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Abstract: We studied biochemical changes in biofilm and suspended particulate and dissolved
organic matter (OM) during the leaf emergence period (March-May 2008) in a forested
headwater stream in response to a long-term (4 years, 2004-2008) experimental
nutrient enrichment study.  This study compared results from one reach upstream of
the enrichment point and one reach downstream using moderate nutrient
concentrations (nitrogen, N, from 388 to 765 μg L-1 and phosphorus, P, from 10 to 30
μg L-1, resulting in N:P ratios of 85 to 56). During the spring of 2008, we analysed the
chlorophyll content, elemental composition (carbon, C, and N), bacterial density, and
extracellular enzyme activities along with their biochemical composition (amino acids,
fatty acids and sterols) on biofilm and OM. Nutrients caused changes in the
biochemical composition of the biofilm, while changes in the OM were subtle. The C:N
ratio of the biofilm decreased with nutrient enrichment likely due to the increase in
protein (non-essential amino acids). The polysaccharide and total and essential fatty
acid contents were higher when nutrient enrichment coincided with greater light
availability. The peptidase extracellular activity was higher in the fertilised reach at
early spring, while phosphatase activity decreased at late spring. The suspended and
dissolved OM composition did not change due to the nutrient addition, likely due to the
lower water residence time in the reach. Headwater systems are highly dynamic, and
the biochemical composition of the biofilm changed in response to changes in nutrients
but also to light in this study. These changes, although moderate, could influence
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higher trophic levels through modifications in their diet. This experiment exemplifies
how small land use shifts may affect headwater streams.

Response to Reviewers: Responses to the reviewer
Reviewer #3: This is a comprehensive study that examined a breadth of biofilm and
organic matter biochemical responses to a nutrient addition, and will be of interest to
readers of Aquatic Sciences.  The manuscript has greatly improved from the previous
version, and most of the suggestions by the reviewers were incorporated.  My
comments are mainly minor in nature and seek to clarify various sections of the text.
Thanks again for this new accurate revision. We think your suggestions have
undoubtedly contributed to improve the manuscript.

P2, L2: I suggest removing the words 'qualitative and quantitative' from this sentence
(and from elsewhere in the text).  Instead, consider using 'We studied compositional [or
biochemical] changes in biofilm and…' Done

P2, L4: Consider changing 'as part of' to 'in response to'. Done

P2, L8-10: This sentence seems out of place.  Consider making it the first sentence of
the abstract as it provides context for the study.
The sentence has been eliminated. As we have included at the end of the abstract a
sentence related with the effects on consumers, we have considered this sentence
unnecessary.

P2, L13: Include 'on biofilm and OM' at the end of the sentence. Done

P2, L15-16: Consider rewording this sentence: Add 'with nutrient enrichment' between
'decreased' and 'likely', and remove 'throughout the study period in the fertilized reach'
on L16. Done

P2, L18: Is the 'microbial use of peptides' the same as 'extracellular enzyme activity'?
If so, use the latter for consistency with the rest of the manuscript. Done

P2, L19: Replace 'initial phases' with 'early spring', and 'end of the study period' with
'late spring'. Done

P2, L23: It would be nice to have a concluding sentence with potential implications as
described in the Discussion section (i.e., potential effects of these biochemical
changes on higher trophic levels).
We have slightly modified the abstract and introduced these two last sentences: ‘These
changes, although moderate, could influence higher trophic levels through
modifications in their diet. This experiment exemplifies how small land use shifts may
affect headwater streams’.

P3, L5: Consider rephrasing to '…affects many freshwater and coastal systems' and
remove 'other than large freshwater systems'. Done

P3, L5-6: Consider removing this sentence, as there is quite a bit of research on the
effects of nutrient increases on stream ecosystems (and your next few sentences also
describe these effects).
Considering this comments and the next one, we have rewritten these sentences.

P3, L10-11: Consider changing 'in these systems' to 'in headwater streams' (appears in
2 places).
See before

P3, L19-20: Provide a citation for this sentence. Done. The new citation was included
in the reference list

P3, L20: Remove 'In'. Done

P4, L8-10: Reword this sentence ('Previously' does not fit). Done

P4, 22-23: But see Tant et al. 2013 (Freshwater Science) who examined changes in
detrital C:N:P composition with nutrient enrichment.
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Thank you for the reference. We have includes it in this part of the introduction and in
the reference list. We have rewritten the sentence.

P5, L9: Do you mean 'as a result of an increase in the autotrophic component of the
biofilm'…? Changed

P6, L24: Mention that 'daily' stream flow was calculated. Included

P7, L22: Mentioned that sterilized water = autoclaved. Changed

P8, L4: 'bulk water' is not very descriptive.  Perhaps replace with 'unfiltered water'.
We have changed it here and along all the manuscript.

P8, L20-21: The authors mentioned in the response to the reviewers that the
conductivity measurement was temperature corrected (i.e., specific conductivity), so
'conductivity' should be changed to 'specific conductivity' here.  Specific conductivity is
not always the default measurement for multi-probes, and many read both conductivity
and specific conductivity, thus it needs to be specified which measurement was taken.
Changed to specific conductivity.

P9, L10-11: Please describe how the biofilm was extracted from the cobbles.  Was the
entire cobble brushed/scraped, or just a small area?
The detailed description of the biofilm extraction from cobbles is described some lines
above (page 8, line 12). There, we explain that an aliquot of the extraction was used to
measure chlorophyll. In that section we have included entire cobbles to clarify.

P10, L18: My question on the previous review about 'sum of all amino acids' referred to
whether this was expressed as 'total number of amino acids per cm 2 (i.e., 3 amino
acids/cm2)' or 'the total mass of amino acids per cm2 (i.e., 1.6 ug/cm2)'.  I assume it is
the latter because the units on Figure 4b are in ug/cm2.  Including the units that the
sum of amino acids were reported in on L18 would be sufficient.
We have included “of the sum of all the amino acid concentrations …’ instead of the
units, because we have not included units in any of the other chemical analyses.

P11, L25: It is still not clear to me why 'PAR' was not included as a continuous factor in
the statistical analysis instead of the 'sampling date'.  It is not as important that PAR
was not measured separately in the fertilized and control reaches when including this
factor as a continuous variable in the statistical analysis, because the factor you are
currently using (date) also does not vary between the control and fertilized reaches.
Date is mainly used as a proxy for PAR in this paper, as most of your results are
interpreted in the context of PAR, given the strong responses observed when the
canopy was open in early spring.
Date was preselected in the model as repeated observation, considering that samples
were collected during different dates. This selection would not be possible with PAR
because, as the reviewer comment, this variable would be continuous. We consider
more appropriate that PAR is an environmental feature. Of course date would be a
proxy for PAR but only because PAR change according the period selected for the
study. At the same time, PAR is clearly different between the first and the second
sampling dates but not during the rest of the dates sampled. Considering PAR as a
variable did not improve the model and the results because there would not be
differences during the April-May period (3 of the sampling dates).

P13, L5: Change 'studied' to 'study'. Changed

P13, L7: Change 'water conductivity' to 'specific conductivity'. Changed

P13, L7-8: Move the water temperature results to L4-5 as temperature is mentioned in
this previous sentence and the temperature data do not appear in Table 1, which is
referenced in the sentence on L8.  However, be sure to clarify that both air and water
temperature results are presented in this paragraph.
The paragraph has been rewritten and air and water temperatures have been
separated.

P13, L11: Mention what the DOC concentration represents (average of 2 reaches over

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation



the study period?).  We have included across both reaches.

P13, L19: Add: 'Algal biomass (as chlorophyll a) was higher…' Added

P14, L8: Add: '…first date, and lower in the fertilized reach on the last date' Added

P14, L10-13: Rearrange the first two sentences so Figure 4a is discussed first, and
Figure 4b is discussed second. The two sentences have been rearranged.

P14, L14: Does 'joint' refer to 'total' here?  If so, change to the latter. Changed

P14, L15: Include the result for the control reach as well.
The data in this line is referred to the results of the Pearson correlation. It is not the
concentration value for the fertilized reach.

P15, L3-4: Was the reported average fatty acid content the average across both
reaches?
Yes, we have included ‘across both reaches’ to clarify.

P15, L7: Define SAFA (to remind the reader, since it was only defined once in the
Methods). Done

P15, L10: It would be useful to provide the ω ratios for diatom, chlorophytes,
cyanobacteria, and bacteria again here to remind the reader that these indicators are
determined from ω ratios.
The ω3:ω6 ratio was only used to differentiate whether the resources are primarily of
terrestrial origin (values < 1), or if the origin is aquatic (> 1 ). This ratio is not related
with the indicators mentioned by the reviewer. We have included in the text the
meaning of the ω3:ω6 ratio.
P15, L14: Mention for the bacterial fatty acids that 'data not shown'. Done

P15, L21 and 25: Provide the statistics to support these statements.
We have included P >0.05 in line 21. The results in line 25 are referred to the average
content of two different groups of sterols. Statistics cannot be applied here.

P16, L5-6: It is not clear how the 'activities showed changes with time, but the
variations were not significant' based on the results presented in Table 2 as most of the
enzyme activities were significantly different between reaches and over time in the bulk
water and DOM fraction (based on the stats in Table 2).
We agree with this observation, the phrase did not give appropriate information. We
have changed some parts of the paragraph and included a new text: “Although all
activities showed changes with time, these variations did not follow the pattern of any
of the measured abiotic parameters”

P16, L9-10: Provide the statistics to support this statement. We have included: P >
0.05, in both lines.

P17, L4: Change 'caused changes' to 'changed'. Changed

P17, L9: Remove 'temporal' as the time period is mentioned at the end of the sentence
('on the first sampling date'). Removed

P17, L12: What does 'autotrophic activity' refer to here?  Activity (i.e., GPP, NPP) was
not measured.  Perhaps 'activity' should instead read 'changes in the autotrophic
community composition'?
We have changed activity by compartment.

P18, L3-5: It is not clear what 'correlation between bacteria, chlorophyll, etc' is being
referred to here.  I don't believe a Pearson's correlation was conducted between
bacterial density and chlorophyll a (or any measure of biofilm chemical composition),
but I could have missed it.  Or do you mean that because bacterial density was 2x
higher in the fertilized reach, it was correlated with changes observed in the biofilm
community?  The link between bacterial density and biofilm composition needs to be
clarified.  Also, if the link is as I mentioned (2x higher density), please mention that it
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was only significantly higher on one day, according to Figure 2B.
The results of the correlation in this paragraph were referred to the control site.
However, as the reviewer has observed, the two phrases are not well linked and can
cause a misunderstanding. We have eliminated the second sentence referred to the
control site.
We have not included that it was higher on one day because at the beginning of the
paragraph we already mention it:
“In the fertilized reach, the bacterial density in the biofilm was approximately twofold
higher than that of the control reach during the first period. Hepinstall & Fuller (1994)
observed a positive correlation between algae and bacteria under different light and
nutrient availability conditions and attributed their findings to the relationships between
the algal exudates (primarily composed of polysaccharides and proteins) used by
bacteria as an energy source. In addition, algal exudates represent a major C source
for bacteria (Romaní et al. 2004; Carr et al. 2005). This coupled dynamics between
bacteria and algae in biofilm is observed only in the fertilized reach. “

P18, L7-10: What does 'initially' and 'later' mean in these sentences?  It seems to refer
to the progression of research on biofilm amino acids, but it's not clear.
We have changed both. The text in now: “The biofilm was characterised by the amino
acids alanine and glycine at early spring, and the glycine content was likely related to
the structural matrices of diatoms (Dauwe and Middelburg 1998; Dauwe et al. 1999). In
the last sampling dates biofilms showed…”

P18, L10-11: Consider this edit to the sentence: '…a higher abundance of labile amino
acids AS indicators of fresh OM'.  “As” have been included in the text.
P18, L24: Due to 'GREATER algal abundance'? Included greater

P19, L1-2: The shift from terrestrial to aquatic fatty acids in the fertilized reach should
be listed as a 'marginally significant shift' (based on the statistical results).  Included
'marginally significant shift'

P19, L6: Change 'would' to 'could'. Done

P19, L8: Shifts in basal resource quality could also accelerate consumer growth. We
have changed limit by affect

P19, L11: What was the observed effect on meiofaunal secondary production
(increase? decrease?).
Included “higher meiofaunal secondary production”.

P19, L12-14: The meaning of the word 'prompt' is still not clear.  In the responses to
the previous review, the authors mention that the response was 'prompt' because it
was observed only on the first sampling date.  However, because samples were not
collected earlier than the first date, it is not clear if this effect was truly 'prompt' (i.e.,
observed only in early spring), or if the same effects were observed for several months
prior to the first sampling date (e.g., since the previous year's leaf fall opened the
canopy).  Also, it seems that this sentence should include the interaction with light:
'…although the interaction between nutrients and light appears to have an effect….'

For the first sentence, I would suggest: 'These results suggest that the interaction
between nutrients and light appears to affect the biochemical composition of the biofilm
to the greatest degree in early spring; however, we do not know whether these effects
observed in early spring also occurred in previous months.'

I would suggest rephrasing the second sentence on 'the effect could be repeated over
time' to mention that this potential 'repeated effect' would only be important for stream
consumers that lived longer than 1 year.  However, I don't think this second sentence
is needed, as the main argument that changes in basal food quality can affect stream
consumers is already made above.
We have included the change proposed by the reviewer for the first sentence and
eliminated the second one.

P20, L11: Change to '…related to changes in biofilm quality…' Done

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation



P20, L18: Provide units for these numbers. Done

P21, L16: Include a 'Conclusions' subheading before the start of this paragraph. Done

P21, L16: Remove 'permanent' - it's not clear what timescale is being referred to (time
scale of the experiment?  Geological time scales?).
We have changed permanent to stable in order to emphasize that it was the only
change maintained during all the experiment.

P21, L19: Consider rephrasing this sentence for clarity: 'The progression in canopy
closure in spring limited the effect of light on the biochemical…' Done

P22, L4: Consider changing 'would' to 'could'. Done

P22, L6: Consider changing 'global eutrophication scenario' to 'conditions of
eutrophication'. Done

Table 1: In the caption, mention that the sampling period was (17 Mar to 5 May 2008).
Replace 'showed' with 'presented'. Done

Table 2: In the caption, mention the interaction is with sampling date. Done
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Abstract 1 

We studied biochemical changes in biofilm and suspended particulate and 2 

dissolved organic matter (OM) during the leaf emergence period (March-May 2008) in 3 

a forested headwater stream in response to a long-term (4 years, 2004-2008) 4 

experimental nutrient enrichment study.  This study compared results from one reach 5 

upstream of the enrichment point and one reach downstream using moderate nutrient 6 

concentrations (nitrogen, N, from 388 to 765 μg L-1 and phosphorus, P, from 10 to 30 7 

μg L-1, resulting in N:P ratios of 85 to 56). During the spring of 2008, we analysed the 8 

chlorophyll content, elemental composition (carbon, C, and N), bacterial density, and 9 

extracellular enzyme activities along with their biochemical composition (amino acids, 10 

fatty acids and sterols) on biofilm and OM. Nutrients caused changes in the biochemical 11 

composition of the biofilm, while changes in the OM were subtle. The C:N ratio of the 12 

biofilm decreased with nutrient enrichment likely due to the increase in protein (non-13 

essential amino acids). The polysaccharide and total and essential fatty acid contents 14 

were higher when nutrient enrichment coincided with greater light availability. The 15 

peptidase extracellular activity was higher in the fertilised reach at early spring, while 16 

phosphatase activity decreased at late spring. The suspended and dissolved OM 17 

composition did not change due to the nutrient addition, likely due to the lower water 18 

residence time in the reach. Headwater systems are highly dynamic, and the 19 

biochemical composition of the biofilm changed in response to changes in nutrients but 20 

also to light in this study. These changes, although moderate, could influence higher 21 

trophic levels through modifications in their diet. This experiment exemplifies how 22 

small land use shifts may affect headwater streams.  23 

 24 
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Keywords epilithic biofilms · amino acids · fatty acids · polysaccharides · headwater 1 

stream · riparian phenology 2 

 

 

 

 

Introduction  3 

Eutrophication is a global phenomenon (Vitousek et al. 1997; Meybeck 2003) 4 

that affects many freshwater and coastal systems. In headwater streams, nutrients 5 

promote microbial activity and accelerate allochthonous organic matter (OM) 6 

processing (Greenwood et al. 2007; Benstead et al. 2009; Rosemond et al. 2015), 7 

increase the rate of biological production, and alter the biogeochemical cycles (Smith et 8 

al. 2006). Invertebrate secondary production, biomass and abundance increased in these 9 

systems because of nutrients, emphasizing that changes in food quality (i.e., greater 10 

microbial OM conditioning) override changes in food quantity (i.e., faster OM 11 

decomposition; Cross et al. 2006). However, increased nutrient supplies do not always 12 

propagate upwards in food webs, and some trophic decoupling between basal resources 13 

and consumers can occur over long periods (Davis et al. 2010). Elevated nutrient 14 

concentrations can also increase autochthonous biomass and primary production 15 

(Rosemond et al. 2000; Dodds et al. 2002), but these changes may be limited by light 16 

availability (Hill et al. 2001; Greenwood and Rosemond 2005; Ylla et al. 2007). In this 17 

sense, riparian canopies in forested streams modulate light reaching the streambed and 18 

consequently stream metabolism despite nutrient availability (Proia et al. 2012). Algal 19 

biomass could enhance heterotrophic OM utilization as a response of the algal-bacterial 20 
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coupling effect since algal exudates represent a major carbon source for bacteria 1 

(Romani et al, 2004). 2 

Benthic algal communities can serve as a source of high-quality food and energy 3 

for consumers (1-60% of the total annual energy; Lamberti 1996). Because of the 4 

relatively low C:N and C:P ratios (Frost et al. 2002) and the high protein and lipid 5 

contents, algal-derived materials can serve as a more nutritious food source than 6 

terrestrial OM (Anderson and Cummins 1979; Lamberti 1996; Torres-Ruiz et al. 2007). 7 

The effects of nutrient enrichment on biofilm stoichiometry were described by Sabater 8 

et al. 2011 as an increase in the N and P contents and a decrease in the C:N ratio. These 9 

authors observed that these effects were reflected in the elemental composition of some 10 

key consumers (predators, grazers and detritivorous) as was also observed by other 11 

studies (Cross et al. 2003). 12 

The OM present in the streams (benthic, suspended particulate and dissolved) is 13 

a complex mixture of polysaccharides, proteins, lipids, lignin, organic acids and other 14 

compounds, such as humic substances (Mannino and Harvey 2000). The primary 15 

energy-yielding compounds (biomolecules) in living organisms are polysaccharides, 16 

proteins and lipids. Many of these biomolecules play important structural and regulatory 17 

roles in organisms, and some are essential for consumers because they cannot be 18 

synthesised de novo (Brett and Müller-Navarra 1997; Dauwe and Middelburg 1998). 19 

Most studies focused on characterizing the composition of OM have mainly been 20 

limited to the dissolved fraction (Fellman et al. 2010; however, see, e.g., Gremare et al. 21 

1997; Ledger and Hildrew 1998; Ylla et al. 2010; Kolmakova et al. 2013) but few (Tant 22 

et al. 2013) have examined the changes in OM composition in response to nutrient 23 

additions. 24 
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5 

 

A previous study of forested Mediterranean streams has examined the 1 

stoichiometric changes in biofilms during a long-term nutrient enrichment experiment 2 

(Sabater et al. 2011) and has highlighted the time-dependent response depending on the 3 

considered biological compartment. Here, we extend this study by examining the 4 

changes in the biofilm and the suspended and dissolved OM collected as part of the 5 

same experimental study. OM quality was assessed based on its biochemical 6 

composition (i.e., polysaccharides, proteins and lipids). In addition, functional (enzyme 7 

activity) changes in biofilm and suspended and dissolved OM were analysed. We 8 

hypothesised that nutrient enrichment in the biofilm would i) increase the 9 

polysaccharide, protein and lipid content; ii) change the amino acid and fatty acid 10 

composition of OM as a result of an increase in the autotrophic component in biofilm; 11 

and iii) increase the essential amino acid and fatty acid contents for consumers because 12 

most of these components are derived from primary producers. However, iv) the 13 

nutrient enrichment of the suspended and dissolved OM may exhibit minor changes in 14 

the biochemical composition due to the prevailing allochthonous origin and lower 15 

residence time in the reach. This biochemical approach may provide clues for detecting 16 

mechanisms and key molecules that underlie the effects of abiotic environmental 17 

changes (nutrient addition) on OM composition. This paper contributes novel data and 18 

may represent a step forward in the knowledge of nutrient-rich headwater streams.  19 

 

Methods 20 

Experimental design 21 

Our study was conducted in the Fuirosos stream, which is located in the 22 

northeastern Iberian Peninsula (41º 42’ N; 02º 34’ E) in the Montnegre-Corredor 23 

Natural Park. Fuirosos is a Mediterranean, oligotrophic, third-order stream with a basal 24 
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6 

 

flow ranging from 0 to 25 L s-1 (Butturini et al. 2008). Nutrient addition was performed 1 

in a 50-m reach (termed the fertilised reach), and the reach upstream from the nutrient 2 

addition site was considered the control reach. The nutrient uptake length in this stream 3 

is approximately 50 m for N and P (Sabater et al. 2005). Both reaches were contiguous 4 

and similar in terms of slope, substrate type, water flow, light regime and riparian 5 

vegetation. The dominant riparian species were deciduous (Platanus acerifolia Willd., 6 

Alnus glutinosa (L.) Gaertn., Populus nigra L. and Corylus avellana L). 7 

The riparian vegetation and the steep banks of the channel caused the light 8 

availability to be generally low, except during the early spring when the forest canopy 9 

was open (Acuña et al. 2004). As part of a long-term fertilisation experiment (June 2004 10 

to June 2008), this study was performed in the spring of 2008 over 4 sampling dates 11 

(17/03, 7/04, 21/04, and 5/05) that corresponded with decreasing light availability in the 12 

streambed as the canopy closed. This experiment was performed during the fourth year 13 

of fertilization because previous results observed significant effects in biofilm 14 

stoichiometry only after long-term nutrient addition (Sabater et al. 2011).  15 

Instantaneous underwater light was measured in the studied area using a portable 16 

meter (Li-192SB quantum sensor, LI-COR, Lincoln, NE, USA). These measurements 17 

were correlated with outdoor records from a nearby weather station to obtain the 18 

continuous light regime reaching the streambed. The air temperature during the 19 

sampling period was also obtained from a nearby weather station (Collsacreu and Pla de 20 

la Tanyada, Diputació de Barcelona). Both measures were for the whole studied section 21 

(both experimental reaches). The water level was continuously monitored during the 22 

sampling period with a pressure transducer (PDCR 1830, Druck limited, Leicester, UK) 23 

connected to a data logger. Stream flow was determined every 2 weeks by using the 24 

slug-injection method with NaCl as a conservative tracer (Gordon et al. 1992). These 25 
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measurements were used to determine a stage-flow relationship, and the daily stream 1 

flow during the study period was calculated. Nutrients were continuously added to the 2 

fertilised reach using a 200-L reservoir connected to a tap that dispensed dissolved 3 

nutrients at a constant flow rate. The tank was refilled with nutrient solution, and the 4 

concentrations were adjusted weekly to respond to variations in the nutrient 5 

concentrations and flow of the stream. Nutrients were added immediately downstream 6 

of a small waterfall to assure mixing and uniform dispersal. Inorganic N was added as 7 

ammonium nitrate, and P was added as ammonium phosphate. During the 4 years of 8 

fertilisation, the average inorganic N concentration increased twofold relative to the 9 

background concentration, the N-NO3 concentration increased from 364 to 580 μg L-1, 10 

and the N-NH4 concentration increased from 24 to 185 μg L-1. Inorganic P increased 11 

threefold, with P-PO4 increasing from 10 to 30 μg L-1 (Sabater et al. 2011). This 12 

moderate increase in the dissolved nutrient concentrations, primarily of inorganic P, 13 

which is generally limiting in this stream (Sabater et al. 2005), decreased the N:P ratio 14 

from 85 in the control reach to 56 in the fertilised reach. 15 

Four cobbles were collected per reach and kept in a container with stream water 16 

to analyse chlorophyll and elemental and biochemical composition of biofilm. Glass 17 

tiles (1.44 cm2) were submerged in the stream on February 7, 2008, before the sampling 18 

period began and were used as surrogate cobbles for biofilm development. Glass tiles 19 

were attached to a brick with silicon adhesive, and 4 bricks were installed per reach. 20 

Four glass tiles per reach were collected to measure bacterial density, and four more 21 

glass tiles were collected to measure extracellular enzyme activity. To analyse the 22 

bacterial density, each glass tile was placed in 10 mL of filtered (0.2-μm nylon 23 

membranes, Whatman), autoclaved water. To determine the enzyme activities, the glass 24 

tiles were placed in 4 mL of stream water.  Water samples for nutrient analysis were 25 
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filtered through 0.2-μm nylon membranes (Whatman, Maidstone, UK) and additional 1 

water samples (four samples of 2 L) were collected for the analyses of the dissolved and 2 

particulate OM. All of the collected materials were immediately transported to the 3 

laboratory in a cooler. 4 

Once in the laboratory, subsamples were obtained from each water sample to 5 

measure bacterial density and enzyme activities in the unfiltered water. Next, from each 6 

2-L water sample 3 aliquots of 600 mL was filtered through three different 0.7-µm glass 7 

fibre precombusted filters (GF/F, Whatman) to separate particulate OM (POM) from 8 

dissolved OM (DOM). Each filter was used to measure the polysaccharide, protein and 9 

lipid contents of POM respectively. Subsamples were obtained from the filtered water 10 

to measure dissolved organic carbon (DOC), enzyme activities, polysaccharides, 11 

proteins and lipids associated with DOM. Biofilm material was obtained from entire 12 

cobbles immersed in distilled water (60 mL) that were brushed and sonicated (3 min, 13 

sonication bath at 40 W, 40 kHz). Aliquots from the 60-mL water samples containing 14 

the biofilm extract were used to analyse C, N, chlorophyll, polysaccharide, protein and 15 

lipid contents. The surface of each cobble was measured to allow for later 16 

standardisation of the measurements by area. 17 

In general, the samples were kept frozen or refrigerated (for DOC) before 18 

analysis; however, the enzyme activity and bacterial density measurements were 19 

performed on the same day that the samples were collected. 20 

Physicochemical parameters 21 

Dissolved oxygen, water temperature, pH and specific conductivity were 22 

measured in situ using a portable multi-probe (Hach, Loveland, CO, USA) on each 23 

sampling date. Nitrate, ammonium and reactive P were analysed using standard 24 

methods (A.P.H.A. 1995).  25 
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Carbon and nitrogen content 1 

The water samples used to measure DOC (20 mL) were acidified with 100 μL of 2 

2 M HCl (2%), fixed with 100 μL of NaN3 (2.7 mM), and maintained at 4ºC before 3 

analysis. DOC was measured using a TOC analyser (Multi NC/3100; Analytic Jena, 4 

Jena, Germany) with thermocatalytic oxidation (up to 950ºC). 5 

The cobble samples used to measure the C and N contents in the biofilm were 6 

freeze-dried and weighed to the nearest 0.001 mg. Next, the elemental composition was 7 

determined using an elemental analyser (EA 1108, Thermo Fisher Scientific, Milano, 8 

Italy) with vanadium pentoxide as the oxidation catalyst. 9 

Chlorophyll content 10 

Chlorophyll a was used to estimate the algal biomass. Biofilm extracts from 11 

cobbles were collected on GF/F filters (Whatman) and extracted for 12 h with 90% 12 

acetone in the dark at 4ºC. Samples were sonicated (2 min, sonication bath at 40 W, 40 13 

kHz), and filters were manually ground. The extract was filtered through 1.4-µm glass 14 

fibre filters (GF/C, Whatman), and the chlorophyll content was determined 15 

spectrophotometrically (Lambda 2 UV/VIS spectrophotometer, PerkinElmer, Waltham, 16 

MA, USA), as described by Jeffrey and Humphrey (1975). 17 

Bacterial density and extracellular enzyme activities 18 

The bacterial density (live and dead bacteria) was estimated for the colonised 19 

glass tiles and the unfiltered water samples (for a description of the methods, see the 20 

online resource, Appendix 1). The fraction of live bacteria was calculated as the 21 

abundance of live cells relative to the total cells. 22 

The activities of four hydrolytic enzymes involved in OM degradation were 23 

measured: phosphatase (EC 3.1.3.1-2), β-D-1,4-glucosidase (EC 3.2.1.21), leucine-24 

aminopeptidase (EC 3.4.11.1) and lipase (EC 3.1.1.3). Phosphatase is an enzyme that 25 
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degrades orthophosphoric monoesters to inorganic P (Klotz 1992), β-glucosidase is 1 

involved in the use of simple autotrophic or heterotrophic polysaccharides (Deshpande 2 

and Eriksson 1988), leucine-aminopeptidase activity is related to polypeptide 3 

hydrolysis, which is used to obtain leucine and other hydrophobic amino acids 4 

(Francoeur and Wetzel 2003), and lipase hydrolyses ester bonds in lipid substrates. 5 

These enzymes are derived from the microbial community, primarily heterotrophic 6 

bacteria (Romaní and Sabater 2001; Vrba et al. 2004). Colonised glass tiles and water 7 

samples (unfiltered water and DOM; 4 mL each) were analysed using 8 

spectrofluorometry to determine the activities of these four enzymes (Online resource, 9 

Appendix 2). 10 

Biochemical composition 11 

Biofilm samples from cobbles, POM (filters) and DOM (for polysaccharide, 12 

protein and lipid content analysis) were freeze-dried. The total polysaccharide content 13 

was measured using the 3-methyl-2-benzothiazolinone hydrochloride (MBTH) method 14 

(Pakulski and Benner 1992; Chanudet and Filella 2006) with some modifications 15 

(Online resource, Appendix 3; Ylla et al. 2010). 16 

The amino acid composition was analysed using high-performance liquid 17 

chromatography (Online resource, Appendix 4; Ylla et al. 2011). All amino acids were 18 

quantified, except for cysteine, which was not quantified due to analytical problems. 19 

The total protein content was calculated as the sum of all amino acid concentrations in 20 

each sample. Amino acids were classified as essential (isoleucine, leucine, lysine, 21 

methionine, phenylalanine, threonine, valine, arginine and histidine) or non-essential 22 

(aspartic acid, serine, glutamic acid, glycine, alanine, proline and tyrosine) (Dauwe and 23 

Middelburg 1998). 24 
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Lipids from the biofilm and POM samples were extracted using a mixture of 1 

chloroform and methanol (2:1) (Bligh and Dyer 1959). The total lipid content was 2 

analysed using the colorimetric sulphophosphovanillin method (Zollner and Kirsch 3 

1962). The dissolved fraction could not be calculated because the lipid content was 4 

below the detection limit of this method (< 0.01 mg L-1). The fatty acid and sterol 5 

contents in the biofilm samples were determined using gas chromatography and mass 6 

spectrometry (Online resource, Appendix 5). Fatty acids were classified according to 7 

their number of double bonds, i.e., saturated (SAFA), monounsaturated (MUFA) and 8 

polyunsaturated (PUFA), and the position of the double bond, which is used to 9 

distinguish between ω3 and ω6 fatty acids (Parrish, 1999). A ω3:ω6 ratio of < 1 10 

indicates that the resources are primarily of terrestrial origin, and a ratio > 1 indicates 11 

that the resources are primarily of aquatic origin. We also determined whether fatty 12 

acids were essential for consumers (essential fatty acids (EFA): 18:2ω6, 18:3ω3, 13 

20:4ω6, 20:5ω3, and 22:6ω3) and if they could be considered indicative of an organisms 14 

presence; i.e., fatty acids from diatoms (20:5ω3 and 16:1ω7), chlorophytes and 15 

cyanobacteria (18:2ω6 and 18:3ω3) and bacteria (15:0 and 15:1 and branched 13:0 and 16 

15:0) (Desvilettes et al. 1997; Napolitano 1999; Olsen 1999). Sterols are essential for 17 

consumers, and they can be used as indicators of algal (fucosterol), fungi (ergosterol) 18 

and higher plants (campesterol, sitosterol and stigmasterol) origin (Martin-Creuzburg 19 

and Elert 2009). 20 

Statistical analysis 21 

The results are expressed as means ± standard errors. One-way ANOVA was 22 

used to compare the physicochemical parameters measured on each sampling date 23 

between the reaches. Linear Mixed-effect models were used with each response variable 24 

to examine the main effects of fertilisation during the experiment and fitted using the 25 
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restricted maximum likelihood (REML). The final model selected (using Akaike's 1 

Information Criterion, AIC) in the study was: reach as fixed effect factor with 2 levels: 2 

control and fertilised, and date as random effect factor with 4 levels: sampling occasions 3 

(date was preselected in the model as repeated observation). The main effects of 4 

fertilisation and the interaction with date were assessed. The models did not produce 5 

Type III results for random factors (Pinheiro and Bates 2000). When significant, 6 

pairwise comparisons were performed using the Bonferroni correction to determine 7 

differences among the data means. Correlations between the pairs of response variables 8 

in the biofilm were tested in order to explore possible drivers using Pearson’s product-9 

moment correlation coefficient (r) for the entire data set and for the separate reaches.  10 

The normality of the residuals (Kolmogorov-Smirnov and Shapiro-Wilks tests) 11 

and homoscedasticity (Levene’s test) were assessed and improved, if necessary, by 12 

using Box-Cox transformations. Results were considered significant at α < 0.050 and 13 

marginally significant at α < 0.100. These analyses were performed using IBM SPSS 14 

Statistics 20 software for Windows (SPSS Inc., Chicago, IL, USA). 15 

The biomass of the biofilm per unit of surface area (g DM cm-2) was tested using 16 

mixed linear models and a likelihood ratio test, and no differences were noted between 17 

the reaches or the reach x date interaction. This result indicated that the thickness of the 18 

biofilm was not significantly influenced by nutrient enrichment. Consequently, the 19 

variables measured in biofilms are given in units of surface area (cm-2). The amino acid 20 

contents (given as relative abundance) of the biofilm and suspended and dissolved OM 21 

samples were analysed previously using detrended correspondence analysis (DCA). 22 

DCA showed that the longest gradient lengths (which estimate the heterogeneity in the 23 

biochemical composition) were shorter than 3.0 units, which indicated a linear response 24 

to the underlying environmental gradient. Therefore, linear ordination techniques were 25 
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appropriate (Lepš and Šmilauer 2003, pp. 43-59), and principal component analyses 1 

(PCA) were performed using CANOCO software (version 4.5, Biometris, Wageningen, 2 

The Netherlands). 3 

 

Results 4 

Physicochemical parameters  5 

Light availability decreased from early to late spring, and this change was more 6 

evident from the first sampling date to the second one (Fig. 1a). However, the air 7 

temperature exhibited an inverse pattern (Fig. 1b).  During the study period, water 8 

temperature increased from 8.6 to 13.6ºC, the stream flow was 23.1 (± 4.3) L s-1, and no 9 

differences were observed between the 2 reaches regarding the specific conductivity, 10 

pH, oxygen or temperature (Table 1). The N and P concentrations remained higher in 11 

the fertilised reach, where the N:P ratio decreased (Table 1). The direction of these 12 

changes has remained unchanged since 2004 (Sabater et al. 2011). The DOC 13 

concentration did not change due to fertilisation, with an average value of 3.98 (± 0.13) 14 

mg L-1 across both reaches. 15 

Biofilm characteristics 16 

The average C content of the biofilm was 24.65 (± 0.86)%, without significant 17 

differences between the reaches, and the N content was higher in the fertilized reach 18 

(control reach: 2.98 ± 0.14%; fertilised reach: 3.53 ± 0.23%; F1,24 = 4.74; P = 0.039). 19 

Thus, the C:N molar ratio of the biofilm was lower in the fertilised reach (control reach: 20 

9.68 ± 0.26; fertilised reach: 8.29 ± 0.14; Reach: F1,24 = 18.06; P = 0.004). None of 21 

these variables were affected by the sampling date. 22 

The algal biomass (as chlorophyll a) was higher in the fertilised reach (Reach: 23 

F1,24 = 7.12; P = 0.013), and the interactions between the reach and date (Reach x Date: 24 
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F6,24 = 6.63; P < 0.001) indicated differences between the first and subsequent dates 1 

(pairwise comparison, Fig. 2a). The density of live bacteria (Fig. 2b) was higher in the 2 

fertilised reach during the first two sampling dates (Reach: F1,24 =10.97; P = 0.003; 3 

Reach x Date: F6,24 = 23.52; P < 0.001), and the percentage of live bacteria relative to 4 

the total bacteria (17.53 ± 2.56% on average over all dates and reaches) did not 5 

significantly change due to fertilisation. 6 

The extracellular enzyme activities in the biofilms were differentially affected by 7 

fertilisation (Fig. 3). The phosphatase and β-glucosidase activities were lower in the 8 

fertilised reach from the 21st of April until the end of the experiment (Phosphatase, 9 

Reach x Date: F6,24 = 17.92; P < 0.001; Glucosidase, Reach x Date: F6,24 = 5.58; P = 10 

0.001). The leucine-aminopeptidase activity was higher in the fertilised reach on the 11 

first date and lower on the last one (Reach x Date: F6,24 = 8.91; P < 0.001), and the 12 

lipase activity did not show any significant changes due to any of the factors. 13 

The polysaccharide content showed a significant interaction (Reach x Date: F6,24 14 

= 5.45; P < 0.001) but pairwise comparisons did not detect any difference between dates 15 

(P > 0.05) (Fig. 4a). However, the protein content in the biofilms was higher in the 16 

fertilised reach (Reach: F1,22 = 6.56; P = 0.018) (Fig. 4b). The lipid content did not show 17 

any significant changes (Fig. 4c). The total polysaccharide and protein content was 18 

positively correlated with chlorophyll a in the fertilised reach (r = 0.763; P = 0.002; n = 19 

14).  20 

The higher protein content was primarily due to the non-essential amino acid 21 

increase (control reach: 12.51 ± 1.44; fertilized reach: 22.07 ± 2.82 µg cm-2; Reach: F1,22 22 

= 9.56; P = 0.005). The essential amino acid content only marginally increased in the 23 

fertilised reach (control reach: 15.89 ± 1.93; fertilized reach: 22.52 ± 2.97 µg cm-2; 24 

Reach: F1,22 = 3.73; P = 0.066). The amino acid composition of the biofilm changed 25 
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with time in both the control and fertilised reaches. This change can be observed by the 1 

PCA ordination (Fig. 5), where the samples arranged on the first axis (explaining 34% 2 

of the variability) were separated between the first sampling dates on the positive side of 3 

the axis and were characterised by a high percentage of alanine and glycine, and the last 4 

sampling dates were situated on the negative side of this axis and were characterised by 5 

higher percentages of leucine, histidine and phenylalanine. 6 

The average total identified fatty acid content in the biofilms across both reaches 7 

was 5.8 (± 0.8) µg cm-2, which accounted for 34.1 (± 3.1)% of the total lipid content. 8 

The fatty acid content was greater on the first date in the fertilised reach (Reach x Date: 9 

F6,23 = 9.52; P < 0.001; Fig. 6a), and the essential fatty acids (EFA, Fig. 6b) and PUFA 10 

(polyunsaturated fatty acids) showed the same patterns (Reach x Date: P < 0.029). The 11 

SAFA:PUFA (saturated versus polyunsaturated FA) ratio did not show any differences 12 

(Fig. 6c). The ω3:ω6 ratio (values < 1 indicate that the resources are primarily of 13 

terrestrial origin, and > 1 of aquatic origin) was generally (marginally significantly) 14 

higher in the fertilised reach (control reach: 0.9 ± 0.2; fertilized reach: 1.2 ± 0.2; Reach: 15 

F1,23 = 3.59; P = 0.070; Fig. 6d). The fatty acid indicators of diatoms were more 16 

abundant on the first date in the fertilised reach (Reach x Date, F6,23 = 22.48; P < 0.001; 17 

Fig. 6e) and followed the same pattern as those of fatty acids that are characteristic of 18 

chlorophytes and cyanobacteria (Reach x Date: F6,23 = 9.52; P < 0.001; Fig. 6f), and 19 

bacterial fatty acids (Reach x Date: F6,23 = 7.38; P < 0.001, data not shown). The sum of 20 

the diatom and chlorophyte-cyanobacteria fatty acids was positively related to the 21 

chlorophyll a content (r = 0.41; P = 0.021; n = 31). However, the bacterial density and 22 

bacterial fatty acid contents were not correlated. 23 

 Six sterols were identified in the biofilms (campesterol, stigmasterol, sitosterol, 24 

fucosterol, cholesterol and cholestanol), representing 2.39 (± 0.26)% of the total lipids. 25 
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The total sterol content was 0.40 (± 0.05) µg cm-2, with no differences among the 1 

reaches or dates (P > 0.05). The average fucosterol content was 0.03 (± 0.01) µg cm-2, 2 

and the average content of sterols originating from higher plants was 0.29 (± 0.04) µg 3 

cm-2.  4 

Suspended and dissolved organic matter characteristics 5 

The density of live bacteria in the unfiltered water did not change due to 6 

fertilisation (Table 2) and was higher at the end of the experiment in both reaches. The 7 

percentage of live bacteria was 21.79% (± 1.54%) and was not affected by any of the 8 

factors. The enzyme activities in the water were slightly higher in the fertilised reach 9 

and statistically significant for glucosidase, aminopeptidase and lipase in the unfiltered 10 

water and phosphatase, glucosidase and lipase in the dissolved fraction (Table 2). 11 

Although all activities showed changes with time, these variations did not follow the 12 

pattern of any of the measured abiotic parameters.  13 

None of the biochemical components in the POM were affected by nutrient 14 

enrichment (P > 0.05, Table 2). No significant differences were observed between the 15 

tested factors regarding the amounts of essential (4.36 ± 0.62 µg L-1) and non-essential 16 

amino acids (3.29 ± 0.43 µg L-1) in the particulate material (P > 0.05). 17 

In the DOM, the polysaccharide content increased in the control reach and 18 

decreased in the fertilised reach during the study period, and the protein content was 19 

generally higher in the control reach on the first date (Table 2). The essential and non-20 

essential amino acid contents in the DOM were also higher in the control reach. 21 

Essential amino acids were higher in the control reach throughout the study period 22 

(control reach: 191.21 ± 14.50; fertilized reach: 125.55 ± 9.17 μg L-1; Reach: F1,20 = 23 

17.88; P < 0.001), and the non-essential amino acids were mainly higher in the control 24 

reach on the first 2 sampling dates (control reach: 167.29 ± 18.92; fertilized reach: 25 
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132.23 ± 12.80 μg L-1; Reach: F1,20 = 10.14; P = 0.005; Reach x Date: F6,20 = 7.57; P < 1 

0.001). The PCA performed with the amino acids in the DOM (Fig. 7) resulted in the 2 

arrangement of the samples along the first axis (explaining 62% of the variability) 3 

depending on the reach and date. Samples from the first dates of the fertilised reach and 4 

the last dates of the control reach were situated on the negative side of the axis and were 5 

characterised by the presence of histidine. Samples from the last dates of the fertilised 6 

reach and the first date of the control reach were found on the positive side of the axis 7 

and were characterised by the presence of glycine. 8 

 

Discussion 9 

Nutrient addition changed the biochemical composition of the biofilm in the 10 

forested headwater stream during leaf emergence, while changes in the suspended and 11 

dissolved OM were subtle. Nutrient enrichment resulted in a decrease in the C:N ratio 12 

of the biofilm and an increase in biofilm protein content. The increase in proteins was 13 

mainly explained by an increase in the non-essential amino acids, while the essential 14 

amino acid content only increased slightly. Moreover, an increase in polysaccharide 15 

content as well as total and essential fatty acid contents was observed on the first 16 

sampling date. On this date, the nutrient enrichment interacted positively with higher 17 

light availability stimulating especially the autotrophic compartment.  18 

Biochemical quality of the biofilm and functional changes 19 

Nutrient enrichment affected algae and bacteria, as previously shown (Sabater et 20 

al. 2011, Suberkropp et al. 2010). The chlorophyll concentration was positively 21 

correlated with the protein and polysaccharide content and with fatty acids from 22 

diatoms, chlorophytes and cyanobacteria, which indicated that the autotrophic 23 
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component of the biofilm was the main driver of the changes in the quality produced by 1 

the nutrient enrichment.  2 

In the fertilized reach, the bacterial density in the biofilm was approximately 3 

twofold higher than that of the control reach during the first period. Hepinstall & Fuller 4 

(1994) observed a positive correlation between algae and bacteria under different light 5 

and nutrient availability conditions and attributed their findings to the relationships 6 

between the algal exudates (primarily composed of polysaccharides and proteins) used 7 

by bacteria as an energy source. In addition, algal exudates represent a major C source 8 

for bacteria (Romaní et al. 2004; Carr et al. 2005). This coupled dynamics between 9 

bacteria and algae in biofilm is observed only in the fertilized reach.  10 

The relative individual amino acid contents were not different between the 11 

reaches, and only some temporary changes were identified. The biofilm was 12 

characterised by the amino acids alanine and glycine at early spring, and the glycine 13 

content was likely related to the structural matrices of diatoms (Dauwe and Middelburg 14 

1998; Dauwe et al. 1999). In the last sampling dates biofilms showed a higher 15 

abundance of labile amino acid as indicators of fresh OM (leucine, histidine and 16 

phenylalanine; Ylla et al. 2011). Few studies have described the environmental factors 17 

that could determine amino acid production by algae, including as the most likely 18 

factors the nitrogen availability and the presence of light (Bates et al. 1991). In this 19 

experiment, light could be a determining factor for the amino acid composition changes 20 

in the biofilm.  In contrast with our expectations, essential amino acids showed a very 21 

minimal increase in fertilized reach. It could be explained by a higher turnover of the 22 

essential components, an assumption that would be supported by the increase in leucine-23 

aminopeptidase activity, especially at the first sampling day. 24 
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Although fatty acids and sterols are important compounds because they provide 1 

essential components to consumers, they only represented a small percentage of the 2 

total lipids in the biofilm (Brett and Müller-Navarra 1997; Martin-Creuzburg and Elert 3 

2009). The fatty acid and EFA contents were higher in the fertilised reach during the 4 

early dates, most likely due to greater algal abundance (Hill et al. 2011). Furthermore, 5 

there was a marginally significant shift from fatty acids of predominantly terrestrial 6 

origin to fatty acids of predominantly aquatic origin (ω3:ω6 ratio < 1 to > 1) in the 7 

control versus the fertilised reach. This shift was related to the higher fatty acid contents 8 

from diatoms, chlorophytes-cyanobacteria, and bacteria in the fertilised reach (on the 9 

first date). The sterol concentration and composition were not affected by nutrients 10 

primarily because of their allochthonous (higher plant) origins.  11 

These changes in the basal autochthonous resources, although moderate, could 12 

influence higher trophic levels because changes of essential compounds in the diet may 13 

affect consumer growth (Phillips 1984; Anderson et al. 2004; Brett and Müller-Navarra 14 

1997). The effects of fertilization in this stream were transmitted to grazers (mainly the 15 

gastropod Ancylus fluviatilis) in the form of increased density and growth (Sabater et al. 16 

2005; Sabater et al. 2011) and higher meiofaunal secondary production (Gaudes et al. 17 

2004). These results suggest that the interaction between nutrients and light appears to 18 

affect the biochemical composition of biofilm to the greatest degree in early spring; 19 

however, we do not know whether these effects observed in early spring also occurred 20 

in previous months. 21 

The phosphatase activity in the biofilm was lower in the fertilised reach at the end of the 22 

studied period, and the leucine-aminopeptidase activity was only higher on the first 23 

sampling date. Extracellular enzymes play an important role in OM and nutrient flow in 24 

streams, and their synthesis is activated by the presence of specific substrates (Arnosti 25 
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2003). In biofilms, the responses of extracellular enzymes are further modulated by the 1 

quality of the available OM and the microbial interactions within the biofilm (Romaní et 2 

al. 2012). In the fertilised reach and during the first period, the use of peptides is higher, 3 

potentially due to the higher availability of substrates for these enzymes (an increase in 4 

protein content in the biofilm). Moreover, higher leucine-aminopeptidase activities have 5 

been related to nutrient enrichment (Romaní et al. 2004), incident light and 6 

photosynthetic activity (Espeland et al. 2001; Francoeur and Wetzel 2003; Ylla et al. 7 

2009). At the end of the study period, the biofilm from the fertilised reach showed a 8 

decrease in phosphatase activity that was potentially related to the reduction of algal 9 

biomass and the availability of inorganic P, making phosphatase enzyme production 10 

unnecessary in the biofilm of the fertilised reach (Romaní et al. 2004; Allison and 11 

Vitousek 2005). In the control reach, high polysaccharide and peptide use (indicated by 12 

high β-glucosidase and leucine-aminopeptidase activities) was measured at the end of 13 

the experiment, which indicated greater requirements for C and N sources compared 14 

with the biofilm from the fertilised reach and the use of larger amounts of the 15 

accumulated polysaccharides within the biofilm. 16 

Changes in light availability during the study period could be related to changes 17 

in biofilm quality (in polysaccharides, fatty acids, EFAs) observed during the study 18 

period. Light availability in the streambed showed an initial maximum value of 19 

approximately 60 µmol photons m-2 s-1; however, it rapidly decreased to values of 20 

approximately 10 µmol photons m-2 s-1 (83% reduction). These values were similar to 21 

those observed previously by Sabater et al. (2011) and lower than those observed by 22 

Veraart et al. (2008) in the same stream in preceding years. In addition, the rate of 23 

change due to leaf growth was similar to that of other forested streams at similar 24 

latitudes and during similar seasons (changing from > 750 to < 100 µmol photons m-2 s-25 
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1  (Ledger and Hildrew, 1998) or from > 1000 to 20 µmol photons m-2 s-1 (Hill et al. 1 

2001). Fuirosos has moderate light availability during the leafless stage of riparian 2 

vegetation, while primary producers are limited by light after leaves have developed 3 

(Acuña et al. 2004). This change in light availability results in transient effects on 4 

periphyton and, consequently, on biochemical composition. 5 

Biochemical quality of the suspended and dissolved OM 6 

Minor changes were observed in the suspended and dissolved OM 7 

compartments. These changes were not surprising because most of this material would 8 

have been derived from upstream areas and quickly exported downstream. The effects 9 

observed regarding the density of bacteria in the biofilm due to enrichment were not 10 

reflected in the bacterial density of water. Instead, an increase was only observed at the 11 

end of the experiment and was not related to the nutrient enrichment. In addition, we did 12 

not observe any indirect effects of increases in the algal biomass and the release of algal 13 

exudates on the quality of DOM in the fertilised reach. The amino acid composition of 14 

DOM changed with time, shifting from fresh material (histidine) to structural amino 15 

acids (glycine). However, this shift was not directly related to fertilisation or changes in 16 

the biofilm. In general, forested streams (specifically Fuirosos) are primarily 17 

heterotrophic, with the DOM in the stream water primarily resulting from allochthonous 18 

sources (Thurman 1985; Butturini et al. 2008). Higher enzyme activities in water with 19 

nutrient enrichment have also been observed (Williams et al. 2012), but the temporal 20 

differences observed in our study are not related to light, as observed for biofilms. 21 

Conclusions 22 

In conclusion, after long-term moderate fertilisation, the only stable change in 23 

the quality of OM was the lower C:N ratio of the biofilms, which was related to a higher 24 

protein content, mainly in non-essential amino acids. The progression in canopy closure 25 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

findlays
Cross-Out



22 

 

in spring limited the effect of light on the biochemical composition of the biofilm. Thus, 1 

most of the potential changes caused by moderate nutrient enrichment in forested 2 

headwater streams are transient due to light limitations. The suspended and dissolved 3 

OM composition did not reflect the nutrient effects due to their mainly allochthonous 4 

origin (upstream influence) and lower residence time in the reach. Changes in land-use 5 

in many parts of the world (FAO 2012) highlight increases in the nutrient diffuse inputs 6 

in rivers and their associated risks. Our results showed that the effects of low-moderate 7 

nutrient enrichment in OM composition are minor but evident over short periods, 8 

especially in autotrophic compartments and during times at which other favourable 9 

environmental factors (e.g., light) co-occur.  This experiment exemplifies how small 10 

land use changes could affect near-pristine headwater streams. Although limited to one 11 

case-study, our results offer information for headwater resource management under 12 

conditions of eutrophication. 13 
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Figure captions 9 

Fig. 1 Abiotic parameters during the sampling period: photosynthetically active 10 

radiation (PAR) reaching the streambed; the right inset figure shows the PAR dynamics 11 

during 2007-08, and the grey area indicates the study period, which is shown in detail in 12 

the main figure (a) along with air temperature (b). The data indicate daily mean values 13 

Fig. 2 Changes in the algal and bacterial contents in the biofilm: chlorophyll a content 14 

(a) was used to estimate algal biomass, and the density of live bacteria (b) is shown in 15 

the control (open bars) and fertilised (black bars) reaches. Different letters indicate 16 

significant differences among sampling dates based on pairwise comparisons adjusted 17 

with the Bonferroni correction. Error bars represent +1 SE. N = 4. C: control, F: 18 

fertilised 19 
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Fig. 3 Extracellular enzyme activities in biofilm: phosphatase (a), β-glucosidase (b), 1 

leucine-aminopeptidase (c) and lipase (d) in the control (open bars) and fertilised (black 2 

bars) reaches. Different letters indicate significant differences among sampling dates 3 

based on pairwise comparisons adjusted with the Bonferroni correction. Error bars 4 

represent +1 SE. N = 4. C: control, F: fertilised 5 

Fig. 4 Biochemical composition of the biofilm: polysaccharide (a), protein (b) and lipid 6 

(c) contents in the control (open bars) and the fertilised (black bars) reaches. Error bars 7 

represent +1 SE. Note the different scale of the Y-axes. C: control, F: fertilised 8 

Fig. 5 Principal component analysis (PCA) of the relative abundance of amino acids (in 9 

% pg) in the biofilm showing the samples from the control (open symbols) and the 10 

fertilised (black symbols) reaches over the sampling dates. The first and second axes are 11 

represented, and the percentage of variability explained by each is indicated. Arrows 12 

represent amino acid loading, and the axes are indicated in grey. Abbreviations: ASP, 13 

aspartic acid; SER, serine; GLU, glutamic acid; GLY, glycine; HIS, histidine; ARG, 14 

arginine; THR, threonine; ALA, alanine; PRO, proline; CYS, cysteine; TYR, tyrosine; 15 

VAL, valine; MET, methionine; LYS, lysine; ILE, isoleucine; LEU, leucine; and PHE, 16 

phenylalanine. C: control, F: fertilised 17 

Fig. 6 Fatty acid composition of the biofilm in terms of the total fatty acid content (a), 18 

essential fatty acid content (EFA) (b), ratio of saturated fatty acids (SAFA) to 19 

polyunsaturated fatty acids (PUFA) (c), ratio of ω3:ω6 fatty acids (d) and concentrations 20 

of fatty acids indicating the presence of diatoms (e) and chlorophytes and cyanobacteria 21 

(f) in the control (open bars) and the fertilised (black bars) reaches. The dashed line in 22 

(d) indicates a shift from organic matter (OM) of terrestrial origin (ω3:ω6 < 1) to OM of 23 

aquatic origin (ω3:ω6 > 1). Different letters indicate significant differences based on 24 
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pairwise comparisons adjusted with the Bonferroni correction. Error bars represent +1 1 

SE. N = 4. C: control, F: fertilised 2 

Fig. 7 Principal component analysis (PCA) of the relative abundance of amino acids (in 3 

% pg) in the dissolved organic matter (DOM) showing the samples from the control 4 

(open symbols) and the fertilised (black symbols) reaches over the sampling dates. The 5 

first and second axes are represented, and the percentage of variability explained by 6 

each component is indicated. Arrows represent the amino acid loading, and the axes are 7 

indicated in grey. Amino acid abbreviations are given in figure 5. C: control, F: 8 

fertilised 9 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

findlays
Sticky Note
?



30 

 

Tables 1 

Table 1 Physico-chemical parameters in the stream water across sampling period (March to May 2008). Results of the comparison between 2 

reaches (1-way ANOVA) are presented. 3 

  C reach F reach 1-way ANOVA 

  Mean ± SE  Mean ± SE P-value 

Conductivity (μS cm-1)      202 ± 17        206 ± 18   0.886 

pH       7.6 ± 0.1         7.6 ± 0.2   0.831 

Dissolved oxygen (mg L-1)   11.15 ± 0.89     11.13 ± 0.83   0.987 

Oxygen (%)   108.2 ± 8.6     107.9 ± 8.4   0.981 

Temperature (ºC)     10.7 ± 1.1       10.8 ± 1.0   0.935 

SRP (μg P-PO4 L-1)     5.78 ± 0.70   107.73 ± 43.40 <0.001 

Nitrate (μg N-NO3 L-1) 365.66 ± 60.58 1387.02 ± 401.72   0.032 

Ammonium (μg N-NH4 L-1)   19.12 ± 5.35   201.47 ± 47.80 <0.001 

N : P (molar ratio) 173.85 ± 21.02   103.40 ± 21.79   0.028 

C: control, F: fertilised. 4 
P-values < 0.05 are indicated in bold. 5 
N = 4 6 
 

 

 

 

 

 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



31 

 

Table 2 Effect of fertilisation and the interaction with sampling date in the density of live bacteria, the extracellular enzyme activities and in the 1 

biochemical composition in water. Note that Date is considered as a random effect factor (no Type III results). 2 

  C reach F reach Reach  Reach x Date 

   Mean ± SE  Mean ± SE F 1,24 P F 6,24 P 

 Unfiltered water       

 Live bacteria  30021 ± 4107  25380 ± 2919 1.03    0.320 7.16    <0.001 

E
n

zy
m

e 
ac

ti
v

it
ie

s 

Phosphatase     0.36 ± 0.04     0.37 ± 0.02 1.66    0.210 1.02      0.070 

β-glucosidase     0.08 ± 0.004     0.12 ± 0.01 55.02 < 0.001 10.24   < 0.001 

Leucine-aminopeptidase     0.89 ± 0.04     1.04 ± 0.04 34.38 < 0.001 12.80   < 0.001 

Lipase     0.06 ± 0.01     0.08 ± 0.01 23.64 < 0.001 18.09   < 0.001 

DOM       

Phosphatase     0.11 ± 0.004     0.14 ± 0.01 20.58 < 0.001 2.52      0.114 

β-glucosidase     0.06 ± 0.003     0.09 ± 0.003 162.22 < 0.001 10.29   < 0.001 

Leucine-aminopeptidase     0.80 ± 0.07     0.81 ± 0.03 0.55    0.820 24.18   < 0.001 

Lipase     0.05 ± 0.01     0.07 ± 0.01 14.04    0.001 13.10   < 0.001 

B
io

ch
em

ic
al

 

co
m

p
o

si
ti

o
n
 

POM       

Polysaccharides 203.11 ± 25.22 276.28 ±  40.52 2.63    0.120 2.15     0.088 

Proteins     6.81 ± 0.90     8.40 ± 2.52 0.51    0.484 1.01     0.443 

Lipids 346.71 ± 50.94 392.40 ± 60.78 2.80    0.110 2.75     0.066 

DOM       

Polysaccharides 894.33 ± 107.70 619.43 ± 41.44 14.30    0.001 7.40   <0.001 

Proteins 358.50 ± 32.09 257.77 ± 18.30 15.57    0.001 4.67     0.004 

C: control and F: fertilised reaches. 3 
Bacterial density is expressed in cells mL-1, phosphatase, β-glucosidase and lipase activities in nmol MUF mL-1 h-1 and leucine-aminopeptidase activity in nmol AMC mL-1 4 
h-1. Biochemical composition is expressed in µg L-1. 5 
P-values < 0.050 are indicated in bold and P-values < 0.100 in italics. 6 
N = 32 (4 per reach and date) 7 
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Appendix 1. Analysis method of bacterial density 

Live and dead bacteria were counted using the Live/Dead Baclight bacterial 

viability kit, which contains a mixture of SYTO® 9 and propidium iodide. Colonised 

glass tiles were placed into glass vials with 10 mL of autoclaved stream water. Once in 

the lab, samples were sonicated (< 1 min). Aliquots of 200 μL of the glass tile extracts 

were diluted with 2 mL of sterilised stream water. For the water samples, 4 mL was 

taken directly (no dilution). A 1 : 1 mixture of SYTO® 9 and propidium iodide was 

added (3 μL), and samples were incubated for 20 min. Samples were then filtered 

through 0.2 μm black polycarbonate filters (Nucleopore, Whatman, Maidstone, UK). 

The filters were dried, placed on a slide with mounting oil and examined by 

epifluorescence microscopy (E600, Nikon Instruments, Melville, NY, USA). At least 20 

random fields were examined on each slide for a minimum of 100 bacteria cells. 

 

Appendix 2. Analysis method of extracellular enzyme activities 

Extracellular enzyme activities were determined using the artificial substrates 4-

methylumbelliferyl-phosphate for phosphatase, 4-methylumbelliferyl-β-D-

glucopyranoside for β-glucosidase, L-leucine-7-amido-4-methylcoumarin hydrochloride 

for leucine-aminopeptidase and 4-methylumbelliferyl palmitate for lipase (Sigma-

Aldrich, St. Louis, MO, USA), as the respective substrate analogues. Samples were 

incubated with 120 μL of artificial substrate to a final concentration of 0.3 mM 

(saturated conditions; Romaní and Sabater 2001) in the dark under continuous shaking 

for 1 h at an ambient temperature. Blanks and standards of methylumbelliferone (MUF) 

and aminomethyl-coumarin (AMC) were also incubated. At the end of the incubation, 

glycine buffer (pH 10.4) was added (1 : 1, V : V), and the fluorescence was measured at 

365/455 nm excitation/emission for MUF and 364/445 nm excitation/emission for 

AMC. 

 

Appendix 3. Analysis method of polysaccharide content 

Samples for polysaccharide content were acidified with 1 mL of 12 M H2SO4 for 

2 h at an ambient temperature. Then, the samples were diluted with 4 mL of Milli-Q 

water, sonicated (2 min) and hydrolysed at 100ºC for 3 h. After cooling, the pH of the 

hydrolysis solution was neutralised with NaOH. Next, monosaccharides were reduced 

to alditols by the addition of potassium borohydride. The reduction reaction was 

terminated by the addition of 2 M HCl. The samples were left overnight at 4ºC. The 
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 3 

following day, triplicate aliquots of the hydrolysis products (and duplicate blanks) were 

placed in test tubes and oxidised to formaldehyde by the addition of 0.025 M periodic 

acid. The oxidation reaction was terminated by the addition of 0.25 M sodium 

metaarsenite. After the addition of 2 M HCl, the aldehyde was reacted with 3-methyl-2-

benzothiazolinone hydrochloride (MBTH) reagent, ferric chloride solution and acetone. 

Absorbance was measured at 635 nm with a spectrophotometer (Spectronic® 20 

Genesys, Thermo Spectronic, Cambridge, UK). Glucose standard curves were generated 

concurrently. 

 

Appendix 4. Analysis method of amino acid composition 

Samples for amino acid composition and concentration were hydrolysed with 6 

M HCl at 110ºC for 20 h. The HCl remaining in the sample after hydrolysis was 

removed by N2 flush and the residue derivatised with a fluorescent reagent (AccQ Fluor 

reagent, Waters, Milford, MA, USA). Samples were filtered and amino acids analysed 

using high performance liquid chromatography (HPLC, Waters). The injection volumes 

were 5 μL for biofilm samples and 10 μL for water samples. The validity of the method 

was verified by the addition of an internal standard (50 pmol of α-aminobutyric acid), 

which was recovered at nearly 100% (50 pmol ± 5 for POM and DOM and 50 pmol ± 

10 for cobble samples) during the treatment and analysis of the standards and samples. 

Amino acids were identified on the basis of the retention times and quantified by a 

comparison between the standard (mixture of 17 primary amino acids) and sample 

peaks. 

 

Appendix 5. Analysis method of fatty acid and sterol composition 

 

Samples for fatty acid and sterol composition and concentration were frozen 

with liquid N2 and freeze-dried for 48 h. Then, samples were extracted with a 

dichloromethane-methanol (MeOH) 2:1 solution, and were sonicated for 20 min. 

Samples were centrifuged for 5 min, and the organic extract was concentrated up to 0.5 

mL, (*) saponified with KOH (6% in MeOH) and left overnight. On the second day, 

water and hexane were added. From the hexanic phase, the sterols extract was obtained 

and concentrated under N2. The aqueous phase was acidified with HCl and extracted 

with hexane. The hexanic phase was concentrated up to 0.5 mL and methylated using 

BF3 (20% W:V in MeOH) overnight. The next day, water and hexane were added. From 
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 4 

the hexanic phase, the methylated acids extract was obtained and concentrated under 

N2.. All extractions during the protocol were repeated 3 times for each replicate. For 

DOM, the beginning of the protocol was slightly different, an aliquot of 100 mL. was 

taken and NaCl and dichloromethane were added. Samples were shaken and the 

dichloromethane phase (lower phase) was collected and concentrated up to 0.5 mL. 

From here on the protocol was the same as described above (*). Samples were kept 

frozen until analysis. Procedural blanks were processed simultaneously with samples. 

Internal standards (heptadecanoic acid and 5-α-cholestane) were added to the samples 

and blanks to calculate the yield of the extraction (71% for FA and 53% for sterols) and 

to correct for the final concentrations. Prior to analysis, sterols were derivatised with 

bis(trimetilsylil)trifluoroacetamide (BSTFA) for 30 min at 150ºC, and samples were 

resuspended in hexane. Samples were analysed with a gas chromatograph (GC 8000 

series) equipped with a mass spectrometer detector (MD 800; Thermo Fisher Scientific, 

San Jose, CA, USA). The gas chromatograph was fitted with a SGE BPX70 capillary 

column (30 m x 0.25 mm, 0.25m) for FA methyl esters (FAME) detection and an 

Agilent J&W DB5 MS (30 m x 0.25 mm, 0.25 m) for sterols. Samples ran in splitless 

(48 s or 1 min) or split mode depending on the concentration of the sample, with helium 

as the carrier gas at a flow of 1 mL min-1 and the injector temperature at 250ºC / 270ºC. 

The mass spectrometer was in electronic ionisation mode. External standards (Supelco 

37 component FAME Mix, Sigma-Aldrich and single sterol standards) were used to 

identify (by retention time and mass spectra) and quantify (by calibration curves) 

FAME and sterols, although extra components were also identified. Results were 

analysed with Xcalibur 2.0.7 software (Thermo Fisher Scientific Inc., 1998-2007). 
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