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Abstract 

The exact impact of bariatric surgery in metabolically “healthy” (MH) or “unhealthy” (MU) 

phenotypes for the study of the metabolic improvement is still unknown. 

We applied an untargeted LC-ESI-TripleTOF –MS- driven metabolomics approach in serum 

samples from 39 patients with morbid obesity (MH and MU) 1, 3 and 6 months after bariatric 

surgery. Multiple factor analysis, along with correlation and enrichment analyses were carried 

out to distinguish those metabolites associated with metabolic improvement.  

Hydroxy-propionic acids, medium-/long-chain hydroxy-fatty acids and bile acid -glucuronides 

were the most discriminative biomarkers of response between MH and MU phenotypes. 

Hydroxy-propionic (hydroxyphenyllactic-related) acids, amino acids and glycerolipids were the 

most significant clusters of metabolites altered after bariatric surgery in MU (p<0.001). MU and 

MH changes after surgery towards a common metabolic state already 3 months after surgery. 

We observed a negative correlation with changes in waist circumference and cholesterol levels 

with metabolites of lipid metabolism. Glycaemic variables were correlated with hexoses, which, 

in turn, correlated with gluconic acid and amino acid metabolism. Finally, we noted that 

hydroxyphenyllactic acid was associated with amino acid and lipid metabolism.  

Microbial metabolism of amino acid and BA glucuronidation pathways may be the key points 

of metabolic rearranges after surgery.  

Keywords: Untargeted metabolomics, microbiota metabotype, bariatric surgery, obesity, 

metabolically healthy, indole metabolites, mass spectrometry, hydroxyphenyllactic 

Abbreviations: 

AU, arbitrary unit; BA, bile acid; BCAA, branched-chain amino acid; BMI, body mass index; 

BP, blood pressure; c-HDL, high-density lipoprotein cholesterol; c-LDL, low-density 

lipoprotein cholesterol; CRP, C-reactive protein; CVD, cardiovascular disease; DBP, diastolic 
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blood pressure; DG, diglyceride; ESI-, electrospray operating in negative ionization mode; 

ESI+, electrospray operating in positive ionization mode; FDR, false discovery rate; FXR, 

farnesoid-X receptor; GGT, gamma glutamyl transferase; GOT, glutamic-oxaloacetic 

transaminase; GPT, glutamate-pyruvate transaminase; HbA1c, glycated haemoglobin A1; 

HOMA-IR index, insulin resistance calculated by homeostatic model assessment index; LC, 

liquid chromatography; LPE, lysophosphoethanolamine; MFA, multiple factor analysis; MH, 

metabolically healthy; MS, mass spectrometry; MU, metabolically unhealthy; PC, 

phosphatidylcholine; PCA, principal component analysis; Phe-Phe, phenylalanine-

phenylalanine; QC, quality control; qTOF, quadrupole time-of-flight; SBP, systolic blood 

pressure; sPLS-DA, sparse partial least-squares discriminant analysis; TG, triglyceride; TGR5, 

G-protein-coupled receptor; VLDL, very low-density lipoprotein. 
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Introduction 

Obesity is predictive of all-cause mortality and increases the risk of developing metabolic-

related diseases such as type 2 diabetes. Obesity is associated with insulin resistance, 

dyslipidaemia, hypertension and high cardiometabolic risk 1. 

Paradoxically, 10–30 % of people with obesity are characterized by low cardiometabolic risk – 

higher insulin sensitivity, normal blood pressure, lower lipid levels of triglycerides (TG) and 

low-density lipoproteins, and higher levels of high-density lipoproteins – and thus they are 

defined metabolically healthy (MH)  2. Hence, apart from confounders such as age, gender, 

ethnicity and lifestyle, being or not being MH depends on insulin resistance or the number of 

metabolic abnormalities present in the individual 3. These subjects present a lower risk of 

mortality and of developing metabolic complications 4. 

Despite several attempts to describe the mechanisms of metabolic balance in MH obesity, such 

as those based on inflammatory response 5, visceral adipose tissue regulation or diet/lifestyle 6, 

the door is still open to achieve the complete understanding of the metabolic health in obesity. 

Therefore, a change in the study of this paradigm is required to work out the causes of the 

existence of diverse metabolic profiles in obesity, but especially which specific pathways are 

involved. 

Studying the metabolic changes after the employment of a weight loss strategy such as bariatric 

surgery may be a tool to unveil insights into metabolic deregulation. Several studies have 

reported that bariatric surgery is a metabolic modifier, from the dissipation of metabolic 

syndrome status a few days after the intervention to the remission of type 2 diabetes 7.  

The metabolome − the set of metabolites in a biological sample − mirrors the products of the 

genome, transcriptome and proteome, and reflects any environmental or endogenous 

manifestations 8. A comprehensive metabolic profiling of a human serum could provide an 
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exhaustive view of the evolution of the subjects after surgery 9and unveil the connection 

between obesity and their related complications 10. 

To date, few metabolomics approaches have been used to study the metabolic consequences of 

the current strategies for weight loss. Among these, a targeted metabolomics approach is 

dominant, focused on the quantification of specific groups of metabolites, for instance amino 

acids 11,12, acylcarnitines 12 and phospholipids 13. Thus, the use of untargeted metabolomics for a 

non-hypothesis-driven approach may expand the assessment of the onset of metabolic 

improvements after a weight loss intervention underlying unknown mechanisms involved. The 

potential use of metabolomics in the biomedical field has increased the discovery of new 

biomarkers of prognosis or diagnosis of a disease 14. 

The aim of this work is to identify serum metabolites associated with metabolic improvement in 

subjects with morbid obesity after undergoing bariatric surgery. To this end, we adopted an 

untargeted metabolomics approach to analyse serum samples of subjects with MH and 

metabolically unhealthy (MU) obesity both before bariatric surgery intervention and one, three 

and six months later through liquid chromatography coupled to triple quadrupole time-of-flight 

mass spectrometry (HPLC-qTOF-MS). 

Material and Methods 

The protocol was approved by the local Ethics and Research Committee (Hospital Universitario 

Virgen de la Victoria, Malaga) and all participants provided written informed consent. 

Subjects and study design 

Serum samples from 39 patients with morbid obesity (body mass index (BMI) > 40 kg/m2) (> 

10-year history of obesity who underwent bariatric surgery (n= 26 roux-en-Y gastric bypass; n= 

13 sleeve gastrectomy) were collected before and 1, 3 and 6 months after surgery at the Virgen 

de la Victoria University Hospital and Carlos Haya Hospital (Malaga, Spain).  
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Subjects were stratified according to their degree of metabolic syndrome, as defined by the 

Adult Treatment Panel III criteria 15: metabolically healthy (MH) subjects with ≤ 2 criteria 

(n=21) and metabolically unhealthy (MU) subjects with ≥ 3 criteria (n=18).  

All the patients were adults (between 19 and 59 years old) and they comprised 27 females and 

12 males. The exclusion criteria were the intake of antidiabetic, corticosteroid, or antibiotic 

drugs, the presence of acute or chronic infection, a history of alcohol abuse or drug dependence 

and a history of cancer. Other treatments, including anti-inflammatory, antihypertensive and 

anti-cholesterolemic agents, were recorded.  

Anthropometric and biochemical parameters 

Anthropometric and biochemical parameters were measured in each period of time using 

standardized techniques, as previously described 16–18. In this work we report: a) anthropometric 

markers: body weight, BMI, waist circumference, hip circumference and waist-hip index; b) 

markers of glucose regulation: glycated haemoglobin A1c (HbA1c), plasma concentrations of 

fasting glucose, fasting insulin and calculated Homeostatic Model Assessment (HOMA-IR 

index=fasting insulin x fasting glucose/22.5 arbitrary units); c) blood pressure markers (BP): 

diastolic and systolic blood pressure; d) blood lipid markers: total cholesterol (CHOL), very 

low-density lipoprotein (VLDL), low-density lipoprotein (c-LDL), high-density lipoprotein 

cholesterol (c-HDL) and TG; and e) liver enzyme activities: gamma glutamyl transferase 

(GGT), glutamic-oxaloacetic transaminase (GOT) and glutamate-pyruvate transaminase (GPT); 

and f) C-reactive protein (CRP). 

Serum Metabolomic Analysis 

Sample Treatment and Data Acquisition 

Fasting morning serum was stored at -80 ºC until analysis. Serum samples (50 µL) were 

subjected to an in-plate hybrid extraction for deproteinization and phospholipid removal with 
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solid-phase extraction, as described previously 19. Liquid chromatography (LC) was performed 

on a Shimadzu Nexera X2 series HPLC system (Kyoto, Japan) using a 50 x 2.1 mm, 5 µm 

(Waters) Atlantis T3 reverse phase column, with a sample injection volume of 5 µL. A linear 

gradient elution was performed with a binary system consisting of [A] Milli-Q water 0.1% 

HCOOH (v/v) and [B] methanol (v/v), at a constant flow rate of 600 µL min-1. The gradient 

elution (v/v) of [B] used was as follows (time, min; B, %): (0, 0), (2, 0), (4.5, 85), (7, 100), (9.9, 

100), (10, 0), (13, 0). The HPLC system was online coupled with a hybrid quadrupole-TOF 

mass spectrometer TripleTOF 6600 System (AB Sciex, Toronto, Ontario, Canada) equipped 

with a Turbo Spray IonDriveTM source operating in positive (ESI+) or negative (ESI-) ion 

electrospray modes. Full data acquisition was performed by scanning from 70 to 850 m/z in 

both ionization modes. LC-MS data were acquired in two successive batches of analysis and the 

sequences of injections were randomized in order to avoid possible bias. Three types of quality 

control (QC) were included in the injection plate design to check for the analytical quality 

grade: QC1, Milli-Q water samples; QC2, aqueous solution of a standard metabolite mix (5 ppm 

final standard concentration, described in 20 and QC3, reinjected selected biological samples 

within the same batch. The QC samples were analysed throughout the run, every 20 injections, 

to provide a measurement of the stability and performance of the system and evaluate the 

quality of the acquired data. Information Dependent Acquisition was performed in high-

sensitivity and low-cycle time mode, recording masses with an ion count greater than 500 cps, 

not excluding former target ions, excluding isotopes within 4 Da, with an ion tolerance of 50 

ppm, a maximum of seven spectra of candidate ions per cycle and with a dynamic background 

substract. 

Standards and reagents 

Internal standard mix of glycocholic acid-(glycine 1-13C) and 1-O-stearoyl-sn-glycero-3-

phosphocholine (negative control); external standards mix of acetyl-d3-L-carnitine, indole-3-

acetic-2,2-d2 acid (Sigma-Aldrich, St Louis, MO) and QC metabolite standard mix were 
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prepared as previously described20.  2-hydroxy-hexanoic acid, 3-(4-hydroxyphenyl)-2-

hydroxypropanoic acid, 3-(4-hydroxyphenyl)-propanoic acid, 3-hydroxy-dodecanoic acid, 3-

hydroxy-octanoic acid, 3-hydroxy-tetradecanoic acid, 4-hydroxy-butyric acid, acetylcarnitine, 

caffeine, choline, citric acid, creatine, docosapentaenoic acid (osbond acid), docosatetraenoic 

acid (adrenic acid), dodecanoic acid (lauric acid), gluconic acid, hexoses, indole-3-

carboxaldehyde, indolelactic acid, isocitric acid, L-arginine, L-citrulline, L-glutamate, L-

histidine, L-leucine, L-ornithine, L-tryptophan, L-tyrosine, octadecatrienoic acid (linolenic 

acid), palmitoylmonoglyceride, phe-phe, retinol, tetradecanoic acid (miristic acid), theobromine 

and uric acid (Sigma, St. Louis, MO) and octadecenoylcarnitine and octadecadienylcarnitine 

(Larodan, Solna, Sweden) were used to confirm the identity of metabolites.  

Data analysis and metabolite identification 

Mass extraction and alignment of the peaks were performed using MarkerViewTM 1.3.0.1 

software (AB Sciex); parameters were optimized separately for positive and negative ionization 

modes (Table S-1). The subsequent analyses were executed in R version 3.3.2, unless otherwise 

noted.  

Data were filtered out to remove any ion that did not appear in more than 20% of the samples of 

each group separately 21. Data were log-transformed and Pareto-scaled for multivariate analysis 

22.  

Due to the potential effect of age 23, gender 24 and type of surgery 25 on the metabolome, data 

were adjusted by these variables in all statistical analyses. 

Paired t-tests were used to identify discriminant features at each time point (6 months (T6), 3 

months (T3) and 1 month (T1)) with respect to the baseline (T6–T0, T3–T0 and T1–T0) for the 

MH and MU group separately. To control the false discovery rate (FDR) associated with 

multiple hypothesis testing, p-values were adjusted to allow a maximum 5% probability of 

false-positive detection based on the Benjamini-Hochberg procedure 26. A two-way hierarchical 

Page 9 of 33

ACS Paragon Plus Environment

Journal of Proteome Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



10 

 

cluster analysis based on Pearson correlation and Ward’s distance method was performed to 

determine clusters of mass features originating from the same metabolite and thereby reducing 

the queried masses (PermutMatrix 1.9.3 software). Levels of evidence in the annotation of 

discriminant metabolites were assigned in accordance with Metabolomics Standards Initiative 

criteria 27. Putatively annotated compounds were carried out by matching mass features with 

mass spectral databases (Human Metabolome Database 28, Metlin 29, MetFrag 30) with a mass 

error tolerance of ±10 mDa (assigning a level 2 of the evidence in the identification). When 

peak chromatographic and MS responses of the identified metabolites matched with peak 

chrompatographic and MS responses of commercial reference standards level 1 of evidence in 

the identification was assigned. 

Multivariate analyses were applied to the identified metabolites to recognize those most 

responsible for the changes at each time point. Initially, an exploratory analysis was performed 

through multiple factor analysis (MFA), taking into account each single time point (FactoMineR 

R package)31. Afterwards, a sparse partial least squares discriminant analysis (sPLS-DA) was 

used to distinguish the most discriminative metabolites of MH and MU in T6–T0, T3–T0 and 

T1–T0 (spls R package) 32. The sparsity (eta) and number of hiding components (K) were 

chosen using a ten-fold cross-validation procedure and the predictability of the models was 

calculated on a leave-one-out basis. Principal components analysis (PCA) and orthogonal 

projections to latent structures discriminant analysis (OPLS-DA) were used to visualize the 

separation of the groups. Finally, linear mixed models were employed to obtain the effect of the 

interaction time x metabolic state. 

Pearson correlation analysis was carried out between log-normalized metabolite levels and 

anthropometric/clinical variables to evaluate the relationship between the metabolite change 

with the metabolic improvement for each increment of time. Only those correlations of 

discriminant metabolites at T3–T0, with p-values adjusted by multiple testing by the FDR < 0.1 

and correlation coefficients > |0.5|, were visualized (Cytoscape 3.5.1.). MFA was also 
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performed with clinical variables and the discriminative metabolites of MH/MU in T3–T0 to 

show the relation between these variables. 

Enrichment analysis was performed using the bioinformatics tool ChemRich (Chemical 

Similarity Enrichment Analysis for Metabolomics). The ChemRich statistical approach 

compares chemical similarities using the Medial Subject Headings database and Tanimoto 

chemical similarity coefficients to cluster metabolites into non-overlapping chemical groups. P-

values are obtained by employing the Kolmogorov-Smirnov test using the created clusters and 

adjusted by the FDR 33.  

Results 

Anthropometric and clinical parameters 

The characteristics of the subjects are presented in Table S-2. MH and MU were balanced in 

terms of gender, age and anthropometric parameters. At baseline, MU presented higher levels of 

fasting glucose, HOMA-IR, c-LDL and CHOL (p-value < 0.05). In general, after the surgery the 

aforementioned variables normalize, already observed 1 month after the intervention. Table S-3 

shows the evolution of anthropometric and clinical parameters in both groups after surgery. At 3 

months after surgery, seven of the MU group were still “unhealthy” and three of the MH group 

had crossed the line of “unhealthy” obesity. Six months after the initial point, five patients from 

the MU group were still “unhealthy” and four of the MH group had changed to being 

“unhealthy”. 

The availability of the serum samples before surgery and 1, 3 and 6 months after surgery was as 

follows: MH: 21, 20, 20 and 17, respectively and MU: 18, 16, 17 and 15, respectively.  

Data acquisition quality 

The analytical quality was first examined through a PCA displaying the classification of serum 

samples, confirming that no batches were overlapping, along with the absence of carryover in 
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QC and the detection of no outliers in positive and negative ionization modes (Figure S-1). The 

quality of the hybrid extraction was checked by monitoring the internal standards in the 

chromatogram. LC-MS analytical stability was evaluated by controlling external standards over 

time. As a result, one sample in the positive ionization mode and other in negative ionization 

mode did not pass the analytical quality and therefore they were removed. As shown in Table S-

4, metabolite components of QC met the quality criteria proposed for the metabolomics analysis 

protocol: retention time shifts ≤ 0.05 min, mass accuracy deviations < 10 mDa and peak areas 

with CV < 25%.  

Selection and identification of discriminatory metabolites related to 

metabolic improvement  

A first selection of the most discriminative features between groups and time points was 

performed using univariate analyses. From the initial 3000 features obtained in each ionization 

mode, the only features that met the criteria (p < 0.05) were considered for identifying 

metabolites. The complete list of identified metabolites and their fold changes is available in 

Table S-5. Metabolites lacking chemical annotation were not considered for subsequent 

analyses.  

MFA was applied to all identified metabolites irrespective of which time period was statistically 

significant. The first two dimensions explained 22.47% of the total variance. Figure 1 shows the 

mean evolution of both groups converging to a common point over time, observed 3 months 

after surgery, corresponding to the origin of the MFA score plot. Global differences after the 

surgery are shown in Figure S-2 and the separation of MH and MU in each time point is 

represented in Figure S-3.  
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Figure 1. Projection of the individual mean (metabolically healthy (MH) and metabolically 

unhealthy (MU)) for each period of time onto the global analysis, based on the identified 

metabolites in positive and negative operating modes. The scatter plot was created with the 
first two dimensions of the Multiple Factor Analysis (MFA). Periods of time are represented by 
red, green, blue and pink dots corresponding to the baseline (T0), 1 month, 3 months and 6 
months after the surgery, respectively, and linked by a black line with the partial positions of 
each point. Grey dots indicate the position of each subject in the scatter plot. 

 

Discriminant metabolites in each increment of time, T6–T0, T3–T0 and T1–T0, were explored 

through sPLS-DA using the optimal parameters to obtain a minimum classification error (Table 

S-6). The changes between the groups of patients were mainly acute (T1) and derived from 

middle-term (T3) adaptations. At 6 months no additional significant metabolites between MH 

and MU were found (Figure S-4). Discriminant changes in metabolite levels between MH and 

MU in the convergent point (T3–T0) are shown in Table 1. Briefly, Diglycerides (DGs) and 

hexoses enabled discrimination between MU and MH in each increment of time, displaying 
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major fold changes in MU. Acute changes were characterized by modifications in fatty acids, 

hydroxy fatty acids, amino acids and their microbiota-related compounds (hydroxyphenyl-

propionic derivatives). Nevertheless, steroid conjugates and acylcarnitines were mainly 

discriminative of both groups in the time increment T3–T0. Confirmation of this common 

steady metabolic state post-surgery in both groups was obtained by comparing whether the 

levels of the discriminant metabolites in MH were statistically equal to those from MU at 3 

months (p > 0.05). At 3 months MU group was different from MH group at baseline in terms of 

tyrosine, leucine, glycochenodeoxycholic acid-3 glucuronide, hydroxy-indolepropanoic acid, 

indole-3-carboxaldehyde and lysophosphoethanolamines (LPE) metabolites (Table 1). 

Enrichment analysis and correlation analysis for metabolic improvement 

Correlation between metabolite and clinical variables in T3–T0 showed that changes in waist 

circumference and cholesterol levels were negatively correlated with LPE and fatty acid 

metabolism. 3-(4-Hydroxyphenyl)-2-hydroxypropanoic or hydroxyphenyllactic acid was the 

link between amino acids and lipid metabolism. Changes in 3-(4-Hydroxyphenyl)-2-

hydroxypropanoic levels also positively correlated with hexoses. In addition, hexoses associated 

with glycaemic variables (Figure 2). 
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Figure 2. Visualization of Pearson correlations between metabolite-metabolite and 
metabolite-clinical variables (in grey) of the discriminative metabolites between MH and 

MU in the time incrementT3–T0 (Cytoscape). Only statistical correlations after adjustment of 
the false discovery rate are shown (p < 0.1). Correlations with r > 0.8 are represented by thicker 
lines. Negative correlations are shown in red. 
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We mapped the 46 discriminative metabolites between groups in the increment T3–T0 in 

ChemRich, in order to detect those chemical families that were most responsible for the 

metabolic changes in each group (Table 2). Indoles and derivatives, amino acids, glycerolipids, 

glycerophospholipids and fatty acids were altered most in MU subjects. On the other hand, not a 

single chemical family reached statistical significance in the MH group.  

MFA of the identified metabolites and clinical variables confirmed the separation of MH and 

MU in T3–T0 by the first dimension of the scatterplot (Figure 3A, 3C). The third dimension 

explained the separation between clinical and metabolic variables (Figure 3B). Correlations of 

the variables with the main dimensions are shown in Figures 3D and E. The first dimension was 

highly correlated with glycaemia and weight parameters. These variables were hardly 

overlapped with the acylcarnitines, propionic acids were near CHOL and c-LDL with the DGs 

(Figure 3E). 3-(4-Hydroxyphenyl)-2-hydroxypropanoic acid presented high correlation with the 

first dimension and proximity with amino acids and DGs.  
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Figure 3. Multiple factor analysis (MFA) of clinical variables and identified metabolites in 

T3–T0. A) Projection of the mean individual (metabolically healthy (MH) and metabolically 
unhealthy (MU)) onto the global analysis, based on the clinical variables and identified 
metabolites in T3–T0 in positive and negative operating modes. The scatter plot was created 
with the first two dimensions of the MFA. B) The scatter plot was created with the first and the 
third dimension of the MFA. C) Partial axes of each group of variables (clinical, metabolic) in 
the first two dimensions and position of the health status in the plot. D) Correlation circle of 
variables into the first and second dimensions. Only clinical variables are shown. E) Correlation 
of the variables into the first (x-axis and darkness of the bubbles), second (size of the bubbles) 
and third (y-axis) dimension of the scatter plot. Clinical, metabolic and health status variables 
are represented by blue, grey and red, respectively, except in E where all the variables are 
represented by grey. 

 

Discussion 

Through an untargeted metabolomics approach we explored an integrative global metabolic 

evolution of patients with morbid obesity after a weight loss intervention. We also identified 
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metabolic fingerprints of changes in MH and MU after surgery. We observed that microbial 

related metabolites such as hydroxyl fatty acids, BAs and hydroxy-propionic acid (indole 

derivatives) are the most important biomarkers to reach a stable metabolic state after bariatric 

surgery regardless of the health status of the patient at baseline. 

MFA revealed that MU and MH changes after surgery towards a common metabolic state 6 

months after surgery. In fact, a steady metabolic state was observed in the groups as early as 3 

months after the intervention. For this reason, the post-identification analyses have been focused 

on this time point. 

Acute changes in microbial and amino acid-related metabolites 

A depletion in amino acid levels was observed as early as 1 month after the intervention. This 

phenomenon has also been noticed with the use of different strategies for weight loss, and is 

generally greater after a surgical intervention than after diet/lifestyle changes 12. High levels of 

amino acids are a biosignature of subjects with obesity. Out of all the amino acids, branched-

chain amino acids (BCAAs) such as leucine, isoleucine and valine, and aromatic amino acids 

such as tryptophan, tyrosine and histidine, have been described as being correlated with 

glycaemia disruption 34. Indeed, BCAAs have been associated with different cardiometabolic 

complications, from insulin resistance to coronary artery disease 35.  

We also identified a drop in the levels of dipeptides after the intervention. Although LC-MS did 

not allow them to be fully characterized, and a chemical standard was not available, thanks to 

the MS/MS spectra and databases we have proposed phenylalanine and BCAA derivative 

dipeptides. However, little is known about their role in obesity and cardiometabolic diseases.  

The decrease in the levels of amino acids was also mirrored by changes in gut microbiota 

metabolism products. We found that indole metabolites were the most important chemical 

family of metabolites that changes in MU after bariatric surgery. (Hydroxyphenyl-

)hydroxypropionic acid and 2-Hydroxy-3-(3-indolyl)propanoic acid are gut microbiota-related 
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compounds of the amino acid metabolism. Recently the reductive pathway of Clostridium 

sporongenes, a gut bacterium from the phylum Firmicutes, has been demonstrated to produce 

phenylpropionic acid, hydroxyphenylpropionic acid and indolepropionic acid through the 

metabolizing of phenylalanine, tyrosine and tryptophan, respectively 36. Moreover, the 

degradation of phenylalanine and tyrosine by lactic acid bacteria increases the levels of 

hydroxyl-propionic acid metabolites 37. The catabolism of tryptophan produces hydroxyl-

indolepropionic acid. A recent study has suggested that the stimulating of indole- derivatives 

production could promote anti-inflammatory response, improving the mucus layer38.  

Correlation analysis suggested that these microbiota-metabolites could like the metabolism of 

amino acids, glucose, fatty acid and DGs. Thus, (Hydroxyphenyl-)hydroxypropionic acid and 2-

Hydroxy-3-(3-indolyl)propanoic acid could be key in the metabolic regulation after surgery.  

On the other side, the increase in the number of BA glucuronides and steroid sulphates suggests 

the involvement of phase II (detoxifying) glucuronyl- and sulphate-transferase enzymes. 

Glucuronide conjugates represent up to 10 % of the circulating pool of BAs in healthy 

individuals. However, conjugated BAs with amino acids are such relatively strong acids that 

even glucuronidation, which is the major phase II biotransformation pathway for exogenous 

components such as drugs, remains a minor pathway for endogenous BAs 39.  

In the same way, the adaptive changes post-surgery could be responsible for the decrease in 

bacteria with glucuronidase activity.. In addition, the alteration of dietary patterns, intestinal 

motility and mucosal hyperplasia post-surgery may contribute to modifying the composition of 

BAs 40.  

How BAs affect the metabolism of an individual has already been described. BAs are known to 

regulate the metabolism of glucose and energy through the farnesoid-X receptor (FXR) and G-

protein-coupled receptor TGR5, respectively 41. Nevertheless, the biological activity of the 

different forms of BAs is still unknown. While glycine-conjugated BAs are as efficient as the 
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unconjugated form in activating FXR, Trottier et al. demonstrated that glucuronide conjugates 

suppress the biological activity of BAs 42. 

Certain studies have attempted to link BAs with metabolic improvement. These studies were 

mainly targeted approaches based on specific BA structures 43 or the global profile of 

primary/secondary or conjugated/unconjugated BAs 44, but they excluded those derived from 

alternative metabolisms such as glucuronidation or sulphatation. Although no significant 

correlations were observed in T3–T0, we suggest that BAs may be potential biomarkers in 

regulating the metabolic state of an individual. 

Steady changes in lipid and gluconeogenic metabolism 

MU subjects present greater changes in levels of lipid metabolism than subjects classified as 

healthy. In fact, lipid species and derivatives interfere with different metabolic pathways to 

increase insulin resistance. Our results indicate that there are three interconnected major groups 

of metabolites that reflect mechanism-induced insulin resistance: fatty acids, DGs and 

acylcarnitines. It is worth noting that different studies have reported inconsistent trends in 

specific lipid metabolites and cardiovascular diseases: for instance, diacyl-phosphatidilcholine 

(PC) C32:1 has been independently associated with increased risk of T2D, and acyl-alkyl- PC 

C34:3 with a decreased risk 45. Therefore, each PC, fatty acid or derivate should be considered 

an entity in itself. Generalizing about the role of a pathway in the development of an unhealthy 

phenotype could be inaccurate, so a specific emphasis on each lipid structure is required. 

A higher delivery of fatty acids to the muscle and liver is associated with lower rates of 

intracellular fat oxidation and/or the conversion of fatty acids to neutral lipids. The main causes 

that may contribute to this decontrol are: an excess of caloric intake, defects in adipocyte 

metabolism, alterations in mitochondrial fatty acid oxidation and inhibition of lipoprotein lipase 

activity 46. We noted that from the first month after bariatric surgery, both DGs and fatty acids, 
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especially long-chain fatty acids and those that are hydroxylated, decreased in MU.  3-hydroxy-

octanoic acid and 3-hydroxy-dodecanoic acid increased in MH.  

In MH, an increase in the number of long-chain acylcarnitines was observed after surgery. 

Increases in acylcarnitines after the first month may be caused by incomplete long-chain fatty 

acid beta-oxidation and an altered tricarboxylic cycle, as already characterized in diabetes. 

Acetylcarnitine is a product of fatty acid beta-oxidation and glucose oxidation and can be used 

by the citric acid cycle for energy generation. In the same vein, we also observed the effect of 

the gluconeogenic metabolism through changes in citric acid, gluconic acid and total hexose 

metabolites. In MU, levels of citric acid increase, presumably to compensate for the decrease in 

hexose levels and gluconic acid.  

Translating our results into the physiopathology of obesity, these findings may indicate that 

different metabolic mechanisms may lead to the development of related diseases, from impaired 

mitochondrial oxidation, reflected by an increase levels of fatty acids, DGs and acylcarnitines, 

to acute changes in amino acid-related microbiota metabolites and conjugated/unconjugated 

BA. 

Strengths and limitations 

The removal of proteins and glycerophospholipids by this validated method has improved the 

quality of the MS signals for the identification of specific molecules. We were aware that this 

could provoke the lost of specific groups of metabolites. The interpretation and validation of our 

results is still limited to the completeness of chemical annotation in databases, the 

characteristics of LC-MS data and the availability of standards in the market.  

To reduce the chance of false-positive findings from the low number of patients enrolled in the 

study, rigorous statistical strategies were applied. For instance, a strict data mining approach 

was applied to reduce the dimensionality of the data, and multivariate discriminate analyses 
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were used to select the most important metabolites in order to classify the groups. It is worth 

noting that stronger results would be obtained by using an independent validation cohort. 

Conclusions 

In a nutshell, this study opens new insights into the physiological changes after bariatric surgery 

toward a distinct metabolic status in humans. Microbial indole-related products, as well as the 

BA glucuronidation pathway, may be the key in the regulation of metabolic health in subjects 

with obesity. The great potential of an untargeted metabolomics approach has to be exploited to 

understand the obesity and metabolic profiles.  
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Table 1. Discriminant serum metabolites between metabolically healthy and metabolically unhealthy subjects in the time increment T3-T0 (in 

accordance with the results of sPLS-DA
a) 

Potential marker m/z
b
 

Error 

[mDa] 

RT 

[min] 
Assignation Level

c
 

Discriminant
d
 

MU (n=18)
e
 MH (n=21)

e
 

MU T3 vs 

MH T0
f
 T1 T3 T6 

CHO metabolism 
   

Hexoses 179.0649 -8.8 0.32 [M-H]- 
1 √ √ √ 

-0.19 ± 0.15** 0.00 ± 0.19    

Hexoses 203.0524 0.2 0.31 [M+Na]+ -0.18 ± 0.19* 0.01 ± 0.13    

Gluconic acid 195.0620 -11 0.33 [M-H]- 1 √ √ -0.23 ± 0.23** -0.07 ± 0.38    

Citric acid 191.0189 0.8 0.79 [M-H]- 1 √ 0.20 ± 0.44* 0.39 ± 0.51***   

Amino acids 

L-Tryptophan 203.0819 0.7 3.58 [M-H]- 
1 √ 

-0.53 ± 0.57** -0.27 ± 0.36    

L-Tryptophan 205.0966 0.6 3.54 [M+H]+ -0.41 ± 0.46** -0.17 ± 0.36    

L-Tyrosine 180.0662 0.4 0.95 [M-H]- 1 √ -0.50 ± 0.46** -0.27 ± 0.41** ** 

L-Arginine 173.1144 -10 0.30 [M-H]- 
1 √ √ 

-0.12 ± 0.20** -0.07 ± 0.15    

L-Arginine 175.1183 0.7 0.30 [M+H]+ -0.10 ± 0.24  -0.02 ± 0.15    

L-Citrulline 198.084 0.9 0.31 [M+Na]+ 1 √ √ -0.09 ± 0.24  0.06 ± 0.26    

L-Glutamate 146.0581 -12.2 0.32 [M-H]- 1 √ √ -0.12 ± 0.14** -0.02 ± 0.12    

L-Histidine 154.0707 -8.5 0.31 [M-H]- 1 √ -0.10 ± 0.21  -0.09 ± 0.18    

L-Leucine 130.0869 0.5 0.90 [M-H]- 1 √ -0.41 ± 0.38** -0.30 ± 0.36* * 

L-Ornithine 131.0878 -5.2 0.33 [M-H]- 1 √ -0.05 ± 0.23  -0.02 ± 0.22    

Dipeptides 

Phenylalanylphenylalanine 313.1553 -0.6 4.06 [M+H]+ 1 √ √ -0.39 ± 0.88  -0.25 ± 0.78    

Gamma-glutamyl-L-isoleucine 259.1120 17.9 0.31 [M-H]- 2 √ √ -0.22 ± 0.54  -0.01 ± 0.25    

Acylcarnitines 

Hexadecenoylcarnitine 398.3254 1.1 5.16 [M+H]+ 2 √ -0.08 ± 0.66  0.21 ± 0.54    
Octadecadienylcarnitine 
(linoleyl carnitine) 424.3412 0.9 5.21 [M+H]+ 1 √ 0.01 ± 0.67  0.15 ± 0.40    
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Octadecenoylcarnitine (elaidic 
carnitine) 426.3565 1.3 5.28 [M+H]+ 1 √ 0.21 ± 0.59  0.35 ± 0.36***   

Fatty acids 
           3-Hydroxy-octanoic acid 159.1017 1 4.88 [M-H]- 1 √ √ -0.09 ± 0.51  0.11 ± 0.46    

3-Hydroxy-dodecanoic acid 215.1647 0.6 5.39 [M-H]- 1 √ √ 
 

0.15 ± 0.47  0.22 ± 0.50**   
Hydroxy-octadecatrienoic acid 
(HOTE) 295.2243 2.5 5.61 [M+H]+ 2 √ -0.06 ± 0.30  0.00 ± 0.21    
Hydroxy-octadecadienoic acid 
(HODE)  301.2119 2.5 6.22 [M+Na]+ 2 √ -0.41 ± 0.63* -0.03 ± 0.48    

Dodecanoic acid (lauric acid) 199.1698 0.6 5.80 [M-H]- 1 √ √ -0.27 ± 0.49  -0.07 ± 0.44    
Tetradecanoic acid (myristic 
acid) 227.2009 0.8 6.22 [M-H]- 1 

 
√ 

 
-0.25 ± 0.45  -0.05 ± 0.44    

Octadecatrienoic acid 
(linolenic acid) 277.2157 1.6 6.26 [M-H]- 1 √ -0.43 ± 0.59  -0.12 ± 0.54    
Docosapentaenoic acid 
(osbond acid) 331.2625 0.6 6.54 [M+H]+ 1 √ √ 0.02 ± 0.61  0.21 ± 0.48**   

Diglycerides 

DG(30:1) or DG(32:4) 561.4482 
0.7 or 

3.2 8.10 [M+Na/H]+ 2 √ √ √ -0.57 ± 0.67* -0.15 ± 0.46    

DG(32:3) or DG(34:6) 585.4494 -0.5 8.19 [M+Na/H]+ 2 √ 4.49 ± 2.86** 1.59 ± 3.12    

DG(32:2) or DG(34:5) 587.4647 -0.1 8.18 [M+Na/H]+ 2 √ √ √ -0.69 ± 0.65** -0.27 ± 0.50    

DG(32:1) or DG(34:4) 589.4804 -0.2 8.44 [M+Na/H]+ 2 √ √ √ -0.45 ± 0.47** -0.12 ± 0.31    

DG(34:4) or DG(36:7) 611.4647 -0.1 8.10 [M+Na/H]+ 2 
 

√ 
 

-0.94 ± 0.76** -0.46 ± 0.81    

DG(40:7) or DG(42:10) 689.512 -0.5 8.50 [M+Na/H]+ 2 √ √ -0.11 ± 0.60  0.03 ± 0.49    

Steroids/Bile acids derivatives 
           Glycochenodeoxycholic acid 

3-glucuronide 606.3233 4.5 5.25 [M-H2O-H]- 2 √ 0.09 ± 0.54  -0.20 ± 1.16  * 

Cholic acid glucuronide 583.3073 5.1 5.35 [M-H]- 2 
 

√ 
 

0.34 ± 1.73  1.14 ± 1.92**   
Dihydroxyandrostenone 
sulfate 383.1528 0.6 6.01 [M-H]- 2 √ 0.35 ± 0.77  0.47 ± 0.63**   

Microbiota derivatives 0.00 

3-(4-Hydroxyphenyl)- 165.055 0.7 4.88 [M-H]- 1 √ √ 0.56 ± 1.91  1.66 ± 2.49**   
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propionic acid 

3-(4-Hydroxyphenyl)-2-
hydroxypropanoic acid  181.0494 1.2 3.76 [M-H]- 1 √ √ 

 
-0.49 ± 0.38** -0.25 ± 0.38    

2-Hydroxy-3-(3-
indolyl)propionic acid 204.0659 0.7 4.31 [M-H]- 1 √ √ -0.53 ± 0.48** 

-0.46 ± 
0.32*** * 

Purine derivatives 
           Uric acid 167.0299 -8.8 0.41 [M-H]- 1 √ √ -0.19 ± 0.17** -0.13 ± 0.13**   

Cofactors and vitamins 
  

0.00 
        Retinol 269.2261 0.8 6.29 [M-H20+H] 1 √ √ -0.48 ± 0.50* -0.10 ± 0.23    

Choline 104.1066 0.4 0.31 [M+H]+ 1 
 

√ 
 

-0.25 ± 0.24** -0.11 ± 0.24    

Others metabolites 

LPE (20:3) 502.2932 0.7 6.11 [M-H]- 2 √ 
√ 

-0.98 ± 0.83** -0.66 ± 0.87** ** 

LPE (18:3) or LPE (16:0) 476.2739 3.3 6.05 
[M+H]+/ 
[M+Na]+ 2 √ 

√ 

 
0.24 ± 0.42  0.36 ± 0.34*** ** 

LPE(16:1) 450.2596 3 5.82 [M-H]- 2 √ 
√ 

-0.55 ± 0.78** -0.17 ± 0.59    

Palmitoylmonoglyceride 353.2650 1.2 6.32 [M+Na]+ 1 √ 
√ 

√ -0.19 ± 0.33* -0.03 ± 0.36    

Theobromine  181.0724 -0.4 3.57 [M+H]+ 1 
 

√ 

√ -0.86 ± 0.72** -0.51 ± 0.91    

Indole-3-carboxaldehyde 144.0446 0.9 4.34 [M-H]- 1   
√ 

  -0.37 ± 0.48** -0.59 ± 0.98** ** 
 
Abbreviations: MU,  Metabolically Unhealthy, MH, Metabolically Healthy; RT, Retention Time; sPLS-DA, Sparse Partial Least Squares Discriminant Analysis 
a. Identified metabolites listed in according with metabolic classes and increasing the m/z of the compound. 

b. Data obtained by LC-ESI-qTOF-MS. 

c. Level of metabolite identification according to metabolomics Standard Initiative, Sumner et al.27  

d. √ if the compound is discriminative  between MH and MU in sPLS-DA analysis in the respective increments of time: T1-T0, T3-T0 and T6-T0 
e. Values are shown as mean ± sd. Mean (log(T3)-log(T0)). P values were determined by paired t-test comparing T3 and T0 of each group after adjusted by gender, age and type of surgery and false 
discovery rate by Benjamini-Hochberg procedure. Total n 39 patients, separated in metabolically healthy (MH, n=21) and metabolically abnormal (MU, n=18) at baseline. At the different points of time the 
availability of the samples were: for MH 20, 20 and 17 and for MU: 16, 17 and 15 at 1 month, 3 months and 6 months respectively 
f. P values were determined by independent t-test comparing MH at baseline vs MU 3 months of surgery after adjusted by gender, age and type of surgery and false discovery rate by Benjamini-Hochberg 
procedure. 
* p<0.1, **p<0.05, ***p<0.001 
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Table 2. Enrichment analysis based on Chemical Similarity Enrichment Clustering performed by ChemRICH  

Cluster name 
Cluster 

size 

MU MH 

Hits Altered Ratio P Hits Altered Ratio P 

Indole and derivatives 3 3 1 <0.001 2 0.7 0.068 
Amino acids, peptides, 
and analogues 7 4 0.6 <0.001 1 0.1 1 

Glycerolipids 5 4 0.8 0.001 0 0 1 

Glycerophospholipids 3 2 0.7 0.002 2 0.7 0.076 

Fatty Acyls 9 3 0.3 0.051 2 0.2 0.410 

The significant clusters of metabolites generated by chemical similarity and ontology mapping by ChemRICH are shown. Hits mean 
the altered metabolites in metabolically unhealthy (MU) and metabolically healthy (MH) subjects, respectively. Chemical 
enrichment statistics was calculated by applying the Kolmogorov-Smirnov test on the 48 discriminant metabolites at the increment of 
time T3-T0. P-values were adjusted using the Benjamini-Hochberg method to control the false discovery rate.  
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