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by Tom ROLANDUS HAGEDOORN

Data privacy has been gaining considerable momentum in the recent years. The
combination of numerous data breaches with the increasing interest for data sharing
is pushing policy makers to impose stronger regulations to protect user data. In the
E.U, the GDPR, in place since since May 2018, is forcing countless small companies
to de-identify their datasets. Numerous privacy policies developed in the last two
decades along with several tools are available for doing so. However, both the
policies and the tools are relatively complex and require the user to have strong
foundations in data privacy.

In this paper, I describe the development of GR2ASP, a tool aimed at guiding
users through de-identifying their dataset in an intuitive manner. To do so, the
user is shielded from almost all the complexity inherent to data privacy, and inter-
acts with simplified notions. Our tool differentiates itself from state-of-the-art sim-
ilar tools by providing explainable recommendations in an intuitive interface, and
having a human-in-the-loop approach towards data de-identification. We therefore
think that it represents a considerable improvement over currently available tools,
and we expect it to be frequently used, especially in the context of the SMOOTH
project for which it has been commissioned.
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Chapter 1

Introduction

In recent years, the amount of data collected about users has grown significantly,
and this is likely to continue (Sagiroglu and Sinanc, 2013). Despite this unprece-
dented growth, several aspects of data adoption have been slow to catch up. Data
sharing, although increasingly important for reasons such as for collaboration and
openness, has seen only a moderate increase (Tenopir et al., 2011; Ross, Lehman,
and Gross, 2012). This can be linked, to a great extend, to the lack of knowledge
or guidelines for handling the risk inherent to releasing or sharing data. Cases
where data releases have led to privacy breaches are abundant (Berg, 2008; Wjst,
2010; Christen, 2012). Furthermore, even without data releases, numerous privacy
breaches have occurred through successful attacks, such as the notorious cases of
Yahoo and Equifax (Thielman, 2016; Gressin, 2017). This has helped raising the
public awareness of the risk related to the ubiquity of data which, in combination
with the pressure of privacy advocates, has led to stronger data privacy regulations.
In the E.U, the General Data Protection Regulation (GDPR), enforced since May
2018, marks the latest governmental attempt at protecting and regulating user
data. These regulations clearly define concepts such as user consent, sensitive
attributes as well as defining the hefty fines incurred for breaching these regulations
(Tankard, 2016). However, they provide minimal information on how to de-identify
a dataset, although they advice the data curators to do so. Naive approaches based
on removing attributes that directly identify a user have proven to be insufficient
at assuring privacy protection (Bélanger and Crossler, 2011). Therefore, privacy
policies and tools for applying them have been developed, mainly by the research
community, to establish frameworks for data de-identification. These policies and
tools have, however, never been able to gain a wide audience, for they require a
considerable amount of data privacy knowledge in order to use them. The current
situation represents thus a discrepancy between strict regulations applying to a
increasingly wide audience and a lack of means to take actions in order to comply
with these regulations.

To bridge this gap, Eurecat is currently working on a project, named SMOOTH,
aimed at providing an intuitive GDPR compliance platform. The aim of this thesis
is to develop one of the modules of this platform, namely the one specializing in
analyzing the re-identification risk of datasets. We have conveniently named our
tool GR2ASP, for Guided Re-identification Risk Analysis Platform, to convey the
intuitiveness of it. In this paper I will develop the implementation of this tool
and demonstrate that its features go well beyond the imposed requirements of the
project. Hereinafter, the subject of this paper will be solely GR2ASP, and not the
SMOOTH project, unless specified otherwise.

The remainder of this chapter elaborates on the context and motivations that
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led to the development of GR2ASP, with the objectives that have shaped it, as well
as comparing it with the current state-of-the-art. The second chapter provides the
reader with a detailed background on the concepts of data privacy that are, directly
or indirectly, used in our tool. Planning is discussed in chapter three, where the
objectives will be thoroughly explained and the timeline of the project will be dis-
cussed. The fourth chapter demonstrates the capabilities of GR2ASP through illus-
trative screenshots that allow the reader to see how the objectives are reflected in the
interface. In the fifth chapter, the whole development process is detailed. The im-
plementation of the platform in its final version is discussed, as well as changes that
occurred during the development, either due to optimization or to user feedback.
Finally, the last chapter summarizes what has been achieved and briefly mentions
potential future improvements.

1.1 Context and motivations

Recently, as mentioned above, the landscape of data privacy has evolved drastically.
Public awareness of the potential risks related to data privacy has peaked, and
stricter data protection regulations are now enforced in the European Union.
These regulations apply to the ever increasing range of data controllers, and are
associated with hefty fines for non-compliance. Data having become ubiquitous, an
increasing amount of individuals with a lack of extensive data privacy knowledge
find themselves in a position of data controller, without fully understanding how
to take action to comply with the relatively complex new regulations. Therefore,
there is now a pressing need to develop tools that allow laymen to easily comply
without needing training in the field of data privacy. Hence, with this purpose in
mind, Eurecat is currently implementing such a tool in partnership with other E.U
institutions.

GDRP. The General Data Protection Regulation (GDPR) is a wide-ranging
legislation introduced by the European Union (EU) and enforceable since May 2018.
It aims at standardizing data protection and giving users greater control over their
personal information. It applies to all organizations operating inside the EU that
interact with personal data in almost any way. Furthermore, the regulations are
applicable both for the data controllers, who decide how the data will be processed,
as for the data processors, who do the actual processing (Voigt and Bussche, 2017).
The GDPR considers personal data to be any information relating to an identifiable
natural person. This encompasses identifying, quasi-identifying and sensitive
attributes as is explained in the Section 2.1.

SMOOTH Platform. In the EU, it is estimated that 93% of enterprises have
less than 10 employees (Lukács, 2005). Most of these Micro Enterprises (MEnts)
fall under the GDPR, however, they often lack the expertise to comply with these
regulations (Sirur, Nurse, and Webb, 2018). The SMOOTH platform is a project
proposed by Eurecat, in collaboration with eleven European institutions and
organizations, which got accepted for the Horizon 2020 funding program of the EU.
It aims at providing an intuitive and unified cloud platform that assists MEnts to
adopt and comply with the GDPR, as well as creating awareness of the importance
of being compliant. The project is made up of several tasks, stretching across
departments and institutions, which interact with each other and thus require
significant coordination. This paper focuses on module 4, which aims at analysing
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the re-identification risk of datasets. From the previous module it receives the
dataset as well as additional information, as is described in Chapter 3, and it will
pass on a concise risk analysis that will be displayed in the summary at the end of
the platform. However, as mentioned above, other parts of the platform are outside
the scope of this paper.

1.2 Constraints

Before defining the objectives of our tool, it is important that the user should be
aware of the restrictions and obligations related to the project. These mainly result
from the involvement of numerous stakeholders, requiring rigorous coordination,
along with the sensitivity of the subject at hand, namely data privacy.

Time and Collaboration. The deadline of this thesis is end of August, whereas
the deadline for the module deliverable is several months later. This implies that
the timeline for the development of certain aspects of the module by collaborators
does not necessarily coincide with my timeline for this thesis. A significant part of
the front-end development is done by a colleague, who also has to deal with other
modules and projects, and thus adds to the coordination complexity. Furthermore,
although there is considerable freedom within this module for me to decide on
aspects of the platform, certain decisions have to be validated by collaborators from
different institutions with whom we do not meet weekly. Finally, some technical
choices have to be streamlined with the ones used in other modules, such as the
rest-API and the front-end environment. Adapting to these methods that are new to
me, also requires extra time.

Legal. The legal department of Eurecat is in the process of trying to get MEnts to
share their data for this project. However this is not trivial, as doing so with unpro-
tected data is legally difficult given that the GDPR applies even for the development
of a tool aiming at facilitating the compliance of it. This means that the platform
has not been tested on real data from the MEnts, but rather on synthetic or open
data. Furthermore, strong restrictions apply also to sharing the code of GR2ASP. Al-
though the back-end is implemented by myself, the front-end is partly developed by
a colleague, which makes it intricate to share the code for the whole tool. The plat-
form being developed for the E.U adds yet another layer of complexity, and does not
allow us, currently, to make the code public.

1.3 Objectives

As explained above, there is currently a lack of understanding of the data protection
notions amongst the individuals to which they apply. The objective of our tool is
not to higher the level of the users’ understanding of the intricate notions of privacy
policies, at least no more than the strict minimum. Rather, we want to lower the bar-
riers for de-identifying data through an intuitive tool that shields the user from most
of the inherent complexity. The minimal requirements and objectives of GR2ASP are
defined by the SMOOTH project, namely to provide an easy to use re-identification
risk analysis platform. However, we want to go well beyond and make GR2ASP
an innovative tool that distinguishes itself from similar state-of-the-art tools. To
do so, it will guide the user through the process of analysing privacy risks in his
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dataset and applying transformations to overcome these risks. Our tool will be
developed around a few unique key features that will make it stand out. Put briefly,
it provides explainable recommendations, incorporating the human-in-the-loop
approach within a parameterless framework. In similar tools, the impact of data
transformations on the privacy risk are unclear and not highlighted. We overcome
this by providing atomic recommendations, with their respective risk measures,
which clearly show to the user the relationship between any transformation and
its impact on the privacy risk. To facilitate the decision making process for the
user as to which recommendation to apply, our tool illustrates the quality of the
measures through intuitive visualizations. Having the human-in-the-loop is an
inherent feature deriving from our approach of providing recommendations, but it
is simultaneously one of our most important novelties. Similar tools have the user
define the parameters initially, then de-identify the data and only finally show the
risk analysis. This gives the user little control over what transformations are applied
within the constraints provided by the parameters. To overcome this, GR2ASP
functions in an iterative manner, which means that when a recommendation is
applied, new one are provided that build on top of the previously applied ones.
The parameterless feature of our tool derives somewhat from the above described
features and is very much in line with our goal of providing an intuitive tool for
any individual that does not have extensive knowledge of data privacy concepts.
The recommendations along with their risk measures and visualizations allow the
user to easily select transformations that are most aligned with his purposes for the
data. Through the recommendations, the user indirectly sets the parameters of the
underlying privacy policies, as these represent the atomic transformations on which
the policies rely.

Furthermore, GR2ASP should function both as a module of the SMOOTH plat-
form and as a standalone application. As mentioned above, within the framework
of the project, the tool receives resources from the previous module. Comprised in
these are the dataset, the definition of the attributes as well as the generalization hi-
erarchies, which will be explained in the next Chapter. Therefore, when being used
on its own, our tool has to overcome the fact that these resources are not provided.
It will thus include an interface for uploading the data, as well as methods for auto-
matically creating the attribute generalization hierarchies. Regarding the type of the
attributes, we will rely on assumptions that are fairly realistic and only minimally
restrictive, as will be explained in Chapter 5.

1.4 State-of-the-art

I omit commercial software from the scope of similar tools, as they tend to provide
little information about their functioning (Jain, Gyanchandani, and Khare, 2016).
There are numerous non-commercial de-identification tools, such as the UTD
Anonymization Toolbox, Cornell Anonymization Toolkit, TIAMAT, SECRETA, and
µArgus, to name a few (Prasser and Kohlmayer, 2015). However, they all have
certain drawbacks such as lack of interface, lack of features, little focus on risk
analysis, too much complexity, and scarce documentation.

Although each of these tools has its own benefits, the leading state-of-the-art
de-identification tool is the one developed by Fabian Prasser and his colleagues at
the Technical University of Munich (TUM), namely the ARX Data Anonymization
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Tool (Prasser et al., 2014). Its main goal is to de-identify medical data, however it
performs well on different kinds of data as well. Furthermore, it is open source and
thus we can, and will, use it as a library for implementing GR2ASP. Since its creation
in 2014, it has been regularly updated with new features issue from research of the
same authors (Prasser et Al. 2016; 2017b; 2017a; 2019; Prasser, Kohlmayer, and
Kuhn, 2016; Bild, Kuhn, and Prasser, 2018) and has been used in several projects
by different authors (Bergeat et al., 2014; Gkoulalas-Divanis and Loukides, 2015;
Kondylakis et al., 2018). ARX is an extensive de-identification and risk analysis
tool, providing the user with numerous options of privacy policies, risk and utility
measures, as well as a long list of other related functions. Most of the data privacy
concepts available in literature are implemented in this tool, which makes it one
most apt options for researchers wanting great flexibility for de-identifying their
data and analyzing the risks.
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Chapter 2

Background on Data Privacy

The intuitive display of GR2ASP, along with the relatively straightforward metrics
displayed to the user, might not make it obvious that it relies on strong theoretical
foundations of data privacy. Indeed, as is mentioned when explaining the parame-
terless feature of our tool, the user indirectly influences the parameters of the privacy
policies through interactions with intuitive notions. Therefore, the complexity inher-
ent to data privacy is only hidden from the user, but is still there in the background.
Furthermore, the metrics with which the user interacts have been derived and com-
pared to more advanced ones. Hence, this chapter details the concepts directly used
in our tool, as well as some that have been considered and that played a role in
shaping our tool. This provides the reader with an understanding of what has been
implemented, in perspective with what the options are. For ease of lecture and com-
prehension, additional information regarding the purpose of certain notions within
GR2ASP is provided here rather than in Chapter 5, where their implementation is
detailed.

2.1 Attribute Types

For data privacy, not all attributes are considered equally. Four types are defined
with respect to how much information they provide to re-identify a record, as well
as the potential danger linked with inferring them from a record. Therefore, it is
important to assign the type of each attribute in order for the given privacy policy
to hold and for the user’s data to be protected.

Identifiers. These attributes allow to uniquely identify individuals. Common
examples are names, national identification numbers and phone numbers. They
provide the highest risk of re-identification and should be removed as first step to-
wards de-identifying a dataset. It has often been assumed that removing identifiers
suffices in protecting data privacy, however numerous data breaches, such as the
AOL search breach, have proven this assumption to be wrong (Bingisser, 2008).
Identifying attributes are not taken into account by privacy policies, as it is assumed
that they are, or will be, suppressed.

Quasi-identifiers. Attributes that can be combined together in order to po-
tentially identify individuals in a database are considered Quasi-Identifiers (QI).
Their definition does not imply that they should necessarily allow to uniquely
identify an individual, but rather that they provide additional information which
can distinguish one record from another. Furthermore, for an attribute to be a QI
depends on the context as well as on the possibility of an attacker knowing or
inferring this information from a different source. A few common examples are Zip
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codes, Date of Birth and Nationality. In terms of re-identification risk, if there is
ambiguity, it is considered safer to define the attribute as being a QI. For example,
the height of a person , although not considered to be known by an attacker in
most contexts, could be inferred with a certain degree of accuracy from a picture
containing an item of which the size is known.

Sensitive attributes. In general, an attribute to which the user does not want
to be linked is considered to be a Sensitive Attribute (SA) . However, this depends
on the context and is sometimes open to discussion. The GDPR defines that data
revealing racial or ethnic origin, political opinions, religious beliefs or trade union
membership as well as genetic, biometric and health data are considered sensitive.
Although these attributes should receive the highest level of protection, as they
are potentially the most harming ones, they are generally not transformed by the
privacy policies (Ghinita, Kalnis, and Tao, 2010). The reasoning behind this is that
they should not be contained in any identifying dataset, and thus cannot be used
for a linkage attack as explained in Section 2.2. Furthermore, keeping SAs despite
the potentially high risk implies that they are important and should thus stay in
their original form. Nevertheless, as is explained in Section 2.3, some privacy
policies offer indirectly a certain level of protection for the SAs, while others are
defined specifically for this purpose. It is important to note that, given the GDPR’s
especially restrictive policy towards being allowed to process SAs, we expect most
use cases of GR2ASP to contain only QIs.

Insensitive attributes. Attributes which do not provide any information that
could be used to re-identify an individual nor any sensitive information is defined
as being insensitive and will therefore not be considered or affected by the privacy
policies. It is not always trivial to know what information can be inferred from an
attribute and for the sake of privacy risk, precaution should prevail.

2.2 Disclosures

Re-identification, or identity disclosure, is selected as being the main focus of our
tool. This is partly because of the requirements of the SMOOTH project, but mainly
because if an individual is identified in a dataset, then his entire record is considered
to be known, which is the worst breach that he could be affected by. From the
different privacy threats, we only consider the ones that assume the attacker to be
in possession of the dataset as well as being in possession of an identifying dataset
which he uses to try to link the records (Heeney et al., 2011). An identifying dataset
is one that contains Identifiers as well as Quasi Identifiers used for linking records.
It is irrelevant for our tool to know whether the attacker obtained the datasets
legally or illegally, nor can it be known how many QIs they share. Therefore, it is
common practice to assume the worst case scenario (Bayardo and Agrawal, 2005).
The disclosures relevant to this framework are the ones defined depending on what
knowledge can be gained from a successful linkage of records. For an individual,
this information can be either membership of the dataset, attributes of his record or
his whole record.

Membership disclosure. This type of disclosure occurs when an attacker is able
to determine whether an individual is contained or not in a dataset. It is a precursor
to different kind of disclosures, and can in itself already incur a privacy risk. For
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example being linked to a dataset containing only cancer patients allows an attacker
to infer that the individual has or has had cancer. Given the framework defined by
the SMOOTH project, our tool always assumes that such a disclosure has already
occurred.

Attribute disclosure. When an attacker can infer sensitive attributes it is known
as a attribute disclosure. Not all datasets have sensitive attributes, but when they
do, they are by definition the most sensitive ones, and should receive the greatest
protection. When an attacker can infer attributes it implies that a membership
disclosure has also occurred, however it does not imply re-identification as will
be explained in Section 2.3. Although this type of disclosure is not the main focus
of our tool, we will describe and implement two privacy policies that offer strong
protection against it.

Identity disclosure (re-identification). This is the gravest kind of disclosure
and also the primary one addressed by regulations, (Schwartz, 1994). It means
that an attacker is able to link an individual to a specific record, which implies that
a membership disclosure has occurred and that all sensitive attributes are prone
to disclosure as well. This is also the primary type of disclosure targeted by our
tool. Indeed, as is implied in the name itself, GR2ASP is built around the notion of
analysing and protecting against re-identification risk.

It is important to note that the above described disclosures represent the threats
that can be achieved through a successful linkage attack. Under the GDPR, an attack
is considered successful only if it offers 100% certainty. However, in the data privacy
research community it is considered a threat for an attacker to be able to even come
closer to any kind of disclosure (Li, Li, and Venkatasubramanian, 2007). This means
that, for example, if through a data release an attacker’s certainty that an individual
has cancer goes from 1% to 10%, this already represents a certain level of threat. Al-
though quantifiable, it is difficult to include this notion in regulations or even in our
tool, as a data release should inherently provide information for it to be purposeful.
Furthermore, there are numerous threats that can lead to disclosures, or at least to
getting closer to one, and some are intrinsically difficult to protect against in our sce-
nario. For example, Wong et al. argue that an attacker can improve his inferences by
knowing which privacy policies are applied (Wong et al., 2006). Some threats have
to be acknowledged and weighted against the value of releasing the data, while oth-
ers have led to the definition of new privacy policies, as will be explained in Section
2.3. Hence, the reader and the user of our tool should be aware that compliance
with the GDRP does not necessarily imply that the data privacy risks are completely
negligible.

2.3 Privacy Policies

A naive approach to minimizing re-identification risk is to only remove the Identi-
fiers. However, the above mentioned data breaches have clearly showed that this
provides insufficient protection. One such data breach was intentionally achieved
by Sweeney as a proof of concept (2000). In his paper, he observes that, using the
1990 U.S. Census summary data, 87% of the population can be uniquely identified
using the attributes ZIP code, gender and date of birth, which are thus QIs. Given
that the data does not contain sensitive information, the identifying attributes have
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not been removed. This type of dataset that contains identifiers and QIs but not
SAs is referred to, in the field of data privacy, as an identifying dataset and is
used to achieve linkage attacks. To prove the potential privacy risk related to his
observation, he tried to link this database with a medical one that was available to
him. Using the three QIs, also contained in the medical dataset, Sweeney managed
to successfully link at least one individual, and thus to infer sensitive information
about him.

This proof of concept attack led Sweeney and his colleague Samarati to define
the notion of k-anonymity, which has obtained wide recognition in the field of
computer science and has been applied to numerous scenarios (Gedik and Liu,
2007;Campan and Truta, 2008). Several privacy policies have build on top it and are
considered to provide better privacy protection and to a broader range of attacks
(LeFevre, DeWitt, and Ramakrishnan, 2005;LeFevre, DeWitt, and Ramakrishnan,
2006;Wong et al., 2006). However, due considerably to its intuitiveness, it is still
widely used despite the growing number of alternatives. This is also the principal
reason that it is the first privacy policy implemented in GR2ASP. Although indirectly
providing a certain level of protection against attribute disclosure, k-anonymity
does not give any guarantee for doing so. Therefore, when the dataset contains SAs,
our tool enforces l-diversity and t-closeness, which are stricter notions that focus on
attribute disclosure.

Transformations. The policies described in this paper rely on applying, either
jointly or separately, two types of data transformations, namely record suppression
and attribute generalization (LeFevre, DeWitt, and Ramakrishnan, 2005). The first
technique consists of suppressing records, which is simple and fast but implies that
the entire value of the record is lost. The second, and more complex, techniques gen-
eralizes an attribute to a higher level. To do so, a generalization hierarchy is used
that defines, for every value of the attribute, the value that generalizes it, and this
for an arbitrary number of levels. Figure 2.1 show a generalization hierarchy for the
numerical attribute Age. In this example, level 0 shows the real age, level 1 defines
bins of size 20, level 2 defines bins of size 40 by combining bins of the previous level,
and in the last level all values are put in one bin. The highest level of a generalization
hierarchy is always denote by "*" and is equivalent to removing the attribute. From
this example one can see that generalization hierarchies for a numerical attribute is
fairly intuitive, and creating these does not require to understand the meaning of the
attribute. It is common to see attributes such Zipcode be generalized by replacing the
last digits with "*"s, as can be seen in Figure 2.2. However, this is simply a special
case of the above described binning technique. For example, if we remove one digit
per generalization level, then the bins will be of size 10level . Figure 2.2 shows an
small generalization hierarchy for the categorical attribute Nationality, which I cre-
ated based on the data shown in Table 2.1. The values of level 0 are omitted as they
are too numerous and are assumed to be known by the reader. From this figure one
can infer that to create such a generalization hierarchy for a categorical attribute, the
semantic meaning of the values has to be known. Even for this minimal example, a
minimum level of geographical knowledge is required. Furthermore, these hierar-
chies are highly arbitrary, both in the number of levels defined and in the groupings
made, unless a common reference is used such as, for example, the taxonomic clas-
sification hierarchy of animals. For countries, numerous groupings can be made
according to political, economical or geographical criteria for example. The creation
of generalization hierarchies, for numerical and categorical attributes, will be further



2.3. Privacy Policies 11

FIGURE 2.1: Generalization hierarchy for the numerical attribute Age

FIGURE 2.2: Generalization hierarchy for the categorical attribute Na-
tionality

explained in Chapter 5, while in the meantime they are assumed to be provided to
GR2ASP. It is important to note that attribute generalizations can be either global or
local (He and Naughton, 2009). In the first case, an attribute is generalized to the
same level for all the records, whereas in the latter case, the level of generalization
can be different from one record to another. However, using local generalizations
is not possible within the framework of our tool and therefore, hereinafter, we only
consider global generalizations.

Table 2.1 shows an example dataset of medical data that will be used to illustrate
the three different privacy policies. Indeed, for each policy a transformed version of
the table will be displayed and will subsequently be used to illustrate the privacy
flaw that has led next policy to be stricter.

2.3.1 k-anonymity

The intuitive idea of hiding in a crowd is the core concept of k-anonymity. If an indi-
vidual is the only one having a certain set of features, then it is easy to pick him out.
However, if the individual is amongst a crowd all sharing the same features, he be-
comes indistinguishable. More formally, a database is said to be k-anonymous, if for
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Quasi-Identifiers Sensitive Attributes

Zipcode Age Nationality Salary Disease

1 47692 63 Belgium 4K Malaria
2 47615 41 USA 7K Syphilis
3 47627 22 Chile 10K AIDS
4 47693 70 Spain 5K Cancer
5 47691 68 France 3K Cancer
6 47629 27 Argentina 9K AIDS
7 47610 56 Mexico 8K Chlamydia
8 47612 42 Canada 11K Cancer
9 47626 21 Peru 6k AIDS

TABLE 2.1: Original table of patients’ records

Quasi-Identifiers Sensitive Attributes

Zipcode Age Nationality Salary Disease

EC1
3 4762* [20-39[ S. America 10K AIDS
6 4762* [20-39[ S. America 9K AIDS
9 4762* [20-39[ S. America 6k AIDS

EC2
1 4769* [60-79[ W. Europe 4K Malaria
4 4769* [60-79[ W. Europe 5K Cancer
5 4769* [60-79[ W. Europe 3K Cancer

EC3
2 4761* [40-59[ N. America 7K Syphilis
7 4761* [40-59[ N. America 8K Chlamydia
8 4761* [40-59[ N. America 11K Cancer

TABLE 2.2: 3-anonymous version of Table 2.1

every record there exists at least k− 1 other records having the same combination of
QIs (Sweeney, 2002). Records that are identical for all their QIs are said to be in the
same Equivalence Class (EC). Therefore, a dataset can also, alternatively, be defined
as k-anonymous if its smallest EC is of size k. Table 2.2 displays a 3-anonymous
version of Table 2.1. In practice, records of a same EC are not grouped together,
nor are the indices of the records shown. This is done, in this table and in the sub-
sequent ones, only for illustrative and comprehension purposes. One can see that,
in this de-identified version of the data, an attacker in possession of an identifying
dataset and with the knowledge that a specific individual is contained in the dataset,
is not able to achieve, with certainty, an identity disclosure. Indeed, for every record
there are at least 2 other records having identical values for Zipcode, Age, and Nation-
ality. Although providing indirectly some protection against attribute disclosure,
k-anonymity does not give any guarantees for doing so. The reason for this is that,
it does not take into account the SAs, and a trivial example of this lack of protection
can be seen in the same table. If an attacker knows the QIs of an individual in EC1,
he can directly infer that he has AIDS, and thus successfully achieve an attribute
disclosure.
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2.3.2 l-diversity

As mentioned above, the fact that k-anonymity does not take into account the
SAs leads to it providing relatively poor protection against attribute disclosure. In
EC1 of Table 2.2, the Disease can be inferred due to its lack of diversity. From this
observation, Machanavajjhala, et al. define l-diversity, a new privacy notion that
builds on top of k-anonymity and also protects against this type of attacks (2006).
Although they provide several different definitions for their policy, such as Distinct
l-diversity, Entropy l-diversity, and Recursive (c, l)-diversity, we will focus only on
the first one. The reason for this is that Distinct l-diversity is the only definition
that is highly intuitive, which is an important guideline of our tool. Furthermore,
both alternative definitions are still prone to the attacks that have led to defining a
stricter policy, t-closeness, which we describe below.

Distinct l-diversity. The intuition behind Distinct l-diversity is opposite to
k-anonymity. Indeed, the idea is to protect the SA of an individual by putting him
in a group that has at least more than one level for that attribute. More formally, a
table is said to be distinct l-diverse if every EC contains at least l distinct values for
each sensitive attribute. (Machanavajjhala et al., 2006). Table 2.4 shows a distinct
2-diverse version of the Table 2.1. It is clear that the transformed version of the data
is not prone to the previously described attack as every EC has at least 2 values for
its SAs. For many scenarios, l-diversity with l = 2 provides sufficient protection
against attribute disclosure (Zhou and Pei, 2011). However, this is not always the
case and the policy still suffers from several drawbacks as are explained below.

Small l value. If the chosen value for l is smaller than the cardinality of the
sensitive attribute, then not every value of the SA will be contained in every EC. If
an individual can be linked to an EC that does not contain all values of the SA, then
he can be targeted by a Negative Disclosure, which means that the attacker can rule
out certain values of the SA of that individual. This can be seen in any of the ECs of
Table 2.4, for example one can infer that an individual in EC3 does not have cancer.
Negative disclosures are not always dangerous, but in some cases they can be.

Background knowledge. An attacker might have background knowledge about
an individual from whom he is trying to disclose a SA. This information could
allow him to rule out certain values of the SA until there is only one option left. For
example in EC2 of Table 2.4, if the attacker knows that his target individual has not
travelled recently, he can rule out Malaria with a high degree of certainty, and can
thus infer that the individual has cancer.

Multi-attribute l-diversity. To successfully achieve attribute disclosure in a dis-
tinct l-diverse EC with only one SA, an attacker needs to rule out l − 1 values of the
SA. However, this does not necessarily hold when distinct l-diversity is applied to a
table with multiple SAs. Table 2.3 shows an EC that is distinct 3-diverse for both its
SAs. In this example, if an attacker knows that an individual that is contained in the
EC has not travelled recently, he can rule out the records having Malaria and can thus
infer that the individual is Buddhist. To ensure that this cannot occur, Machanava-
jjhala, et al. argue that when applying distinct l-diversity to a SA, the other SAs have
to be considered as being QIs. However, this leads to a great loss of information as
it requires considerable attribute generalization and record suppression, hence it is
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Quasi-Identifiers Sensitive Attributes

Zipcode Age Nationality Religion Disease

4762* [20-39[ S. America Christian Malaria
4762* [20-39[ S. America Muslim Malaria
4762* [20-39[ S. America Buddhist Cancer
4762* [20-39[ S. America Buddhist AIDS

TABLE 2.3: Equivalence Class that is Distinct 3-diverse for both the
sensitive attributes Religion and Disease

Quasi-Identifiers Sensitive Attributes

Zipcode Age Nationality Salary Disease

EC1
3 476** [0-45[ America 10K AIDS
6 476** [0-45[ America 9K AIDS
8 476** [0-45[ America 11K Cancer

EC2
1 476** [60-90[ Europe 4K Malaria
4 476** [60-90[ Europe 5K Cancer
5 476** [60-90[ Europe 3K Cancer

EC3
2 476** [0-45[ America 7K Syphilis
7 476** [0-45[ America 8K Chlamydia
9 476** [0-45[ America 6k AIDS

TABLE 2.4: 2-diverse version of Table 2.1

not used in practice (Machanavajjhala et al., 2006).

2.3.3 t-closeness

Despite the great improvement in protection against attribute disclosure provided
by l-diversity, Li et Al. argue that the policy has a few shortcomings which could be
fixed (2007).

Firstly, they argue that the policy is unnecessary and difficult to apply in certain
scenarios. In their given example, the unique SA is the positive or negative outcome
of a medical test. Not considering the difference in sensitivity between the two
values requires every EC of a distinct 2-diverse table to contain both outcomes. If
only 1% of the table has a positive outcome, then there can be at most number o f
records × 1% ECs, which in turn leads to a considerable loss in information. For
example, if there are 100 positives results in a dataset with 10,000 records, then
there have to be exactly 100 ECs each of size 100 to fit the distinct 2-diversity policy,
which is relatively restrictive.

Secondly, they posit that if the distribution of a SA within an EC differs consid-
erably from the distribution of the SA in the whole table, it can allow an attacker
to gain information. While using the same scenario as in the previous example, if
an EC has as many positive as negative outcomes, an attacker would consider any
individual in it to be 50% positive instead of the initial 1%. This means that if an
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attacker only knows the distribution of outcome in the whole table, then he con-
siders that any individual only has a probability 0.1 of having a positive outcome.
However, if the knows the individual to be in an EC were half the outcomes are
positive, he will then consider the individual to have a 0.5 probability of having a
positive outcome. This example could be pushed further while still keeping distinct
2-diversity, which shows the potential for statistically inferring a sensitive attribute.

Their last and most important argument stems from the fact that l-diversity does
not consider the semantic closeness of the values of a SA. This implies that although
an EC is distinct l-diverse, the values of the SA might have similar meanings. For
example, in Table 2.4, which is distinct 2-diverse, an attacker can infer that all
individuals in EC2 have a relatively low income and that all individuals in EC3
have a STI, which represents a serious privacy breach.

To overcome these limitations, Li et Al. developed the notion of t-closeness
(2007). The main idea of this privacy policy, although less intuitive than for the two
previous ones, is to protect the SA of an individual by putting him in a group of
individuals who’s values for the SA resemble that of the population. Formulated
differently, we do not want the values of the SA in an EC to deviate too much
from the distribution, nor to be too similar to each other. More formally, the
definition of t-closeness states that in every EC the distance between the distribu-
tion of a SA should differ from its distribution in the whole dataset by no more
than a threshold t. Below, I define the metric that they use to calculate this threshold.

Earth Mover Distance. In order to measure the distance between two distri-
butions, they use the Earth Mover Distance (EMD). The intuitive idea, from which
this measure got its name, is that one distribution is seen as a pile of earth while
the other distribution is seen as holes in the same space. The EMD measures the
least amount of work needed to fill the holes, where moving a unit of earth by a
unit of ground distance corresponds to a unit of work. For a rigorous explanation of
the EMD, the reader is encouraged to read the in-depth overview of Rubner et Al.
(2000). In the context of t-closeness, a unit of earth corresponds to the probability of
a value of the SA, whereas the definition of a unit of ground distance depends on
whether the SA is numerical or categorical.

For numerical attributes, the ground distance is computed using an ordered list
of the values. Using this measure, the distance between two values vi and vj depends
on the number of values between them in an list, where m represent the total number
of values.

Ordered distance(vi, vj) =
|i− j|
m− 1

For categorical attributes, if the generalization hierarchy of a SA is not available,
the equal distance measure is used. This metric states that the distance between any
two values of the SA is defined to be 1. However, it does not to take into account the
semantic closeness of values. Hence, when the generalization hierarchy is available,
a more complex metric is used, namely the Hierarchical distance. Using this mea-
sure, the distance between two values vi and vj depends on the height of the lowest
level to which both values can be generalized and the total height of the hierarchy.

Hierarchical distance(vi, vj) =
lowest ancestor(vi, vj)

height o f hierarchy
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FIGURE 2.3: Generalization hierarchy for the sensitive attribute Dis-
ease

Where lowest ancestor(vi, vj) is the lowest level of generalization to which both val-
ues can be generalized. For example, using the generalization hierarchy shown in
Figure 2.3, we can compute the distance between AIDS and Cancer as being

distance(AIDS, Cancer) =
2
2
= 1

and the distance between Cancer and Malaria as being

distance(Cancer, Malaria) =
1
2
= 0.5

These examples show that when using the Hierarchical distance as the ground
measure for the EDM, it highly depends on the definition of the generalization hi-
erarchy. And, as mentioned above, the hierarchies are arbitrary and can vary greatly.

Figure 2.5 shows a version of Table 2.1 where 0.5-closeness has been applied to
both SAs. We can see in this case that a similarity attack, as has been described
above, cannot be achieved. None of the ECs contains only low or only high salaries,
nor does any EC contain only STIs or only non-STIs. The protection provided by
t-closeness, against attribute disclosure, is greater than the protection provided by
distinct l-diversity. However, this comes at a significant utility cost due to requiring
considerably more generalizations for the QIs, as is illustrated in this table. Given
that generalization hierarchies are highly arbitrary and rarely provided, and given
the high utility cost of t-closeness, we decided not to use it in GR2ASP for categorical
SAs. However, for numerical SAs, we think that this privacy policy makes more
sense and we have thus decided to implement it only for this scenario, as will be
explained in Chapter 5.

2.4 Re-identification Risk Measures

As explained in Chapter 1, the focus of GR2ASP lies in analyzing the risk related to
re-identification, rather than the risk related to membership or attribute disclosure.
Numerous measures have been proposed and are used for doing so, however none
has been selected as being the best overall. In line with our objective of simplicity,
we decide to use measures that are intuitive to the user, instead of complex ones.
Therefore, to quantify the re-identification risk, our tool will display visualizations
of the Prosecutor Risk and the Average Equivalence Class Size risk. However, we
also briefly explain other relevant metrics for the reader to better understand the
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Quasi-Identifiers Sensitive Attributes

Zipcode Age Nationality Salary Disease

EC1
5 476** * * 3K Cancer
6 476** * * 9K AIDS
4 476** * * 5K Cancer

EC2
7 476** * * 8K Chlamydia
8 476** * * 11K Cancer
9 476** * * 6k AIDS

EC3
2 476** * * 7K Syphilis
1 476** * * 4K Malaria
3 476** * * 10K AIDS

TABLE 2.5: Version of Table 2.1 where 0.5-closeness is applied to the
Sensitive Attributes "Salary" and "Disease"

.

reasoning behind our selection.

Uniqueness. A record is considered to be unique if its equivalence class is of
size 1. As explained in Section 2.3.1, such a record is at high risk of attribute and
identity disclosure. To release a dataset while avoiding uniqueness, one could apply
one of the privacy measures defined in Section 2.3. However, Zayatz argues that if
a record is unique in the released sample but not in the original population, then
it should not be considered unique (1991). To know the uniqueness of records in
the original population, one either need access to it to compute it directly, or he
has to estimate it. The first option is often not possible and is tedious as it needs to
be updated regularly to reflect changes in the population. Numerous approaches
have been proposed in literature for estimating the uniqueness in the original
population, some of the most well known ones being Zayatz’ model and Pitman’s
model (Zayatz, 1991;Pitman, 1996). These approaches assume that the population
is drawn from a superpopulation by an appropriate distribution. For a thorough
comparison and rule based approach to decide which model to use, the reader is
encouraged to read the work of Dankar et al. (2012). It is important to note that,
although these estimators do not need the original population, they do however
need information such as the size of it and the sampling fraction.

Prosecutor Risk. A scenario in which an attacker is assumed to know that the
record of an specific individual is contained in the dataset is referred to as a prosecu-
tor model. Given that he knows that the individual is in the dataset, he is also able to
infer in which EC he is contained. Therefore, the attacker’s probability of correctly
guessing which record of the EC is the individual is defined as

Prosecutor risk = P(Linkage|Membership) =
1
|EC|

Journalist Risk. In the Journalist model, the attacker tries to re-identify any
record in the dataset T, to prove that it is feasible, without knowing about any
individual whether he is contained in T. Hence, the probability of successful re-
identification is P(Membership)× P(Linkage|Membership). To achieve membership
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disclosure, the attacker needs to have access to an identification dataset, denoted by
Z, containing every individual also contained in T. Z needs to be generalized to the
same level as T, at least conceptually. This results in having every EC in the target
dataset correspond to an EC in Z that has at least as many records. Let ECT and ECZ
be the ECs, in T and Z respectively, containing the individual I. Then the probability
of re-identification of I is defined as follows:

P(re− identi f ication) = P(Membership)× P(Linkage|Membership)

=
|ECT|
|ECZ|

× 1
|ECT|

=
1
|ECZ|

(2.1)

Given that the easiest re-identification would suffice, the worst case scenario is
assumed where the intruder targets a record in the smallest ECZ. Hence, the
journalist risk is defined as 1/min(|ECZ|).

Marketer Risk. Under the marketer model, the attacker tries to re-identify as
many individuals as possible without knowing whether they are in the database.
Hence, the risk measure in this case is the expected average number of re-identified
individuals where Equation 2.1 is used for each (El Emam, 2010).

Average Equivalence Class Size Risk A common, yet simple, measure for
re-identification risk is to use the average EC size (Li, Li, and Venkatasubramanian,
2007). It is related to the marketer risk and provides an upper bound for it. Indeed,
every EC in the target database should have a corresponding EC in the identification
database that is at least as big.

It is important to note that from the previously described risk measures, only
the Prosecutor risk and the Average EC size risk do no need to make assumption
about the underlying population nor have access to the identification database. This
makes them well adapted to be used in the framework of our tool. Furthermore,
it is interesting to remark that protecting against the prosecutor risk also protects
against the journalist and the marketer risks (El Emam, 2013).

2.5 Utility Loss Measures

The attribute generalizations and the record suppressions, resulting from the pri-
vacy policies, inherently decrease the quality of the data. Therefore, it is important
to measure this information loss in order to take it into account when increasing the
privacy of the dataset. When releasing data, one has to balance between privacy
and utility. In order to do so, multiple utility loss measures have been developed
with differing degrees of complexity and for various scenarios and objectives.

Precision. This metric is based on the idea that the more an attribute is gener-
alized, the more information is lost, and that if all attributes are generalized to the
highest level then the data loses all its value. For a cell corresponding to attribute i
and to record j, its value of distortion is defined as being the ratio between its level
of generalization, Gi,j, and the total height of the generalization hierarchy for that
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attribute, Hi. The precision of the released table TR, having NA number of attributes,
is then 1 minus the sum of cell distortions normalized by the number of cells, as
defined below:

precision(TR) = 1−

NA

∑
i=1

|TR|
∑

j=1

Gi,j
Hi

|TR| × NA

Discernability. Another commonly used metric for measuring information loss,
that of discernability, focuses solely on the size of the ECs and on the suppressed
records (Bayardo and Agrawal, 2005). It assigns a penalty to every record that
is proportional to the size of its EC. For suppressed records it assigns a penalty
equal to the whole dataset, as such records are indistinguishable from every other
record. This means that it does not take into account the level of generalization
of attributes directly. For example, let G1 be a version of the dataset that has one
attribute generalized to the first level and let G2 be a version of this same dataset
that has another attribute generalized to level 4. If the generalization in G1 results
in larger ECs than G2 then, under the discernability metric, G1 is considered to have
lost more information, regardless of the generalization level and of the height of the
generalization hierarchy.

Non-uniform entropy. Building on top of the concept of entropy, the non-
uniform version of it has been adopted in recent papers as a reference metric for
evaluating the utility loss of a dataset (Dwork et al., 2006). From its predecessors
it keeps the core concept that generalizing an attribute with many values results
in a greater loss of utility than generalizing one with few values. For example,
generalizing "Gender" from {male, female} to "*" provides less information loss to
an attacker than generalizing "Age" from {0-100} to "*". The idea behind this is
that, before knowing the value of the attribute, the intruder has a 50% chance of
correctly guessing the gender, against a 1% chance of correctly guessing the age.
Hence, knowing the age gives him more information than knowing the gender.
Non-uniform entropy has the added feature of taking into account the distribution
of an attribute. For example, generalizing the gender fo a dataset containing 1 male
and 999 females should result in a much smaller information loss than for a dataset
where the gender is uniformly distributed. This notion of unbalanced attribute
distribution in captured by the non-uniform entropy.

As will be explained in Chapter 5, for our platform, we chose to use Precision
over the two other measures because the intuition of it is most easily understood
by the end user. This is in line with our vision for a tool in which the user can
understand the impact that his de-identification has on the data, and thus on the
utility loss. Therefore, for are more in-depth definition of the Discernability and the
Non-uniform Entropy measures, we refer the reader to the works of Bayardo et al.
and Dwork et al. respectively (Bayardo and Agrawal, 2005;Dwork et al., 2006).
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Chapter 3

Planning

As explained in Section 1, some of the requirements, although minimally restrictive,
are imposed by the SMOOTH project. However, we soon decided that a consider-
ably more interesting tool could be developed. Therefore, in this Chapter I define
more challenging objectives that make our tool innovative and stand out from the
current state-of-the-art. I will also detail the timeline that I set for myself at the be-
ginning of the implementation as well as describing how it changed over time.

3.1 Objectives

GR2ASP aims to be a tool for analysing re-identification risk accessible to users with
little knowledge of data privacy concepts. It should be easy to use, shielding the
user from most of the inherent complexity by having him interact with an intuitive
interface. The tool should incorporate the well established privacy policies defined
in Section 2.3. Furthermore, measures of re-identification risk and utility loss, such
as defined in Sections 2.4 and 2.5 respectively, should be shown to the user for
him to understand the impact that transformations have on his data. Moreover,
the user should be provided with a clear analysis of what causes the most risk in
his dataset, through visualizations, as well as be provided with recommendations
to transform his data most efficiently. We do not want to provide the user with
an "optimal" solution that combines many small transformations and where the
individual impact of each is lost, such as other similar tools do. On the contrary,
we want him to understand the impact that each recommendation would have on
the data, both in terms of re-identification risk and utility loss, so that he can make
informed decisions on how to transform his data.

The tool should function both as a module of the SMOOTH platform and
as a standalone application. In the first scenario it will receive the data and the
types of the attributes as well as their generalization hierarchies. However, in the
latter scenario, it will have to allow the user to upload data, overcome the lack of
generalization hierarchies and make assumptions about the types of the attributes.
Giving that there are only minor changes between the two versions, I will not
distinguish between them except when explaining the specific differences.

For the implementation of GR2ASP, I have defined the following principles
which will guide the development of the platform.

Simplicity. The end-user of our platform is expected to be a layman with no
strong knowledge of privacy concepts nor proficiency with complex software.
Therefore, ease of use is one of the guiding principles throughout the development
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of our tool. It is mentioned above that the user should be shielded from most of
the complexity and be only exposed to concepts that are relatively easy to grasp. In
line with this principle, we decided to build our tool as a dashboard, where most
of the information is contained within one display. This allows the user to have
the whole picture of what he can do with the platform at once, without having to
go back and forth between displays and intricate menus. This ease of use comes
at a cost, namely restricted flexibility and less "optimal" solutions. However, we
argue that, in this scenario, simplicity outweighs both restrictions for the following
reasons. First of all, we think that giving extensive flexibility to users that do not
sufficiently understand the options available would lead them to either not chose or
to randomly pick an option. This in turn, would probably not improve the results.
Secondly, optimality of a solution depends greatly on the context, such as what
the purpose of the output data is and which attributes are most important, and
this is difficult to infer without receiving an active input from the user. Hence, the
simplicity and intuitiveness of our tool should lead the user to preserve attributes
that are important to him while generalizing the other ones, in order to achieve a
solution that, although not optimal, would be very good for his purposes.

Parameterless. Extending on the above principle of simplicity, we want to build
a tool in which the user will not have to define parameters. This does not mean that
he will not have any choice to make, for he can choose which recommendations to
apply. Rather, it means that he does not have to decide on which re-identification
risk and utility loss measures to use, as these are decided by us. Furthermore,
he does not have to define parameters for the privacy policies. For example, we
define the value of k in k-Anonymity directly from the combination of risk and
utility loss that the user wants to achieve. This definition overlaps with other
principles defined in this section, however it is important to note that instead of
having the user decide on k and afterwards see the risk and utility loss, our platform
works the other way around. Therefore, we do not consider the risk and utility loss
as a parameter but rather as guiding metrics used to decide which level of k to apply.

From Risk Analysis to Privacy Policy. Similar tools aiming at providing
re-identification risk analysis, such as ARX , tend to function in a linear way, from
defining the parameters to risk analysis, as can be seen in Figure 3.1. These tools
do not make it easy for the user to make small changes and see their impact on
the risk and utility loss metrics. On the contrary, most of the choices are made at
the beginning and then the user only gets to see how they affect the measures after
having processed the data. This requires him to have knowledge about privacy
concepts in order to define the parameters efficiently beforehand. To overcome
this, our tool should show the impact on risk and utility that each recommendation
has, directly in the same interface. By doing so, we incorporate both metrics
in the decision making of the user. He is shown recommendations and their
corresponding measures and is able to decide for himself whether applying the
recommendation is worth it. This results in a cyclic flow between receiving and
applying recommendations, as is illustrated in Figure 3.2.

Explainable recommendations. The impact that transformations have on the re-
identification risk and utility loss depends on which transformations have already
been applied, that is, they are dependent on each other. Hence, let NA be the number
of attributes and let Li be the number of generalization levels for the attribute i, then
the number of possible combinations of transformations is given by the following
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FIGURE 3.1: Human interaction and flow in ARX

FIGURE 3.2: Human interaction and flow in GR2ASP

formula:

combinations o f trans f ormations =
NA

∏
i=1

Li

Even with only a few attributes each having a few levels, this number becomes
large rapidly. For this reason, other tools such as ARX only show a limited amount
of combinations. Our approach, however, is not to provide combinations of trans-
formations directly, but rather to create them iteratively. Firstly, the user is shown
transformations that affect only one attribute. Then, once he has applied one, he will
be shown combinations of transformations that differ from the previously applied
one by only one attribute, and so forth. This allows him to understand the impact
that each individual transformation has, which we define as having explainable
recommendations.

Human in the loop. The iterative interaction between the user and the plat-
form is already mentioned above, however, being at the core of our tool, we want to
stress the importance of it. Although the concept of "human in the loop" is not new,
recent research has successfully been exploring ways to improve the outcomes of al-
gorithms by involving a human in the decision making process (Li, 2017). One such
example focuses on improving Machine Learning algorithms for health data, where
rare events and small datasets often occur (Holzinger, 2016). While our scenario is
not identical, we do think that it provides an interesting opportunity for improving
the de-identification of the data by having a human in the loop. The importance of
attributes is subjective on the context, and considering all of them to be at the same
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level inherently diminishes the quality of the solution. Although tools like ARX al-
low the user to change the importance scale of each attribute, he has to do so without
being able to know the impact that it will have on the de-identification process nor
on the risk and utility. As mentioned above, this complicates his decision making.
Furthermore, for certain privacy policies, the risk and utility measures rely on the
generalization hierarchies to define the semantic closeness between values. If choos-
ing the "optimal" solution based on these policies and measures, such as other tools
do, one has to trust that they are able to accurately reflect the importance of the val-
ues and the attributes. However, this cannot be guaranteed, and is often not the case,
as is explained in Section 2.3.3. In our platform, by letting the user iteratively choose
which recommendation he wants to apply, we let him implicitly define the impor-
tance of each attribute and the quality of the generalizations. In our scenario, having
a human in the loop has thus a double benefit. It improves the solutions while at
the same time improving the user’s understanding of what happens to the data and
what causes the re-identification risk. Figures 3.1 and 3.2 illustrate the interaction
from the user in ARX and in GR2ASP respectively. In the first case, one can see that
the user does not input information anymore once the result is obtained, whereas in
the latter case, the user inputs information in a cyclic manner.

3.2 Timeline

Given that the implementation of GR2ASP is done mainly individually by me with
only intermittent help from colleagues at Eurecat, it did not lean itself well for a
group project methodology such as Agile. However, the concept of incrementally
adding features through sprints has been incorporated. Doing so allows me to
get regular feedback, on a working product, from my supervisors, colleagues and
partners in the SMOOTH project. After the literature review, feasibility evaluation
and planning, the development was articulated around 3 main sprints.

Sprint 1. The milestone that is aimed at for this phase is to create a functioning
dashboard that is able to give some measure of re-identification risk. We refer to
the result of this sprint as the minimum viable product, in the sense that it would
already satisfy the requirements imposed by the SMOOTH project, although, in a
minimal way.

Sprint 2. In the second phase I implement that the user receives recommen-
dations on how to transform his dataset, which I consider to be one the the main
features that distinguishes our tool from similar ones. These recommendations,
which can either be attribute generalizations or record suppressions, will require
considerable coding in the back-end, as well as changes to the front-end to visualize
them.

Sprint 3. The last phase has been added towards the end of the initial deadline
of the thesis. With my supervisors from Eurecat, we decided that it would be worth-
while to postpone the deadline in order to improve and extend some of the features.
Namely, we wanted to be able to handle datasets for which no generalization hi-
erarchies is provided, speed up the platform and allow more time for other minor
improvements. To overcome the lack of generalization hierarchies, I implement a
method to generate them, both for numerical and categorical values. Speeding up
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the platform relies mainly on tweaking the code, but also on changing the approach
used for recommending record suppressions, as is explained in Chapter 5.
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Chapter 4

System Overview

As mentioned above, one of the main guiding principles is that of simplicity. This
led me to come up with a design that is presented as a dashboard where most of
the information and options available to the user are seen at first glance. The only
exception to this being the tab for record suppressions. When GR2ASP functions
as a standalone application, the user will, upon instantiating the tool, be prompted
with a window requiring him to upload his dataset, as can be seen in Figure 4.1.
After having done so, he will be shown the dashboard interface, which is identical
to when the tool functions as a module of the SMOOTH platform. In all the
screenshots of the platform, the dataset used is an open one, namely the "Adult"
dataset of the UCI machine learning repository (Dua and Graff, 2017).

Interactivity. One of main the engaging aspects of the front-end is its inter-
activity, although this is obviously not clearly apparent through the static images
displayed in this paper. As can be seen in every screenshot in this Chapter, above
each metric visualization there is a "?" that the user can hover over with his mouse.
Doing so will display a small box explaining the metric at hand. This is very useful
for the user to help him understand the platform, while at the same time it allows
us to de-clutter the tool from information that is not highly relevant. Furthermore,
the user can also hover over the risk distribution to see the exact values. This allows
him to get more accurate information while again helping towards having a sober
interface. The user also interacts with the interface to apply recommendations, and
the interface then updates smoothly to provide him with new information. For
example, Figure 4.5 shows the Current State interface after two generalizations and
4-anonymity have been applied. Hence, we can see that less records are remaining,
that the attribute Occupations has been suppressed and that the attribute Workclass
has been generalized by one level.

FIGURE 4.1: Upload interface
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4.1 Current State of Data

Although the entire dashboard fits on a screen, for ease of visualization, in this
paper we only show one half at the time. Figure 4.2 shows the upper half of the
dashboard, which corresponds to the current state of the data as well as its risk and
utility analysis. The left part shows the data in its current state, which means that if
generalizations have been applied it will be reflected directly here, as can be seen in
Figure 4.5. Records that have been suppressed will be removed from here. The right
part is composed of the following elements.

Average Risk Gauge. As mentioned in Section 2.4, the average class size is a
good and intuitive measure for the re-identification risk. The notion of hiding in a
crowd is easily understandable by a layman user. However, the user might hesitate
as to what is a good size of equivalence class to protect his dataset. Therefore we use
the formula 1

Avg |EC| × 100 to give a value on a [0;100] scale with an associated green
to red color scheme. Values below 30 mean that, on average, the ECs are at least
of size three. This offers decent protection, as most record are indistinguishable
from at least two other records, hence we associate it with a green-yellowish color.
Values below 20 and 10 are linked with colours each a bit greener as they provide
better protection. Values above 30 and below 50 are associated with 2 shades of
orange increasingly dark. The reasoning for this is that they have, on average,
between 2 and 3 records per EC, which offers some protection. Values above 50
have increasingly dark shades of red, as this means that most records are unique,
which does not offer any protection.

Highest Risk. Taking the prosecutor risk of an individual in the smallest EC
gives us the Highest Risk. Hence, it is defined as 1

smallest EC , and is an intuitive mea-
sure for the worst case scenario. We multiple this measure by 100 for the purpose of
uniformity. Furthermore, the colour scheme is also the same as described above. It
makes sense that red should represent the worst case in which the smallest EC has
only one record, as this one is not protected at all. The reasoning for values linked
to orange and green follow the same reasoning as for the average risk.

Utility Loss Gauge, As explained in Section 2.4, we chose to use the Precision
measure rather than the Discernability or the Non-uniform entropy ones. The rea-
soning behind it is that it is the most intuitive approach, while still providing a good
measure of utility loss. For consistency, we use the same scale and color scheme
as in the previous gauges. We think that losing more than half the information of
the dataset is too much, and losing up to a third is reasonable. However, this is
subjective, the re-identification risk being the priority, is is not trivial to define a
threshold at which too much information has been lost.

Risk Distribution. This graph shows the percentage of records affected by the
prosecutor risk. As is explained in the next Chapter, the Risk Distribution graph has
considerably changed since I first implemented it. The reason for this being that it
has proven to be more difficult for users to understand it. The final version, as can
be seen in Figure 4.2, uses again a similar colour scheme as for the gauges in order
to guide the user towards what should be a good distribution. The X-axis represents
the different levels of prosecutor risk, while the Y-axis represents the percentage of
records affected per level of risk. Lower risk values are better and are thus rep-
resented with green, while high risk values are represented with red. As will be
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FIGURE 4.2: Interface showing the current data with its risk and util-
ity visualizations before applying any recommendations

mentioned below, the highest value of k that the user can select is 20, which would
make the smallest EC be of size 20. The prosecutor risk is given by 1/|EC|, and thus
an EC of size 20 corresponds to a prosecutor risk of 0.05, which we have defined as
being the smallest level of risk represented by the graph. However, we multiply the
risk by 100 in order to keep the same scale of for the other metrics. The percentage
of individuals whose risk is lower than 0.05, or 5 on the graph, is aggregated under
"<5". This visualization is not the most intuitive one, however, through the colour
scheme, I think that it can sill help the user to make decisions.

4.2 Recommendations

One of the key features of our platform is to provide recommendations to the user
for minimizing the re-identification risk. Through separating generalization and
suppression, and by focusing on one attribute at the time, they allow the user to
draw insights as to where then re-identification risks come from in their dataset.
They are applied in an iterative manner and their impact is directly shown on the
data table in the upper part of the dashboard. Therefore, it is important that the user
is able to see the recommendations and the data simultaneously at all times, which
is the case. The two kinds of recommendations, namely attribute generalizations
and record suppressions, have each their own tab.

Attribute Generalizations. The first tab corresponds to recommendations based
on generalizing the attributes, as is shown in Figure 4.3. This tab is divided in two
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FIGURE 4.3: Interface showing attribute generalization recommenda-
tions before applying any recommendation

parts. The upper part shows a scroll-able list of recommendations that the user can
apply, while the bottom part shows the ones applied already and allows him to
undo them. Each attribute has its own row, with its name, a slider and a selection
box with the possible generalization levels and the same gauges as in the current
state part of the dashboard. When the attribute has only one generalization level,
the slider and selection box will not be shown. However, when the attribute has
several generalization levels, the user can choose different levels and directly see
the impact on the corresponding visualizations. Furthermore, the recommendations
are ordered from best to worst, where the best is considered to be the one that has
the smallest sum of the three gauges.

Once an recommendation is applied by the user, it will be shown in the bottom
part of this tab under "Applied Transformations", where he can choose to undo the
transformation, as can be seen in Figure 4.6. As soon as a recommendation is ap-
plied, the whole dashboard updates. This implies that the current state is updated
with its corresponding gauges, and that new recommendations are shown that take
into account the previously applied ones.

Record Suppression The second tab of the bottom part of the dashboard cor-
responds to the record suppression recommendation, and is shown in Figure 4.4.
The recommendation is similar to the attribute generalization ones in the sense that
is has the same gauges, slider and selection box, and apply button. However, the
value selected correspond to the k value of the k-Anonymity privacy policy. If the
user wants a specific value for k, he can directly select it. Otherwise, the gauges will
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FIGURE 4.4: Interface showing record suppression recommendations
before applying any recommendations

guide him to a level where the balance between re-identification risk and utility loss
suits his purposes best. Initially, the user can select values ranging from 2 to 20. This
range has be chosen so as to encompass the most common k values found in litera-
ture (LeFevre, DeWitt, and Ramakrishnan, 2005). Once the user has selected a value,
the dashboard updates the current state and the recommendations, and the values
for k will range from the selected value + 1 until 20. Furthermore, the data table on
the right shows the records that are in an EC of the smallest size. These records are
thus the ones at highest risk of an de-identification attack. This allows the user to
understand where the risk comes from, through directly seeing the individuals that
have the least protection.
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FIGURE 4.5: Interface showing record suppression recommendations
before applying any recommendations
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FIGURE 4.6: Interface showing record suppression recommendations
before applying any recommendations
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Chapter 5

Implementation

The back-end of GR2ASP is built on top of the open source ARX library written
in Java, as is described in Section 1.4. Initially, I forked the original repository
on Github and implemented the methods that I needed wherever they were best
suited in the ARX library. This often means that I would implement the methods
within the class on which they operate, to be in line with the Object Oriented
programming style. However, it soon became apparent that the whole platform
could be programmed without needing to implement any methods inside the ARX
classes and for a negligible sacrifice in speed and coding simplicity. This allows
to import the ARX library rather than fork it, which in turn makes GR2ASP much
lighter in weight and allows to implement the updates of ARX more easily.

Although the back-end is entirely built by myself, the front-end has been made
for a important extend by my colleague, Javier Cano. I have, however, made many
changes to it once the general framework was implemented, as I will explain below.
I will therefore not delve deeply into the implementation of the front-end, but rather
focus on the back-end.

5.1 Back-end

The Unified Modeling Language (UML) diagram in Figure 5.1 shows the structure
of GR2ASP. The classes in green are implemented by myself, whereas the red ones
are the classes from the ARX library which are directly used in our platform. I do
not show all the classes involved in the functioning of the library, as it does not
provide useful information in the context of this paper. A more complete UML
diagram of ARX can be found in the related paper (Prasser et al., 2014).

The SmoothIO class holds all the logic implemented for GR2ASP, and is in-
stantiated through the SmoothIOController. In the SmoothIO class I define an
ARXConfiguration which is passed to an instance of the ARXAnonymizer to obtain
an ARXResult. These first two ARX classes are omitted from the diagram for clarity
purposes. The first one defines the parameters, such as the privacy policies, while
the second’s purpose is to anonymize the data according to the configuration.
SmoothIO also holds an instance of the Data class, which represents the original
state of the data. The main purpose of ARXResult is to be the controller of the
ARXLattice. This latter class contains all the possible anonymizations, that is, one
per combination of attribute generalizations. The structure of the graph depends
on the generalizations, therefore the neighbors of a node differ from it by one level
of generalization for one attribute. Figure 5.2 shows a small sample of the lattice
for the "adult" dataset, where the numbers represent the generalization levels of
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FIGURE 5.1: UML diagram of GR2ASP

the attributes. ARXLattice is thus mainly a graph structure, where each node is
an ARXNode, that provides access to the bottom, top, and optimum node. The
optimum node represents the transformations that are considered the best given
the utility measure, however our platform does not use this, as I explained in
Section 3.1. The ARXNodes provide access to their predecessors and successors,
as well as additional information such as the transformations applied to the data.
A DataHandle, which represents the data given the applied transformations of
the given node, is obtained by providing an ARXNode to the ARXResult. Each
SmoothNode contains one ARXNode and is implemented in order to provide
additional information, such as the risk and utility measures and a ID which is
used to interact with the front-end. The AttributeRecommendations class is a data
structure that contains nodes generalizing the a same attribute and that can be
sorted based on the metrics of the nodes. Initially, SmoothIO creates an ARXResult
based on 1-anonymity. This privacy policy does not impose any transformation, its
purpose being only to create a result with its corresponding lattice. From this result
we compute the risk and utility measures shown in Figure 4.2.

Attribute recommendations. It can be seen in Figure 4.3 that the interface
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FIGURE 5.2: Sample of the ARXLattice of the "adult" dataset focusing
only on 3 attributes. The colors illustrate the depth-first search of

GR2ASP starting at the bottom node.

presents the attribute recommendations as a list where, for each attribute, the user
can select the level of generalization. This reflects the underlying structure that I
have implemented, that is, as a list of lists of nodes. However in ARX, as explained
above, the structure used is a graph. Therefore, I implemented a depth-first search
of the graph based on the generalization level of one attribute at the time. Figure
5.2 illustrates this search for three different attributes, the nodes generalizing the
other attributes having been left out due to the size constraint. In this figure, it
can be seen that the search starts at the bottom node of the graph and each color
represents the path for one attribute. The nodes are then stored in lists, namely
AttributeRecommendations objects, per attribute that is being generalized. When the
user applies an attribute generalization in the front-end, the ID of the node is sent
to the back-end to identify which node will become the new currentNode. Providing
this node to the ARXResult gives a new DataHandle that reflects the generalization
of the attribute and from which the new metrics are computed, both of which can
be seen in Figure 4.2. As mentioned in Chapter 4, once an attribute generalization
has been applied, all the recommendations need to be updated to incorporate this
change by fixing the level of the given attribute. In order to do so, I define the
currentNode as starting position for the graph search. An example of the depth-first
search when the second attribute is fixed to the fourth level can be seen in Figure
5.3. The process of computing new attribute recommendations keeps on repeating
as long as the user applies recommendations. When an attribute generalization
is undone by the user, a similar process happens but in a top to bottom direction
rather than a bottom to top direction as previously. When the user removes any
of the applied recommendations, the ID allows to identify of which attribute the
generalization level should be set back to 0. To do so, I define the currentNode as
starting point for the depth-first search and the search explores the predecessors
decreasing the generalization level of the given attribute.

Record Suppression Recommendations. The approach used for creating the
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FIGURE 5.3: Illustration of the depth-first search of GR2ASP starting
at the node with generalizations [0,4,0,0,0,0,0,0,0]

record suppression recommendations has considerably changed throughout the
sprints. I will describe the approach implemented in the final version, and explain
in Section 5.3 how it has evolved. The current version handles QIs as well as SAs,
however I will first develop the approach for a dataset containing only QIs and then
extend the explanation to the case with SAs.

The record suppression recommendations are based on k-anonymity. The user
select a value of k between 2 and 20, and the corresponding re-identification risk
and utility measures will be shown to him, as can be seen in Figure 4.4. However,
whereas for the attribute recommendations these values could be gotten from the
ARXResult directly, for record suppression this is not feasible, because running k-
anonymity with multiple different values takes considerably too long. Nevertheless,
being able to get the number of ECs per size in the current result allows for fairly
easily computing these metrics. Let Ni be the number of ECs of size i, let I be the
size of the biggest EC and let k be the value of k-anonymity, we then obtain the
following formulas:

Average risk(k) = 1/(∑I
i=k Ni × i

∑I
i=k Ni

) (5.1)

Highest risk(k) =
1
k

(5.2)

Utility loss(k) = Nprevious_k(k) × (previous_k(k)) (5.3)

Where we define previous_k(k) as being size of the greatest EC’s size smaller than
k. In general, this will equal to k − 1, however I defined it this way to hold for the
following scenario. For some values of k there might not be an EC of that size. When
this is the case, the metrics shown to the user will be the ones from the next smallest
value of k for which a corresponding EC is present in the dataset. The reasoning
behind this that it has no purpose to achieve, through record suppression only, a
level of k-anonymity for which there is no EC of the corresponding size. To do so,
records from the next smallest EC would have to be suppressed, which decreases
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the utility and increases the re-identification risk for no reason.

When one or more SAs are contained in the dataset, privacy policies protecting
the sensitive attributes, such as defined in Sections 2.3.2 and 2.3.3, have to be
used. However, applying these policies happens behind the scenes and the user
is not involved in defining their parameters, not even indirectly as is the case for
k-anonymity. The reasons for this are twofold, namely the simplicity objective
and the lack of use cases. Allowing the user to indirectly set the parameters for
l-diversity and t-closeness would require additional risk metrics that focus on the
SAs. This would make the tool considerably more complex for only a slight increase
in functionality. Furthermore, we do not expect this tool to be often used with SAs,
mainly because, with the GDPR, few companies are allowed to process sensitive
information. We include SA protecting policies for completeness sake, however, the
primary focus of GR2ASP remains to protect against identity disclosure rather than
against attribute disclosure. For selecting which of the two policies to apply, our
platform follows a simple rule based approach. If the SA is numeric, t-closeness is
applied, for it is well suited for such cases and offers additional protection. When
the SA is categorical, we have two options. Either the generalization hierarchy of
the SA is provided, in which case t-closeness is used. Else, when the generalization
hierarchy is not available, l-diversity is applied. For the reason that both policies
tend to considerably decrease the utility of the data, and that the argumentation for
high levels of both policies relies on strong assumptions about the knowledge of
the attacker, the values that I set for both are fairly low in terms protection, namely
l = 2 and t = 0.5.

It is important to note that when using privacy policies for SAs, it is not
possible to accurately predict the metrics before applying the policy, as is done for
k-anonymity. The higher complexity of l-diversity and t-closeness, combined with
their interaction with k-anonymity make it impossible to obtain accurate estimates
of the metrics, and considerably difficult to obtain even fairly good estimates. It is
obvious that given a certain level of k-anonymity, adding one of the two other po-
lices would decrease the risk and increase the utility loss of the dataset, however to
what extend cannot be accurately predicted. Having long pondered on the problem,
I decided to tackle it in the following manner. Regardless of the number of policies
applied, the metrics will always be computed based solely on the k-anonymity
values. My reasoning for this is that, any estimate that I could think of would be
inaccurate and that, as mentioned above, I expect this tool to be rarely used with SAs.

Standalone Application. As mentioned in Section 3.1, GR2ASP can function
either within the framework of the Smooth platform, or as a standalone tool.
However, in the latter case, the tool does not get the data, the attribute types nor the
generalization hierarchies from the platform, and thus workaround methods have
to be implemented.

Data Upload. As is shown in Figure 4.1, I have implemented, both in the
back-end as in the front-end, that when the tool is functioning outside of the Smooth
platform, upon starting the application it prompt the user to upload their data. In
the back-end, I implemented this through a post request to the rest-API from the
front-end. Whereas for the front-end I implemented the upload interface as well as
the logic for sending the request. Furthermore, given that the attribute types are
not defined by the user, all are considered to be QIs. As mentioned above, we do
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not expect this tool to be often used with SAs, especially not when running as a
standalone application.

Attribute Generalization Hierarchy. Given that, in the standalone case, GR2ASP
does not get the generalization hierarchies, I implemented a technique to automat-
ically create them. For numerical attributes, the values are put into bins to form
hierarchies similar to the ones found in literature. To do so, first the level of the hier-
archy is defined. Let V be the set of values for that attribute in the dataset, the level
L for its generalization hierarchy is then defined as follows:

L = min(blog2(drange(V)e)c , 4) (5.4)

The arbitrary upper bound of 4 comes from it being commonly used in literature
as the number of levels for generalization hierarchies of numerical values (Li, Li, and
Venkatasubramanian, 2007). Given that we group two bins together to form one bin
of the level above it, we can define the number of bins for the first level as:

NB1 = 2L−1 (5.5)

The size of these same bins is then defined as:

SB1 =

⌈
drange(V)e

NB1

⌉
(5.6)

For each bin of the second level, two bins of the first level are merged, starting
with the smallest ones. This process is repeated for the third level and the last level
always represents the suppression of the attribute, which is denoted by "*". As
mentioned in Section 2.3.1, numerical attributes such as ZIP code are generalized by
replacing the last digits with "*", which I argued is equivalent to putting into bins
of size = 10level , where level represents the generalization level. I posit however,
that putting the values into bins of different sizes, such as is the case with this
approach does not, or minimally, impact the quality of the generalizations. Lastly,
by rounding up the range in Equations 5.4 and 5.6, this approach inherently also
handles decimal values.

For categorical attributes, it is not trivial to reproduce the generalization hierar-
chies found in the literature, such as the ones received from the Smooth platform.
To do so would require understanding the semantic meaning of the values, through
Natural Language Processing, and be able to aggregate them in a generalization
group that is coherent with the context of all the values. Even so, it remains sub-
jective, and many hierarchies are flawed in the context of data privacy. For exam-
ple, grouping countries on a geographic basis offers little protection against a region
based bias. Implementing such techniques to create generalization hierarchies is
outside the scope of this paper. Therefore, I developed a simpler approach that per-
forms relatively well. The intuitive idea is akin to the one of k-anonymity, namely
to hide in a crowd and thus, to group the values into sets making it more difficult
for an attacker link an attribute value with a record. To do so, I start by defining the
number of levels similarly as for the numeric values but where the range is replaced
with the cardinality. Let V again represent the set of values, I define the equation to
define the number of levels:

L = min(blog2(d|V|e)c , 4) (5.7)



5.2. Front-end 41

The amount of information lost by generalizing with this approach is greater
than for the numeric values and than when using the semantic generalization
hierarchies. The reason for this is that it is more difficult to draw insights about
a record of which an attribute is a set of values that are not related semantically,
compared to the case where the attribute is a set of values related, or the name of
what defines this set. To limit this drawback, I hard code the number of values
in the first levels to be as small as possible, rather than computing this number
based on the total number of levels. This means that when the cardinality of the
set of all values of an attribute is pair, the sets of the first level will each contain
two values, whereas if it is odd, one set will contain three values. The frequency
of the values is used to compose the sets. When there is a pair number of unique
values, I put the least and most frequent value in the same set for the first level.
Then, the second set will be made up of the second least and second most frequent
values, and so forth for the other sets. When the cardinality of the set of all values
is odd, I put the least and second least frequent values together with the most
frequent value in the first set. Then the next sets follow the logic of the pair sce-
nario. The procedure for creating the sets of the subsequent levels follows the one
from the first level, where the values are replaced with the sets of the level below.
The last level represents again the suppression of the attribute, and is denoted by "*".

5.2 Front-end

A considerable part of the front-end has been implemented by my colleague from
Eurecat, Javier Cano. Therefore, I do not delve far into the details of the develop-
ment, but rather I briefly explain the general framework, and I elaborate about the
interaction with the back-end and about the changes implemented by myself.

To facilitate linking the back-end with the front-end, I decided to only use one
HTTP request, namely a GET request with an optional ID parameter. Initially, the
front-end sends the given request, without the optional parameter, to receive the
JSON with the current state of the data and the recommendations. Each of these
contains the data necessary to visualize it, as well as an unique ID for each level of
each attribute generalization and each level of the record suppression recommen-
dation. When the user applies a generalization at a specific level, the ID is sent
to the back-end which retrieves the corresponding node, applies the generalization
and sends a new JSON to the front-end containing the recommendation in the field
appliedRecommendations. When a user undoes an applied recommendation, its ID
allows the back-end to set the attribute back to level 0 or to set k back to 1, as is ex-
plained above, and then sends back a new JSON. Using only one request for all pur-
poses made the coding slightly more complex in the back-end, however it allowed
to easily tryout and implement changes without having to coordinate too often with
the front-end development. As mentioned above and as will be detailed in Section
5.4, the record suppression recommendations have radically changed throughout
the development. Therefore, I fully implemented the current version of the tab cor-
responding to these recommendations. Furthermore, I also implemented the data
upload button as well as its functionality. And lastly, I made many small changes
throughout the interface, such as making the data scrollable, making buttons load
when waiting for the JSON, making the corresponding subsection disappear when
no recommendation is available anymore, and a few other changes. I would like
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to point out that my involvement in the front-end is mainly motivated by my de-
sire to fully understand the whole tool, and be able to keep on making any kind of
improvements myself in the future.

5.3 Improvements

Throughout the implementation of GR2ASP, numerous changes have been made
and certain paths have been explored that turned out to be unsuccessful for our
purposes. These variations are derived either from my desire to make the tool faster
and more robust or from feedback from colleagues and users. I do not elaborate on
all the small changes, for these are inherent to developing a tool, but rather I will
focus on those that have considerably impacted the final result.

Performance optimization. Many of the improvements that I made during the
development are coding related, such as storing objects or values that are computed
several times, using better data structures and taking more advantage of Java’s Ob-
ject Oriented way of programming. However, these changes are too numerous and
detailing them brings little value to the reader. The change that improved the most
the usability of our tool is the way that the record suppression recommendations
are generated. Initially, I implemented these recommendations such that the user
can only increase the value of k by one level at the time. The reason for this is that,
to provide this recommendation, the tool would generate a new ARXResult with
k being one level higher than the current one. This has as benefit that the metrics
related to it can be directly obtained from the new result, and are thus exact. The
drawback, however, is that this approach is considerably slow, especially when the
user wants to achieve a high level of k-anonymity, either because he is familiar with
the privacy or as a result of iteratively decreasing the risk to reach the desired level.
Therefore, I decided to compute the metrics for k-anonymity without obtaining a
new ARXResult, as is described in Section 5.1. However, this means that the metrics
cannot be accurately displayed when l-diversity or t-closeness are applied. Never-
theless I think that the great increase in speed and usability is worth the trade-off in
accuracy, especially given that I do not expect this tool to be regularly used with SAs.

User feedback. Given that it was not possible to involve the end users in
all steps of the development, I could not follow a user-centered design process.
Therefore, I designed the initial interface, with feedback from my supervisors.
However, the target end users have little to no data privacy knowledge, and it
was thus fairly trivial to find several individuals in my entourage that fitted this
description and could test the tool. To do so, I watched them de-identify the "Adult"
dataset to a level that provided, according to them, a good balance between risk and
utility, and I asked them for feedback on their experience with the tool. This process
proved to be helpful for identifying which parts were intuitively understood and
which were not. Overall, the users managed to move around the interface and fulfill
their task relatively easily, the only difficulty deriving from the metrics used and
their visualizations. Figure 5.4 displays the metrics of the version of GR2ASP with
which the testers interacted. These are the same as for the Current State of the data
and for the Record Suppression recommendations but in a different arrangement.

The first observation that became directly apparent is that the users did not
understand nor use the Risk Distribution graph, therefore I changed it to the version
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FIGURE 5.4: Average Risk, Utility Loss and Risk Distribution metrics
of the attribute recommendations in a non-final version of GR2ASP

shown in Figure 4.2. This graph imitates closely the one available in ARX, which
represents one of its main risk visualizations, and I thus wrongly assumed that
it would be intuitive for the users. A detailed explanation of it is omitted from
this paper, as a new version as been implemented, nevertheless for completeness
sake I describe it briefly. The X-axis represents the prosecutor risk put into bins
of increasing size, and the Y-axis represents the proportion of records at risk.
The blue graph displays the proportion of users per risk bin, whereas the green
graph shows the cumulative distribution of the risk. Hence, the intuition should
be to try to move the area of the cumulative distribution as much to the left as
possible, for this would mean that more records are at a lower risk. Meanwhile,
the blue graphs displays how the risk is distributed over the records, allowing the
user to see what the worst prosecutor risk is and how many people are affected by it.

Secondly, I noticed that the users would generally stop applying recommen-
dations slightly too early and thus not protect the dataset well enough from
re-identification risk. Therefore, I changed the color scheme of the gauges to make
it apparent that the level of risk at which the users would generally stop is not
sufficient. The original green to red scale displays the values between 30 and 50
in shades of yellow. However, I shifted the starting point of orange downwards to
start at 30 in order to reflect that from there to 50 provides just sufficient protection
rather than good protection.

The last observation was that users would often not apply any record suppres-
sion recommendation at all. Their reason for this is that generally the attribute
generalization recommendations provide a considerably better ratio between
Average Risk and Utility Loss, hence the users would, quite logically, not suppress
records. However, suppressing records is often the only way to efficiently protect
against the prosecutor scenario, that is, to increase the size of the smallest EC.
Generalizing attributes works best for decreasing the average risk, but for the
highest risk suppressing records to achieve k-anonymity is essential. Therefore,
this observation highlighted the flaw in not displaying the Highest Risk. Which I
subsequently fixed.

Implementing the changes resulting from these observations has led to display-
ing the metrics for the attribute recommendations as is shown in Figure 5.5, which
is again the same as for the current state of the data and for the record suppressions.
I then repeated the experiment with some of the same users and some new ones.
Although the experiments are not very rigorous, the users now seemed to manip-
ulate GR2ASP more fluidly and also reported that they easily understood all of its
components.
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FIGURE 5.5: Average Risk, Highest Risk, Utility Loss, and Risk Distri-
bution metrics of the attribute recommendations in the final version

of GR2ASP

5.4 Development timeline

In Section 3.2, I explain the planning of the development, which I have tried to
follow. To summarize briefly, Sprint 1 focuses on creating a minimal functioning
product, in Sprint 2 I implement the feature which make it stand out, namely
the recommendations, and in Sprint 3 I focus on extra features, such as hierarchy
creation, and improving the overall tool.

Sprint 1 and 2 ended up being slightly merged together for several reasons.
Firstly, it was not clear initially whether a colleague could help with the front-end
and to which extend. Once this was decided upon, it took longer that planned to
link the back-end to the front-end and several ideas for the design were tried out
which also took time. Given that it would have little purpose to have a functioning
minimal version without front-end, I decided to blend together the back-end devel-
opment of both Sprints. Furthermore, once it was decided to add a third Sprint, and
thus to extend the deadline of the project, I allocated more time to finish the second
Sprint. During the last Sprint, and while nearing the final deadline, I had to decide
to wrap up the project for it to be a fully functioning platform, and to allocate time to
write this paper. However, this is not as trivial as it sounds, for having spent consid-
erable time on this project and enjoying it more as it becomes more complete, I am
continually tempted to add features. These ideas not yet implemented will therefore
only be mentioned as future improvements.



45

Chapter 6

Conclusion

In this paper I have detailed the development of a tool fulfilling the requirements
defined by the Smooth Project, namely to create an intuitive re-identification risk
analysis platform. However, I have also shown that GR2ASP goes far beyond the
initial objective. Indeed, our tool guides the user, using explainable recommenda-
tions, through the process of analysing the re-identification risk and de-identifying
his dataset. The human-in-the-loop approach, combined with the recommenda-
tions, is highly intuitive and provides great insight as to what causes the risk in
the user’s dataset. Furthermore, the user is shown clear visualizations which allow
him to choose the right balance between re-identification risk and utility loss that
he requires. The intuition inherent to the straightforward recommendations allows
the user to understand and be fully in control of the transformations applied to
his dataset. Although interacting with relatively simple concepts and measures,
the user is indirectly applying more complex data policies such as k-anonymity,
l-diversity and t-closeness without needing advanced knowledge of data privacy
concepts. The combination of these novel features make our tool stand out from
the current state-of-the-art, given the problem at hand. Although having mainly
be developed with the aim of being part of the Smooth Platform, GR2ASP can
also function as a fully standalone application. To do so, I have implemented
a data upload interface, as well as methods for automatically creating attribute
generalization hierarchies, which is again a feature not found in similar tools.

The main stakeholders involved in the development of GR2ASP and of the
SMOOTH platform are pleased with the final result, and it is expected that it will
be frequently used once the platform goes online. Given the real life application of
this tool, as well as the fact that the deadline for the SMOOTH project is still rela-
tively far ahead, I expect to keep on improving the tool in the near future. If time
permits, I would like to provide the user with a clear textual explanation of the re-
identification risk factors in his dataset. Lastly, should someone else be responsible
for future development of GR2ASP, I have extensively documented the code, and
one should relatively easily be able to pick up from the current state.
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FIGURE A.1: Gantt chart of development
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