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Abstract 
 In this work, the use of cluster analysis algorithms, widely applied in the field of big data, is 

proposed to explore and analyse electron energy loss spectroscopy (EELS) data sets. Three 

different data clustering approaches have been tested both with simulated and experimental 

data from Fe3O4/Mn3O4 core/shell nanoparticles. The first method consists on applying data 

clustering directly to the acquired spectra. A second approach is to analyse spectral variance 

with principal component analysis (PCA) within a given data cluster. Lastly, data clustering on 

PCA score maps is discussed. The advantages and requirements of each approach are studied. 

Results demonstrate how clustering is able to recover compositional and oxidation state 

information from EELS data with minimal user input, giving great prospects for its usage in EEL 

spectroscopy. 

Introduction 
The introduction of the first commercial electron energy loss spectrometer in 1986, model 666 

by Gatan, set a huge milestone in the history of materials science. Since then, electron energy 

loss spectroscopy (EELS) has evolved from acquiring a single spectrum in several seconds1 with 

a spatial resolution of tens of nanometers to atomic resolution spectrum images (SI) with 

thousands of pixels acquired in milliseconds2. Not only that, but the development of EELS 

tomography3,4 at increasingly higher spatial and energy resolutions is starting to generate so-



called EEL spectrum volumes of millions of spectra. In parallel, the development of automated 

electron tomography5,6 and the foreseeable coalescence into automated EELS tomography 

might produce even larger EELS datasets. 

EELS is, therefore, at a point where it faces new challenges and prospects of great 

developments. How to efficiently extract relevant information from enormous datasets is, 

nonetheless, a question that has been extensively addressed in the big data, data mining, 

machine learning and other data-science (DS) fields. Clearly, the microscopy community can 

benefit from the methods developed in these areas. A prominent example is the widespread 

use of principal component analysis (PCA) in EELS3,7,8, either for reducing noise without loss of 

spatial resolution or for data exploration, i.e., the identification of different phases or 

compositions in a sample without thorough modelling of the spectra. This has enabled the 

mapping of energy loss near edge structure (ELNES) related properties from relatively noisy 

datasets7 or even 3D reconstruction of oxidation states at the nanoscale9.  

However, PCA comes with its own problems, such as artefacts from ignoring too many 

components, obtaining components not related to physical properties of the sample or, 

simply, components that do not represent the data adequately.  This stems from a 

fundamental flaw of applying PCA to EELS data. PCA solves the problem of finding an 

orthogonal coordinate system that maximizes the variance along its axes10. In this description 

it is implicitly assumed that the data treated follows a multivariate normal distribution11. 

However, this is not true in general for EEL SI.  

For this reason, usually PCA is combined with other data processing techniques, such as 

Independent Component Analysis (ICA) 12–14. Bayesian Linear Unmixing (BLU) must also be 

mentioned as an alternative method that has also been used in EELS8,15.  All these spectral 

decomposition methods have yielded excellent results with EELS. However, they rely on the 

ability of the scientist to make a physical interpretation of the output components, something 

that is not always easy.  

It must be kept in mind that the goal of EEL spectrum imaging and the related data analysis 

techniques is mapping the spatial distribution of properties reflected in the shape of individual 

EEL spectra. In many cases, this implies finding a way to segment a given SI into different 

regions, where each corresponds to a different material or has a different property. This can 

be thought of as classifying spectra into groups with similar characteristics, such as spectra 

with a peak at the same energy position or spectra showing two edges with a similar intensity 

ratio. Interestingly, the task of grouping sets of objects by similarity is a well-known problem in 

DS, named cluster analysis or, simply, clustering16–18.  

In general terms, clustering aims to classify a number of  objects, n , that have a number of 

attributes, p,  in groups such that objects in the same group have similar attributes amongst 

them and as different as possible from those in other groups19.  An EELS SI with X-by-Y pixels 

and E channels can be understood as a series of n=X·Y spectra (our objects), that have p=E 

attributes (the intensity value in each channel).  It is straightforward to transform any SI into 

an n·p matrix, where each individual spectrum is a row. This matrix is a suitable input for most 

data clustering algorithms. This can also be understood as representing each spectrum as a 

point in a p-dimensional space. In this context, the concept of similarity between two spectra 



is simply the distance between the two corresponding p-dimensional points in any desired 

metric. Henceforth, the term “distance” will be used in this context.   

In this frame, a clustering algorithm would label each of these points, or spectra, as pertaining 

to one cluster or another according to the distances between them. These labels can be 

assigned a colour and represented into shape of the original SI, resulting in an image where 

pixels of the same colour contain spectra from the same cluster. If applied successfully, the 

spectra clusters would segment the SI into regions with different chemical signatures, 

revealing the morphology and composition of the studied sample. 

There are a wide variety of clustering algorithms available. K-means, density based methods 

and agglomerative clustering algorithms are widely used17,19 and should be suitable for EELS. In 

this work, we limit the scope to hierarchical agglomerative clustering because of its speed and 

simplicity.  

Because of its usage throughout the article a brief description of the hierarchical clustering 

algorithm is mandatory. Assume initially there are n points in a p-dimensional space to study. 

Let us denote the coordinates for a given point in that space by xk (k = 1…p). In the first 

iteration of the algorithm, each of these points would be considered as a different cluster that 

contains one point. In successive iterations, the distances between each point are calculated as 
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, if the usual euclidean metric is used. Then the algorithm looks for the two points that belong 

to different clusters that are the closest. Let us name the distance between these points at 

iteration h by min(dij)
h. Once these points are found, the two clusters to which they belong are 

“linked” and in following iterations considered to be the same cluster. If n iterations are 

performed, all the points will be linked in one single cluster. The term “agglomerative 

clustering” describes this sequential linking of clusters, agglomerating points that are closer 

together, until there is only one cluster encompassing all the data19. But obtaining this final 

cluster does not provide any information or insight into the data. The way to identify 

significant clusters is to choose the iteration at which to stop the clustering process. A way to 

do this is to choose a distance threshold, so that the process is stopped at iteration h for which 

the condition min(dij)
h >dthreshold is fulfilled. Therefore, if the last l=n-h links would occur across 

distances higher than the threshold, l+1 clusters would be obtained. The way to choose an 

adequate value for dthreshold is to consider how min(dij) evolves with each iteration. Usually it 

will be small until a certain iteration from which it grows steeply.  Defining the min(dij) value  

before that significant increase will yield an adequate threshold.  

The by considering the spectra in a SI an as a collection of p-dimensional (p=E) points the 

algorithm can be easily applied to EELS data. However, clustering performed this way is merely 

a segmentation method and some spectral variance might still be present in a given cluster. 

Nonetheless, there is no hindrance to perform PCA on each cluster, obtaining scores and 



factors that represent the data on that region.  This would assure that all the information in a 

SI is being used.  

Another important factor to take into account is noise in the spectra. If it is too severe, 

different clusters may overlap, hampering the clustering process. Additionally, the 

computational time of the clustering algorithm would be proportional, among other factors, to 

the number of energy channels of the spectra. These issues can be simultaneously addressed 

by following a different clustering strategy. If PCA is initially carried out, series components 

and their corresponding score maps will be obtained. Let us assume that the first c 

components explain all the relevant variance of the SI and the rest are noise. Now, the SI can 

be represented with only c values for each pixel, each one corresponding to the weight of a 

component in that pixel.  This can also be understood in the clustering nomenclature as having 

n=X·Y objects each with c attributes (the scores of each PCA component). This great reduction 

in the number of attributes means that the clustering algorithm will now deal with a much 

smaller, mostly noise-free dataset, improving the computational time and accuracy in the 

cluster formation.  

In this work, the three proposed strategies to apply clustering to EEL SI are considered: 

performing data clustering on the raw data, performing PCA within data clusters, and finally, 

performing clustering on the score maps of an initial PCA decomposition.  The different 

methods will be tested out both with simulated and experimental EELS data from Fe3O4/Mn3O4 

core/shell nanoparticles, to study how they perform in different scenarios and what pre-

processing is necessary in each case. 

Results and Discussion 
 

Spectrum image simulation. 
To demonstrate the application of data clustering to EELS datasets an artificial EELS SI was 

generated. The 128x128 pixels SI contain a 1024 channel spectrum in each one, which reflect 

the composition of the model shown in Figure 1A. It was chosen to be a particle with four main 

regions: a FeO core of constant composition, a FeCoO region (as if it was a precipitate), an 

internal void and, finally, a shell with varying Fe/O ratio. The intensity of the iron edge in this 

shell increases linearly from the edge of the particle to the core region, while the oxygen edge 

intensity decreases in the same proportion. For each of these regions, the spectrum in each 

pixel was built as a linear model comprised of several factors. First, a power-law background 

was used. The corresponding hydrogenic cross-sections for each element were added, with 

intensity proportional to the chosen concentration of the element. Two gaussian curves were 

used to model the white lines for Fe (at 710 eV and 724eV) and Co (at 781 eV and 796 eV). 

Finally, gaussian and poissonian noise with a signal-to-noise ratio (SNR) of 10:1 were added, 

resulting in the spectra in figure 1C for the positions highlighted in figure 1B. 

In Figure 1D the intensity of the channel corresponding to an energy loss of 781 eV is plotted 

against the intensity of channel 710 eV, where each simulated spectrum is represented by a 

single point. The latter panel serves to discuss the spectral variance distribution within an SI. It 



is clear that the data form groups related to the different compositions present in the sample, 

even with the presence of noise, demonstrating that the EELS data does not follow a normal, 

PCA-suitable distribution. With this visualization, the adequacy of data clustering in EELS can 

be appreciated. 

Raw data clustering 

The simulated SI was transformed into a matrix of 128x128=16384 rows and 1024 columns 

according to the previously discussed data interpretation. The simulated data was then fed to 

the hierarchical agglomerative clustering algorithm. The code, implemented mainly with the 

Scipy20 and Hyperspy21 python libraries, is available as Supplementary information. 

 An interesting way to visualize the clustering process is to plot the so called linkage tree of the 

clustering process. The clusters are laid along the x-axis of the plot, sorted by an arbitrary id 

number. The y-axis represents distance as defined by (1). A vertical line arises from each 

cluster. These vertical lines are linked by horizontal lines at a height which corresponds to the 

min(dij) at which they were merged together in the clustering process. The result is a tree-like 

plot, denominated “dendogram plot”, which can be seen in figure 2, that gives an idea of the 

clustering evolution. 

 In figure 2, it is evident that the last three links occur across distances at least an order of 

magnitude greater than the previous ones and so they are discarded, yielding four clusters. 

The output of the algorithm is a vector of length 16384 which contains the labels of the cluster 

to which each spectrum pertains. This vector can be reshaped into the original image as shown 

in figure 1E, where pixels that contain spectra from a given cluster are displayed with the same 

colour. Here they are chosen to match those used in the model, green for the shell cluster, 

blue for the core cluster, red for the FeCoO region and black for the pixel cluster that 

represents the background. Clearly, the obtained clusters give an excellent representation of 

the data, recovering the initial composition of the simulated SI. Moreover, it is now possible to 

obtain the average spectrum of each cluster (Figure 1F), showing the chemical composition 

from each of the image segmented regions.   

Nevertheless, according to figure 1E, the procedure seems to have failed in identifying the 

existence of the composition gradient in the shell. This exemplifies a case where there are 

relevant differences within a spectra cluster. This exemple illustrates the relevance of an 

appropriated choice of the free parameter dthreshold to unveil all the significant information 

contained in the spectra.. Figure 3 shows the segmentation results with three different 

threshold values, revealing several clusters within the shell related to the linear variation of Fe 

and O. Still, discrete segmentation of a property that varies continuously is a suboptimal 

representation and an inherent limitation of this “only clustering” approach.  Nonetheless, this 

limitation can be overcome by performing PCA for each cluster. 

 Principal component analysis within a cluster. 

Instead of searching for an adequate threshold value that reveals the spectral variation in the 

outer shell of the particle, it is possible to apply PCA to the spectra that comprise this cluster. 



This is equivalent to performing PCA while masking the spectra for all pixels not pertaining to 

the cluster.  

The results of PCA applied to the Fe1-xO1+x shell of the simulated data (green cluster in Figure 

3A) are shown in Figure 4. The algorithm resolves that two main components explain the data, 

a mean iron oxide spectrum (Figure 4A) and a spectrum of positive oxygen signal and negative 

iron signal that varies in intensity along the shell (Figure 4B). The second factor demonstrates a 

varying Fe/O ratio in the shell, which is the origin of the problems in the segmentation of the 

shell seen in Figure 3. Whit this secondary analysis, the usage of all the information in the SI is 

assured, and no compositional changes are missed. 

Clustering PCA scores 

As promising as these results are, some additional considerations can be made. If the SNR of 

the simulated spectra decreased, the point groups in figure 1D would be more spread, and 

different clusters could overlap. This would obviously hinder the clustering process and is one 

of the reasons to perform clustering on PCA score maps rather than on the raw data.  

PCA of the simulated SI demonstrates that the data can be explained with only three 

components (Figure S1). This means that now the SI information can be represented by only 

three values per pixel, and that the clustering input matrix will have 16384 rows and three 

columns.  

The clustering result on these PCA scores is essentially the same as on the raw data, as seen in 

figure 5. However, now, less pixels in the core of the particle as mislabelled as shell, and the 

segmentation into two shells occurs at a slightly higher distance, meaning that the different 

clusters are more clearly segmented (dendogram tree in figure S2).  Note that a segmentation 

of the shell into several clusters is a better representation of the composition variation. 

Otherwise, the (wrong) idea that the shell is uniform might be apparent. Additionally, links of 

the dendogram tree at higher distances, more spaced, mean that the algorithm is able to 

distinguish the differences between clusters more easily. These results demonstrate a 

significant improvement with respect to the raw spectra clustering, and the benefits may be 

even more noticeable in SI with lower SNR.  

These are promising results, allowing identification of regions with different chemical 

composition and demand further testing with experimental data.  

Experimental Spectrum image. 
The three described strategies have also been tested in an experimental SI. The sample studied 

consisted in a Fe3O4/Mn3O4 core/shell nanoparticles. The nanoparticles were obtained using 

the seeded-growth method22,23 where the Mn oxide layer was grown on Fe3O4 11 nm seeds by 

hot injection24. An EEL SI of the nanoparticles was acquired in an aberration-corrected Nion 

UltraSTEM200 operated at 200 kV and equipped with a Gatan Enfina spectrometer (Gatan). 

The simultaneous scanning TEM dark field image of the SI can is shown in Figure 6A. Previous 

analysis of the nanoparticles was performed through ELNES modelling25. The obtained ELNES 

parameter maps revealed that the core of the nanoparticle was Fe3O4. Mn L3/L2 ratio maps 



revealed the surrounding manganese oxide to be Mn3O4 nanocrystals and in an external shell 

of MnO. 

Raw data clustering 

Even though the simulated example demonstrates how clustering can correctly identify 

regions of an SI with different compositions, some factors must be taken into account before 

moving on to experimental data. Most TEM samples have changes in thickness that would 

hinder clustering in terms of chemical composition. Regions with the same composition but 

different thicknesses would be at large distances because, even if the “shape” of the spectra is 

the same, the total intensity is very different. This effect is shown in figure 6. The clustering 

analysis of the raw data (figure 6B) yielded three different clusters, which fail to adequately 

represent the chemical composition of the nanoparticle24,25. 

To circumvent this problem, the normalization of each spectrum by the integrated intensity of 

all energy channels is proposed. After normalization, the three data clusters that are found 

(figure 6C) and their corresponding mean spectra (figure 6D) clearly segment the SI into 

manganese oxide (red), iron oxide (blue) and supporting grid (green).  This shows that 

automatic segmentation of real data into chemically distinct phases is possibly through spectra 

clustering. 

As promising as this result is, two things should be noted. Firstly, the average spectrum of the 

nanoparticle core has some manganese signal. Its origin is the three dimensional nature of the 

nanoparticle and that there is some manganese oxide above the iron core. The type of image 

segmentation that clustering provides cannot unmix these signals. Additionally, this first 

method fails to “see” different Mn oxidation states (the chosen clustering threshold is shown 

in Figure S3).   

Principal component analysis within a cluster 

If PCA is performed on the manganese oxide related data cluster, labelled in Figure 6C, the 

components shown in Figure 7 are obtained. Clearly, the PCA factors (Figure 7C) have Mn L 

edges with very different L3/L2 intensity ratios. The value found for the blue component is L3/L2 

≈ 2.2 and for the red component L3/L2 ≈ 4.3.  Actually, the components with this ELNES 

features26–28 directly map the Mn3O4 (Figure 7A) and MnO (Figure 7B) concentrations. It must 

be pointed out that such clear results are very hard to obtain straight away from PCA. In fact, 

PCA of the whole raw data set was performed (figure S4) and no physically meaningful 

components, with straightforward interpretation were obtained, demonstrating the virtues of 

the clustering plus PCA scheme. 

Clustering PCA scores 

Last but not least, the clustering on PCA scores strategy was tried out. From Figure S4A it 

follows that the first 6 components are enough to explain the data of the SI. Again 

normalization must be undertaken in order to get results relevant to chemical composition 

rather than just related to thickness variation. In this case, each score map was divided by its 

maximum value. Following by hierarchical clustering (final clustering tree in Figure S5), four 

spectra clusters were found. As can be seen in Figure 6, they correspond to the support 



membrane, iron oxide, and two different manganese oxides. The average spectra for each of 

these regions show manganese oxide spectra with different Mn L3/L2 intensity ratios, 

demonstrating the already known Mn3O4 – MnO structure of the crystals. Therefore, the fact 

that the PCA representation cuts a lot of the noise was critical to allow the segmentation of 

both oxidation states. 

Discussion 
The presented results show that data clustering is a suitable analysis tool for EELS data sets. It 

is able to identify regions of different composition without any prior assumption of the data. 

This is certainly an advantage over the mentioned spectra modelling, which is limited to well-

understood spectral features such as white lines. This advantage is shared with PCA and ICA.. 

ICA in particular is expected to yield physically meaningful components, but that is not always 

the case. In the present case ICA was applied to the data for completion, yielding the results in 

figure S6. Although some components can berelated to the different oxidation states of 

manganese and to the iron oxide core, a direct interpretation is not possible since all of them 

have non-physical features (negative edges, negative background, detector intensity steps…). 

Contrarily, clustering is bound to yield easily interpretable results since the averaged spectra 

from a cluster will always be physically meaningful.   

 However, as explained in the different sections, data clustering should be rather seen as a 

complementary tool. Spectra modelling could certainly be benefited by having an SI 

segmented and allowing different models to be used in different clusters. On the other hand, 

performing spectral decomposition techniques on segmented images has already been 

demonstrated to give good results29, but this segmentation is usually performed manually. 

Clustering can therefore be used as an automatic segmentation to be implemented in more 

challenging data sets or when consistency and automation is required. Lastly, the benefits of 

working with PCA plus clustering have already been demonstrated in Figures 4-5 and 7-8, 

namely, the obtaining of physically meaningful components, noise reduction and lack of 

missing information. 

Conclusions 
By means of data clustering, SI segmentation according to chemical composition is obtained 

for EEL spectra, even recovering ELNES information. The authors believe that the three 

different strategies presented here will enable the use of data clustering in a wide range of 

problems, allowing easy and fast EELS data exploration.  Importantly, it should be noted that 

this method is not limited to SI and could also be potentially used in EELS tomography in order 

to provide straightforward volume segmentation. The obtained results clearly show the 

usefulness and robustness of data clustering methods to deal with large EELS datasets.  
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Figure 1. A) Model used for the simulated spectrum image. B) The grey level in this panel is 

related to the sum of all the channels of the spectrum in each pixel. C) Spectra from the 

markers positions in B): in red a sample spectrum of the iron-cobalt oxide, in green an iron 

oxide spectrum from the outer iron oxide shell and in blue a spectrum from the central iron 

oxide. D) Intensity of the 781 eV channel against the intensity of the 710 channel, where each 

point corresponds to a spectrum. E) Results of data clustering: each pixel has been given a 

colour based on the cluster at which its spectrum belongs. F) Averaged, normalized spectra 

from each cluster. 



 

Figure 2. Dendogram plot for the last 20 hierarchical clustering links of the simulated data. 

Horizontal axis represents individual clusters, identified by an id number. A link is represented 

by a horizontal line that goes from one cluster id to another. The height at which the links form 

is the distance between the two linked clusters. Green and red  link trees occur below the 

chosen distance threshold and are considered as  

 

 

Figure 3. Clustering results of the simulated spectrum image with different distance 

thresholds. A) corresponds to a distance threshold of 5000 counts. B) corresponds to a 

distance threshold of 2500 counts. C) corresponds to a distance threshold of 1500 counts. This 

values correspond to the y-axis of figure 1. 

 



 

Figure 4. A) Score map from the first PCA component of the shell in the simulated spectrum 

image of Figure 1. B) Score map from the second PCA component of the shell in the simulated 

spectrum image of Figure 1. C) Factors of the corresponding score maps in panels A) and B).  

 

Figure 5. A) Clustering results on the  first three PCA scores from figure S2. Each color 

corresponds to a spectra cluster.  

 



 

Figure 6. A) High Angle Annular Dark Field image simultaneously acquired with the spectrum 

image for the Fe3O4/Mn3O4 core/shell nanoparticle. B) Clustering results of the spectrum 

image without normalization. Each color corresponds to a cluster. C) Clustering results of the 

spectrum image with intensity normalization. D) Averaged spectra from each cluster. 

 

Figure 7. A) Score map from the first PCA component of the manganese oxide shell of Figure 

6C. B) Score map from the second PCA component of the manganese oxide shell of Figure 6C. 

C) Factors of the corresponding score maps in panels A) and B).  



 

Figure 8. A) Clustering results on the  first six PCA scores from figure S4. Each color 

corresponds to a cluster. C) Clustering results of the spectrum image with intensity 

normalization. D) Averaged spectra from each cluster. 

 
 

 

 

 

Supplementary information 
 



 

Figure S1. PCA decomposition results of thesimulatedspectrum image. A) Normalized variance 

ratio of each PCA component from the SI of figure 1A. B)  The three first factors of the PCA 

decomposition. C-E) Score maps for each factor. Colour coded. 

 

Figure S2. Dendogram plot for the last 20 hierarchical clustering links of the PCA scores from 

the simulated data decomposition. Horizontal axis represents individual clusters, identified by 



an id number. A link is represented by ahorizontal line that goes from one cluster id to 

another. The height at which the links form is the distance between them. 

 

Figure S3. Dendogram plot for the last 20 hierarchical clustering links of the experimental 

spectrum image. Horizontal axis represents individual clusters, identified by an id number. A 

link is represented by ahorizontal line that goes from one cluster id to another. The height at 

which the links form is the distance between the two linked clusters. 



 



Figure S4. PCA decomposition results of the experimental spectrum image. A) Normalized 

variance ratio of each PCA component from the SI of figure 3A. B)  The six first factors of the 

PCA decomposition. C-H) Score maps for each factor. Colour coded. 

 

 

Figure S5. Dendogram plot for the last 20 hierarchical clustering links of the six first PCA scores 

from the experimental spectrum image. Horizontal axis represents individual clusters, 

identified by an id number. A link is represented by ahorizontal line that goes from one cluster 

id to another. The height at which the links form is the distance between the two linked 

clusters. 



 

Figure S6. ICA results using 6 components an the default settings of the Hyperspy toolbox. 

Code Snippets 
Agglomerative hierarchical clustering of a spectrum image. 

import hyperspy.api as hs 

from scipy.cluster.hierarchy import linkage, fcluster 

s = hs.load('SI.hdf5') 



 

sn=s.deepcopy() 

sn.data/= np.dstack([s.data.sum(-1)]*s.data.shape[-1]) #normalized image 

 

sn.unfold() 

X = sn.data #n by p matrix  

sn.fold() 

Z = linkage(X) # Z is the clustering tree object. 

labels = fcluster(Z,6000,criterion='distance') # labels is a vector that assigns a number to each  

#spectre according to which cluster they belong 

plt.imshow(labels.reshape(sn.data.shape[:-1])) #show as an image 

Clustering on PCA score maps. 

import hyperspy.api as hs 

from scipy.cluster.hierarchy import linkage, fcluster 

s = hs.load('SI.hdf5') 

s.decomposition() # Perform PCA. 

scores= s.get_decomposition_loadings()[:n] # Take  score maps of first n components. 

X=np.rollaxis(scores.unfold().data , 1) 

for i in range(n): 

    X[:,i]/=X[:,i].max()  # normalization 

Z = linkage(X,) # Z is the clustering tree object. 

labels = fcluster(Z,distance,criterion='distance') # labels is a vector that assigns a number to 

each  #spectre according to which cluster they belong 

plt.imshow(labels.reshape(s.data.shape[:-1])) #show as an image 

 

PCA on clusters. 

import hyperspy.api as hs 

from scipy.cluster.hierarchy import linkage, fcluster 

results=[] 

for i in set(labels): # labels obtained from a previous clustering method 

  s.decomposition (navigation_mask=(labels!=i))) #do PCA for each cluster. 



   results.append(  s.deepcopy()) 

   s.plot_decomposition_results() 


