriptase-polymerase chain 

reaction (q-RT-PCR) in the Applied Biosystems 7300 Real Time PCR System (Applied 

Biosystems; Foster City, CA, USA). 18srRNA (4319413E) was used as a 

housekeeping gene. The mRNA expression levels were measured in triplicate. The 

threshold cycle (Ct) values were normalized to the housekeeping gene. 

 

Proteomic studies 

Proteomic studies were performed as previously described with small modifications 

[27,28]. The mass spectrometry proteomics data have been deposited to the 

ProteomeXchange Consortium via the PRIDE partner repository with the dataset 
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identifier PXD011564. The protein was digested with Sequencing Grade Modified 

Trypsin (Promega, Madison, WI, USA) using the FASP (Filter Aided Sample 

Preparation) digestion protocol as described [27]. A detailed description of the 

experimental procedures has been included in supplemental material. 

 

Immunoprecipitation Assays 

Dynabeads protein G was bound to the polyclonal anti-corin antibody (abcam 

ab125254) for 1 hour at room temperature. The protein extract was incubated with the 

Dynabeads Protein G-anti-corin complex overnight at 4°C. After incubation, the protein 

immune-complex beads were washed 3 times with the wash buffer and eluted with 50 

mM glycine. Samples were separated by SDS-PAGE and transferred blots were 

incubated with Ab against Serpin 1 (biorbyt orb319062). 

 

Corin catalytic activity assay. 

Protease corin activity was measured as previously described [29]. Corin activity was 

presented as Vmax. 

 

Immunoassays 

ANP (ab108797, Abcam), GDF-15 (MGD150, R&D Systems) and 

adrenalin/epinephrine (abx257158, Abbexa) plasma levels were measured by 

commercially available-enzyme-linked immunosorbent assays (ELISA), according to 

the manufacturer’s recommendations. 

 

Western blotting analysis 

Blots were incubated with antibodies against mouse LRP1 (β-chain, clone 5A6 RDI-

PRO61066), AMPK (Cell Signaling Technology, Inc, # 2532), pAMPK (Cell Signaling 

Technology, Inc, Thr172, 40H9, # 2535), pVASP (Santa Cruz Biotechnology, Inc, sc-

101439), BNP (Santa Cruz Biotechnology, Inc, sc-67455), ANP (Everest Biotech, 

EB11166), Serpin A1 (Biorbyt, orb319062), pACC (Cell Signaling Technology, 

1673661S, total ACC (Cell Signaling Techonology, 1673662S), pAkt (Cell Signaling 

Technology, #4060), total Akt (Cell Signaling Technology, #4685), UCP3 (Abcam, 

ab10985) and OXPHOS mitochondrial complexes (Abcam, ab110413). CPT1 from 

mitochondrial-enriched fractions in liver was determined [30] using the antibodies 

described by Herrero L et al [31] and registered in antibodyregistry.org (Dolors 

Serra/Universitat de Barcelona Cat# CPT1A, RRID:AB_2636894). Protein extracts (10 
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μg) were loaded, resolved on 12% SDS-PAGE and transferred to nitrocellulose 

membranes (BioRad). Signal detection was carried out with the ECL immunoblotting 

detection system (GE Healthcare) and the results were quantitatively analyzed using 

Chemidoc (BioRad). Equal protein loading in each lane was verified by incubating blots 

with monoclonal antibodies against troponin T (TnT) (Thermo Scientific #MS-295-P) or 

β-tubulin (Cell Signaling Technology, Inc, #2146). 

 

Measurement of cyclic GMP levels in tissues. 

The cyclic guanosine monophosphate (cGMP) levels in heart, liver and skeletal muscle 

were measured using an ELISA kit according to the manufacturer’s instructions for 

non-acetylated methodology (ADI-900-014, Enzo Life Sciences). 

 

Confocal microscopy  

Mouse heart cryosections were subjected to target retrieval (10 mM Tris-HCl, pH=6) 

and permeabilized with Triton X-100 (0.5%). Isolated cardiomyocytes were fixed with 

paraformaldehyde and preserved in PBS with sodium acid 0.2%. Cells were 

permeabilized with glycine (0.1M) and Triton X-100 (0.2%). Samples were blocked with 

PBS, Tween-20 (0.2%) and BSA (1%) and incubated with primary antibody LRP1 (2 

µg/mL Abcam). Secondary antibodies conjugated with Alexa488 and Cy3 (1 ug/mL) 

(Jackson ImmunoResearch) were used for detection. Cell nuclei were counterstained 

with 4',6-diamidino-2-phenylindole (DAPI). Results were analyzed with an Axio-

Observer Z1 (Zeiss) laser confocal microscope. 

 

Histological staining 

Tissue samples were frozen and sectioned (5 μm). Sections were stained with 

Hematoxilin/Eosin, Herxheimer, Oil red O and Sirius red stains. Herxheimer and oil red 

O stainings were used for the detection of lipids. A polarized light microscope was used 

to measure collagen types I and III on randomly selected Sirius red-stained sections. 

 

Lipid extraction and semi-quantitative analysis of cholesteryl ester, free 

cholesterol, TG and FFA content in target tissues 

Frozen pulverized tissue (10 mg) were homogenized in NaOH 0.1 M. Lipids were 

extracted  and cholesteryl esters (CE), free cholesterol (FC) and TG content was 

analyzed by thin layer chromatography [9,10]. The FFA level was determined 

enzymatically using commercial kits adapted to a COBAS 6000 autoanalyzer. 
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Determination of fatty acid β-oxidation (FAO) activity in target tissues  

Aliquots from heart and liver were homogenized in a buffer composed of 150 mM NaCl, 

1 mM dithiothreitol, 30 mM EDTA and 50 mM KH2PO4. Tissue fatty acid oxidation 

(FAO) was determined with 30 g of post nuclear supernatant by determining the 

conversion of palmitoyl CoA-1-14C into acetyl-CoA [32]. 

 

Indirect Calorymetry System 

Measurements of oxygen consumption (VO2) and CO2 production (VCO2) were 

performed using a comprehensive lab animal monitoring system (Oxymax-CLAMS, 

Columbus Instruments). Mice were acclimated in metabolic chambers for 1 day before 

the start of the recordings. Animals were continuously recorded for 2 days with 

measurements of their locomotor activity (in the xy and z axes) and gas exchange (O2 

and CO2) taken every 20 min. Energy expenditure was calculated according to 

manufacturer’s guidelines (Columbus Instruments). The respiratory quotient was 

estimated by calculating the ratio of CO2 production to O2 consumption. 

 

Statistical analysis 

Results are expressed as mean ± SEM. Differences between study groups were 

analyzed using one-way analysis of variance (ANOVA) followed by a post-hoc Tukey-b 

test, Student’s t-test for independent samples and Student’s t-test for paired samples. 

The statistical software R (www.r-project.org) was used for all statistical analyses. 

Differences were considered statistically significant when P < 0.050. 

 

3. Results 

3.1. Cardiomyocyte Lrp1 Deficiency Prevents Diet-Induced Overweight and 

Glucose Intolerance By Facilitating Increased Energy Expenditure  

Cardiomyocyte Lrp1 deficient (cm-Lrp1-/-) mice were generated as explained in section 

2.1 using the TnT-iCre transgenic mice provided by Zhou and Bu [20]. These authors 

showed that the transgenic method they used to generate TNT-iCre transgenic mice 

guarantees the deletion of genes exclusively in cardiomyocytes through all the states 

of heart development. Here, we investigated the effects of Lrp1 specific deletion in 

cardiomyocytes by crossing TnT-iCre transgenic mice with Lrp1flox/flox that generated 

cm-lrp1-/- mice. A schematic representation of cm-Lrp1-/- generation and genotyping is 

shown in Figure 1A,B. cm-Lrp1-/- mice fed either chow or HFD diet showed decreased 
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Lrp1 levels in isolated cardiomyocytes and in the heart (Figure 1C-E). However, not 

differences were found in other lipoprotein receptors including vldlr or ldlr in the heart of 

cm-Lrp1-/- and control mice (online Figure S2A). Lrp1 levels in liver, skeletal muscle and 

eWAT did not show differences between cm-Lrp1-/- and control mice (online Figure 

S2B-D).  

 

First, we evaluated the effects of cardiomyocyte-specific Cre deletor on Lrp1 

expression in chow-fed animals treated with doxycycline. These mice usually exhibit 

moderate increases in weight and IR when fed a chow diet, but sharp increases when 

fed a Western-type diet [22]. Surprisingly, the body weight of cm-Lrp1-/- mice was lower 

than that of the controls when the animals were fed a chow diet for a period of 6 weeks 

and this was concomitant with lower insulin levels and improved glucose tolerance as 

well as lower hepatic fat accumulation and eWAT weight (online Figure S3A-F). Thus, 

we used western diet-fed cm-Lrp1-/- mice to evaluate a putative role of cardiomyocyte 

Lrp1 deficiency on metabolic phenotype and the potential mechanisms involved. Lrp1 

deficiency did not cause significant alterations in functional or structural properties of 

the heart (online Figure S4 and S5) or in serum lipid profile (online Table S2). 

 

The body weight of cm-Lrp1-/- mice was lower than that of the controls at all tested 

times (Figure 2A) while the average weekly food intake was similar between both 

groups (online Figure S6). This suggests that the reduction in body weight gain was not 

due to differences of weekly food consumption. The weight-reducing effect of Lrp1 

deficiency was associated to decreased eWAT weight and eWAT/BAT adipocyte size 

(Figure 2A-C). While TG/FA content was reduced in the liver of cm-Lrp1-/- mice (Figure 

2D), no differences were found in the heart and skeletal muscle of both groups (online 

Figure S7). To know whether these phenotypic changes elicit a favorable metabolic 

profile, we conducted a TTG test. Compared with controls, cm-Lrp1-/- mice had lower 

glucose intolerance and lower AUC values (Figure 2E). Glucose, insulin and IR index 

(HOMA-IR) were reduced in cm-Lrp1-/- compared to control mice (Table 1). 

 

To determine whether cardiomyocyte Lrp1 deficiency reduces body weight and 

adiposity by regulating energy expenditure, we performed Comprehensive Lab Animal 

Monitoring System (CLAMS) experiments. These experiments showed that the 

ambulation activity was higher during the dark period than during the light period. 

There were, however, no differences between cm-Lrp1-/- and control mice (online 

Figure S8), indicating that the protection against weight gain of cm-Lrp1-/- mice was not 

caused by increased physical activity. cm-Lrp1-/- mice showed higher lipid oxidation 
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during the light phase (Figure 3A) and higher glucose oxidation during the dark phase 

(Figure 3B). cm-Lrp1-/- mice showed higher VO2 and energy expenditure than controls 

during both phases (Figure 3C & D). 

 

3.2. Hearts with Lrp1 Deficiency Show Enhanced Corin Activity That Favors 

Higher ANP Release to the Plasma  

To identify cardiac proteins potentially involved in the favorable metabolic phenotype of 

cm-Lrp1-/- mice, we performed proteomic analysis of hearts from both cm-Lrp1-/- and 

cm-Lrp1+/+ mice groups. We processed three biological replicates from each group. 

Each replicate was a pool from three animals. We identified 24,358 spectra 

corresponding to 6,334 non-redundant peptides through a database search (1% FDR) 

(Data is available via the ProteomeXchange with the identifier PXD011564). For 

quantitative analysis, only peptides identified as unique (i.e. peptides sequences 

belonging to one single protein in the database) were considered. Overall, a total of 

1,213 proteins were quantified from 5,735 non-redundant unique peptides. Quantified 

proteins were compared between groups and we found a total of 34 differential 

expressed proteins. These 34 proteins included 11 which have the potential to be 

secreted (Table 2). Among the differential secreted proteins, we found atrial natriuretic 

peptide (ANP) (ratio=0.58; p=2.1E-04) and serine protease inhibitors including 

serpin1a (ratio=0.71; p=2.0E-12), serpin 1b (ratio=0.54; p=6.0E-05), serpin 1d 

(ratio=0.33; p=1.7-E-03) and serpin 3K (ratio=0.71; p=4.0E-09). To validate the 

Proteomics results, Western blot and immunoprecipitation experiments were 

performed. 

 

As shown in Figure 4A, ANP is generated from the precursor form proANP through the 

activation of corin, a convertase that facilitates the release of ANP (28 aa) from the C-

terminal end of proANP [33]. Western blot analysis performed with Abs that bind to the 

sequence RIGAQSGLGCNSFR at the C-terminal end of precursor form showed that 

proANP (14 kDa) levels were strongly decreased in cm-Lrp1-/- compared to control 

mice. This same test also showed preproANP (17 kDa) to be similar among the groups 

(Figure 4B). These results confirm proteomic differences (decreased levels of proANP 

in hearts from cm-Lrp1-/- mice) and suggest that there is higher release of ANP from 

LRP1- hearts. 

 

Immunoprecipitation studies evidenced that serpins form complexes with corin. The 

number of SerpinA1/Corin complexes were higher in the heart of cm-Lrp1-/- mice 

compared to that of controls (Figure 4C). The molecular weight of these complexes in 
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the heart of our murine model was 45-50 KDa and 30-35 KDa, which lines up with what 

was previously described of cultured cardiomyocytes [34]. Gladysheva IP et al reported 

that serpin1 binding to corin creates steric impediments to the union of effective 

inhibitors and allows prolonged corin activation [34]. 

 

Fluorogenic assays performed in this study revealed that protease enzymatic activities 

were higher in the cardiac membranes of Lrp1-/- mice with or without hirudin (Figure 

4D). Hirudin, a highly specific thrombin inhibitor, was added to the assay to exclude 

clotting enzymes in the membrane fraction. It did not show a significant effect on 

protease activity, suggesting that corin could be one of the main proteases contributing 

to the higher protease activity in cardiac membranes of Lrp1-/- mice.  

 

Circulating ANP levels were higher (about 4-fold) in the plasma of cm-Lrp1-/- than in 

that of cm-lrp1+/+ mice (Figure 4E). Our results suggest that cardiac Lrp1 deficiency 

facilitates corin activation and ANP release. There were no differences in cardiac Nppa 

between groups, whereas a modest downregulation in Nppb mRNA expression was 

found in cm-lrp1-/- mice (online Figure S9). No differences were found in the circulating 

levels of other metabolic factors including adrenalin/epinephrine and GFD15 (Figure 

4F,G). 

 

3.3. The ANP-NPR-A Signaling Activation Is Linked To AMPK Phosphorylation 

and Increased FA Oxidation in the Liver of cm-Lrp1-/- Mice  

To ascertain whether increased circulating ANP levels were associated with the 

activation of NPR-A signaling in peripheral tissues, we determined the levels of crucial 

mediators such as cGMP and pVASP in the liver, skeletal muscle and heart of cm-

Lrp1+/+ and cm-Lrp1-/- mice whether treated with the NPR-A antagonist A71915 or not 

(online Figure S1B). cGMP and VASP were increased in the liver (Figure 5A,B) and 

skeletal muscle (online Figure S10A,B) but not the heart (online Figure S11A,B) of 

untreated cm-Lrp1-/- mice. The treatment of cm-Lrp1-/- mice with A71915 completely 

blocked the increase of cGMP and pVASP levels in liver and partially blocked it in 

skeletal muscle. We found that cGMP/pVASP signaling was linked to increased AMPK 

phosphorylation in the liver. Increased levels of hepatic pAMPK, like those of cGMP 

and pVASP, were abolished by the NPR-A antagonist (Figure 5A,B). There were no 

differences in pAMPK levels in the skeletal muscle (online Figure S10B) or the heart 

(online Figure S11B) between groups. To know whether AMPK phosphorylation was 

linked to AMPK activity, we measured the phosphorylation of ACC, the downstream 

target of pAMPK. ACC mRNA expression levels in the liver of mice fed HFD were 
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extremely low (reduced by aprox. 90% in HFD fed mice). Despite this, we detected an 

increased ratio pACC/total ACC in the liver of untreated cm-Lrp1-/- compared to the 

control mice (Figure 5A). In addition, the increase in the phosphorylation of ACC was 

not observed in A91915-treated mice, supporting the activation of AMPK by ANP in the 

liver of KO mice. To explore the potential impact of pAMPK activation on hepatic FA 

synthesis, we explored several genes involved in FA synthesis in the liver. We found 

that Acsl3 mRNA expression was significantly lower in the liver of KO mice compared 

to the controls (online Figure S12). There were no differences in the mRNA expression 

levels of Fasn or Slc27a2 between groups. 

 

To know the impact of pAMPK on FAO, we measured CPT1, a key mitochondrial 

enzyme responsible for FAO; the main components of the oxidative phosphorylation 

system (OXPHOS), responsible for mitochondrial respiration; and UCP3, an indicator 

of mitochondrial response to enhanced intracellular FA. Oxidative phosphorylation 

involves a flow of electrons through the electron transport chain (ETC), a series of 

proteins and electron carriers within the mitochondrial membrane. We used one 

OXPHOS cocktail antibody that contains 5 mouse Abs and detects one subunit of each 

(five) mitochondrial complexes of the ETC. The main subunits detected in whole 

hepatic and skeletal muscle tissue extracts of our murine model were CV-ATP5A (55 

kDa), CIII-UQCRC2 (48 kDa) and CII-SDHB (30 kDa). The protein levels of CPT1, CII, 

and CV subunits of ETC were significantly higher in the liver (Figure 5C) of untreated 

KO mice. The increase in these mitochondrial proteins was abolished in cm-Lrp1-/- mice 

treated with A71915, indicating that NPRA-signaling is involved in the increase of 

OXPHOS protein subunits in mice. UCP-3, an indicator of FA supply to mitochondria, 

was also induced in the liver (Figure 5C) but not in the skeletal muscle (online Figure 

S10C) of KO mice. These results suggest that, despite the upregulatory effect of ANP 

signaling on OXPHOS subunits of the skeletal muscle, ANP signaling is not linked to 

FA oxidation in the skeletal muscle. 

 

According to CPT1 upregulation, the hepatic FAO activity was higher in untreated KO 

mice than in control mice, but this increase was not observed in KO mice treated with 

A71915 (Figure 5D). In addition, KO mice showed reduced hepatic TG accumulation in 

the untreated mice but not in the A71915–treated mice (Figure 5E). 

 

To explore whether these favorable changes may influence insulin signaling activation, 

we measured the activation state of Akt in different tissues. We found an increased 

ratio of pAkt/total Akt exclusively in the liver of KO mice (online Figure S13). 

Journal Pre-proof



Jo
ur

na
l P

re
-p

ro
of

METABOLISM-D-19-00958 (R2) 
 

17 
 

 

3.4. Supernatants from LRP1 deficient HL-1 Cells Increased pAMPK and CPT1 

Levels in Cultured Hepatocytes 

LRP1-deficient HL-1 cells (LRP1-) were generated in our group and previously used to 

test the impact of the cardiomyocyte LRP1 deficiency in several processes 

[9,10,25,26]. LRP1- cells show almost undetectable levels of LRP1 but similar 

morphologic characteristics to the control cells (Figure 6A,B). Supernatants from LRP1- 

cells contain higher ANP levels than those from control cells (Figure 6C), and, when 

added to hepatocytes, caused induced AMPK phosphorylation and increased CPT1 

protein levels in cultured Hepa 1-6 cells (Figure 6D,E). In parallel experiments, we also 

showed that ANP from 0 to 10 nM caused an increase in pAMPK/AMPK ratio and 

CPT1 protein levels in a dose-response manner without altering cell morphology 

(online Figure S14A-C). 

 

3.5. Activated ANP-NPR-A Signaling Is Linked to Increased FA Uptake by the 

Liver 

AMPK phosphorylation has been previously reported to activate FA uptake in oxidative 

tissues [35,36]. Oral fat gavage (OFG) experiments showed an increase in 3H-TG and 


3H-FFA uptake by the liver of cm-Lrp1-/- mice that was blocked by the NPR-A 

antagonist A71915 (Figure 7A). Real-time PCR experiments showed an increased 

expression of hepatic Vldlr and Cd36 mRNA in cm-Lrp1-/- mice (Figure 7C) that were 

also efficiently blocked by the NPR-A antagonist. Unlike the liver, there were no 

differences between KO and control mice in 3H-TG and 3H-FFA uptake by the 

skeletal muscle, although a significant increase in 3H-TG and 3H-FFA uptake was 

detected in groups treated with A71915 (online Figure S15). In contrast to liver, there 

was a reduced uptake of 3H-TG and 3H-FFA by eWAT of cm-Lrp1-/- mice (Figure 

7B). Reduced levels of Vldlr and Cd36 mRNA expresion was detected in eWAT of KO 

versus control mice (Figure 7D). As shown in Figure 7E,F, A71915 equaled eWAT 

weight and eWAT adipocyte size between cm-Lrp1-/- and cm-Lrp1+/+ mice. 

 

CLAMS experiments showed that treatment of cm-Lrp1-/- mice with the NPR-A 

antagonist counteracted increased lipid oxidation during the light phase (Figure 8A) 

and increased glucose oxidation during the dark phase (Figure 8B). There were no 

differences in oxygen consumption (Figure 8C) and energy expenditure (Figure 8D) 

between cm-Lrp1-/- and control mice treated with the NPR-A antagonists. 
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4. Discussion 

The main innovative findings of this study are that LRP1 receptor levels in 

cardiomyocytes regulate circulating levels of atrial natriuretic peptide and that through 

this mechanism control NPRA-dependent fatty acid metabolism in the liver and, 

consequently, the whole-body metabolism. 

LRP1 Controls the Systemic Levels of Atrial Natriuretic Peptide through 

Modulation of Corin Activity in Cardiomyocytes 

Here, we show that isolated cardiomyocytes from cm-Lrp1-/- mice are deficient in the 

receptor Lrp1. Previous studies have shown that LRP1 plays a crucial role in the 

degradation of serpin:protease complexes [37,38]. Results from the 

immunoprecipitation assays performed in this study indicated that corin, the main 

protease responsible for cardiac release of atrial natriuretic peptide [33], was mostly 

complexed with serpins in the heart of cm-Lrp1-/- mice, as it was previously shown in 

cultured cardiomyocytes [34]. In agreement with the capacity of LRP1 to modulate 

protease levels, we found that Lrp1 deficiency in the cardiomyocyte, the most abundant 

and main ANP producing cell in the heart [39,40], directly impacts corin activity, cardiac 

ANP release and ANP circulating levels. A more direct proof of the capacity of LRP1 to 

modulate ANP release has been obtained from cell culture experiments performed with 

an LRP1-deficient HL-1 cell line (LRP1- HL-1 cells) previously generated in our group 

[9,10,25,26]. Our results evidenced the presence of higher ANP levels in the 

supernatants from LRP1- HL-1 cells compared to control cells. 

The protease corin is also involved in the cleavage of pro-brain natriuretic peptide 

(BNP) to BNP [41]. Despite this, we did not observe alterations in cardiac or plasma 

BNP levels in cm-Lrp1-/- mice compared to the controls. The specific effect of the 

receptor deficiency on ANP release could be explained by the predominance of ANP 

(compared to the marginal presence of BNP) in hearts without ventricular dysfunction 

[42]. 

 

Several groups including ours, have determined that the modulation of Lrp1 receptor 

causes alterations of key signaling pathways in the heart. Our group reported that 

cardiac Lrp1 overexpression contributes to enhanced cholesterol and triglyceride 

supply to the heart and is associated with serious calcium-handling alterations [25]. In 

the context of the myocardial infarction, LRP1 signaling activation has been reported to 

induce a cardioprotective signal, decreases infarct size, and preserves cardiac systolic 

function in young adult mice without comorbidities [43]. Elevated levels of Lrp1 ligands, 

such as VLDL, can act as antagonists of Lrp1 signaling [44]. Results from the present 
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study show that cardiomyocyte Lrp1 deficiency did not affect in cardiac function. This 

could be related to the absence of pathological stressors such as atherogenic 

dyslipemia or hypoxia. Further studies are required to know the optimal Lrp1 threshold 

values in the presence of certain pathological ligands  

 

ANP Activates NPR-A Signaling That Is Linked to AMPK Phosphorylation and 

Increased FA Oxidation/FA Uptake in the Liver of cm-Lrp1-/- Mice.  

The systemic effects of ANP are well described, contributing to water-salt balance 

maintenance and blood pressure regulation through diuretic, natriuretic and 

vasodilatory effects. In addition, ANP displays important pleiotropic effects in the heart, 

acting as a main regulator of cardiovascular homeostasis in an autocrine and paracrine 

manner [45]. Besides the hemodynamic effects, ANP also is involved in lipolytic 

processes in white adipose tissue in primates [46]. Recently, it has been described as 

a potent lipolytic agent that exerts a great impact on the metabolism of patients with 

heart failure [47]. Interestingly, ANP induces anti-inflammatory effects in adipose tissue 

[48].  

 

ANP has also been reported to promote oxidative metabolism in human skeletal 

muscle. In particular, ANP induces PGC-1α and mitochondrial OXPHOS gene 

expression in a cyclic GMP–dependent manner in human myotubes [49]. Results from 

the present study show that ANP increased NPR-A/cGMP/pVASP in the skeletal 

muscle of cm-Lrp1-/- mice. In our murine model, this upregulatory effect of ANP 

signaling was linked to mitochondrial OXPHOS upregulation, affecting CV-ATP5A and 

CII-SDHB subunit overexpression. However, there were no differences in the levels of 

phosphorylated AMPK, the TG/FA uptake, the levels of CPT1 and UCP3, and TG 

accumulation in the skeletal muscle of cm-Lrp1-/- and control mice. These results 

indicate that FA uptake and FA oxidation were not significantly modulated by NPR-

A/cGMP/pVASP signaling in the skeletal muscle of cm-Lrp1-/- mice. 

 

In contrast, we found that NPR-A/cGMP/pVASP signaling was linked to AMPK 

phosphorylation in the liver of cm-Lrp1-/- mice. Our cell culture experiments evidenced 

that hepatocytes exposed to supernatants from LRP1- HL-1 cells or to ANP directly 

showed increased levels of phosphorylated AMPK. Previous studies have shown that 

pVASP, an ANP signaling mediator, phosphorylated specifically AMPK in the liver of a 

mouse model of diabetes [50]. AMPK is considered the master regulator of lipid 

metabolism and mitochondrial homeostasis [51–54]. One of the crucial functions of 

AMPK is the regulation of lipid metabolism through the phosphorylation of ACC. Upon 
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activation of AMPK, phosphorylation of ACC results in ACC inactivation. Our results 

indicate that ACC phosphorylation is increased in the liver of KO mice and abolished 

by the treatment of KO mice with the NPR-A antagonist, indicating that the energy 

sensing AMPK/ACC pathway can be modulated by ANP in the liver. Acsl3 mRNA 

expression levels were also decreased in the liver of cm-Lrp1-/- compared to control 

mice. Acsl3 knockdown decreased total acyl-CoA synthetase activity in ob/ob mice and 

mice fed a high sucrose diet [55]. Together, these results support that ANP-induced 

AMPK phosphorylation is involved in the deactivation of FA synthesis in the liver of cm-

Lrp1-/- mice.  

 

The phosphorylation of ACC inhibits the production of malonyl-CoA, a substrate for 

fatty acid synthase (FAS) and a potent inhibitor of CPT1 [56]. CPT1 is the main 

mitochondrial enzyme responsible for fatty acid oxidation. Results from the present 

study showed increased levels of CPT1 in the liver cm-Lrp1-/- mice and in hepatocytes 

exposed to increased ANP levels. We also showed that this increase in dependent of 

NPR-A signaling. The link between AMPK phosphorylation and CPT1 activation has 

been previously shown in oxidative tissues of a mice model [36,51]. The upregulation 

of the mitochondrial OXPHOS subunits support and enhanced mitochondrial 

respiration in the liver of cm-Lrp1-/- mice. Further experiments are required to know the 

mechanism by which ANP signaling enhances the level of these OXPHOS protein 

subunits. This could be due to enhanced mitochondrial synthesis or enhanced amount 

of protein subunits per mitochondria. Together these results support an ANP-enhanced 

mitochondrial fatty acid oxidation in the liver of cm-Lrp1-/- mice.  

 

Finally, UCP3, an indicator of mitochondrial response to intracellular FA, 3H-FA and 


3H-TG uptake and FA/TG transporters such as Cd36 and VLDLR were upregulated in 

the liver of KO mice and the increase was abolished by the treatment of KO mice with 

the NPR-A antagonist. Previous studies have reported that pAMPK positively 

modulates Cd36 in a mouse model of AMPK activation specifically in the liver [57].  

Together, these results evidenced that ANP signaling promoted by cardiomyocyte 

LRP1 deficiency facilitates the repression of FA synthesis and the activation of FA 

uptake/FA mitochondrial oxidation in an AMPK-coordinated manner in the liver of cm-

Lrp1-/- mice. 

 

ANP-Induced Hepatic FAO Confers a Favorable Metabolic Profile to cm-Lrp1-/- 

Mice 
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Here, we show that enhanced FA uptake and oxidation promoted by ANP reduces TG 

accumulation in the liver of KO mice. These results are in agreement with previous 

studies showing that moderate increases in Cpt1a activity are sufficient to reduce 

hepatic TG levels in CPT-1a-overexpressing animals [58] and even to modulate 

diabetes and obesity [30]. Interestingly, reduced hepatic triglyceride content in KO mice 

occurred in the context of enhanced supply of FA to the liver, and, by counteracting 

ANP-induced FA uptake by the liver, the NPR-A antagonist caused an increased FA 

uptake by eWAT. Although, a direct effect of ANP on adipose tissue of cm-Lrp1-/- 

cannot be discarded, data from the present study supports the secondary nature of 

cardiac Lrp1 deficiency’s benefits such as reducing diet-induced obesity and increasing 

energy expenditure. The liver is considered the main organ in the homeostasis of lipids 

and glucose and one of the highest contributors to whole-body lipid oxidation [59]. 

Moreover, previous studies have consistently demonstrated the link between the 

hepatic FAO and insulin-resistance [45,47,54]. Results from the present study show 

that phosphorylation of Akt, a crucial step in the insulin signaling pathway, is more 

active in the liver of cm-Lrp1-/- mice compared with controls. In addition, CLAMS 

experiments showed an ANP-induced glucose oxidation during the dark phase. 

However, further studies based on the analysis of signaling right after insulin 

administration are indeed required to obtain conclusions about the role of ANP on the 

modulation of diet-induced hepatic insulin resistance [60]. Similarly, it would be 

interesting to determine whether the response to leptin is altered in our model. 

 

Main Conclusions and Translational Potential of the Work  

Our results show that the favorable metabolic profile and increased energy expenditure 

in cm-Lrp1-/- mice mainly depends on ANP signaling involving hepatic AMPK activation 

(summarized in Figure 9). 

From the clinical point of view, our team has evaluated natriuretic peptide levels in 

patients with chronic heart failure. Recently, we described that patients with a low 

capacity to degrade active natriuretic peptides had better outcomes [61,62]. In humans, 

the main protective metabolic effects of ANP are related to ANP lipolytic effects in 

adipose tissue [46,63–67]. In fact, high levels of natriuretic peptides in plasma have 

been associated with weight loss in humans [66,67]. Here, treatment of cm-Lrp1-/- mice 

with the NPR-A antagonist restores energy expenditure to the levels of control mice, 

suggesting that ANP/NPR-A signaling is involved in the increased energy expenditure 

and reduced weight of cm-Lrp1-/- mice. It will be interesting to test in humans whether 

ANP-induced hepatic FA uptake/oxidation is an additional mechanism contributing to 

the impact of high circulating NP levels in weight loss. According to the present study, 
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low levels of Lrp1 expression in cardiomyocytes would contribute to the maintenance of 

elevated NP levels in circulation. This could be highly relevant in patients with 

metabolic disorders. 
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Figure Legends 

Figure 1. cm-Lrp1-/- Transgenic Mice Generation and Validation 

(A) Generation schedule of an in vivo model with a doxycycline-inducible attenuation of 

Lrp1 expression selectively in cardiomyocytes. In cm-Lrp1-/- mice with the genotype 

TnTCre+/+ Lrp1flox/flox, the activation of Cre recombinase by doxycycline converts the 

Lrp1 floxed alleles to KO (-) alleles. (B) Cre and Flox transgens were detected by PCR. 

A fragment of 500 bp was amplified from mouse tail genomic DNA when the Cre 

transgene driven by the TnT promoter was present. A fragment of 350 bp was 

amplified when flox sequences flank lrp1 gen. (C) Ten-week-old male mice were 

treated daily with doxycycline cyclate through their drinking water during the procedure 

to assess the conditional inhibition of LRP1 levels in cardiomyocytes. After three days 

of treatment, both cm-Lrp1+/+ and cm-Lrp1-/- mice were randomized and fed a chow diet 

or high fat diet for six weeks. (D) Lrp1 mRNA expression and LRP1 protein levels (in 

green) in isolated cardiomyocytes from hearts of cm-Lrp1-/- and control mice (E) Lrp1 

mRNA expression and LRP1 protein levels (LRP1 staining in red, nuclei in blue, 

Bar=20 m) in the heart. Data represent the mean±SEM for 9 mice per group. *** 

p<0.005 versus cm-Lrp1+/+ mice; ### p<0.005 versus chow diet. Differences between 

groups were analyzed using one-way analysis of variance (ANOVA) followed by a 

post-hoc Tukey-b test. 
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Figure 2. Lrp1 Deficiency in Cardiomyocytes Improves Diet-induced Glucose 

Intolerance and Reduces Weight Gain 

cm-Lrp1+/+ and cm-Lrp1-/- mice (control) mice were treated for 6 weeks with doxycycline 

cyclate in their drinking water. (A) Body weight changes over 6 weeks of HFD diet. (B) 

Epididymal white adipose tissue (eWAT) tissue mass at necropsy. (C) Representative 

H&E stained sections from eWAT and brown adipose tissue (BAT) (Bar=100 m). (D) 

Triglyceride and FA content in the liver and representative Herxheimer stained liver 

sections (Bar =100 μm). (E) Glucose tolerance test in mice (1.3 mg/g body weight) and 

Area under the curve (AUC). The data represents the mean±SEM. n=9 mice per 

condition. **p<0.01 or *** p<0.005 versus control mice. Differences between groups 

were analyzed using Student’s t test for independent samples. 

 

Figure 3. Cardiomyocyte Lrp1 Deficiency Increases Whole-Body Energy 

Consumption 

cm-Lrp1+/+ and cm-Lrp1-/- mice (control) mice were treated for 6 weeks with doxycycline 

cyclate in their drinking water and then submitted to CLAMS experiments. Oxymax 

respirometer measurements of lipid oxidation (A), glucose oxidation (B), VO2 (C) and 

whole-body oxygen consumption (D) during the light and dark periods in mice over 6 

weeks on HFD. n=8 mice per condition.  *p<0.05, **p<0.01 or ***p<0.005 versus cm-

Lrp1+/+ mice. Differences between groups were analyzed using Student’s t test for 

independent samples. 

 

Figure 4. Cardiomyocyte Lrp1 Deficiency Favors Higher Corin Activity and ANP 

Release 

 (A) Schematic representation for the secretion of preproANP-derived peptides 

modified from Pemberton et al [23]. The AA sequence RIGAQSGLGCNSFR that is 

recognized by the antibody (Ab) is localized at the extreme C-terminal of the protein. 

cm-Lrp1+/+ and cm-Lrp1-/- mice (control) mice were treated for 6 weeks with doxycycline 

cyclate in their drinking water. After sacrifice, one aliquote of frozen heart tissue was 

used for protein extraction. (B) Representative Western blot analysis showing cardiac 

preproANP (16 kDa), proANP (13 kDa) and troponin (TnT) (endogenous control) 

protein bands and bar graphs showing the quantification of preproANP and proANP 

protein bands normalized to TnT. One aliquot of cardiac membranes (5 mg) was used 

for immunoprecipitation with anti-corin Abs. (C) Immunoblots performed with anti-

SerpinA1 Abs showing two different molecular weight corin/serpinA1 complexes and 

bar graphs showing the quantification of 45-50 kDa complex and 30-35 kDa complex. 
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(D) Other aliquot of cardiac membranes (25 µg) was used for membrane protease 

catalytic activity measurements (Vmax) in absence or presence of the thrombin 

inhibitor hirudin (2 µM). (E-G) Circulating levels of ANP, adrenalin/epinephrine and 

GDF15 measured by ELISA. n=6 mice per condition. Data represent the mean±SEM. 

**p<0.01 or ***p<0.005 versus cm-Lrp1+/+ mice. Differences between groups were 

analyzed using Student’s t test for independent samples. 

 

Figure 5. High Plasma ANP Levels in cm-Lrp1-/- Mice Induce NPRA-Dependent 

Signaling Linked to AMPK Phosphorylation and Increased Fatty Acid Oxidation 

in the Liver 

cm-Lrp1+/+ and cm-Lrp1-/- mice (control) mice were treated for 6 weeks with doxycycline 

cyclate in their drinking water and then treated with either saline or the NPRA 

antagonist A71915 (200 µg/kg in PBS in a final volume of 100 µl) for the last 4 weeks. 

(A) cGMP levels were detected by ELISA. Western blot analysis and bar graphs 

showing the quantification of pVASP, total VASP, pAMPK, total AMPK, pACC and total 

ACC (B) and OXPHOS, UCP3 and CPT1 (C) in the liver. (D)  Rate of hepatic fatty acid 

oxidation (FAO). (E) Representative Herxheimer stained liver sections (Bar =100 µm) 

and hepatic TG levels. n=8-10 mice per condition. Data represent the mean±SEM. 

*p<0.05, ** p<0.01 or *** p<0.005 versus cm-Lrp1+/+ mice; ## p<0.01 or ### p<0.005 vs 

PBS. Differences between groups were analyzed using one-way analysis of variance 

(ANOVA) followed by a post-hoc Tukey-b test. 

 

Figure 6. Hepatocytes Exposed to Supernatants from LRP1-deficient (LRP1-) HL-

1 Cardiomyocytes Exhibited Increased Levels of Phosphorylated AMPK and 

CPT1  

LRP1 deficient HL-1 (LRP1-) and control HL-1 cells (LRP1+) were grown in complete 

Claycomb medium from 48 hours and supernatants were then collected. After 

determination of their ANP content by ELISA, supernatants were directly added to 

cultured hepatocytes (Hepa 1-6). Hepa 1-6 were exposed to HL-1 supernatants for 18 

hours and then collected in lysis buffer to perform Western blot analysis. (A) 

Representative optical microscopy image of LRP1+ and LRP1- HL-1 cells. (B) Western 

blot analysis and bar graphs showing LRP1 protein levels in LRP1- compared to 

LRP1+ HL-1 cells. (C) ANP levels in LRP1+ and LRP1- supernatants measured by 

ELISA. (D) Representative optical microscopy image of Hepa 1-6 cells exposed to 

supernatants from LRP1+ and LRP1- HL-1 cells. (E) Western blot analysis and bar 

graphs showing pAMPK/total AMPK ratio and CPT1 protein levels of Hepa 1-6. Data 
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represent the mean±SEM of three experiments performed in duplicate. ** p<0.01 or *** 

p<0.005 versus LRP1+ HL-1 cells or versus Hepa 1-6 cells exposed to supernatants 

from control HL-1 cells. Differences between groups were analyzed using Student’s t 

test for independent samples. 

 

Figure 7. TG and FA Uptake Increased in the Liver while Decreased in eWAT of 

cm-Lrp1-/- Mice 

cm-Lrp1+/+ and cm-Lrp1-/- mice (control) mice were treated for 6 weeks with doxycycline 

cyclate in their drinking water and then treated with either saline or the NPRA 

antagonist A71915 for the last 4 weeks. Mice were then given an oral fat gavage 

(OFG) consisting of 20 μCi [3H]-labeled triolein in 150 μL of olive oil as. Percentage of 

[3H]-triglyceride and [3H]-free fatty acid uptake by liver (A) and eWAT (B) in the different 

groups taking as reference the control group.  Real-time PCR of Vldlr and Cd36 mRNA 

expression levels in liver (C) and eWAT (D). (E) Representative Herxheimer stained 

eWAT sections (Bar =100 µm). Data represent the mean±SEM. *p<0.05, **p<0.01 or 

***p<0.005 versus control mice; ## p<0.01 or ### p<0.005 versus PBS. Differences 

between groups were analyzed using one-way analysis of variance (ANOVA) followed 

by a post-hoc Tukey-b test. 

 

Figure 8. Cardiomyocyte Lrp1 Deficiency Increases Whole-Body Energy 

Consumption in an NPR-A Dependent manner 

cm-Lrp1+/+ and cm-Lrp1-/- mice (control) mice were treated for 6 weeks with doxycycline 

cyclate in their drinking water and then treated with either saline or the NPR-A 

antagonist A71915 for the last 4 weeks. Oxymax respirometer measurements of lipid 

oxidation (A), glucose oxidation (B) VO2 (C) and whole-body oxygen consumption (D) 

during the light and dark periods. n=8-10 mice per condition.  *p<0.05, ** p<0.01 or 

***p<0.005 versus control mice; ## p<0.01 or ### p<0.005 versus PBS. Differences 

between groups were analyzed using one-way analysis of variance (ANOVA) followed 

by a post-hoc Tukey-b test. 

 

Figure 9. Schematic main figure 

Cardiomyocyte Lrp1 deficiency facilitates corin activation and ANP release from the 

heart. NPR-A/cGMP/pVASP signaling activates AMPK/ACC pathway that coordinately 

inhibits FA synthesis and activates FA uptake and oxidation in the liver of cm-Lrp1-/- 

mice. The ANP-mediated activation of AMPK seems to underlie the decrease in 
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hepatic TG content, the improved glucose tolerance, the limited weight gain and the 

enhanced whole-body energy consumption of cardiomyocyte-lrp1 deficient mice.  

 

Table 1. Comparison of serum glucose levels, serum insulin levels and Homeostatic Model 
Assessment for Insulin Resistance (HOMA-IR) between cm-Lrp1

-/-
 and control mice. The data is 

shown as mean±SEM. N=8 per group. Differences between groups were analyzed using the Student’s t 
test for independent samples. 
 

 
cm-Lrp1

+/+
 cm-Lrp1

-/-
 P 

GLUCOSE (mM) 11.09 ± 0.37 9.49 ± 0.84 0.072 

INSULIN (g/L) 1.23 ± 0.17 0.48 ± 0.04 0.003 

HOMA-IR 13.06 ± 1.55 4.59 ± 0.74 0.003 

 
 
 
 
Table 2. Differential cardiac secreted proteins between cm-Lrp1

-/- 
and cm-lrp1

+/+
 mice. This table 

shows mass spectromic proteomic data concerning differential cardiac secreted proteins. Three biological 
replicates for each condition were processed. Each replicate was a pool of tissue obtained from three 
different animals. Differences between groups were analyzed using Student’s t test for 
independent samples.  
 

Protein ID Protein name Gene name 
cm-Lrp1

-/-
 vs cm-Lrp1

+/+
 

Ratio P 

E9PV24 Fibrinogen alpha chain  Fga 0.64 1.8E-12 

P05125 Natriuretic peptides A (ANP) Nppa Pnd 0.57 4.8E-04 

P07759 Serine protease inhibitor A3K Serpina3k Mcm2 Spi2 0.63 1.6E-12 

P22599 Alpha-1-antitrypsin 1-2  Serpina1b Aat2 Dom2 Spi1-2 0.44 1.2E-05 

Q00897 Alpha-1-antitrypsin 1-4  Serpina1d Dom4 Spi1-4 0.30 9.4E-04 

Q3TFQ8 Alpha-1,4 glucan phosphorylase Pygb 0.72 8.1E-16 

Q6S9I0 Kininogen Kng2 0.77 1.1E-03 

P01942 Hemoglobin subunit alpha Hba 0.74 9.6E-05 

Q8K0E8 Fibrinogen beta chain Fgb 0.66 6.6E-14 

Q8VCM7 Fibrinogen gamma chain Fgg 0.65 5.5E-08 

Q91X72 Hemopexin Hpx Hpxn 0.70 5.0E-09 
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HIGHLIGHTS 

 Cardiomyocyte Lrp1 deficiency preserves corin activity and promotes ANP 

release 

  

 Increased blood ANP levels activate cGMP/pVASP axis in skeletal muscle 

and liver  

 

 In the liver, but not in skeletal muscle, cGMP/pVASP axis was linked to 

AMPK phosphorylation and activation 

 

 Increased hepatic pAMPK promotes whole-body systemic energy 

expenditure 
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