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ABSTRACT 
Coastal ecosystems are highly threatened worldwide by multiple anthropogenic stressors that 

act at a range of spatial scales, from local to the global, and adversely affect their ecological 

functions and associated biodiversity. Global warming is one of the most pervasive stressors, 

and the assessment of how the species (or other levels of biological organization) react to it 

is an urgent need in a rapidly warming world. Moreover, thermal stress rarely acts in isolation 

from other stressors. The potential synergies among global warming and local stressors is of 

particular concern in what it regards foundation species, such as the case of seagrasses, due 

to their crucial role in maintaining the structure and function of coastal ecosystems. The main 

objective of this PhD thesis is to improve the knowledge of how warming alone and in 

combination with different local factors can affect seagrasses. This research has been 

conducted based upon mesocosm experiments submitted to different temperatures (and, in 

some cases, to other agents), and plants responses measured from biochemical to population 

levels. The results obtained are considered an approach to what may occur in the real world, 

always acknowledging the limitations of our methodology. 

Chapter 1 revealed different tolerance to warming among the two main Mediterranean 

seagrass species, Cymodocea nodosa and Posidonia oceanica. C. nodosa tolerates temperature 

increases much better than P. oceanica probably due to its life story (opportunistic), habitat 

(from confined waters to the open sea) and biogeographical affinity (tropical and 

subtropical). This will potentially cause changes in the distribution area of these two species 

in the Mediterranean under a future scenario of warming. 

As shown in Chapter 2, an increase in nutrient concentration in water does not modify the 

response of C. nodosa to warming. However, the increase of organic matter in sediment clearly 

worsens, synergistically in some plant traits, the effects of warming, entailing a hazardous 

combination for plant survival. P. oceanica, in turn, is severely affected by conditions of high 

nutrient content and high temperatures (Chapter 3), again displaying synergistic effects, and 

confirming not only a thermal sensitivity in this species greater than in C. nodosa, but also a 

greater vulnerability to the exacerbation of thermal effects by other local stressors. 

Finally, the interactive effects of warming and salinity (Chapter 4) in an estuarine seagrass 

species, Halophila ovalis, in southwestern Australia resulted beneficial for plant survival, as the 

negative effect of warming was buffered by concomitant salinity increases. 

Overall, this research highlights the complexity of global warming effects in at least two 

aspects. Firstly, the multiplicity of biological levels at which those effects act and, secondly, 

the importance of studying not only isolated effects of temperature increases but also their 

joint effect with other stressors. Advances in these two directions will yield more realistic 

predictions concerning global warming and seagrass ecosystems and help to develop 

management policies to protect seagrass ecosystems in a changing world. 
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RESUMEN 
Los ecosistemas costeros están altamente amenazados en todo el mundo por múltiples 

factores estresantes antropogénicos que actúan en un rango de escalas espaciales, desde lo 

local a lo global, y afectan negativamente sus funciones ecológicas y la biodiversidad asociada. 

El calentamiento global es uno de los factores estresantes más generalizados, y la evaluación 

de cómo reaccionan las especies (u otros niveles de organización biológica) es una necesidad 

urgente en un mundo en rápido calentamiento. Además, el estrés térmico rara vez actúa 

aislado de otros factores estresantes. Las posibles sinergias entre el calentamiento global y 

los estresores locales son motivo de especial preocupación en lo que respecta a las especies 

fundadoras de hábitat, como el caso de las angiospermas marinas, debido a su papel crucial 

en el mantenimiento de la estructura y función de los ecosistemas costeros. El objetivo 

principal de esta tesis doctoral es enriquecer el conocimiento de cómo el calentamiento, solo 

y en combinación con diferentes factores locales, puede afectar a las angiospermas marinas. 

Esta investigación se ha llevado a cabo en base a experimentos de mesocosmos sometidos a 

diferentes temperaturas (y, en algunos casos, a otros agentes), y a las respuestas de las plantas 

medidas desde el nivel bioquímico hasta el nivel de población. Los resultados obtenidos se 

consideran una aproximación de lo que puede ocurrir en el mundo real, siempre 

reconociendo las limitaciones de nuestra metodología. 

El capítulo 1 reveló una tolerancia al calentamiento diferente entre las dos principales 

especies de angiospermas marinas del Mediterráneo, Cymodocea nodosa y Posidonia oceanica. C. 

nodosa tolera los aumentos de temperatura mucho mejor que P. oceanica, probablemente 

debido a su historia de vida (oportunista), hábitat (desde aguas confinadas hasta mar abierto) 

y afinidad biogeográfica (tropical y subtropical). Potencialmente, esto provocará cambios en 

el área de distribución de estas dos especies en el Mediterráneo en un escenario futuro de 

calentamiento. 

Como se muestra en el capítulo 2, un aumento en la concentración de nutrientes en el agua 

no modifica la respuesta de C. nodosa al calentamiento. Sin embargo, el aumento de la materia 

orgánica en el sedimento empeora claramente, sinérgicamente en algunos rasgos de la planta, 

los efectos del calentamiento, lo que supone una combinación peligrosa para la supervivencia 

de la planta. P. oceanica, a su vez, se ve gravemente afectada por condiciones de alto contenido 

de nutrientes y altas temperaturas (capítulo 3), nuevamente mostrando efectos sinérgicos y 

confirmando no solo una sensibilidad térmica en esta especie mayor que en C. nodosa, sino 

también una mayor vulnerabilidad a la exacerbación de los efectos térmicos por otros 

estresores locales. 

Finalmente, los efectos interactivos del calentamiento y la salinidad (capítulo 4) en una 

especie de angiosperma marina de estuarios, Halophila ovalis, en el suroeste de Australia 

resultaron beneficiosos para la supervivencia de las plantas, ya que el efecto negativo del 

calentamiento fue amortiguado por el aumento simultáneo de la salinidad. 

En general, esta investigación destaca la complejidad de los efectos del calentamiento global 

en al menos dos aspectos. En primer lugar, la multitud de niveles biológicos en los que actúan 
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esos efectos y, en segundo lugar, la importancia de estudiar no solo los efectos aislados de la 

temperatura, sino también su efecto conjunto con otros factores estresantes. Los avances en 

estas dos direcciones generarán predicciones más realistas sobre el calentamiento global y los 

ecosistemas de angiospermas marinas y ayudarán a desarrollar políticas de gestión para 

protegerlos en un mundo cambiante.
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A THREATENED WORLD 

Paraphrasing an expression that has become popular, we would say: “Global change is 

coming!”. However, it would be much more realistic to state: “Global change has come!”. 

We live in a world where humans have profound impacts on the global environment, 

and our activities have modified almost every part of the planet. Human population growth, 

increased resource consumption, land use changes, pollution, and energy use are drivers of 

global change, which impacts equally ecological systems and human societies. Almost 7 

billion people live at present on Earth, and world population is expected to rise to 9 billions 

by 2050.  The rapid population growth and the increased demand for natural resources such 

as crops, seafood, energy, wood, minerals and other raw materials are at the base of global 

environmental change. Landscapes are being modified worldwide as natural land covers 

(grasslands, forest, wetlands) have been converted to areas dominated by human activities, 

that is, agriculture, forestry, cities, infrastructures, among many others. Those land use 

changes cause the retraction of natural habitats, with a plethora of detrimental effects for 

biodiversity, ecosystem function and the abiotic environment, including the release of 

greenhouse gases to the atmosphere. Rising pollution, mainly attributed to the increased use 

of petroleum and the development of new synthetic products such as plastics, solvents, 

pesticides and other chemicals are other consequences of human activities. In addition, the 

environment has to face urban waste disposal and runoff from agriculture, causing 

eutrophication in rivers, lakes and coastal waters (Alcamo, 2002; Galloway, 2001) or the 

increasing amount of plastics washed into rivers and oceans (Ryan 2015; Schmidt et al., 2017).  

Such scenario has been a matter of concern for scientists since at least the first half 

of the 20th century, and this concern has been ever growing since then. In the last decades, 

and additional threat has been incorporated to the long list outlined above. Although with 

historical background rooted in the beginning of the industrial revolution, the release of 

greenhouse gases to the atmosphere has come into the scene as one of the hot topics in 

environmental science. Nowadays, most of the worldwide energy production relies on the 

fossil fuels, accounting for 85 % of all energy used. The burning of fossil fuels is the largest 

source of emissions of CO2 (and other greenhouse effect gases) into the atmosphere (about 

8.5 billion tons each year), to which other human sources should be added (livestock, land 

use changes, rice culture…). The accumulation of such gases has reached levels that are 

unprecedented in at least the last 800.000 years (IPCC, 2014), causing a clear and significant 

increase in global temperature which, in turn, has resulted in severe drought and floods, heat 

waves, seawater acidification, ocean warming, reduction on the amounts of snow and ice and 

sea level rise, among other undesirable consequences. If the burning of fossil fuels continues 

at current rates, global temperatures are predicted to increase by 4 ºC by the year 2100 (IPCC 

2007). 

 

THE BIG GLOBAL THREAT: GLOBAL WARMING 

While it is difficult to rank in order of importance the different threats outlined above, the 

plethora of consequences of climate change, and among them global warming (on which we 



 

 

 General Introduction 

10 

are going to focus our attention), are probably among those causing a greatest concern, due 

to their pervasiveness, their harmfulness and their persistence in time. 

Global warming has, in fact, two faces. On the one hand, we have a progressive 

thermal increase that affects, to a greater or lesser extent, all natural environments on Earth, 

and has been taking place, probably, since at least the second half of the 19th century. On the 

other hand, and maybe less known by the general public, we have the increasing frequency 

of discrete, extreme thermal events usually known as heat waves, understood as sporadic 

episodes  (from days to a few weeks) in which temperature is well above the average in that 

time of the year. Despite confusing claims with a clear ideological bias, both aspects are not 

pessimistic predictions, but an increasingly measurable reality. In effect, not only air and sea 

surface average temperatures have risen by 0.4 - 0.8 ºC in the past century (IPCC 2001) and 

are expected to rise between 1.1 and 6.4 ºC by the end of 21st century (Figure 1), but also the 

intensity and frequency of heatwaves have increased (see below) and are expected to further 

increase (Collins et al., 2013; IPCC 2007). 

 
Figure 1. Projected surface temperature changes for the late 21st century (2090-2099) (IPCC 2007). 

 

Heatwaves are important climatic extreme events in both atmospheric and oceanic systems 

that have potential consequences, from deleterious to devastating, for human health, 

economies and the environment. In oceanic systems, marine heatwaves are defined as 

“discrete, prolonged anomalously warm-water events at particular location”; in other words, 

periods when daily sea-surface temperature exceeds a local seasonal threshold for at least five 

consecutive days (Hobday et al., 2016). Over the last century, specifically from 1925 to 2016, 

marine heatwaves have increased significantly in frequency and duration (34 % and 17 %, 

respectively), which results in a 54 % increase in annual marine heatwave days globally (Oliver 

et al., 2018) (Figure 2a, 2b). This has been associated with ecological alterations such as shifts 

in species’ distribution or changes in biodiversity patters (Bond et al., 2015; Cavole et al., 

2016; Garrabou et al., 2009; Wernberg et al., 2016) (Figure 2c, 2e), as well as with massive 
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mortalities of sessile benthic invertebrates, some of them being foundation species (sensu 

Dayton 1972, see below). Overall, there is a serious risk of global warming disrupting the 

integrity of ocean ecosystems and curtailing the goods and services they provide. 

 

 

Figure 2. Global patterns of MHW intensification, marine biodiversity, proportions of species found at their 

warm range-edge, and concurrent human impacts. a,b, Globally averaged time series of the annual number of 

MHW days and trends in the annual number of MHW days (in the periods 1925–1954 and 1987– 2016) across 

the global ocean. c,e,g, Existing data on marine biodiversity (c), the proportion of species within the local 

species pool found near their warm range edge (e) and non-climatic human stressors (g), were combined with 

trends in the annual number of MHW days (b). d,f,h, The resultant bivariate maps identify regions of high 

diversity value that may be affected by MHWs (d), high thermal sensitivity of species that may have been 

particularly vulnerable to increased MHWs (f) and high levels of non-climatic human stressors where MHW 

intensification has affected concurrently on marine ecosystems (h). Pn, proportion; PnST90, proportion of 

species beyond 90% species thermal range; excl. CC, excluding climate change. (Smale et al., 2019). 
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CHANGES IN THE ENVIRONMENT 

Stressful factors and their combined effects 

The action of human activities on ecosystems is termed with different names (pressures, 

impacts, stressors, disturbances…), which, despite pointing to the same direction, are 

associated to slightly different concepts. To discuss these concepts in deep is beyond the 

scope of this introduction, and, for the sake of simplicity, we will consider warming as a 

stress. A stressful factor or, simply, stressor is “an abiotic or biotic variable that exceeds its range 

of normal variation, and adversely affects individual physiology or population performance in a statistically 

significant way” (Barret et al., 1976; Auerbach 1981). The stressors can be either natural or 

anthropogenic and can be classified as local or global, depending on the spatial extent of 

their causes and/or action. While the separation among local and global stressors is, at first 

sight, sharp and clear, its application becomes confuse when, for example, a given pollutant 

whose concentration has increased locally (local stressor) is transported and distributed (by 

currents, winds…) worldwide (global stressor). Beyond these subtleties, it should be taken 

into account that the wider the spatial extent of an stressor origin and effects, the harder 

becomes its management, as it usually requires collaboration among countries, not always 

with common interests or priorities. 

Indeed, the concurrence of multiple stressors at the same time is a common situation 

and then opens the door for synergistic interactions worsening the effects of the stressors in 

isolation, and jeopardizing not only the biological processes and ecosystems functions but 

also the global biodiversity (Brook et al., 2008; Folke et al., 2004; Paine et al., 1998).  

 

Figure 3. Conceptual diagram of possible effects of multiple stressors (Gunderson et al., 2016). 
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The impossibility of predicting consequences for the natural world based on evidence 

from a single stressor (Vinebrooke et al., 2004) or even in a simple additive model including 

several stressors, due to the abovementioned synergies, justifies the growing interest and the 

urgent need to better understand the combined effect of multiple stressors. At first glance, 

it is fundamental to identify and define the different ways in which different stressors can 

interact. Two-three possibilities are considered at this respect, following the different 

authors: additive effect (the joint effect is the sum of the effects of both stressors in isolation), 

synergy (the combined effect is greater than the additive effects) or antagonism (the 

combined effect is lower than the additive effects) (Todgham and Stillman, 2013) (Figure 3). 

For some authors, when additivity occurs there is no interaction, while the term “interactive 

effects” is reserved to either synergy or antagonism.  

 

Cascading effects across different levels of biological organization   

Warming affects the living world at all levels of biological organization, from subindividual 

(molecular, biochemical...) through individual level through populations and communities to 

biomes and to the biosphere as a whole (Figure 4, referred to climate change; Bellard et al., 

2012). A thermal increase can alter gene expression, biochemical reactions or physiological 

mechanisms, as well as modify population dynamics, biotic interactions or the effects of 

abiotic factors. It can also influence species distributions, altering thus landscapes and biomes 

(Koh et al., 2004; Leadley et al., 2010; Sala et al., 2005; Walther 2010; Yang and Rudolf, 2010). 

All across those biological organization levels, downscaling and upscaling effects occurs. 

At the species level, when a potentially detrimental environmental change occurs (e.g. 

warming) the species fitness decreases, due to the impairment of relevant physiological or 

ecological capacities (growth, food intake, reproductive output…), eventually leading to local 

or, in the worst case, global extinction (Chevin et al., 2010). Species extinction can be thus 

one of the drastic consequences of global warming, although it is important to note that only 

relative few species became extinct during the Quaternary period (Botkin et al., 2007). 

Much more often, and at least to some extent, species have mechanisms to mitigate the 

potential negative effects of environmental changes, through adaptive responses, which are 

either due to micro-evolution (that is, through selection of existing or new genotypes) or to 

phenotypic plasticity, that allows a very short-term response, involving the expression of 

physiological, morphological or behavioral traits counteracting the potential fitness loss. 

Overall, species can change in three different (but not mutually exclusive) ways: spatially 

(moving to areas with appropriate conditions), temporally (adjusting life cycle events to 

match the new climatic conditions) and in themselves (physiological and behavioral changes) 

(Bellard et al., 2012). 
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Figure 4. Summary of some of the predicted aspects of climate change and some examples of their likely 

effects on different levels of biodiversity (Bellard et al., 2012). 

 

COASTAL ECOSYSTEMS 

Importance, pressures and current status  

Coastal marine systems are among the most ecologically and socio-economically valuable of 

our planet. Just as an example, and without putting too much emphasis on the approach 

based on the monetary value of nature, it has to be said that, while the services of ecological 

systems and the associated goods provision of the entire biosphere have an estimated annual 

value of US$33 trillion, about 32 % of this estimated value comes from coastal ecosystems 

(US$10.6 trillion) (Costanza et al., 1997).  
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Beyond their putative monetary value, the truth is that coastal ecosystems provide a 

broad array of goods and services that benefit the society and are practically necessary for 

the survival and well-being of a significant proportion of the world’s population that depends 

on them. Some of those goods and services are food provision, energetic resources, natural 

products, wetland protection against floods and storms, climate and weather regulation, 

nutrients regulation, carbon sequestration, water quality maintenance and leisure and 

recreation opportunities (Costanza et al., 1997, UNEP 2006). 

At present, 41 % of the human global population lives within 100 km of the coastline 

(Martínez et al., 2007; UNEP 2007), and the growing development of anthropogenic 

activities, many of them environmentally threatening, have caused that coastal areas are 

currently highly altered and endangered worldwide (Gilman et al., 2008; Polidoro et al., 2010) 

(Figure 5).  

 

 

Figure 5. Coastal population and altered land cover in coastal areas (UNEP 2007). 

 

Thus, overfishing, introduction of invasive species, waste disposal, dredging or 

nutrient loading are some of the numerous human activities that impact on coastal 

ecosystems, altering their integrity and reducing their resilience against environmental 

changes. In addition, increased greenhouse gases in the atmosphere causes a suite of physical 

and chemical changes in the marine coastal ecosystems with detrimental consequences, often 

still uncertain (Figure 6). 
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Figure 6. Abiotic changes associated with climate change (Harley et al., 2006). 

 

Foundation species, a key piece for coastal ecosystems  

Foundation species are defined as “a single species that defines much of the structure of a community 

by creating locally stable conditions for other species and by modulating and stabilizing fundamental ecosystem 

processes” (Dayton 1972). The effects of foundation species (sometimes called engineering 

species, Jones et al., 1994) is maybe one of the most relevant case of facilitation, with great 

consequences (both functional and structural) at the ecosystem level (and beyond), and many 

of the most important coastal communities (such as corals, mangroves, algal forests, seagrass 

meadows and many others) are based on the structure and performance of those foundation 

species. Their sensitivity to climate change is a matter of major concern, as any negative 

impact on a foundation species propagates to other organisms by a cascading effect with 

potential catastrophic consequences at the ecosystem level (e.g. Hoegh-Guldberg 1999; 

Hughes et al., 2013). Unfortunately, the detrimental effects of climatic (and associated) 

drivers on foundation species (e.g. gorgonians, corals, kelps and seagrasses), with dramatic 

effects on the rest of the community, have been repeatedly reported in the last times (Hoegh-

Guldberg and Bruno, 2010). 

Seagrass meadows are a paradigmatic example of what has been said above. In effect, 

they provide relevant goods and services (Beaumont et al., 2007; Costanza et al., 1997; 

Hemminga and Duarte, 2000). At this respect, it should be reminded that they are highly 

productive (1.1 % of the total marine primary production, Duarte and Chiscano, 1999), they 

stabilize the sediment in coastal areas thus helping to prevent coastal erosion (Koch et al., 

2009), they provide habitat for a numerous fish and shellfish of high commercial value 

(Duarte 2000), they improve water quality through nutrient cycling, they produce oxygen and 

release it to the water column and sediment, (Duarte 2002), and they are considered a hotspot 
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of carbon sequestration in the biosphere (Fourqurean et al., 2012). Extensive seagrass beds 

are widespread worldwide (Figure 7) in a number of different environments (open and semi-

confined waters, lagoons, estuaries…) between the coastline down to ca. 90 m depth (Duarte 

1991). Different impacts of human activities are causing severe declines of these valuable 

habitats (Orth et al, 2006; Waycott et al., 2009), and the rate of such decline has been 

accelerated in the last decades. Thus, while before 1940 seagrass meadows were estimated to 

have experienced a rate of decline of 0.9 % total area per year, it was increased to 7 % per 

year from 1990 (Waycott et al., 2009; but see de los Santos et al., 2019). That results in a 29 

% disappeared seagrass meadows area since 1879 (Figure 8). 

Natural processes such as storms and hurricanes damages, or biological disturbances 

(diseases, grazing, invasive species…) have been identified and documented as causes of the 

seagrass loss, although the main current drivers at present are directly linked to human 

activities that cause, excessive nutrient loadings, waste accumulation, pollution or mechanical 

damage (Collins et al., 2010; Howarth et al., 2000; Orth et al., 2006), to which global warming 

(Collier and Waycott, 2014; Marbà and Duarte, 2010) should be added (e.g. Fraser et al., 

2014). Seagrasses are, therefore, excellent ecosystem models where to address the effects of 

interacting stressors. 

 

Figure 7. Global distribution of seagrass species richness (UNEP-WCMC, Green and Short FT (2003)). URL: 

http://data.unep-wcmc.org/datasets/9. 

 

 

 

 

 

 

http://data.unep-wcmc.org/datasets/9
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Figure 8. Global map indicating changes in seagrass area plotted by coastline regions (Waycott et al., 2009). 

 

Under the present scenario of accelerated warming, it is necessary to understand, firstly, how 

and to which extent seagrasses will be affected by temperature increases, and identify 

temperature thresholds beyond which the effects become deleterious; secondly, attention 

should be paid to how different local stressors will interact with global warming, potentially 

worsening the effects on seagrasses. As managing climate change, at least in the short term, 

faces enormous difficulties, it seems more than urgent to put management efforts on other, 

more affordable, local stressors, so as at least to maintain seagrass resilience. 
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What is a scientist after all? It is a curious man looking through a keyhole,  
the keyhole of nature, trying to know what’s going on. 

Jacques Yves Cousteau 
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OBJECTIVES 

The main objective of this PhD thesis is, in very general terms, to contribute to elucidate 

how global warming impacts seagrasses. More specifically, we attempt to understand the 

main seagrass responses to warming and the potential protective mechanism behind, paying 

attention at the interspecific variability in strategies and capacity in acclimation to warming. 

Furthermore, given the fact that warming rarely acts alone in nature and it often overlaps 

with numerous other stressors, this work also addresses the combined effects of warming 

with those stressors, with particular focus on eutrophication and salinity. 

This general aim is undertaken through an approach defined by:  

(i) the experimental conditions, obtained through different thermal treatments at 

different time scales (from few days to several weeks), in isolation or in 

combination with other stressors, simulating heat waves in future scenarios of 

global warming predicted for the end of the XXI century. 

 

(ii) the responses determined, which consisted in the measurement of plant 

functional traits at different plant integration levels, including physiological (e.g. 

chlorophyll a fluorescence-related parameters), individual (e.g. necrosis, 

growth…) and population responses (e.g. demographic balance). In some cases, 

we attempted to get insights about the mechanisms underlying the responses. 

 

(iii) the species investigated (Posidonia oceanica, Cymodocea nodosa and Halophila ovalis). 

 

The work is based exclusively in mesocosm experiments, an experimental approach that has 

demonstrated a great potential not only to explore the responses of seagrasses to warming 

but also to make robust inference about the causes of such responses. Nonetheless, all 

caution is exerted to acknowledge the limitations of such approach, specially when 

extrapolating our findings to the real world or/and at the ecosystem level. 

More in detail, our general objective can be split into two specific objectives and three 

subobjectives: 

 Objective 1: 

To evaluate the response capacity of different seagrass species with contrasting ecological strategies to transient 

chronic (several weeks) warming in order to elucidate the underlying species-specific tolerance mechanisms 

against heat stress and their adaptive capacities to persist in future warming scenarios (Chapter 1). 

Particularly, we assess the response of two seagrass species that, besides presenting 

evident differences in morphological attributes, as well as in their ecological strategies and 

evolutionary history, share a common distribution area in the Mediterranean. Such excellent 

case-study represents a good chance to explore the abovementioned particularities, that is, 

the potentially differential responses to warming and the mechanisms involved in such 
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responses, especially those related to energy dissipation pathways and antioxidant enzymes 

activities. All this is needed to determine the acclimation capacity of each species to warming. 

 Objective 2: 

To evaluate seagrass responses (in the short-term) to the interaction between warming and other stressful 

factors, that is, to the simultaneous occurrence of warming and other, more local, stressors. 

The need to evaluate the joint effects of the local stressors with temperature is critical 

in order to capture, in a more realistic way, the effects of warming on seagrass meadows 

inhabiting areas already submitted to other sources of stress. Eutrophication and salinity 

changes are the local stressors evaluated in this work. On the one hand, the effect of 

eutrophication was studied by testing separately its two main components: an increase in 

nutrient concentrations in the water column and an increase in organic matter loading in the 

sediment. Firstly, we evaluate the plant response to each one of these two potential stressful 

factors, separately and in its combination with temperature for the Mediterranean species 

Cymodocea nodosa, (subobjective 2.1, Chapter 2). Secondly, we evaluate the plant response to 

only an increase of nutrient concentrations in the water column, separately and in 

combination with temperature for the Mediterranean species Posidonia oceanica (subobjective 

2.2, Chapter 3). Finally, we explore the interactive effects of warming with salinity changes 

typically experienced by some seagrasses species that are dominant in estuarine 

environments, such as Halophila ovalis (subobjective 2.3, Chapter 4). 

 

The two main hypotheses we address are: 

(i) The predicted increasing intensity and frequency of heatwaves will affect seagrass 

meadows. As these organisms cannot escape from such stress, they must 

acclimate to the coming conditions and such acclimation differs among species 

with different ecological strategies. Temperature increase can favor plant 

performance, but negative responses appear once the thermal threshold is 

surpassed. Both this threshold, and the protective mechanisms put in place to 

deal with temperature effects, are highly variable among species, and will 

determine their acclimation capacity. 

 

(ii) The ongoing global warming acts over other stressors that currently affect 

seagrass performance. The simultaneous action of increasing temperature and 

such local stressors leads to interactive effects, likely in an additive or synergistic 

way, thus exacerbating the negative effects of increased temperature in isolation, 

aggravating the effect on plant performance and hence jeopardizing plant 

survival and, in consequence, the persistence of the population. 
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STUDY SPECIES 

This work is focused on three seagrass species: Posidonia oceanica, Cymodocea nodosa and 

Halophila ovalis. These species present different biological traits and life history strategies, 

which ranks from colonizing, opportunistic to persistent species (sensu Kilminster et al., 

2015). (Figure 1). 

 

Figure 1. Diagram showing the classification of seagrass genera based on their life history strategies (colonizing, 

opportunistic and persistent) and the response of some of their dominant traits (extracted from Kilminster et 

al., 2015). Red circles in the diagram highlight the genus corresponding to the three species studied in this thesis. 

Above, photograph of each species. 

 

P. oceanica and C. nodosa share a large distributional area along the Mediterranean coasts, 

forming extensive meadows dominating infralittoral environments down to depths of 30-40 

m, still deeper in the Eastern basin (Olesen et al., 2002; Ruiz et al., 2009). 
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P. oceanica is a Mediterranean endemics, and is supposed to be one of the longest living plants 

on Earth. It is a large, perennial and slow growing species (Marbà and Duarte, 1998), and it 

is found only in open coastal waters or bays with relative stable and unaltered conditions. 

C. nodosa, a medium-size, fast-growing and a high turnover species is distributed all over the 

Mediterranean, but also, extends to adjacent areas of the Atlantic Ocean. This species 

tolerates well confined waters, as well as eutrophication, and is therefore found not only in 

open waters (usually in habitats unsuitable for P. oceanica, for example due to sediment 

instability) but also in coastal lagoons and estuaries (Pérez and Romero, 1994; Terrados and 

Ros, 1991). 

Halophila ovalis is a small-size and fast-growing seagrass species, distributed in temperate and 

tropical areas (Short et al., 2007), able to live in highly variable environments, such as 

estuaries or coastal lagoons, although it is also found in open coastal waters. 
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ABSTRACT 

The Mediterranean Sea is highly vulnerable to global warming. The increasing frequency and 

intensity of extreme thermal events is threatening Mediterranean coastal ecosystems, and, 

specifically, seagrass meadows. Understanding the seagrass species tolerance to warming and 

the protective mechanisms to cope with thermal stress is imperative to predict the future of 

these foundation species, and, subsequently, of their associated ecosystems. We exposed the 

two main Mediterranean seagrass species, Posidonia oceanica and Cymodocea nodosa, to a range 

of temperatures (20, 24, 28 and 32 ºC) for 5 weeks in a mesocosm system, after which we 

determined several plant functional traits (from physiological to population level) and 

potential thermotolerance mechanisms. In none of the two species the integrity of 

photosystem II (PSII) was affected by temperature but warming improved C. nodosa carbon 

balance, stimulating also leaf growth, while it impaired that of P. oceanica, with also negative 

consequences for leaf growth and shoot demographic balance. Interestingly, these 

contrasting responses were accompanied by a very clear differential capacity to activate 

thermotolerance mechanisms: C. nodosa was able to activate antioxidant enzymes while P. 

oceanica was not and just presented mild symptoms of activation of heat dissipation 

mechanism (non-photochemical quenching and xanthophyll cycle). These results suggest 

that, under a future scenario of global change, changes in the distribution and abundance of 

these two species can occur, with C. nodosa potentially expanding and P. oceanica retracting. 

Given the crucial roles these species play, these changes will not be without consequences 

for the Mediterranean coastal ecosystems. 
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INTRODUCTION 

Warming is a global threat affecting all functional levels of life, from the molecular to the 

whole biosphere. The public concern about its effects has grown enormously in recent years, 

and the main focus of this concern seems to be the loss of the provision of goods and services 

to human society, and how this will affect human wellbeing (van der Geest et al., 2019). No 

doubt, a large part of goods and services are originated by ecosystem functions, being the 

response to warming of individual species, as the basic units of communities and, hence, of 

ecosystems, what have attracted a large part of the focus from the scientific community. In 

fact, how the individual species respond to warming and which mechanisms do they have to 

cope with temperature increase seem an unavoidable first step to predict coming changes in 

our living environment (Matesanz et al., 2010; Parmesan 2006), in particular in those 

ecosystems based on foundation species. 

When a species is submitted to a shift in environmental conditions such as a thermal 

increase, there are three strategies tending not to loss fitness: to change the phenotype 

(acclimation), to change the genotype (adaptation by natural selection) or to move to another 

area with more favourable conditions (migration) (Nicotra et al., 2010). All three strategies 

are equally important, and a deep understanding of them (including their interactions) is 

crucial to predict the coming changes. However, acclimation seems the primary process 

through which species will have to deal, at least in the short term, with the ongoing rapid 

increases in temperature (Esmon et al., 2005; Mittler et al., 2011). From the growing evidence 

of a plethora of studies, it seems clear that how species react to warming is highly 

heterogeneous across species and is determined not only by a suite of specific functional 

traits, but also by their phenotypic plasticity, both aspects framed by the evolutionary and 

biogeographical context. Those aspects are interrelated, since the phenotypic plasticity not 

only refers to morphological and physiological changes of the organisms, but it is also an 

adaptive character in itself, thus being subject to selection and evolution (Dudley 2004; 

Nicotra et al., 2010). 

Although not always explicitly, the assessment of species responses to global 

warming has been often addressed in a context of performance impairment. However, heat 

stress responses, and hence vulnerability to warming, can vary among species, not only in 

magnitude, but also, within a given range, in sign; in addition, the defence mechanisms 

activated to face warming impact can also differ among species. This differential response is 

especially relevant in species sharing a common habitat or a common biogeographical area, 

either if they compete (Chalanika De Silva and Asaeda, 2017) or if one predates on the other 

(Allan et al., 2015), and  leads to the concept of “winners” (i.e. species obtaining some benefit 

from warming) and “losers” (i.e. species submitted to negative consequences), which in turn 

expands our tools to better predict changes derived from warming, in the local abundance 

of the species or in shifts of its distribution limits (Harley et al., 2006). 

Because of global warming, oceans are currently experiencing both a progressive 

increase of the average seawater temperature and an increase of frequency and intensity of 

extreme climate events such as heat waves (Oliver et al., 2018). In coastal areas, the impact 

of warming is of particular concern in what it regards foundation species such as corals, 
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mangroves, gorgonians and seagrasses due to their crucial role in maintaining the structure 

and function of key ecosystems, which provide essential ecosystem services (Costanza et al., 

2014; Bennett et al., 2016; Lejeusne et al., 2009). The detrimental effects of warming caused 

by heat waves on these and other habitat-forming species (Garrabou et al., 2009; Marbà and 

Duarte, 2010; Thomsen et al., 2019) have been documented, and may lead potential 

cascading effects to the communities they support (Bennett et al., 2016; Wernberg et al., 

2016). 

Particularly, seagrasses are considered one of the most valuable coastal ecosystems 

regarding the wide range of ecosystem services they provide, including carbon sequestration, 

nutrient cycling and coastal protection, in addition to those referred to biodiversity (Orth et 

al., 2006). Yet seagrasses are highly vulnerable to warming (Collier and Waycott, 2014; Savva 

et al., 2018). Although moderate temperature increases can benefit seagrass performance, 

stimulating processes such as photosynthesis (Pérez and Romero, 1992; Zimmerman et al., 

1989), growth or biomass accumulation (Bulthuis 1987; Ontoria et al., 2019a, 2019b), once a 

given thermal threshold is exceeded, metabolic alterations in photochemistry (Campbell et 

al., 2006; Ralph 1998; Repolho et al., 2017), photosynthetic and respiratory rates (Collier et 

al., 2011; Marín-Guirao et al., 2016, 2018), and other key metabolic process occur, leading to 

deleterious effects such as carbon unbalances, reduced growth or leaf structure deterioration, 

all these ultimately causing mortality (Collier and Waycott, 2014; Hammer et al., 2018; Lee et 

al., 2007; Marín-Guirao et al., 2016; Ontoria et al., 2019a). However, the available literature 

clearly shows that thermal thresholds and vulnerability are highly variable among species, 

depending for a large part on different acclimative capacities. This, on the one hand, suggests 

future changes in the distribution and abundances of the different species accordingly with 

future warming scenarios (Chefaoui et al., 2018; Collier and Waycott, 2014; Collier et al., 

2011; Jordà et al., 2012). On the other hand, it points to the importance of the underlying 

thermotolerance mechanisms (Marín-Guirao et al., 2016, 2017, 2018; Tutar et al., 2017), 

which remain poorly studied (at least relative to terrestrial plants) despite the increased 

knowledge on the responses of seagrasses to warming. 

As higher plants, it seems likely that seagrasses should have signalling pathways to 

sense changes in temperature as well as thermotolerance mechanisms similar to that found 

in other angiosperms (Mittler et al., 2011). As for instance, plants have developed protection 

systems against oxidative stress (Hasanuzzaman et al., 2013), caused by an unusual 

accumulation of toxic by-products such as reactive oxygen species (ROS) (Mittler et al., 2011; 

Ruelland and Zachowski, 2010). Molecular studies have shown the overexpression of some 

antioxidant genes in seagrasses under heat stress (Tutar et al., 2017; Purnama et al., 2019), 

confirming the existence of such protective mechanisms against heat stress based on those 

antioxidant enzymes. Another protective mechanism consisting on the dissipation of the 

excess energy by non- photochemical quenching (NPQ), coupled to the xanthophyll cycle 

(Demming-Adams and Adams, 2006), has been also described in higher plants. The 

operation of such a mechanism in seagrasses as a photoprotective mechanism against high 

irradiance stress (Ralph et al., 2002) or high salinity stress (Marín-Guirao et al., 2013a) has 

been evidenced, but its involvement in protection against heat stress is scarcely known to 

date. 
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In addition, other stress-protective mechanisms present in higher plants , including 

ion transporters, protein stabilizers (i.e. Heat Shock Proteins (HSP)) and osmoprotectants 

(Krasensky and Jonak, 2012; Rasheed et al., 2011), have been evidenced in some seagrass 

species (Massa et al., 2011; Traboni et al., 2018; Tutar et al., 2017), although their role coping 

with thermal stress remains unknown. At this respect, it seems urgent to investigate how 

these mechanisms operate in seagrasses but, specially, what is the potential they confer for 

acclimation in response to heat stress to the different seagrass species. 

The oceans are not warming equally and the known ocean warming “hotspots” (sensu 

Pecl et al., 2014) are those areas which are warming fastest. Specifically, the Mediterranean 

Sea is considered an area of special vulnerability to global warming (Burrows et al., 2011; 

Vargas-Yáñez et al., 2008). In this region, the most abundant and extended seagrass species 

are Posidonia oceanica and Cymodocea nodosa, which clearly differ in their origin, ecological 

strategies and biogeographical affinities. Thus, while P. oceanica, a Mediterranean endemics, is 

a large long-lived and slow-growing species that occupies open coastal waters, C. nodosa is a 

medium-size fast-growing species that can be found in a wider range of environments 

(estuaries, coastal lagoons, confined and semi-confined waters as well as, less abundant than 

P. oceanica, in open coastal waters) with a latitudinal range from temperate to subtropical 

waters. Accordingly with this, a higher vulnerability to warming is usually attributed to P. 

oceanica, based on mortality events reported in relation to extreme heat waves, such as those 

recorded in 2003 and 2009 in the Western Mediterranean (Garrabou et al., 2009; Díaz-Almela 

et al., 2009; Marbà and Duarte, 2010). By contrary, C. nodosa is expected to be favoured by 

warming (Boudouresque et al., 2009; Pérez and Romero, 1992). A previous study supports 

this notion since experimental heat stress caused a 40 % reduction of leaf carbon balance in 

P. oceanica while C. nodosa remained unaffected (Marín-Guirao et al., 2016, 2018). Moreover, 

C. nodosa has been shown to display a remarkable phenotypic plasticity (Pérez and Romero, 

1994; Olesen et al., 2002; Sandoval-Gil et al., 2014). This scenario (i.e. the existence of two 

species apparently differing in their ecological strategy and responses to warming, and sharing 

a large distributional area especially vulnerable to climate change) offers an excellent case-

study to explore the potential differences in the response mechanisms to heat stress and the 

involvement in their respective, species-specific acclimation capacities. 

To analyse in depth this case study, we conducted an indoor mesocosm experiment aiming 

at (i) to evaluate the differential responses to warming of these two seagrass species (P. 

oceanica and C. nodosa) and (ii) to elucidate the underlying thermotolerance mechanisms of 

each species, specifically those related to heat dissipation pathways and antioxidant enzymes 

activities. To this, and after the exposition period, we measured a suit of plant traits, including 

some related to plant performance (photochemistry, photosynthesis, respiration, growth…), 

to protective mechanisms (xantophylls pigments, antioxidant enzyme activities…) or to plant 

damage (membrane peroxidation,  chlorophyll pigments…). The hypothesis is that, both 

responses and mechanisms will largely differ between these two species, accordingly with 

their respective evolutive and ecological stories, and that these differences could imply 

profound consequences for their respective trajectories, and hence for Mediterranean 

ecosystems, under future scenarios of climate change. 
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MATERIAL AND METHODS 

Plant sampling 

In spring 2016 (April), healthy large fragments of rooted P. oceanica and C. nodosa were 

carefully collected by scuba divers in dense and healthy meadows (5m depth, over an area of 

ca. 300 m-2) off the South Eastern coast of Spain, Isla Grosa (37° 43.7’ N, 0° 42.75’ W). 

Individual fragments were chosen so as to hold rhizomes with apical growth meristems and 

several connected shoots to maintain clonal plant integrity. 

Collected plants were transported to the laboratory in large, temperature and oxygen-

controlled coolers within two hours of their collection, and then transferred into the aquaria 

of the mesocosm facility at the Oceanographic Centre of Murcia (IEO, Spain; Marín-Guirao 

et al., 2011). Plant fragments of P. oceanica with a similar size and morphology were selected, 

attached by cable ties to a rigid plastic mesh placed into a plastic pot (on average, 50 

shoots/pot) filled with cleaned coarse sediments. Furthermore, morphologically similar C. 

nodosa fragments (rhizome sections) were equally distributed and attached on wire meshes 

(on average, 60-70 shoot/mesh), which were immediately buried in cleaned sediment.  

Mesocosm system and experimental set up 

The system consisted on 12 independent tanks per species (500 L for P. oceanica and 100 L 

for C. nodosa) containing each four randomly selected pots (Figure 1). Each tank had its own 

independent seawater circulation system and control of temperature and light. In addition, 

nutrients, water flow, temperature and pH conditions were controlled and recorded in each 

tank every day (hourly for temperature and pH). Plants were maintained in the tanks under 

conditions close to that found in situ during collection (temperature: 20 ºC; salinity: 37.5 psu; 

irradiance: 250 µmol quanta m-2 s-1; light:dark photoperiod: 14h:10h) to acclimate for a three 

weeks period. For each species, after the acclimation period, temperature was maintained at 

20 ºC in three tanks chosen at random and increased at a fixed heating rate of 2 ºC day-1 in 

the rest of the tanks so as to reach the other three target temperatures (24 ºC, 28 ºC, and 32 

ºC). These thermal conditions were selected so as to represent present day summer months 

values (minimum-maximum) in the area of collection, while 32 ºC approaches the maximum 

summer value expected to be experienced by these seagrass species at the end of the century 

(Marbà and Duarte, 2010; Jordà et al., 2012; IPCC, 2014). Plants were maintained for five 

weeks under experimental conditions, a period of time that has been demonstrated to be 

long enough to induce plant stress responses (Marín-Guirao et al., 2018; Traboni et al., 2018) 

and, at the end, plant traits assessment was conducted as explained below. 

The tanks were considered the experimental units, and thus, for statistical purposes, 

each tank is considered an independent replicate (n=3 replicates per experimental condition). 

Values obtained from different shoots within a tank (number changing depending on the 

variable) were considered subsamples and averaged to obtain the value for the replicate. 
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Figure 1. General view of the mesocosm systems: A) Cymodocea nodosa and B) Posidonia oceanica 

 

Plant traits assessment 

Chlorophyll a fluorescence parameters 

Chlorophyll fluorescence parameters were measured in four randomly selected shoots from 

each tank (one shoot per pot), using a diving PAM (Pulse Amplitude fluorometer, Walz 

Germany) (Genty et al., 1989; Schreiber, 2004). Maximum quantum yield of PSII (Fv/Fm = 

(Fm-Fo)/Fm), where Fm and Fo are, respectively, maximum and minimum fluorescence of 

dark-adapted leaves, was measured in the early morning (before lights on, at 7:00 am). In 

order to reduce within-shoot and within-leaf variability of fluorescence parameters (Durako 

and Kulzelman, 2002; Gera et al., 2012), the measurements were taken on the basal portion 

of the second youngest leaf where values are at its optimum (Marín-Guirao et al., 2011). 

After three hours of illumination, effective quantum yield of PSII (ΔF/Fm’=(Fm’-F)/Fm’) was 

measured, where Fm’ is the maximum fluorescence of light-adapted leaves and F is the yield 

in any given state of ilumination. Then, rapid light curves (RLCs) were obtained by exposition 

to nine increasing irradiances (from 0 to a maximum of 378 µmol photons m-2 s-1), with a 

duration of 10 s each. RLCs allowed to extract other fluorescence-based parameters such as 

the maximum electron transport rate (ETRmax), as provided by the PAM WinControl 

program (Walz, Germany). The non-photochemical quenching (NPQ) was calculated as 

NPQ = (Fm- Fm’)/Fm’ (Bilger and Björkman, 1990). 

Pigment analyses 

Photosynthetic pigment (chlorophyll a and b) content in leaves was analysed in one shoot 

per pot, from which 1 cm2 leaf fragment was excised from the middle section of the youngest 

fully-developed leaf. Pigments were extracted in buffered acetone (80 %) using 

homogenizers. Extracted samples were maintained overnight at 4 ºC to ensure full 

disaggregation of leaf material. Absorbances were measured spectrophotometrically at four 

specific wavelengths (470, 646, 663 and 725 nm) to calculate chlorophyll a and chlorophyll 

b, using the equations of Lichtenthaler and Wellburn (1983). Pigment content was expressed 

per leaf surface (μg cm−2). 

A B 
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Carotenoids were obtained from chlorophyll-free extracts following the 

methodology described in Marín-Guirao et al. (2013b), while the HPLC analysis for 

xanthophyll pigment separation were conducted according to the detailed protocol in Stinco 

et al. (2012) and identified by chromatographic and UV/vis spectroscopic characteristics. We 

estimated the conversion of violaxanthin (V) into anteraxanthin (A) and zeoxanthin (Z) 

through the xanthophyll de-epoxidation ratio (DR), using the equation (A + Z)/(V + A + 

Z). Xanthophyll content was expressed on mmol mol-1 chlorophyll a. 

Antioxidant enzyme activities 

The activities of antioxidant enzymes were measured in two randomly selected shoots of P. 

oceanica and C. nodosa of different pots per tank. Leaf tissues were taken from the middle 

section of the youngest fully-developed leaf (avoiding necrotic tissues), cleaned up of 

epiphytes, and kept ultrafrozen (-80 ºC) until analyses. Ultrafrozen leaf samples (0.5 g of 

fresh weight) were ground in liquid nitrogen using a mortar, and homogenized in phosphate 

potassium buffer 100 mM pH 7.8 (1 mM EDTA, 1 % polivinilpirrolidone), with a dilution 

factor of 1:6. For APX (ascorbate peroxidase) and DHAR (dehydroascorbate reductase), 

sodium ascorbate (10 mM) was added to the buffer. After centrifugation at 49000 g for 10 

min at 4 ºC, the supernatant was used for enzyme activity assay of SOD (superoxide 

dismutase), GST (glutathione-S-transferase), GPX (glutathione peroxidase), GPOX 

(guaiacol peroxidase), DHAR and APX, and also to determine the protein content. SOD 

activity was determined by colorimetric method (i.e. decrease in the absorbance at 440 nm), 

using the SOD Assay Kit-WST based on Dojindo’s highly water-soluble tetrazolium salt. 

GST activity was measured spectrophotometrically (increment in the absorbance at 340 nm; 

extinction coefficient 9.6 mM-1 cm-1) at pH 8.4 by following conjugation of the acceptor 

substrate (1-chloro-2, 4-dinitrobenzene, CDNB) with reduced glutathione (Habig et al., 

1974; Ferrat et al., 2003). GPX activity was determined by the reduction of absorbance at 

340 nm (extinction coefficient 6.2 mM-1 cm-1) in a reactive solution containing phosphate 

buffer 100 mM pH 7.5, EDTA, sodium azide, reduced glutathione, glutathione reductase, 

NADPH and Hidrogen peroxide (H2O2), based on protocols described in Flohé and Günzler 

(1984) and Sureda et al. (2008). GPOX activity was determined in a reaction mixture 

consisted of 100 mM potassium phosphate buffer pH 6.0, 0.18 % (v/v) H2O2, 1 % guaiacol 

and the enzyme extract; the oxidation of guaiacol by H2O2 was measured by the increase in 

absorbance at 470 nm (extinction coefficient 26.6 mM-1 cm-1) according to Kato and Shimizu 

(1987) and Upadhyaya et al. (1985). APX and DHAR protocols were adapted to those 

described by Costa et al. (2015). APX activity was measured by the decrease in the 

absorbance at 290 nm (extinction coefficient 26.6 mM-1 cm-1) in a reaction mixture of 

potassium phosphate buffer 100 mM pH 7.0, with a solution of ascorbate (800 µM), and 

H2O2 (20 mM) and leaf extract. For its part, DHAR activity was measured as the increase in 

absorbance at 265 nm (14 mM-1 cm-1) of a reaction mixture containing 100 mM potassium 

phosphate buffer (pH 6.1), 5 mM reduced glutathione, 800 μM dehydroascorbic acid, and 

leaf extract. Activities of antioxidant enzymes were expressed by soluble protein content of 

leaf tissues, which were determined by protein measurement with Folin phenol reagent 

(Lowry et al., 1951) with bovine serum albumin as standard curve. 
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Membrane lipid peroxidation 

Lipid peroxidation is considered an indicator of cellular damage (Geffard et al., 2001) that 

occurs as a result of an ineffective of the antioxidant enzyme. The sampling protocol and 

handling of leaf tissues for the analyses of membrane lipid peroxidation was similar to that 

described for the activity of antioxidant enzymes. Membrane lipid peroxidation was 

measured following the thiobarbituric acid-reactive-substances assay described by Hodges et 

al. (1999) and Barrote (2005). Ultrafrozen leaf tissues were ground in liquid nitrogen using a 

mortar, and homogenized (dilution 1:10) in trichloroacetic acid (TCA, 20 %). Tissue 

homogenates were then centrifuged (3000 g, 4 ºC) and supernatants were mixed with a 

solution of TCA (20 %) and TBA (thiobarbituric acid, 0.5 %). These solutions were heated 

at 90 ºC during 30 min, and then centrifuged again (10000 g) during 10 min. The supernatants 

were then extracted and their absorbances (440, 532 and 600 nm) were measured by 

spectrophotometer. Equivalents of malonildialdehyde (Eq MDA; molar extinction 

coefficient 155 mM-1 cm-1), which is a secondary metabolite resulted from lipid peroxidation 

in cell’s membranes, was calculated according the method described in Hodges et al. (1999) 

and Barrote (2005) as: 

Eq MDA (nmol ml-1) = [(A-B)/155000] x 106 

 

Photosynthesis and respiration rates 

Photosynthesis and dark respiration rates were determined in two randomly selected shoots 

from each tank using a Clark type electrode (Oxygraph system, Hansatech, UK), following 

the methodology described in Marín-Guirao et al. (2011, 2016). From each shoot, a leaf 

segment of approximately 2 cm2 was taken from the middle section of the youngest fully-

developed leaf and incubated in a 20 ml chamber (DW3, Hansatech, UK) housing the 

electrode. Temperature of incubations was kept the same as in the corresponding 

experimental treatment by a controlled temperature circulating bath. Leaf fragments were 

exposed to 250 µmol photons m-2 s-1 (which is above saturating irradiance for both species, 

Alcoverro et al., 1998; Pérez and Romero, 1992) determining thus maximum rates of net 

oxygen production (net Pmax; µmol O2 g
-1 FW h-1). After maintaining leaf segments to darkness 

for 10 min, dark respiration rates (Rd; µmol O2 g
-1 FW h-1) were also determined. We estimated 

gross photosynthesis rate (gross Pmax; µmol O2g
-1FW h-1) as: 

gross Pmax= net Pmax - Rd. 

An estimated gross Pmax:Rd ratio was calculated from each incubation and used as a proxy of 

the leaf carbon balance (Marín-Guirao et al., 2018). 

Non-structural carbohydrates content 

Non-structural carbohydrates content (soluble sugars and starch) was analysed in leaves and 

rhizome tissues (2 cm rhizome apex fragments) samples obtained from a shoot of each pot 

(a total of four samples of each tissue per tank) according to the method described in Marín-

Guirao et al. (2013b), based on Invers et al. (2004) and Yemm and Willis, (1954). Analyses 
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were performed on dried tissue at 50 ºC (48 h) and finely ground. Carbohydrates were then 

solubilised by four sequential extractions with 95 % (v/v) ethanol at 80 ºC for 15 min. The 

ethanol extracts were evaporated using a thermostated vacuum centrifuge (Univapo 100H, 

Unijet II) while the residues were dissolved in deionized water for analysis. Starch was 

extracted from the ethanol-insoluble residue by keeping it overnight in 0.1N NaOH. Both 

soluble sugars and starch were determined spectrophotometrically using an anthrone assay. 

The total carbohydrate content was estimated by the sum of the soluble and reserve 

carbohydrates and all data expressed as percentage of dry weight (% DW). 

Leaf necrosis, leaf growth and net shoot change 

Leaf growth was measured according to the leaf punching method proposed by Zieman 

(1974), adapted to the species (Alcoverro et al., 2001; Pérez and Romero, 1994). Three shoots 

of each pot (i.e. a total of 12 shoots per tank) were marked after the acclimation period, just 

before starting the temperature rise. At the end of the experiment, the marked shoots were 

collected, and the leaves were carefully separated to measure leaf growth, which was 

expressed as the surface of new tissue produced per shoot and day (cm2 shoot−1 day−1). The 

incidence of leaf necrosis (dark brown or black spots covering leaf tissue) was assessed in the 

same four shoots. Once leaves were separated from each shoot, the necrotic surface relative 

to the total leaf surface of each shoot was estimated visually and expressed as a percentage. 

To estimate the net shoot demographic balance, all shoots were counted at the beginning 

and at the end of the experiment and after normalizing to initial shoot numbers, the net 

shoot change was computed as follows: 

net shoot change (%) = ((Nt-N0) x 100)/ N0 

Where N0 is the number of shoots in each tank at the beginning of the experiment and Nt is 

the number of shoots at the end of the experiment. Positive values indicate an increase of 

shoot abundance (i.e. recruitment higher than mortality) while negative values indicated a 

reduction (higher mortality than recruitment). 

 

Statistical analysis 

To assess overall effects of temperature and differences between species on response 

variables and thermotolerance defence mechanisms related variables, we applied 

permutational multivariate analysis of variance (PERMANOVA), using PRIMER 6 statistical 

package (Clarke and Gorley, 2006) and the PERMANOVA+ module (Anderson et al., 2008). 

PERMANOVA was based on a similarity matrix created from the Euclidean distances 

between samples. We considered two fixed factors: temperature (four levels: 20 ºC, 24 ºC, 

28 ºC and 32 ºC) and species (two levels: P. oceanica and C. nodosa, and a total of n=3 replicates 

(tanks) for each experimental condition. We further applied univariate PERMANOVAs to 

assess the significance of species, temperature or their interaction (independent variables) on 

each plant trait determined (dependent variables). 
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In order to synthetically (and visually) explore our dataset, and to further evidence 

interspecific differences of the response variables to temperature, a principal component 

analysis (PCA) was applied using the software CANOCO 4.5 (Ter Braak and Smilauer, 2002). 

Single-factor ANOVA tests were performed to test the effects of temperature on 

plant response variables within each species. Data were log and fourth root-transformed 

prior to the analysis if normality or homoscedasticity assumptions were violated. 

Temperature was treated as a fixed factor with four levels with the same three replicates 

(n=3). The significance level (α) used was 0.05. When significant effect was found, a Tukey 

post-hoc test was applied (Zar 1984) in order to identificate significant pairwise significance. 

These statistical analyses were conducted using R. 

 

RESULTS 

Plant responses to temperature increase 

Chlorophyll a fluorescence parameters 

Changes with temperature in maximum quantum yield (Fv/Fm) and effective quantum yield 

(∆F/Fm’) were small, albeit significant. The only clear trend was a modest and progressive 

increase in Fv/Fm in P. oceanica with temperature, absent in C. nodosa (see significant 

interaction in Tables 1, S2 and S3; Figure 2A and 1B). Fv/Fm was always above 0.6, a critical 

threshold of plant health (Ritchie 2006), thus suggesting the absence of damage in the 

photosynthetic apparatus. Maximum electron transport rate (ETRmax) was significantly higher 

(by a factor of two) in C. nodosa than in P. oceanica at all temperature treatments. Again, no 

clear pattern with temperature was evident, except a mild (but significant) increasing trend 

in P. oceanica. (Figure 2C; Tables 1, S2 and S3).  

 

Figure 2. Photochemical responses of P. oceanica and C. nodosa plants exposed to a four temperatures range 

during 5 weeks. (A) Maximum quantum yield of dark-adapted leaves (Fv/Fm), (B) effective quantum yield of 

PSII (ΔF/Fm’), and (C) maximum electron transport rate (ETRmax). Results are the mean and standard error of 

three independent replicates.  
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Chlorophyll pigments 

Both species maintained their pigment content (chlorophyll a and chlorophyll b) at all 

temperatures assayed. The chlorophyll b/a ratio was significantly higher (up to 38 %) in P. 

oceanica than in C. nodosa (Figure S1; Tables1, S2 and S3). 

Photosynthesis, respiration rates and leaf carbon balance 

At basal and intermediate temperatures, gross photosynthesis did not differ among species. 

However, at the highest temperature (32 ºC) gross photosyntehsis experienced a drop (ca. 

30 % relative to the rest) in P. oceanica (Table 2A; Table 1). Respiration rates were similar 

between the two species, with no significant effects of the thermal treatments (Figure 3B; 

Table 1). Interestingly, the resulting leaf carbon balance (P/Rd) showed completely opposite 

responses among both species to temperature, with a clear and significant increase in C. 

nodosa and a clear decrease in P. oceanica (Figure 3C; Tables 1, S2 and S3). 

 

 

Figure 3. (A) Maximum gross photosynthetic and (B) respiration rates, and (C) leaf carbon balance (in terms 

of Pmax/Rd ratio) of P. oceanica and C. nodosa plants after being  exposed to a four temperatures range for five 

weeks (mean ± SE, n=3).  

 

Non-structural carbohydrates content 

Non-structural carbohydrates (both starch and soluble fraction) content in leaf and rhizomes 

were significantly higher (between two and three-fold) in C. nodosa than in P.oceanica, with no 

relevant trends concerning the response to temperature (Figure S2; Tables 1, S2 and S3). 

Leaf necrosis, leaf growth and net shoot change 

While the thermal increase caused a clear decrease in leaf necrosis incidence in C. nodosa (80-

85 % less at 28-32 ºC than at 20-24 ºC), it did not affect significantly its incidence in the 

leaves of P. oceanica (Figure 4A; Tables 1, S2 and S3).  
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Figure 4. (A) Necrosis incidence on leaves, (B) growth rate, and (C) net shoot change of P. oceanica and C. 

nodosa plants after being exposed to a four temperatures range for five weeks (mean ± SE, n=3). 

The shoot growth rate, significantly higher  in P. oceanica  than in  C. nodosa at low 

temperatures (20 and 24 ºC), showed a response to warming clearly contrasting among the 

two species. Thus, while C. nodosa growth was stimulated by warming (up to 2-fold higher at 

32 ºC relative to control), a drastric and continuous decline across the experimental 

temperature range was observed in P. oceanica (growth values at 32 ºC 81 % less than at 20 

ºC) (Figure 4B; Tables 1, S2 and S3). 

Net shoot change was significantly higher in C. nodosa than in P. oceanica (Figure 4C; 

Table 1). Temperature only had a significant effect in P. oceanica where the balance became 

negative at 28 ºC and 32 ºC (Figure 4C; Tables 1 and S2). 

 

Potential thermotolerance defence mechanisms 

Heat dissipation pathway: Non-photochemical quenching (NPQ) and xanthophyll cycle pigments 

NPQ was significantly higher (ca. two-fold) in C. nodosa than in P. oceanica and it did not show 

any variation with temperatures below 32 ºC, temperature at which both species reacted 

oppositely (Figure 5A; Tables 1, S2 and S3), increasing in P. oceanica and decreasing (not 

statistically significant) in C. nodosa (but see significant interaction in Table 1). 

Violaxanthin (V) was the most abundant xanthophyll pigment in both species, with 

no significant differences among them (Figure 5B). In contrast, higher concentrations of 

xanthophylls in a de-epoxidated state, anteraxanthin (A) and zeaxanthin (Z), were found in 

C. nodosa than in P. oceanica leaves (Figure 5C and 5D). Consequently, either VAZ (total 

xanthophyll content:total chlorophyll molar ratio) and AZ (A+Z:total chlorophyll molar 

ratio) were also significantly higher in C. nodosa than in P. oceanica (Figure S3). The xanthophyll 

de-epoxidation rate (DR) was up to 41 % higher in C. nodosa due to the higher content of A 

and Z (relative to V values), in comparison to P. oceanica (Figure 5E; Tables 1 and S1). The 

only temperature effect was found in Z content in C. nodosa leaves, which significantly 

decreased with temperature (Figure 5D; Tables 1 and S3). VAZ and AZ showed this same 

decreasing trend (Figure S3; Table 1), as well as DR (Figure 5E; Table 1), which was found 



 

 

 Chapter 1  

42 

to be 18 % lower at 32 ºC than at 20 ºC. Moreover, both Z content and DR showed a 

significantly different response to temperature between both species (Figure 5D and 5E; 

Tables 1, S2 and S3, see significant interaction), with a mild increasing trend in P. oceanica 

whose statistical detection was precluded by the high variability of values at 32 ºC. 

 

 

Figure 5. Energy dissipation mechanisms in P. oceanica and C. nodosa plants after being exposed to a range of 

four temperatures for five weeks (mean ± SE, n=3). (A) non-photochemical quenching (NPQ) and (B-D) 

xanthophylls cycle pigments content: (B) Leaf violaxanthin, (C) antheraxanthin and (D) zeaxanthin 

concentration. (E) xanthophyll de-epoxidation ratio (DR).  

Antioxidant enzyme activities and membrane lipid peroxidation 

C. nodosa exhibited higher activity of antioxidant enzymes than P. oceanica at all temperatures, 

except a few cases (Figure 6A-F; Table 1). These differences were particularly remarkable for 

GPOX, with values in C. nodosa ca. one order of magnitude higher than those measured in 

P. oceanica (Figure 6D).  

A   
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The response to temperature followed different trends in both species, the enzymatic 

activities tending to increase in C. nodosa and to decrease in P. oceanica, as indicated by the 

significant interactions between species and temperature in GPX, GST, SOD and DHAR. 

Specifically, in C. nodosa, SOD doubled and GPX was 3-fold higher at high temperatures (28 

ºC and 32 ºC) relative to control (Figure 6A and 6E), while DHAR also increased, although 

in the threshold of significance (p=0.05, Figure 6F) (Tables 1 and S3). In the case of P. 

oceanica, the activity of GST, GPOX and SOD significantly decreased at increasing 

temperatures (Figure 6C, 6D and 6E). 

 

Figure 6. Activity of antioxidative enzymes (mean ± SE, n=3). (A) Glutathione peroxidase (GPX), (B) 

ascorbate peroxidase (APX), (C) glutahione-S-transferase (GST), (D) guaiacol peroxidase (GPOX), (E) 

superoxide dismutase (SOD) and (F) dehydroascorbate reductase (DHAR) measured in shoots of P. oceanica 

and C. nodosa exposed to four temperatures for five weeks.  

 

The concentration of MDA measured in leaves of P. oceanica was consistently higher 

(over 2-fold higher) than in those from C. nodosa (Figure S4; Table S1). Increasing 

temperature had no apparent effects in the lipid peroxidation level of leaf tissues of both 

species (Tables 1, S2 and S3). 
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Table 1. Summary of the results from univariate PERMANOVA (left) testing the significance of effects of the 

two independent variables, species (P. oceanica (P) and C. nodosa (C)) and temperature (20 ºC, 24 ºC, 28 ºC and 

32 ºC), on the different plant responses assessment (dependent variables). ANOVA was applied to detect 

within- species significance on the effects of temperature on the same response variables. Numbers in bold 

indicate significant effects (p < 0.05). Post hoc indicates the significance of pairwise differences. In the species 

column (PERMANOVA), there is also indicated (following post-hoc analysis) the sign of the differences (P: P. 

oceanica; C: C. nodosa). More details of this analysis can be found on table S1). 

 

Variable 

PERMANOVA ANOVA 

Species Temp Sp x Temp P. oceanica C. nodosa 

          Post hoc   Post hoc 

p-valor   p-valor p-valor p-valor 20ºC 24ºC 28ºC 32ºC p-valor 20ºC 24ºC 28ºC 32ºC 

Fv/Fm 0.0001 P > C 0.0003 0.001 0.00002 a b ab c 0.2537         

ΔF/Fm' 0.0167 P > C 0.0002 0.0006 0.0003 a ab b c 0.0181 a b b b 

ETRmax 0.0001 C > P 0.0007 0.0025 0.0286 a ab a b 0.0030 a a b a 

NPQ 0.0003 C > P 0.2279 0.0016 0.0051 a a a b 0.2495         

Chla 0.0718   0.5004 0.6558 0.6218         0.4405         

Chlb 0.8565   0.4833 0.5877 0.5646         0.3730         

Chlb/Chla 0.0001 P > C 0.1065 0.1503 0.103         0.554         

Gross P 0.0023 C > P 0.7295 0.0002 0.0025 a a a b 0.1094         

Rd 0.7823   0.3392 0.4093 0.3073         0.5440         

P:Rd 0.0303 C > P 0.2906 0.0007 0.0489 a ab ab b 0.0094 a a a b 

Starch Leaf 0.0001 C > P 0.0223 0.6748 0.4965         0.0572         

Soluble Leaf  0.0001 C > P 0.0148 0.3842 0.2055         0.0627         

NSCs Leaf 0.0001 C > P 0.013 0.6988 0.3098         0.0697         

Starch Rhizome 0.0005 C > P 0.0072 0.0005 0.1645         0.0001 ab a b c 

Soluble Rhizome 0.0001 C > P 0.0118 0.0022 0.2770         0.0111 ab b a a 

NSCs Rhizome 0.0001 C > P 0.011 0.0016 0.2130         0.0086 ab b a a 

Necrosis 0.0001 P > C 0.1867 0.0033 0.2501         0.0004 a a b b 

Leaf growth 0.0007 P > C 0.005 0.0001 0.0006 a a b b 0.0006 a a b b 

Net shoot change 0.0001 C > P 0.0508 0.1102 0.0020 a b b b 0.8597         

Violaxanthin 0.9208   0.6617 0.5126 0.6107         0.4684         

Anteraxanthin 0.0001 C > P 0.1663 0.8206 0.5942         0.3320         

Zeaxanthin 0.0014 C > P 0.5944 0.0139 0.5048         0.0030 a a ab b 

VAZ 0.0023 C > P 0.628 0.0113 0.4271         0.0056 a ab b b 

AZ 0.0025 C > P 0.627 0.0091 0.4304         0.0057 a ab b b 

DR 0.0001 C > P 0.8187 0.0414 0.3369         0.0211 a ab ab b 

GPX 0.0001 C > P 0.0001 0.0002 0.1102         0.0003 a a b b 

APX 0.0069 C > P 0.2416 0.0698 0.7210         0.1125         

GST 0.0001 C > P 0.1746 0.0147 0.0247 a ab ab b 0.0790         

GPOX 0.0001 C > P 0.3344 0.1139 0.0028 a ab bc c 0.2360         

SOD 0.0162 C > P 0.0502 0.0003 0.0099 a b ab b 0.0112 a a b ab 

DHAR 0.0398 C > P 0.0659 0.0415 0.6380         0.0500         

MDA 0.0001 P > C 0.9684 0.6963 0.8558         0.6003         

 

 

Overview of the inter- and intraspecific different responses to warming 

The multivariate analysis summarized clearly the results of our experiment. Thus, axis 1 of 

the PCA (Figure 7), explaining 48 % of total variance, absorbed interspecific differences, 

clearly separating the observations corresponding to C. nodosa (positive part of the axis) from 
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those corresponding to P. oceanica (negative part of the axis). The variables with the highest 

factor loadings on this axis (values > 0.6) were net shoot change, maximum electron 

transport rate, non-structural carbohydrates content (soluble + starch), maximum net 

photosynthetic rate, soluble carbohydrates content, anteraxanthin content, de-epoxidation 

ratio, some antioxidant activities (GPX, APX, GST and GPOX (positive loadings), leaf 

necrosis and MDA concentration (negative loading). 

In turn, axis 2, explaining 18 % of the total variance, and was much related to 

temperature. Interestingly, observations corresponding to low temperatures appeared in the 

positive part of the axis for C. nodosa, while they appeared in the negative part for P. oceanica, 

illustrating the different response to thermal stress among the two species The variables with 

the highest factor loadings on this axis (values > 0.6) were leaf growth, photosynthetic rates 

(both gross and net), P/Rd balance and zeaxanthin content, VAZ, AZ and effective quantum 

yield. 

 

Figure 7. Plot of the principal component analyses performed including the different plant variables measured 

in P. oceanica and C. nodosa at the end of the five weeks exposure period to four thermal treatments. Data from 

P. oceanica are represented with blue rhombus while those from C. nodosa aquaria are represented with orange 

circles. The intensity of the tone (from clear, 32 ºC, to dark, 20 ºC) indicates the thermal treatment. The factor 

loadings of the different variables are represented as vectors (See Table S4 for the abbreviations). 
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DISCUSSION 

This study reveals deep quantitative and qualitative differences in the responses to warming 

between the two dominant Mediterranean seagrass species, P. oceanica and C. nodosa, 

evidencing contrasting strategies to cope with thermal stress. In general, P. oceanica 

performance (i.e. leaf carbon balance, shoot growth and net shoot change) tends to be 

negatively affected by temperatures higher than normal (28 and 32 ºC), while, oppositely, C. 

nodosa seems to perform better at those temperatures (up to 32 ºC), which  stimulate 

photosynthetic and growth rates and lowers leaf necrosis incidence. Our results suggest that 

this differential response is based upon the capacity of C. nodosa for activating protective 

mechanisms such as increasing the activity of antioxidant enzymes, mechanism which does 

not seem to operate in P. oceanica where, if any, the only (and with limited effects) protective 

mechanism appears to be related to dissipation pathways of energy excess (NPQ and 

xanthophyll cycle). Although no accurate predictions can be obtained from these results, it 

seems likely that, under a future scenario of temperature rise, changes in Mediterranean 

seagrass vegetation should be expected, with beneficial effects for C. nodosa and detrimental 

effects for P. oceanica. 

Some of the negative effects of warming on P. oceanica reported here were already 

known from previous works. Specifically, the sharp decline in the gross photosynthesis rate 

at 32 ºC, coincides with available evidences of negative effects of such high temperatures on 

plant photochemical efficiency (Ontoria et al., 2019a; Savva et al., 2018; Marín-Guirao et al., 

2016), suggesting an upper thermal threshold likely between 28 and 32 ºC. This drop in gross 

photosynthesis was the main driver of the observed leaf carbon balance impairment because, 

in contrast with results from previous works (Marín-Guirao et al., 2018), the respiration was 

unaffected by temperature increase. The negative effects of warming were even more evident 

at individual and population levels, as both shoot growth and net shoot change began to 

decrease before (i.e. at lower temperature) plant photosynthesis (24 ºC and 28 ºC for shoot 

growth and net shoot change, respectively; 32 ºC for photosynthesis). This agrees with the 

idea that the optimum temperature for photosynthesis is usually higher than for growth (Lee 

et al., 2007) or, in other words, that growth is more sensitive to warming that photosynthesis, 

at least in the short term. This, in turn, has an obvious methodological implication: 

assessments based solely on photosynthesis can overestimate thermal threshold of the 

species. The “moderately warm” temperature used in the study (28 ºC) can be experienced 

by the plants in present days (on average, 17 days yr-1 in the last four years, 2015-2018, at the 

site from where plants were collected), suggesting that temperature-driven growth depression 

is already taking place in this species. In spite of this, there were no evidences of the induction 

of effective thermal tolerance mechanisms to cope with thermal stress. At this respect, the 

only finding suggesting some protective behaviour was an increase in non-photochemical 

quenching (NPQ) in plants experimentally exposed to 32 ºC, as previously reported by 

Marín-Guirao et al. (2016). This, coupled to the mild (and non-significant) reduction of 

violaxanthin (V) content and increase in anteraxanthin (A), zeaxanthin (Z) and de-

epoxidation ratio (DR) at this temperature, could be suggestive of a weak photoprotective 

response. In effect, it is known that xanthophyll intermediate pigments induce a 

photoprotective response when plants are exposed to stressful conditions, such as high 
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irradiance (Marín-Guirao et al., 2013a; Ralph et al., 2002). Unfortunately, this xanthophyll 

cycle mechanism has been poorly studied on seagrasses (Collier et al., 2008; Dawson and 

Dennison, 1996) and never, to our knowledge, described under thermal stress. No activation 

of antioxidant enzymes was detected, suggesting inability to combat increased ROS levels 

caused by warming, with concomitant plant damage (Huang et al., 2019; Mittler 2002). 

The response to warming of C. nodosa greatly differed from that of P. oceanica, with a 

significant improvement of leaf carbon balance at 32 ºC, again driven by the increase in gross 

photosynthesis rate. In addition, C. nodosa accumulates more carbohydrates in its rhizomes 

than P. oceanica; yet the accumulation of carbohydrates entails a major capacity of plants to 

tolerate heat stress and other abiotic factors, as reported for terrestrial plants (Liu and Huang, 

2000; Wahid et al., 2007) and also for seagrasses (Marín-Guirao et al., 2016; Sandoval-Gil et 

al., 2012a). Warming also improved other plant performances, such as the leaf growth, 

confirming that the thermal optimum for C. nodosa should be slightly above 32 ºC, as previous 

works reported negative effects at 35 ºC (Marín-Guirao et al., 2016; Ontoria et al., 2019b; 

Pérez and Romero, 1992). 

The good performances of C. nodosa at high temperature seems associated to the 

existence of effective protective mechanisms against thermal stress. This was reflected, to 

some extent, in values of NPQ and xanthophyll content higher than those found in P. oceanica 

but, more evidently, in the activation of antioxidant enzymes, evidencing the ability of this 

species to detoxify the accumulated ROS and offering an efficient protection mechanism 

against their toxicity. This is supported by the low levels of MDA found, which is considered 

a proxy of damage of the cell membrane due to lipid peroxidation by excess of ROS 

(Valenzuela, 1991). 

Part of the response to heat stress relies on inherent physiological properties such as, 

in our case, the carbohydrates content, higher in C. nodosa than in P. oceanica. However, a large 

part of the species capacity to cope with thermal stress relies on the species phenotypic 

plasticity, which allows acclimation to changes and is, in turn, an adaptive trait in itself 

(Dudley 2004; Nicotra et al., 2010). At this respect, C. nodosa seems clearly to display higher 

plasticity, as indicated by the activation of antioxidant enzymes, resulting in a better 

acclimation to warming. A great plasticity relative to other environmental drivers of this 

species had also been reported in previous works (Pérez et al., 1994). 

These contrasting behaviours facing warming in two seagrass species with 

overlapping geographical distribution has several possible explanations, rooted either in their 

phylogeography, their ecological strategy or their specific habitat requirements. On the one 

hand, the high thermotolerance of C. nodosa coincides with its biogeographical affinities and 

distribution not only in temperate (southern Portugal, Mediterranean) but also in subtropical 

(Canary islands) and tropical areas (Senegal, Cape Verde), being the rest of the species 

belonging to that genus of tropical affinities (Green and Short, 2003). In contrast, the 

distribution of P. oceanica is limited to the Mediterranean, with a much narrower thermal 

range, and the other species of the genus Posidonia inhabit also in temperate waters (in 

Australia, Green and Short, 2003). On the other hand, on the basis of their life-history traits, 

C. nodosa is classified as opportunistic, while P. oceanica is considered persistent (Kilminster et 

al., 2015). Yet it is known that opportunistic species are, in general terms, much more able 
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to cope with more stressful conditions, as is the case, for example, of hypersalinity stress, to 

which C. nodosa is much more resistant than P. oceanica (Fernández-Torquemada and Sánchez-

Lizaso, 2005; Ruiz et al., 2009; Marín-Guirao et al., 2011; Sandoval-Gil et al., 2012a, 2012b) 

and also, as shown here, in the case of thermal stress. Finally, each species has specific habitat 

requirements. While C. nodosa is distributed from the open sea to confined or semi-confined 

coastal lagoons, where it grows well within a wide range of nutrient regimes, salinity and 

temperature (e.g. from 8 ºC in winter to 32 ºC in summer, personal observations and Ontoria 

et al., 2019b), P. oceanica distribution is restricted to infralittoral bottoms in open coasts or 

bays with a relatively high water exchange with the open sea (Procaccini et al., 2003), under 

environmental conditions less fluctuating and within a narrower range of variation. 

Independently of these causal explanations, the experimental fact of a greater 

tolerance to warming in C. nodosa than in P. oceanica has, potentially, great consequences for 

the future of coastal Mediterranean ecosystems. However, and when analyzing such 

consequences, it should be reminded that our approach, based on mesocosms, has evidences, 

and all caution should be exerted at this respect when extrapolating our results to the possible 

changes at the ecosystem and landscape levels. Among those limitations, the impossibility to 

properly capture intraspecific variability (see Marín-Guirao et al., 2016; Winters et al., 2011), 

the absence in mesocosms of community level processes (i.e. biotic interactions, see Pagès 

et al., 2018) or the potential interaction of temperature with other stress agents (e.g. Collier 

et al., 2011, 2016; Egea et al., 2018; Koch et al., 2007; Ontoria et al., 2019a, 2019b) are maybe 

the most relevant. 

Nonetheless, and despite these acknowledged limitations, the pronounced 

differential thermotolerance between the two main Mediterranean species, assessed within a 

thermal range close to what is expected to occur in the Mediterranean in a relatively near 

future, is beyond doubt. To a greater or to a lesser extent, warming, in the framework of 

realistic future scenarios, will be more favorable for one species than for the other and hence, 

temperature increase is reasonably expected to become a relevant driver of changes in the 

composition and distribution of the seagrass meadows at the Mediterranean scale. At the 

light of what is reported here, C. nodosa seems much more capable than its counterpart, P. 

oceanica, not only to cope with the warmer thermal conditions predicted to occur in the 

Mediterranean over the 21st century, but also to perform better than nowadays under those 

conditions. Thus, P. oceanica meadows might suffer significant alterations of their structure 

and functions, or even some degree of retreat of their distribution, maybe in favour to other 

opportunistic and more thermotolerant species, including C. nodosa. The extension of the 

meadows of the latter and the retraction of the meadows of the former will, undoubtedly, 

imply severe consequences for the marine coastal ecosystem as well as for the goods and 

services those ecosystems provide. 

 

ACKNOWLEDGEMENTS 

We thank Arantxa Ramos Segura and Neus Sanmartí for their help in the experimental set 

up and laboratory work, and Carla María Stinco and Antonio Meléndez-Martínez (Food 

Colour and Quality Laboratory, University of Sevilla) for the xanthophylls analysis. This 



 

 

 Chapter 1 

49 

work was supported by the European Union and the Spanish Government through the 

RECCAM (Seagrass meadows resilience to global warming: an analysis based on responses 

at ecophysiological, population and ecosystem levels, CTM2013-48027-C3-1-R and 

CTM2013-48027-C3-2-R) and UMBRAL (Responses of benthic marine vegetation to stress: 

critical transitions, resilience, and management opportunities, CTM2017-86695-C3-1-R) 

projects; and by the Spanish Ministry of Economy and Competitiveness (via grant BES-

2014-069593 awarded to Y. Ontoria). 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 Chapter 2  

2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 Chapter 2 

51 

 

 

 

CHAPTER 2 
 

Interactive effects of global warming and 

eutrophication on a fast-growing 

Mediterranean seagrass 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Yaiza Ontoria*, Eva González-Guedes, Neus Sanmartí, Jaime Bernardeau-

Esteller, Juan Manuel Ruiz, Javier Romero, Marta Pérez 

 



 

 

 Chapter 2  

52 

ABSTRACT 

Coastal ecosystems, such as seagrasses, are subjected to local (e.g. eutrophication) and global 

(e.g. warming) stressors. While the separate effects of warming and eutrophication on 

seagrasses are relatively well known, their joint effects remain largely unstudied. In order to 

fill this gap, and using Cymodocea nodosa as a model species, we assessed the joint effects of 

warming (three temperatures, 20 ºC, 30 ºC and 35 ºC) with two potential outcomes of 

eutrophication: (i) increase in nutrients concentration in the water column (30 and 300 µM), 

and (ii) organic enrichment in the sediment). Our results confirm that temperature in 

isolation clearly affects plant performance; while plants exposed to 30 ºC performed better 

than control plants, plants exposed to 35 ºC showed clear symptoms of deterioration (e.g.  

decline of photosynthetic capacity, increase of incidence of necrotic tissue).  Plants were 

unaffected by high ammonium concentrations; however, organic enrichment of sediment 

had deleterious effects on plant function (photosynthesis, growth, demographic balance). 

Interestingly, these negative effects were exacerbated by increased temperature. 
Our findings indicate that in addition to the possibility of the persistence of C. nodosa being 

directly jeopardized by temperature increase, the joint effects of warming and eutrophication 

may further curtail its survival. This should be taken into consideration in both predictions 

of climate change consequences and in local planning. 
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INTRODUCTION 

Coastal ecosystems are facing multiple anthropogenic stressors that adversely affect their 

biodiversity and functioning (Vinebrooke et al., 2004). Such stressors are generated at a range 

of spatial scales, from the global to the most local. Global stressors are mostly related to 

climate change and include rising sea level, seawater acidification, warming and an increased 

frequency of heat waves (IPCC, 2013). The most prominent and pervasive stressor generated 

locally is probably eutrophication: increased loading of nutrients and organic matter from 

human activities (Nixon 2009). This has come to be considered one of the major threats 

confronting coastal ecosystems (Bricker et al., 2008; Hemminga and Duarte, 2000). The 

knowledge accumulated to date on the effects of individual stressors on key species is 

impressive. However, stressors rarely occur in isolation in the environment and, when acting 

together, they can be synergistic, additive or antagonistic (Todgham and Stillman, 2013). The 

interaction between stressors is now viewed as a crucial issue, to the point that it is recognized 

that single-factor experiments are of limited use for assessing the effects of climate change 

on coastal marine ecosystems subjected to other disturbances, such as eutrophication 

(Wernberg et al., 2012). Undoubtedly, experiments with single stressors can help us gain 

knowledge of the intrinsic, basic response mechanisms involved. However, the results should 

only be extrapolated to nature with great caution, not only due to problems associated with 

scaling up, but also due to potential interactions with concurrent stressors (Gunderson et al., 

2016). 

Seagrasses are widespread habitat-forming species of great ecological value that are 

exposed to multiple threats and are currently suffering declines worldwide (Waycott et al., 

2009). The effects of climate change (including increased temperature and acidification) or 

eutrophication on the distribution, abundance and vitality of seagrasses are relatively well 

known (see reviews by Koch et al., 2013, for climate change; and Burkholder et al., 2007, for 

eutrophication), and even though their effects have, for the most part, been assessed 

separately (but see Campbell and Fourqurean, 2014, 2018; Ow et al., 2016). Thus, it is well 

known that eutrophication has two main consequences for seagrasses. On the one hand, the 

effects of increased nutrient concentrations are generally considered detrimental, although 

they strongly depend on species-specific features and on local conditions (Kilminster et al., 

2015; Romero et al., 2006; Ruiz et al., 2001). Thus, while a moderate supply of nutrients to 

plants adapted to nutrient-poor environments can stimulate growth (Alcoverro et al., 1997; 

Pérez et al., 1991; Short, 1987), once a threshold is reached, it may cause negative effects on 

plant photosynthesis and may even curtail survival (Brun et al., 2002, 2008; Hauxwell and 

Valiela, 2003; van der Heide et al., 2008). These negative effects can be caused directly, mainly 

by ammonium toxicity (Touchette and Burkholder, 2000; van Katwijk et al., 1997); or 

indirectly, by stimulating phytoplanktonic, epiphytic and macroalgal overgrowth, and 

enhancing negative biotic interactions such as macro herbivore activity (Campbell et al., 2018; 

Ruiz et al., 2009; Wear et al., 1999). On the other hand, an increased supply of organic matter 

to the seagrass sediment, such as that caused by eutrophication, stimulates its oxygen 

demand, eventually leading to hypoxic or anoxic conditions (Frederiksen et al., 2008; Pérez 

et al., 2007). This oxygen shortage not only blocks metabolic function in seagrass roots, 

including respiration, growth and nutrient acquisition (Smith et al., 1988), but it also 
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stimulates microbial sulphate reduction, which leads to belowground seagrass organs 

(rhizomes and, specially, roots) being exposed to sulphide, a strong phytotoxin (Holmer and 

Bondagarrd, 2001). Despite seagrass having evolved a number of adaptations which increase 

its chances of surviving in naturally organic-rich sediments (Hasler-Sheetal and Homer, 

2015), additional deposition of organic C can exceed the seagrass response capacity, and have 

negative effects such as reduced photosynthesis, impaired growth or, in some cases, mass 

mortality (Collier and Waycott, 2014; Frederiksen et al., 2008; Koch et al., 2007; Olivé et al., 

2009). 

Temperature affects seagrass physiology in a number of ways. It is known that 

increased temperature usually stimulates both photosynthesis (Campbell et al., 2006; Winters 

et al., 2011) and respiration (Schulze et al., 2005); but beyond some threshold, it generally 

increases the latter more than the former, thus leading to an impaired C balance and reduced 

growth (Lee et al., 2005, 2007; Marín-Guirao et al., 2016, 2018; Pérez and Romero, 1992). 

Temperature also affects other processes, such as for instance nutrient uptake (Borum et al., 

2004; Bulthuis, 1987) or protein synthesis (Campbell et al., 2006; Marín-Guirao et al., 2017). 

Overall, when the temperature exceeds a given threshold, which is largely species specific, 

thermal stress leads to a reduction in growth (Lee et al., 2007), deterioration of shoot status 

and eventually shoot mortality (Marbà and Duarte 2010). The responses of seagrasses to 

increased temperature are relatively well documented; however, little is known of the 

potential distortion of these responses caused by eutrophication. 

Global warming is expected to increase in the coming decades and will affect the 

surface waters of almost all of the world’s oceans. Meanwhile, a large part of the planet’s 

coastal areas are subjected to different degrees of eutrophication (Halpern et al., 2007), which 

is especially notable in industrialized countries. Consequently, many cases, thermal stress will 

have an impact on meadows already affected by chronic or acute eutrophication, whose 

responses to thermal stress will probably differ from that of unaffected plants, thus limiting 

our ability to make reliable and realistic predictions for future warming scenarios. To date, 

only a few studies have focused on the combined effects of warming and other stressors, 

such as anoxia (Koch et al., 2007, with Halodule wrightii and Thalassia testudinum), nutrients 

(Kaldy 2014, with Zostera marina) or light (York et al., 2013 with Zostera muelleri). These works 

seem to suggest that synergistic effects are more the rule than the exception. If this is the 

case, the consequences of global warming may be worse than expected based solely on 

studies of thermal effects. In fact, a synergistic interaction between eutrophication and 

seawater warming has already been suggested for the Mediterranean seagrass Posidonia oceanica 

to forecast trajectories in abundance and distribution of this seagrass species in the context 

of the different global climate change scenarios (Jordà et al., 2012). However, a considerable 

gap exists in our knowledge of the combined effects of warming and other stressors; and 

research is needed to confirm (or refute) the potential synergies in seagrasses, especially in 

species that dominate areas that are particularly sensitive to climate change. 

The present study attempts to help fill this gap, by evaluating the joint effect of 

warming and eutrophication on a Mediterranean seagrass (Cymodocea nodosa). The 

Mediterranean is one of the regions that are expected to be most affected by warming, and 
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the sea surface temperature rise, already in evidence (Burrows et al., 2011; Jordà et al., 2013) 

may reach 3 ºC by the end of the 21st century (Jordà et al., 2012); while the frequency of heat 

waves is also expected to increase (IPCC, 2013). Moreover, eutrophication has been 

identified as one of the major environmental threats to seagrass habitats in coastal areas, 

mainly due to loading from urban, agricultural and aquaculture wastes, particularly in the 

more confined environments where C. nodosa is dominant (Boudouresque et al., 2009). C. 

nodosa is widely distributed across a broad variety of shallow Mediterranean environments, 

from open coastal areas to coastal lagoons, and extends into the Atlantic, from the south of 

the Iberian Peninsula to the Canary Islands and Mauritania (Green and Short 2003; Mascaró 

et al., 2009b; Reyes et al., 1995a). Its ecological value and its capacity to survive relatively 

eutrophic conditions (Oliva et al., 2012), as well as its considerable phenotypic plasticity 

(Pérez et al., 1994; Sandoval-Gil et al., 2014), make it an interesting model species to evaluate 

the joint effects of increased temperatures and eutrophication. 

The aim of this study is thus to explore the combined effect of a global stressor 

(warming) and a local stressor (eutrophication) on functional traits of C. nodosa. We partition 

the eutrophication effects into an increased nutrient concentration in the water column and 

an increase of organic matter loading of the sediment. We then determine the response of 

the plant to each one of the three stressors (elevated temperature, nutrient increase and 

increased organic matter loading) separately; and also to the combined effects of temperature 

and each of the other two. The main hypothesis we wish to evaluate is that temperature and 

eutrophication act synergistically, with deleterious consequences for the seagrass. To this 

end, we perform two fully factorial experiments on indoor mesocosms in which plants are 

exposed to three levels of temperature and, on the one hand, to three different nutrient 

concentrations and, on the other hand, to two different levels of organic matter in the 

sediment. 

 

MATERIAL AND METHODS 

We explored the interactive effects of eutrophication and temperature in two separate 

experiments. In the first experiment (TNUT experiment, hereinafter), temperature increase 

and nutrient (ammonium) addition were applied; while in the second (TANOX experiment, 

hereinafter) the stressors were temperature increase and addition of labile organic C to the 

sediment. 

Plant and sediment collection 

Undamaged healthy C. nodosa shoots (including their rhizomes and roots) were carefully 

collected by hand from a shallow, undisturbed meadow (0.5 m deep) in Alfacs Bay (NW 

Mediterranean) in late April. Only shoots less than one year old (less than 12 scars on the 

vertical rhizome, Mascaró et al., 2014) were selected to reduce the effects of physiological 

and morphological variability between shoots of different ages (Pagès et al., 2010; Pérez and 

Romero, 1994). Sediment was collected from the same area, extracting the surface layer (up 

to 10 cm deep), and immediately sieved (1 mm pore) to exclude macroinvertebrates and 
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detritus. Sediment and plants were then transported separately in aerated tanks to the 

laboratory, where they were maintained with aeration for one night prior to the experiment 

being setup. Temperature was kept constant at the ambient values measured at the collection 

site (19.5 ºC). The experiments were conducted at the Experimental Chambers Service of 

the University of Barcelona. 

Experimental design and setup 

Both experiments were conducted using cylindrical transparent aquaria (12 L capacity, 40 cm 

height x 20 cm diameter) placed randomly in 3 experimental chambers (2.1 m2). Each 

aquarium had an independent air pump providing proper aeration. The chambers allowed us 

to control the water temperature (20 ºC, 30 ºC and 35 ºC) and incident light (270 µmol 

photons m-2 s-1), which was above the saturation irradiance for these plants (Pérez and 

Romero, 1992) on a 12 h:12 h light:dark photoperiod. To avoid experimental bias and 

minimize any uncontrolled variability, the aquaria were randomly relocated within the 

chambers every two days. Moreover, the aquaria were moved from one chamber to another 

(changing the chamber temperature) so that they spent approximately 1/3 of the 

experimental period in each chamber. Within 24 hours of collection, twenty shoots (with 

their corresponding portion of rhizome and roots) were planted in each aquarium, previously 

filled with 10 cm of sediment and 9 L of filtered seawater. All the aquaria were covered with 

plastic film to prevent water evaporation. For the TNUT experiment, a total of 27 aquaria 

were prepared and distributed randomly in groups of 9 in the three experimental chambers; 

while for the TANOX experiment, a total of 18 aquaria were distributed randomly in groups 

of 6 (see experimental setting in Figure. 1). 

 
Figure 1. Experimental setting. Grey arrows indicate ammonium addition in water and yellow arrow indicates 

labile organic carbon addition to sediment. TREATMENTS: C, control; M, moderate and H, high (see text). 

Temporal axis indicates: day 1, the beginning of the experimental setup with acclimation at control temperature; 

day 4, end of acclimation period and progressive increase of temperature; day 9, nutrient or labile organic 

carbon addition and start of the exposure period; day 16, end of TANOX experiment (7 days exposition); day 

24, end of TNUT experiment (15 days exposition). 
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The aquaria were kept at 20 ºC for four days (a temperature close to that registered 

during sampling) to allow for plant acclimation. After the acclimation period, the temperature 

in two chambers was increased progressively (ca. 3 ºC per day) until reaching 30 ºC in one 

and 35 ºC in the other. The third chamber was left at 20 ºC as a control. The choice of the 

experimental temperatures was based on an unpublished 3-year temperature data series 

collected by the authors using continuous in situ recorders, indicating average summer (July 

to September) temperatures close to 30 ºC, but peaking to 33 ºC in the hottest summer. 

Based on this, we consider that 35 ºC during heat waves is a reasonable assumption under a 

climate change scenario (IPCC, 2013). 

For the TNUT experiment, once the experimental temperatures were reached, 

NH4Cl was added to obtain the following concentrations: control (no NH4Cl added), 

moderate concentration (30 µM of NH4Cl) and high concentration (300 µM of NH4Cl). The 

so-called “moderate” value (30 µM) can be observed at eutrophic sites and can trigger 

responses in some seagrass species (Villazán et al., 2013b). The “high” value (300 µM) 

represents extreme events and would only be reached during some wastewater discharges 

(Cabaço et al., 2008). To counterbalance plant uptake (roughly estimated from growth 

requirements, Pérez et al., 1994), NH4Cl was further added to the experimental aquaria every 

5 days: 3.8 mg of NH4Cl to the moderate ammonium treatment aquaria and 7.6 mg NH4Cl 

to the high ammonium treatment aquaria (with a total of two pulses after the initial addition 

at the beginning of the experiment). Each ammonium treatment was applied to three aquaria, 

chosen at random, within each temperature chamber, resulting in a complete factorial design 

with n=3 replicates per experimental condition. The exposure period to both factors lasted 

15 days, after which time leaves in the high-temperature treatment (35 ºC) began to show 

critical necrosis marks. 

For the TANOX experiment, once the experimental temperature was reached, the 

organic matter treatments were applied by adding labile organic C in the form of sucrose to 

the sediment in the aquaria as follows: control (no sucrose addition, 0.7 % DW sediment C 

content in natural conditions) and high (675 g of sucrose added ≈ 15 % DW sediment C 

content). The labile organic C treatments were applied to three aquaria, chosen at random, 

within each temperature chamber, resulting in a complete factorial design with n=3 replicates 

per experimental condition. The experiment ended after 7 days of exposure period, when 

leaves in the high-temperature treatment (35 ºC) began to show critical necrosis marks. 

Water and sediment analysis 

The concentration of ammonium in the water was analysed in each aquarium at the beginning 

and end of the TNUT experiment using an FP 2020 Plus fluorometer and following a 

standard method (Kérouel and Aminot 1997). The redox potential of the sediment was 

measured at the end of the TANOX experiment using a Thermo Scientific, Orion Star A211 

electrode. Measurements were taken in the upper 5 cm of the sediment layer. 

 

 



 

 

 Chapter 2  

58 

Plant biochemical composition 

To verify that the additions of ammonium and labile organic C applied could affect plant 

conditions, directly (high level of nutrients) and indirectly (anoxic sediment), we determined 

the N content (TNUT experiment) and S content (TANOX experiment) of different plant 

parts. To do this, at the end of the experiments, all the remaining shoots were harvested from 

the aquaria and separated into leaves, rhizomes, and roots. Subsequently, all plant tissues 

were dried at 60 ºC and then finely ground and homogenized; finally, they were weighed and 

packed into tin microcapsules. 

For the TNUT experiment, the nitrogen content of leaves, rhizomes and roots was 

measured using a Carlo-Erba elemental auto-analyser. For the TANOX experiment, 

vanadium pentoxide was added, and the sulphur content of leaves, rhizomes and roots was 

determined. Samples were analysed at the Scientific and Technological Centre (CCiT) of the 

University of Barcelona. 

Measurement of plant traits 

The plant responses to the different stressors (or their combination) were assessed via 

measurement of a series of traits, from the physiological to population level. These included 

maximum quantum yield of PSII (Fv/Fm), incidence of leaf necrosis, leaf growth, rhizome 

elongation, and shoot demographic balance. All these variables have previously been used in 

the assessment of seagrass responses to stress and are related to plant health and performance 

(Beer et al., 1998; Frederiksen et al., 2008; Maxwell et al., 2000; Pagés et al., 2010; Romero et 

al., 2007). Rhizome elongation was only determined for the TANOX experiment, while all 

the other traits were measured in both experiments. 

Maximum quantum yield of PSII (Fv/Fm) was determined using a diving PAM (pulse 

amplitude modulation) fluorometer (Walz, Germany) after 10 min of plant adaptation to 

dark conditions. Three shoots were randomly selected from each aquarium (avoiding apical 

shoots due to their more active growth and photosynthesis) and measurements were 

obtained from the basal portion of the second youngest leaves, to minimize within-shoot 

variability (Durako and Kunzelman, 2002; Gera et al., 2012). 

The incidence of necrosis was assessed at all leaves of five shoots from each 

experimental condition. Leaves were carefully separated from each shoot and the percentage 

of necrotic surface, considered as that partially or totally covered by dark brown or black 

spots, was visually estimated for each leaf and averaged for each aquarium. Leaf growth was 

measured using a leaf punching method (Zieman, 1974) adapted to the model species (Pérez 

and Romero, 1994). At the beginning of the experiments, five shoots from each aquarium 

(avoiding apical shoots) were marked by punching a hole just above the ligule of the 

outermost leaf with a hypodermic needle. At the end of the experiments, the marked shoots 

were harvested, epiphytes were removed, and the leaves were carefully separated to measure 

leaf growth. Shoots were individually sorted into old and newly produced tissues, which were 

then dried for 48 h at 60 ºC before obtaining their dry weights. Leaf growth rate was 

expressed as the new tissue produced per shoot and day (mg DW shoot-1 day-1), averaged for 
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each aquarium. To measure rhizome growth, we marked two apical shoots per aquarium with 

a rubber band. At the end of the experiment, these shoots were harvested, the new portions 

of rhizome cut, and their weight determined (after drying at 60 ºC until constant). Rhizome 

growth was then expressed as weight of new rhizome per day (mg DW rhizome day-1). 

To estimate the shoot demographic balance (the difference between recruitment, i.e. 

the number of new shoots, and mortality, i.e. the number of dead shoots), all shoots surviving 

at the end of the experiments were counted. We computed the instantaneous demographic 

balance (a) as: 

a (days-1) = 1/t ln (Nt/No) 

where N0 is the number of shoots planted in each aquarium at the initial time (20), Nt is the 

number of shoots alive in each aquarium at the end of each experiment and t is the duration 

of the experiment (in days). Positive values for a occur when shoot recruitment is higher than 

mortality, indicating a net increase in shoot abundance. Conversely, negative values would 

indicate a net reduction in shoot abundance, and hence a negative response to the stressor(s) 

considered. 

Statistical analysis 

For all statistical analysis, an aquarium was considered as the experimental unit, with n=3 

replicates per experimental condition. The significance of the effects of temperature and 

ammonium, on the one hand, and, temperature and addition of labile organic C, on the other 

hand, were determined using PERMANOVA analysis based on a similarity matrix created 

from the Euclidean distances between samples. The analysis was run with two fixed factors: 

temperature (3 levels: 20 ºC, 30 ºC and 35 ºC) and nutrients (3 levels: Control, Moderate and 

High, see above) for the TNUT experiment; and temperature (3 levels: 20 ºC, 30 ºC and 35 

ºC) and addition of labile organic C (2 levels: Control and High, see above) for the TANOX 

experiment. 

For each experiment, one multivariate PERMANOVA was carried out for variables 

related to plant biochemical composition (N and S content of plant tissues, for the TNUT 

and TANOX experiment, respectively), and a second for the other variables (Fv/Fm, 

incidence of leaf necrosis, leaf growth, rhizome elongation, and shoot demographic balance), 

followed by univariate PERMANOVAs performed separately for each individual variable. 

As in PERMANOVA the test is produced by permutation, the usual normality assumptions 

of ANOVA (Anderson 2001), that were not met by most of the variables considered, is not 

necessary. Pairwise comparisons were performed to identify significant differences between 

individual treatments. In those cases, in which the number of permutations was too low 

(<999, Anderson et al., 2008), a Monte Carlo test was applied to establish an alternative p-

value to validate the analysis. Analysis was carried out using the Primer v6 statistical package 

(Clarke and Gorley, 2006), in conjunction with the Windows PERMANOVA+ module 

(Anderson et al., 2008). 
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RESULTS 

Culture conditions and plant biochemical composition 

The different treatments (additions of nutrient and labile organic C) effectively changed the 

conditions under which the plants were grown. Thus, on the one hand, in the TNUT 

experiment, the ammonium concentrations in the water of the moderate and high treatments 

were increased (relative to the water in the control aquaria) to the target values at the 

beginning of the experiment and had decreased at the end of the experiment, despite the 

repeated additions of ammonium and irrespective of the thermal treatment (Table 1). 

 

Table 1. Ammonium concentrations (in µM, mean ± SEM, n=3) in the water at the beginning (just after adding 

30 µM and 300 µM to the “Moderate” and “High” treatments respectively) and at the end of the TNUT 

experiment. 

 

  Thermal treatment 

 20 ºC 30 ºC 35 ºC 

  Ammonium 

treatment 

[NH4+] (µM) 

Initial Final Initial Final Initial Final 

  Control 1.20 ± 0.50 1.54 ± 0.53 0.69 ± 0.18 1.96 ± 1.41 8.64 ± 29.63 17.95 ± 8.29  

  Moderate 27.76 ± 1.12 0.21 ± 0.09  26.10 ± 0.33 0.62 ± 0.08 45.64 ± 1.30  3.83 ± 2.93 

  High 288.06 ± 34.01 2.21 ± 0.03 252.33 ± 11.23 4.25 ± 0.79 264.55 ± 7.96 15.82 ± 8.36 

 

These results show that the plants were subjected at least to one strong initial pulse of 

ammonium, plus another two pulses during the experiment. On the other hand, in the 

TANOX experiment, the redox potential of the sediments at the end of the experiment, 

while maintaining positive values under control conditions, became negative in the 

mesocosms subjected to large additions of high labile organic C. Temperature affected the 

redox potential, with lower values at higher temperatures likely due to an enhancement of 

the bacterial activity (Table 2). 
 

Table 2. Redox potential values (mean ± SEM, n=3) of the sediment in the TANOX experiment for 7 days in 

three thermal treatments (20 ºC, 30 ºC, and 35 ºC). Lower case letters indicate significant differences (p>0.05) 

between treatments. 

 

  Thermal treatment 

Labile organic C treatment 20 ºC 30 ºC 35 ºC 

 Redox potential (mV) 

Control 180.33 ± 8.31a  137.07 ± 16.41b 78.59 ±  9.52c  

High  -24.81 ± 6.90d  -230.19 ± 11.38e -281.78 ± 14.84f  

 

Overall, the biochemical composition of leaves (N and S content) changed in response to 

the treatments. In the TNUT experiment, addition of ammonium at high concentrations 

increased the N content of all plant tissues, up to 23 % relative to controls (Figure 2A, B and 

C; Table 3). In the TANOX experiment, the S content of leaves and roots was significantly 
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higher under conditions with an addition of labile organic C than under control conditions 

(Figure 2D and F; Table 3). Temperature had significant effects on biochemical composition 

in both experiments. The N content of leaves increased with temperature; while the N 

content of rhizomes decreased at the intermediate temperature. The S content of leaves and 

rhizomes increased with temperature; and the latter was even higher due to interactive effects 

between temperature and the addition of labile organic C. 

 

 

Figure 2. Cymodocea nodosa biochemical composition (N content (mean ± SE, n=3) and sulphur content (mean 

± SE, n=3)) measured in (A & D) roots, (B & E) rhizomes and (C & F) leaves, at 3 thermal treatments (20 ºC, 

30 ºC, and 35 ºC, black, light grey and dark grey respectively) in the TNUT (A, B & C) and TANOX (D, E & 

F) experiments, expressed in percentage (%). 
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Table 3. Results of PERMANOVA testing for the significance of effects of temperature (20 ºC, 30 ºC, and 35 

ºC), nutrient level (Control, Moderate, and High additions) and labile organic C addition (Control and High) 

on plant biochemical composition. Numbers in bold indicate significant effects (p < 0.05). The results of the 

pair-wise tests are indicated in factors with significant influence. 

 

Exp.  Variable Source df SS MS 
Pseudo-

F 

Unique 

perms 
P Pair-wise 

T
N

U
T

 

  
Main test 

             

 Temperature 2 1.802 0.901 9.839 9952 0.0001  

 Ammonium 2 1.467 0.734 8.011 9947 0.0002  

 Temp x Amm 4 0.582 0.145 1.588 9931 0.1377  

 Residual 18 1.648 0.092                           

 
Individual test 

       

N leaves 

Temperature 2 0.254 0.127 3.153 9952 0.0634  

Ammonium 2 0.605 0.302 7.520 9950 0.0042 H>C=M 

Temp x Amm 4 0.373 0.093 2.317 9958 0.0955  

Residual 18 0.724 0.04                          

         

N rhizome 

Temperature 2 1.257 0.629 20.145 9949 0.0001 35=20>30 

Ammonium 2 0.594 0.297 9.519 9953 0.0012 H>C=M 

Temp x Amm 4 0.188 0.047 1.506 9956 0.2396  

Residual 18 0.562 0.031                          

         

N roots 

Temperature 2 0.291 0.145 7.219 9943 0.006 35>20=30 

Ammonium 2 0.268 0.134 6.655 9945 0.0059 H>C=M 

Temp x Amm 4 0.021 0.005 0.261 9961 0.9  

Residual 18 0.363 0.02                           

          

T
A

N
O

X
 

 

 
Main test 

       

 Temperature 2 25.162 12.581 9.972 9961 0.001  

 Labile organic C 1 8.366 8.366 6.631 9952 0.0087  

 Temp x L. org. C 2 7.581 3.790 3.004 9940 0.0443  

 Residual 12 15.140 1.262                           

 
Individual test 

       

S leaves 

Temperature 2 0.06 0.03 5.686 9947 0.0228  

Labile organic C 1 0.034 0.034 6.456 9823 0.0302 30=35>20 

Temp x L. org. C 2 0.032 0.016 3.088 9955 0.0825 C<H 

Residual 12 0.063 0.005                          

         

S rhizome 

Temperature 2 0.021 0.011 10.223 9951 0.0012  

Labile organic C 1 0.003 0.003 3.013 9851 0.1117 

 20=30, 

20=35, 

30>35 

Temp x L. org. C 2 0.021 0.01 9.921 9952 0.0016  

Residual 12 0.012 0.001                          

         

 

S roots 

Temperature 2 0.026 0.013 1.435 9951 0.2638  

 Labile organic C 1 0.146 0.146 16.286 9834 0.0029  

 Temp x L. org. C 2 0.03 0.015 1.648 9954 0.2393 C<H 

  Residual 12 0.108 0.009                           



 

 

 Chapter 2 

63 

Effects of temperature on plant traits 

Temperature had an overall significant effect on the plant traits measured in both 

experiments (Table 4). The maximum quantum yield of PSII (Fv/Fm) revealed that the 

photosynthetic apparatus maintained its integrity at 30 ºC. However, Fv/Fm was significantly 

depressed at 35 ºC (6 % and 42 % lower than under control conditions, in the TANOX and 

TNUT experiment, respectively), suggesting that significant damage was caused by warming 

(Figure 3; Table 5). 

 
Figure 3. Cymodocea nodosa maximum quantum yield (mean ± SE, n=3) at 3 thermal treatments (20 ºC, 30 ºC, 

and 35 ºC, black, light grey and dark grey respectively) in the (A) TNUT and (B) TANOX experiments. 

 

The incidence of necrosis on the leaves (Figure 4; Table 5) was low under control 

conditions (20 ºC; between 7 % and 17 % in the TANOX and TNUT experiment, 

respectively) and at 30 ºC (<8 % in both experiments), but increased significantly to 23 % - 

33 % (depending on the experiment) at 35 ºC. Leaf growth rates (Figure 5A and B; Table 5) 

showed higher values at 30 ºC than under control conditions (45 %) and minimum values at 

35 ºC (a decrease of between 63 % and 94 % relative to control conditions, in the TNUT 

and TANOX experiment, respectively). Rhizome elongation (only measured in the TANOX 

experiment) was also significantly higher (74 %) at 30 ºC than at the other two temperatures 

(Figure 5C; Table 5). 

The shoot demographic balance (i.e. recruitment – mortality) was clearly sensitive to 

temperature, with a sharp increase (83 % on average, relative to the control temperature) 

under moderate warming (30 ºC) and a clear decrease under extreme warming (35 ºC), 

dropping to negative values in the TNUT experiment (Figure 6a; Table 5). 

The effects of additions of ammonium and labile organic C on plant traits 

Ammonium addition did not show any effect on any of the plant traits measured (Figures 

3A, 4A, 5A and 6A; Tables 4 and 5). The addition of labile organic C did not affect the 

maximum quantum yield of PSII, the incidence of necrosis or the shoot demographic balance 

(Figures 3B, 4B and 6B; Table 5). However, it caused a significant decrease (relative to plants 
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grown in unaltered sediment at 30 ºC) in leaf and rhizome growth rates (of 44 % and 67 % 

respectively; Figures 5B and c; Table 5). 

 
Figure 4. Leaf necrosis incidence (average necrotic surface per leaf, in %) in Cymodocea nodosa (mean ± SE, n=3) 

at 3 thermal treatments (20 ºC, 30 ºC, and 35 ºC, black, light grey and dark grey respectively) in the (A) TNUT 

and (B) TANOX experiments. 

 
Figure 5. Cymodocea nodosa growth rate (mean ± SE, n=3) at 3 thermal treatments (20 ºC, 30 ºC, and 35 ºC, 

black, light grey and dark grey respectively) in two experiments: (A) Leaf growth rate in the TNUT experiment; 

(B) Leaf growth rate in the TANOX experiment; (C) Rhizome growth rate in TANOX experiment. 
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Figure 6. Cymodocea nodosa shoot demographic balance (mean ± SE, n=3) at 3 thermal treatments (20 ºC, 30 

ºC, and 35 ºC, black, light grey and dark grey respectively) in the (A) TNUT and (B) TANOX experiments. 

 

Interactive effects 

Our results did not show any significant interaction between warming and ammonium 

addition (TNUT experiment) in terms of their effects on plant traits. In contrast, we found 

interactive effects of warming and the addition of labile organic C to the sediment (TANOX 

experiment), both overall (Table 4) and in individual traits. Thus, the stimulation of leaf and 

rhizome growth at intermediate temperatures and the improvement of the shoot 

demographic balance were cancelled by labile organic C. In addition to this, with the normal 

organic C content of the sediment, high temperature (35 ºC) did not alter rhizome growth 

or the demographic balance, but it did in the sediment with labile organic C added to it. 

 
Table 4. Multivariate PERMANOVA testing for the significance of the general effect of temperature (20 ºC, 

30 ºC, and 35 ºC), nutrient level (Control, Moderate, and High additions) and labile organic C addition (Control 

and High) on plant traits. Numbers in bold indicate significant effects (p < 0.05). 

 

Experiment Source df SS MS Pseudo-F 
Unique 

perms 
P 

 Main test       

TNUT 

Temperature 2 1725.100 862.540 8.612 9950 0.0030 

Ammonium 2 50.622 25.311 0.253 9949 0.7830 

Temp x Amm 4 144.960 36.241 0.362 9958 0.8326 

Residual 18 1802.700 100.150                         

        

TANOX 

Temperature 2 105420 52709 105.350 9948 0.0001 

Labile organic C 1 435410 435410 870.260 9882 0.0001 

Temp x L. org. C 2 25298 12649 25.282 9948 0.0001 

Residual 12 6003.800 500.320                         
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Table 5. Results of PERMANOVA testing for the significance of effects of temperature (20 ºC, 30 ºC, and 35 

ºC), nutrient level (Control, Moderate, and High additions) and labile organic C addition (Control and High) 

on each plant trait. Numbers in bold indicate significant effects (p < 0.05). The results of the pair-wise tests are 

indicated in factors with significant influence. 

 

Var. Exp. Source df SS MS 
Pseudo-

F 

Unique 

perms 
P Pair-wise 

F
v/

F
m

 

T
N

U
T

 

Temperature 2 0.543 0.272 52.937 9952 0.0001 20=30>35 

Ammonium 2 0.012 0.006 1.206 9947 0.3277  

Temp x Amm 4 0.012 0.003 0.597 9943 0.6722  

Residual 18 0.092 0.005                          

T
A

N
O

X
 

Temperature 2 0.139 0.069 11.488 9956 0.001 30>20>35 

Labile organic C 1 0.016 0.016 2.595 9851 0.1297  

Temp x L. org. C 2 0.04 0.02 3.283 9951 0.0555  

Residual 12 0.072 0.006                           

N
e
c
ro

si
s 

T
N

U
T

 

Temperature 2 1714.000 856.990 8.566 9957 0.0031 30<20=35 

Ammonium 2 50.242 25.121 0.251 9954 0.7805  

Temp x Amm 4 144.860 36.215 0.362 9962 0.8436  

Residual 18 1800.900 100.050                          

T
A

N
O

X
 

Temperature 2 4060.000 2030.000 23.683 9948 0.0006 20=30<35 

Labile organic C 1 354.090 354.090 4.131 9859 0.0655  

Temp x L. org. C 2 62.753 31.376 0.366 9956 0.7057  

Residual 12 1028.600 85.714                           

L
e
a
f 

g
ro

w
th

 r
a
te

 

T
N

U
T

 

Temperature 2 10.538 5.269 53.080 9950 0.0001 30>20>35 

Ammonium 2 0.367 0.183 1.848 9950 0.186  

Temp x Amm 4 0.091 0.023 0.228 9951 0.9224  

Residual 18 1.787 0.099                          

T
A

N
O

X
 

Temperature 2 12.713 6.357 54.210 9955 0.0001 30>20>35 

Labile organic C 1 1.070 1.070 9.125 9851 0.0058 C>H 

Temp x L. org. C 2 1.327 0.663 5.657 9951 0.0075  

Residual 12 1.407 0.117                           

R
h

iz
o

m
e
 

g
ro

w
th

 

ra
te

 
T

A
N

O
X

 Temperature 2 38.329 19.164 15.536 9954 0.0011 30>20=35 

Labile organic C 1 23.510 23.510 19.059 9739 0.0012 C>H 

Temp x L. org. C 2 22.905 11.452 9.284 9948 0.0035  

Residual 12 14.803 1.234                           

S
h

o
o

t 
d

e
m

o
g

ra
p

h
ic

 

 b
a
la

n
c
e
 T

N
U

T
 

Temperature 2 0.005 0.003 33.785 9964 0.0001 30>20>35 

Ammonium 2 0.001 0.001 1.097 9957 0.3624  

Temp x Amm 4 0.001 0.001 0.152 9962 0.9594  

Residual 18 0.001 0.001                          

T
A

N
O

X
 

Temperature 2 0.001 0.001 6.767 9952 0.0119 30>20=35 

Labile organic C 1 0.001 0.001 3.571 9758 0.0887  

Temp x L. org. C 2 0.001 0.001 5.231 9959 0.0219  

Residual 12 0.001 0.001                           
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DISCUSSION 

Climate change is having an impact on a world that has already been altered by a panoply of 

local stressors. Our results show how cumulative stress, in this case derived from the joint 

action of warming and eutrophication, can worsen, either through additive or interactive 

effects, the negative consequences of each stressor acting in isolation. 

As already known, temperature increases can negatively affect different functional 

mechanisms of seagrasses (Koch et al., 2013). The response patterns and the thresholds 

involved are largely species specific (Campbell et al., 2006; Collier et al., 2011). In the model 

species used here (C. nodosa), moderate warming seems to be beneficial for the plant, whose 

performance (photosynthesis, growth and shoot demographic balance) increase at 30 ºC, 

relative to those found at the basal spring temperature (control) of 20 ºC. This pattern is fully 

consistent in the two experiments we conducted. This is in accordance with previous reports 

for this species, suggesting an optimum temperature close to 30 ºC (Olsen et al., 2012; Pérez 

and Romero 1992; Savva et al., 2018; Terrados and Ros 1995; Tutar et al., 2017). In contrast, 

plant performance was severely depressed at 35 ºC; not only relative to the 30 ºC optimum, 

but also relative to control conditions. This suggests there is a thermal threshold of clear 

negative effects on plant activity between 30 ºC and 35 ºC. This thermal threshold is relatively 

high (see Lee et al., 2007 for comparisons), and it is in accordance with the subtropical 

distribution of this species (Green and Short 2003; Reyes et al., 1995) and its facultative 

habitat in confined environments, where summer temperatures can easily be 5 ºC above open 

sea temperatures. 

Exposure to extreme thermal values damaged the integrity of the photosynthetic 

apparatus, as shown by a clear drop in Fm/Fv to values below those considered acceptable 

for healthy plants (0.7-0.8, Campbell et al., 2006; Ralph et al., 1998), as previously found for 

other seagrass species (e.g. T. testudinum; Koch et al., 2007; e.g. Z. noltii; Massa et al., 2009). 

While photosynthesis is depressed, respiration is probably stimulated by thermal stress (not 

measured in this study; but see Pérez and Romero, 1992), leading to impairment of the C 

budget (Collier and Waycott, 2014), which could be the cause of the reduced growth and the 

low to negative shoot demographic balance observed in our experiments. Plants exposed to 

high temperatures may have to use their energy reserves (stored non-structural 

carbohydrates) to cope with this stress and the consequent energy requirement (Collier et al., 

2011; Massa et al., 2009), probably leading to exhaustion of the internal C reserves (Marín-

Guirao et al., 2018). Indeed, thermal stress also affects other metabolic processes, causing, 

for instance, oxidative stress (Tutar et al., 2017), and ultimately affecting plant health, which 

deteriorated in our experiments as shown by the increase in the incidence of necrosis. 

Reducing the shoot demographic balance can be critical for C. nodosa. This species 

has a very high shoot turnover, with a yearly shoot mortality reaching 1/2 to 2/3 of the total 

number of shoots in unaltered meadows. This mortality takes place in late summer to autumn 

and is balanced by massive recruitment in late spring (Mascaró et al., 2014). Any event 

altering the shoot demographic balance, such as a heat wave, will cause a drop in seagrass 

density, eventually leading to meadow extinction. This is relevant for projections of 
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distribution and abundance of this species in future warming scenarios since the frequency 

and intensity of heat waves are predicted to increase (IPCC, 2013). Those predictions suggest 

that the threshold temperature (thermal tolerance limit) could be reached during these 

extreme climate events, mainly in confined areas such as shallow bays or lagoons. However, 

the threshold is quite unlikely to be reached in the open sea, where warming will be much 

more moderate and could have beneficial effect on the species which could extend its 

distribution, maybe at the expenses of the Mediterranean species P. oceanica, which is much 

more sensitive to warming (Marín-Guirao et al., 2016; Olsen et al., 2012). 

Regarding eutrophication, C. nodosa is affected by an increase in organic matter in the 

sediment but not by pulses in nutrient concentrations. None of the traits studied were 

modified by addition of ammonium, despite the high concentrations attained (up to 300 µM) 

and the fact that ammonium was depleted from the aquaria. A coarse N mass balance, 

estimating N incorporation in the plant through leaf growth, new shoots and N increase in 

tissues, suggests that most of this depletion was caused by plant activity, being microbial 

activity in the sediment the most likely explanation for the rest. Seagrasses seem to be unable 

to downregulate N uptake, probably due to a lack of inhibitory feedback mechanisms 

(Touchette and Burkholder, 2000). This failure in regulation could generate ammonium 

accumulation in cells, which in turn may have toxic effects (Invers et al., 2004). However, 

while some species seem to be more vulnerable to this toxicity (e.g. Z. marina, Burkholder et 

al., 1992; van Katwijk et al., 1997; Villazán et al., 2013b; and Z. noltei, Moreno-Marín et al., 

2016) others show great resistance (C. nodosa, Egea et al., 2018 and Z. marina, Kaldy et al., 

2014). It has been suggested that the key mechanism to endure large ammonium pulses may 

be an efficient mechanism that is capable of rapidly converting the excess of ammonium into 

organic forms (Brun et al., 2002; Invers et al., 2004). Second-order (indirect) effects of 

ammonium pulses, such as an increase in epiphytic load or a decrease in water transparency, 

were not studied here and cannot be ruled out. In contrast, the addition of labile organic C 

had a detrimental effect on plants. The organic additions to the sediment seemed to enhance 

bacterial respiration and thus oxygen demand, leading to oxygen exhaustion and anoxic 

conditions (up to -290 mV of redox potential). Under these conditions, sulphate reduction 

is stimulated, resulting in sulphide accumulation. Consistently with this, we found higher 

sulphur contents in our exposed plants than in controls. The oxidation of sulphide to sulphur 

compounds that are further stored in tissues has been shown to be a mechanism that can 

help cope with sulphide intrusion. However, once the capacity of detoxification of this 

mechanism is surpassed, the detrimental effects appear (Hasler-Sheetal and Holmer, 2015). 

Although C. nodosa is highly resistant to eutrophication (Oliva et al., 2012), highly negative 

values (such as those created in our experiment, close to -250 mV) clearly seem to be harmful 

for plant production and fitness. 

Beyond the effects of warming and eutrophication highlighted above, and given that 

both stressors will act jointly in most real-world conditions, the assessment of their potential 

interactions is of great interest. Our results show that there were no interactive effects 

between warming and ammonium; but in contrast the effects of warming on key processes 

(leaf and rhizome growth and the demographic balance) were strongly mediated by the 

amount of labile organic C in the sediment. The interaction between temperature and organic 
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matter was detected at the individual (leaf and rhizome growth) and population (shoot 

demographic balance) level, but not at the physiological one (Fv/Fm). Clearly, the processes 

affected are critical for meadow persistence, which underlines the relevance of such 

interactions for the prediction of future seagrass meadow dynamics. However, the 

mechanisms through which these interactions function have not been elucidated by our 

work. A possible explanation would be a synergistic effect on environmental conditions. This 

is supported by the fact that the addition of labile organic C and temperature decreased 

sediment redox potential synergistically, probably through the stimulation of oxygen demand 

and cascading effects on sulphide production and plant performances. Other mechanisms, 

including the amplification of sulphide effects by temperature, should not be ruled out. 

Despite multiple stressors studies have increased in the last decades, our results add 

evidence to the need to further assess the interactive effects of different stressors, and 

understanding how the organisms or communities will respond to the impact of multiple co-

ocurrent stressors is still a matter of concern (Côté et al., 2016). Seemingly, synergistic effects 

are quite frequent, as revealed by Crain et al. (2008), which found in a review focused on 

coastal ecosystems that 36 % of the cases examined showed synergy. A thorough literature 

search on interactive effects on seagrass ecosystems (Table 6) confirms that synergy is more 

the rule (50 %) than the exception (36 % additive; only a small part of the studies found 

antagonistic interaction). There is an urgent need to incorporate those interactive effects to 

improve predictions of the consequences of climate change in marine ecosystems, which can 

be seriously underestimated when assessing thermal effects in isolation. In addition, results 

such as those presented here can support strategies to increase ecosystem resilience to climate 

change by managing other stressors at a local or regional scale. In this respect, shallow bays 

and coastal lagoons, which are more vulnerable to both extreme thermal events and 

eutrophication, may represent a critical scenario for the survival of seagrass species growing 

close to their upper thermal limit (York et al., 2013, Koch et al., 2007), but also an 

opportunity to test the above mentioned strategies. 

Even though our findings, it is important to keep in mind that the results of this work were 

obtained from a mesocosm experiment focusing only on two factors (warming and 

eutrophication) without considering any other disturbance that may be found in the 

environment. In this sense, they should only be extrapolated to natural conditions cautiously. 

In spite of these limitations, this research highlights the importance of evaluating the impact 

of global and local stressors jointly; not only to generate more realistic predictions of the 

impacts that climate change might have, but also to design and implement strategies to 

improve (or at least not to impair) seagrass resilience to global warming. 
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ABSTRACT 

Global warming is increasingly affecting our biosphere. However, in addition to global 

warming, a panoply of local stressors caused by human activities is having a profound impact 

on our environment. The risk that these local stressors could modify the response of 

organisms to global warming has attracted interest and fostered research on their combined 

effect, especially with a view to identifying potential synergies. In coastal areas, where human 

activities are heavily concentrated, this scenario is particularly worrying, especially for 

foundation species such as seagrasses. In this study we explore these potential interactions 

in the seagrass Posidonia oceanica. This species is endemic to the Mediterranean Sea. It is well 

known that the Mediterranean is already experiencing the effects of global warming, 

especially in the form of heat waves, whose frequency and intensity are expected to increase 

in the coming decades. Moreover, this species is especially sensitive to stress and plays a key 

role as a foundation species. The aim of this work is thus to evaluate plant responses (in 

terms of photosynthetic efficiency and growth) to the combined effects of short-term 

temperature increases and ammonium additions. To achieve this, we conducted a mesocosm 

experiment in which plants were exposed to three thermal treatments (20 ºC, 30 ºC and 35 

ºC) and three ammonium concentrations (ambient, 30 µM and 120 µM) in a full factorial 

experiment. We assessed plant performance by measuring chlorophyll fluorescence variables 

(maximum quantum yield (Fv/Fm), effective quantum yield of photosystem II (ΔF/Fm’), 

maximum electron transport rate (ETRmax) and non-photochemical quenching (NPQ)), 

shoot growth rate and leaf necrosis incidence. At ambient ammonium concentrations, P. 

oceanica tolerates short-term temperature increases up to 30 ºC. However, at 35 ºC, the plant 

loses functionality as indicated by a decrease in photosynthetic performance, an inhibition of 

plant growth and an increase of the necrosis incidence in leaves. On the other hand, 

ammonium additions at control temperatures showed only a minor effect on seagrass 

performance. However, the combined effects of warming and ammonium were much worse 

than those of each stressor in isolation, given that photosynthetic parameters and, above all, 

leaf growth were affected. This serves as a warning that the impact of global warming could 

be even worse than expected (based on temperature-only approaches) in environments that 

are already subject to eutrophication, especially in persistent seagrass species living in 

oligotrophic environments. 
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INTRODUCTION 

Climate change represents a major threat to coastal ecosystems worldwide. The urgent need 

to gain a better understanding of its impact on the performance of organisms and the 

subsequent cascading effects that cause changes in ecological functions and ecosystem 

services is a widespread concern (Hallett et al., 2018; Harley et al., 2006; Parmesan and Yohe, 

2003). Warming is probably the most pervasive effect of global change and is expected to 

cause ocean surface temperatures to rise by between 2.6 ºC and 4.8 ºC by 2100 (IPCC 2014). 

Aside from this progressive warming, most climatic models predict that temperature 

extremes will increase in frequency and intensity in the coming decades (Collins et al., 2013; 

IPCC 2007; Meehl and Tebaldi, 2004; Oliver et al., 2018; Schär and Jendritzky, 2003). These 

so-called heat waves increase temperature by several degrees above the historical mean, 

usually last for days or a few weeks and seem to be especially deleterious for the biota, thereby 

increasing concern and attracting a great deal of attention in recent years as key drivers of 

change (Meehl and Tabaldi, 2004; Oliver et al., 2018; Wernberg et al., 2016). In addition to 

global warming, a panoply of stressors caused by human activity (Halpern et al., 2015) is 

already affecting our environment. Thus, warming will impact ecosystems that are 

heterogeneously affected, to varying degrees, by a range of other stressors, most of them 

local in origin. The risk that these local stressors could profoundly modify the response of 

organisms to warming, thereby altering predictions based solely on thermal responses, is 

gaining attention and in recent years has fostered a growing interest in assessing the 

combined effects of warming and other stressors (Brown et al., 2013; Côté et al., 2016; 

Gunderson et al., 2016), especially with a view to identifying possible synergies (Dunne 2010; 

Darling and Côté, 2008).  

Such a scenario is a particular threat to coastal areas, where human activities are 

concentrated, thereby generating a wide array of stressors that could potentially interact with 

warming (continuous or pulsed) and decrease the resilience of the biota. This is especially 

worrying in the case of foundation species such as corals, gorgonians and seagrasses due to 

the propagation of the effects, which may extend to other organisms and have ecosystem-

wide implications (Díaz-Almela et al., 2007; Coma et al., 2009; Marbà and Duarte, 2010; 

Hoegh-Guldberg 1999; Hughes et al., 2013). Seagrasses in particular have demonstrated great 

sensitivity not only to warming (Marbà and Duarte, 2010; Collier and Waycott, 2014), but 

also to other stressors of local origin, including eutrophication (Waycott et al., 2009). Seagrass 

habitats are considered some of the most valuable coastal ecosystems in terms of the 

provision of goods and ecological services (Orth et al., 2006), thus making the assessment of 

the combined effects of warming and other stressors a major challenge for the scientific 

community.  

Indeed, on the one hand, temperature is widely known to be one of the main 

ecological factors that determines seagrass performance, survival and distribution limits (see 

reviews by Koch et al., (2013) and Lee et al., (2007)), and the potential effects of temperature 

rises are subject to an increasing number of studies. It is well known that a moderate 

temperature rise can be favourable for plant physiology, since it stimulates photosynthesis. 

However, it also stimulates the respiration rate and, since the latter increases at a faster rate 



 

 

 Chapter 3  

76 

than the former, this can generate a carbon imbalance in plants if it exceeds a certain 

threshold (Bulthuis 1987; Collier and Waycott, 2014; Greve et al., 2003; Lee et al., 2007; 

Marín-Guirao et al., 2018; Moore and Short, 2006; Pérez and Romero, 1992). Similarly, it has 

been demonstrated that photochemical reactions are highly sensitive to thermal stress, which 

causes damage to the photosystem II (PSII) reaction centres (Repolho et al., 2017; York et 

al., 2013) that is irreversible beyond a certain threshold (e.g. 37.5 ºC, Halophila ovalis (Ralph 

1998); 40-45 ºC, Zostera capricorni, Syringodium isoetifolium, Cymodocea rotundata, Cymodocea 

serrulata, Halodule uninervis, Thalassia hemprichii and H. ovalis (Campbell et al., 2006)). Negative 

responses of seagrasses to warming have also been reported at individual and population 

level, including shoot growth impairment (Hendriks et al., 2017; Repolho et al., 2017), an 

increase in leaf shedding and a reduction in above-ground biomass (York et al., 2013). In 

some cases, elevated temperatures have been shown to cause plant mortality (Collier and 

Waycott, 2014; Kaldy and Shafer, 2013; Marbà and Duarte, 2010) and even alter the 

geographic limits of seagrass distribution (Collier et al., 2011; Massa et al., 2009). 

On the other hand, the continuous rise in local nutrient enrichment sources as a 

consequence of the increasing human population growth and rapid development in coastal 

areas means that eutrophication is considered a major threat to coastal ecosystems (Díaz and 

Rosenberg, 2008; Green and Short, 2003; Nixon and Fulweiler, 2009; Orth et al., 2006). 

Eutrophication can negatively affect seagrasses in particular, either directly or indirectly 

(Burkholder et al., 2007). The direct effects of nutrient loading, despite the fact that an 

adequate nutrient supply is fundamental for plant performance (Kaldy 2014), include damage 

caused to seagrasses by excessive inorganic nitrogen (e.g. Zostera marina (Burkholder et al., 

1992, 1994; van Katwijk et al., 1997); Zostera noltii (Brun et al., 2002)). In this sense, the 

toxicity of high ammonium concentrations has been reported in several studies (Brun et al., 

2002, 2008; Moreno-Marín et al., 2016; van der Heide et al., 2008; Villazán et al., 2013a, 

2013b), which observed the negative effects of ammonium on several physiological and 

morphological response variables, including a reduction in primary production and 

significantly decreased shoot, rhizome and root elongation rates, thus affecting plant survival.  

Further research on the isolated effects of each of these two stressors (nutrient 

loading and warming) on seagrasses is required, but efforts should also be made to assess 

their combined action, not only to increase knowledge of the expected responses in a realistic 

multi-stressor scenario, but also to improve the reliability of our predictions about seagrass 

ecosystem changes in the coming years. In this regard, temperature is already known to 

exacerbate the negative effects of other stressors such as organic matter-enriched sediments 

(Halodule wrightii and Thalassia testudinum (Koch et al., 2007); Cymodocea nodosa (Ontoria et al., 

2019b)) and changes in salinity (Z. marina (Salo and Pedersen, 2014)), which act synergistically 

with thermal stress. Some other works have reported additive effects of temperature and 

other stressors (e.g. light availability, Zostera muelleri (York et al., 2013); acidification, Z. noltii 

(Repolho et al., 2017); and nutrients, Z. marina (Kaldy 2014)), and, much less commonly, an 

antagonistic interaction of temperature and a second stressor (e.g. herbicide, Halophila ovalis 

(Wilkinson et al., 2017)). All these studies suggest that plant response to the combined impact 

of temperature and other stressors is largely species-specific and probably depends on the 



 

 

 Chapter 3 

77 

functional traits of the specific plant, but knowledge of this topic with respect to seagrass 

communities remains scarce and incomplete. 

Given the global nature of warming, and the pervasive presence of eutrophication, 

studying the combined effects of warming and nitrogen loading is crucial to understanding 

the future of coastal communities dominated by seagrasses, especially in light of the specific 

plant traits of seagrass foundation species (Marbà and Duarte, 1998). Although some 

progress has been made in this area (Egea et al., 2018; Kaldy 2014; Moreno-Marín et al., 

2018; Ontoria et al., 2019b), studies that explore this interaction, especially in persistent 

seagrass species (sensu Kilminster et al., 2015) such as those belonging to the Posidonia genus, 

remain surprisingly scarce.  

The Mediterranean endemic species P. oceanica is an excellent model for exploring the 

issues described above. On the one hand, P. oceanica is a paradigm of a persistent species 

(Arnaud-Haond et al., 2012; Marbà et al., 2002) and a key foundation species in 

Mediterranean oligotrophic waters, where it provides critical habitats and other ecosystem 

services. Due to its high sensitivity to stress and vulnerability to coastal deterioration, P. 

oceanica meadows have undergone a substantial decline over the last 50 years (Marbà et al., 

2011). Consequently, it has been one of the main targets of efforts to protect and manage 

the Mediterranean marine environment in the last 20 years (Boudouresque et al., 2012). On 

the other hand, sea surface temperature in the Mediterranean is increasing at a much faster 

rate than in the global oceans (IPCC 2007; Vargas-Yañez et al., 2007) and, at the same time, 

temperature extremes and heat waves are becoming more common in this region. Moreover, 

eutrophication is considered a major threat to and stressor for this seagrass, especially near 

highly populated areas along the Mediterranean coastline, where the first problems of 

eutrophication were detected as far back as the 1960s (Karydis and Kitsiou, 2012).  

While the effects of eutrophication on this species are relatively well known (Holmer et al., 

2003; Invers et al., 2004; Pérez et al., 2007; Ruiz et al., 2001), the effects of warming have 

only recently started being documented (Beca-Carretero et al., 2018; Guerrero-Meseguer et 

al., 2017; Marbà and Duarte, 2010; Marín-Guirao et al., 2016, 2017, 2018; Olsen et al., 2012; 

Savva et al., 2018) and, to the best of our knowledge, there is no information on the potential 

effects of the interaction between these two stressors. 

The aim of this study is thus to explore both the individual and combined effects of 

warming, by simulating the effects of a short-term extreme temperature event, and 

eutrophication, through nutrient loading in the form of ammonium, in the persistent seagrass 

species P. oceanica. In order to achieve this, we evaluated physiological and individual plant 

responses to a short-term temperature increase (lasting days) and the interactive effects of 

ammonium additions. To do so, we conducted an indoor mesocosm experiment in which 

plants were exposed to three thermal treatments and three levels of ammonium 

concentration in a full factorial experiment. 
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MATERIAL AND METHODS 
 

Plant collection 

Divers hand-picked healthy plant fragments of P. oceanica with at least four interconnected 

vertical shoots (apical shoots were avoided) in late September 2016 from an eight-metre deep 

meadow in Cala Montgó (42° 06’ 23’’ N / 3° 10’ 16’’ E, NE coast of Spain), where allowances 

to collect plants fragments for scientific purposes are not required. 

Plants were transported in aerated tanks to the laboratory and aerated overnight until the 

experimental setup the following day. The experiment was performed in the University of 

Barcelona’s Experimental Fields Service. 

 

Experimental design and setup 

For the experiment, we chose three thermal treatments (20 ºC, 30 ºC and 35 ºC) and three 

ammonium concentrations: ambient seawater (control), 30 µM (moderate) and 120 µM 

(high).  

The temperatures were chosen to represent the following scenarios: 20 ºC, close to the 

temperature of the study site at the collection time, according to a temperature data series 

recorded by continuous in situ temperature data loggers (Figure 1), obtained by the authors 

in Medas Islands (at a depth of 5 m), an area close to the collection site (< 5 km); 30 ºC, an 

anomalously high temperature, likely to be reached in the coming years during heat waves 

(as a reference, > 28 ºC recorded during recent heat waves by (Coma et al., 2009; Marbà and 

Duarte, 2010), and relatively common in the Eastern Mediterranean basin (Galli et al., 2017); 

and 35 ºC, a temperature during an extreme heat wave that could be reached in the mid-term 

future (the temperature is predicted to increase by 4-5 ºC in the western Mediterranean by 

the end of the 21st century, as per IPCC (2014), Marbà and Duarte (2010), and Sánchez et 

al., (2004). With respect to nutrients, the “moderate” value (30 µM) and the “high” value 

(120 µM) are the lowest and highest values, respectively, observed in sites affected by sewage 

discharge (Arévalo et al., 2007; Mozetič et al., 2008) in the Mediterranean Sea, and similar 

values have been used in previous experimental approaches (Kaldy 2014; Ontoria et al., 

2019b).  

The plants were incubated in cylindrical and transparent aquaria (12 L capacity, 40 

cm height x 20 cm diameter), each with its own independent air pump and filled with 10 L 

filtered seawater (Figure 2). The plants were incubated in water to avoid possible 

confounding effects from sediment. Within 24 hours of collection, a single rhizome fragment 

bearing four interconnected vertical shoots (apical shoots were avoided) was put in each of 

the 27 aquaria and covered with plastic film to prevent water evaporation. The aquaria were 

then distributed randomly in three experimental chambers (2 x 1 x 1.5 m, 9 aquaria per 

chamber), under controlled temperature and light conditions. The chambers were kept at 

210-223 µmoles photons m-2 s-1, above the saturation irradiance of these plants (Alcoverro et 

al., 1998; Pirc 1986; Ruiz and Romero, 2001; Ruiz et al., 2001), under a 12h/12h light/dark 

photoperiod. Light was provided by daylight fluorescent tubes. The three chambers were 

maintained at 20 ºC for four days to allow for plant acclimation. After the acclimation period, 
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the temperature was progressively increased (at a maximum rate of 3 ºC/day) until it reached 

30 ºC in one chamber and 35 ºC in the other after 5 days, while the third was kept at 20 ºC 

as a control. After the experimental temperatures were reached, appropriate amounts of 

NH4Cl were added to obtain the ammonium concentration treatments mentioned above. 

Ammonium was added just once at the beginning of the experiment, to simulate an 

ammonium pulse. While thermal treatments were differentiated in three chambers, 

ammonium treatments were applied to three randomly chosen aquaria in each chamber, 

which resulted in a complete factorial design with three replicates per experimental condition. 

The experiment ended after seven days of exposure to both stressors (temperature and 

ammonium), when necrosis marks in plants exposed to the highest temperature (35 ºC) 

indicated critical damage to the plant. In order to minimize uncontrolled variability due to 

small heterogeneities in light and/or temperature, all aquaria were randomly relocated within 

the chamber every two days. Moreover, each set of nine aquaria was moved from one 

chamber to another (changing the chamber temperature to maintain the thermal treatments) 

to ensure that each aquarium spend the same time in each chamber. This was done to discard 

a potential “chamber effect” and avoid pseudoreplication (Ontoria et al., 2019b). 

 
Figure 1. Three-years temperature data series recorded at 5 m deep in Medas Islands (NW Mediterranean Sea). 
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Figure 2. Overview of the mesocosm system within the experimental chamber. 

 

 

Water analyses 

Nutrients concentration in the water (ammonium, nitrite, nitrate and phosphate) in each 

aquarium was analysed at the beginning (just after the experimental ammonium additions) 

and at the end of the experiment, using an FP-2020 Plus Fluorescence Detector, in 

accordance with standard methodology (Kérouel and Aminot, 1997). 

 

Plant trait response  

A number of physiological and individual plant traits were measured at the end of the 

experiment to determine plant responses. These were maximum quantum yield (Fv/Fm), 

effective quantum yield of PSII (ΔF/Fm’), maximum electron transport rate (ETRmax), non-

photochemical quenching (NPQ), incidence of necrosis on the leaves and shoot growth rate. 

Chlorophyll fluorescence parameters were determined in three randomly selected 

shoots from each aquarium using a diving PAM (pulse-amplitude Modulated fluorometer, 

Walz, Germany). The measurements were obtained from the basal portion of the second 

youngest leaf to avoid within-shoot variability (Durako and Kunzelman, 2002; Gera et al., 

2012). Fv/Fm was measured by the saturation pulse method after a 10-minute period of dark 

adaptation. After three hours of illumination, leaves were exposed to increasing 

photosynthetic photon flux density values (0, 5, 19, 17, 129, 235, 277, 503 and 676 µmol 

photons m-2 s-1) at intervals of 10 s to perform rapid light curves (RLCs), which made it 

possible to obtain ΔF/Fm’, ETR and NPQ measurements. ΔF/Fm’ and NPQ values 

extracted from RLCs were those obtained at a similar irradiance to plants that were 

maintained (210-223 µmoles photons m-2 s-1), while ETRmax corresponded to the maximum 

ETR value obtained in each curve. 
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The necrosis incidence was assessed in leaves from three shoots in each experimental 

condition. Leaves were carefully separated from each shoot and the percentage of necrotic 

surface (dark brown or black spots covering leaf tissue) relative to the total leaf surface was 

visually estimated in each leaf and averaged for each aquarium. Shoot growth was measured 

using a leaf marking technique (Zieman 1974) adapted to our species (Alcoverro et al., 2001; 

Short and Duarte, 2001). On the first day of the experiment, all shoots in each aquarium 

were marked by punching a hole just above the ligule with a hypodermic needle. At the end 

of the experiment, the shoots were harvested, the epiphytes carefully removed, and three 

shoots separated to measure shoot growth. Each shoot was sorted into old and new tissue. 

Plant material was dried for 48 hours at 60 ºC and weighed to obtain the dry weight. Shoot 

growth rate was expressed as the new tissue produced per shoot and day (mg DW shoot-1 

day-1), and then averaged for each aquarium. 

 

Statistical procedures 

The statistical significance of the effects of temperature and ammonium found between 

treatments was tested using PERMANOVA analyses based on a similarity matrix created 

from the Euclidean distances between samples. The aquarium was considered as the 

experimental unit, with a total of n=3 replicates for each experimental condition. The value 

for each variable in each replicate is the averaged value for this variable obtained from the 

three shoots (subsamples) used from each aquarium. Two fixed factors were used to run the 

analyses: temperature (three levels: 20 ºC, 30 ºC and 35 ºC) and ammonium (ambient water, 

30 µM and 120 µM). 

Multivariate PERMANOVA was performed for plant response variables and 

univariate PERMANOVA analyses were subsequently carried out individually for each plant 

trait. As the PERMANOVA statistical test is produced by permutation, the usual ANOVA 

normality assumptions (Anderson 2001) were not necessary. Differences between treatments 

were evaluated using pairwise comparisons, and a Monte Carlo test was carried out to obtain 

an alternative p-value in order to validate the analysis when the number of permutations was 

too low (<999, Anderson et al., (2008)). All analyses were performed using the Primer v6 

statistical package Clarke and Gorley (2006) in conjunction with the Windows 

PERMANOVA+ module (Anderson et al., 2008). 

 

RESULTS 
 

Nutrient experimental conditions 

The initial ammonium concentrations obtained in water ranged from 0.25-0.7 µM, 32-60 µM 

and 121-132 µM in samples from the control, moderate and high treatments, respectively. 

At the end of the experiment, ammonium concentrations were very low (less than 1 µM in 

most treatments, except in two cases: the control (no ammonium added) at high temperature, 

where some ammonium production took place, and in the high concentration treatment at 
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35 ºC, where the final concentration was ca. 70 µM, 60 % of the initially supplied (Table 1). 

Concentrations of other nutrients were in the normal range for the NW Mediterranean 

waters and did not change significantly during the experiment.  

 

Table 1. Ammonium concentrations (in µM, mean ± SEM, n=3) in the water at the beginning (just after 

ammonium additions) and at the end of the experiment. 

Ammonium 

treatment 

Thermal treatment 

20 ºC 30 ºC 35 ºC 

NH4
+ (µM) 

Initial Final Initial Final Initial Final 

Control 0.25 ± 0.08 0.43 ± 0.18 0.33 ± 0.14 0.27 ± 0.16 0.73 ± 0.27 3.01 ± 1.97 

Moderate 40.24 ± 2.18 0.41 ± 0.12 59.87 ± 16.87 0.28 ± 0.23 32.15 ± 1.40 0.85 ± 0.43 

High 131.83 ± 2.27 0.15 ± 0.09 123.77 ± 4.47 0.63 ± 0.26 121.27 ± 4.63 72.49 ± 18.83 

 

 

 

Chlorophyll fluorescence parameters  

Temperature had a significant effect on all chlorophyll fluorescence parameters measured 

(Table 2). Maximum and effective quantum yields (Fv/Fm and ΔF/Fm’, respectively) and 

maximum electron transport rate (ETRmax) showed a similar response pattern, with values at 

30 ºC unaltered and a substantial decrease (38 %, 81 % and 73 %, respectively) at 35 ºC (in 

both cases relative to controls at 20 ºC) (Figure 3A, B & C). Non-photochemical quenching 

(NPQ) (Figure 3D) showed slightly higher values at 30 ºC (up to 17 % more) and lower 

values at 35 ºC (58 %, in both cases relative to controls). 

Overall, ammonium additions had negative effects in all but one chlorophyll 

fluorescence parameter (ΔF/Fm’, ETRmax, and NPQ), which decreased by 19 %, 19 % and 

41 %, respectively, irrespective of the amount added. Interestingly, NPQ increased at 30 ºC 

in plants submitted to no ammonium addition and moderate ammonium addition but did 

not at high ammonium concentrations. This is suggestive of a synergistic effect but, given 

the significance level of the interaction (p=0.0582), by no means conclusive.  

In contrast, the combined effect of temperature and ammonium on decreasing Fv/Fm 

was clearly synergistic. As mentioned above, warming alone (35 ºC) depressed Fv/Fm in the 

absence of ammonium additions, while ammonium additions at the control temperature did 

not cause any effects (Table 2). However, when ammonium was added and plants were 

warmed (35 ºC), Fv/Fm was depressed to 54-87 %, relative to controls. At 35 ºC and under 

high ammonium concentrations, Fv/Fm was below 0.1, thus indicating critical damage to the 

photosynthetic apparatus (Figure 3A). 
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Figure 3. Photochemical responses of P. oceanica plants to temperature increase and ammonium addition: (A) 

Maximum quantum yield of dark-adapted leaves (Fv/Fm), (B) effective quantum yield of PSII (ΔF/F’m), (C) 

maximum electron transport rate (ETRmax), and (D) non-photochemical quenching (NPQ). Each variable was 

measured (mean ± SE, n=3) at three thermal treatments and at three ammonium concentrations, after 7 days 

of exposure. 

 

 

Leaf necrosis incidence 

Temperature had a significant effect on leaf necrosis, with an incidence of up to 25 % higher 

at 35 ºC than at 20 ºC and 30 ºC (Figure 4, Table 2). Ammonium addition also appeared to 

increase necrosis incidence, although the effect was only marginally significant (p=0.0692), 

likely due to the high variability of this variable. 
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Figure 4. P. oceanica leaf necrosis incidence (mean ± SE, n=3) at three thermal treatments  and at 

three ammonium concentrations, after 7 days of exposure. 

 

Shoot growth rate 

Both temperature and ammonium had a significant overall effect on plant growth, with a 

negative effect of temperature and a positive effect (at the moderate concentration only) of 

ammonium (Figure 5, Table 2). However, these overall effects are misleading, since both 

stressors showed a clear synergistic interaction (p=0.0399) that made their combined effect 

relatively complex. Thus, the positive effect of moderate ammonium concentrations on 

growth occurred only at the control temperature, while it disappeared at 30 ºC and became 

negative at 35 ºC. Interestingly, the negative effects of extreme temperature (35 ºC) were 

considerably higher at the high ammonium concentration (65 % growth rate reduction) than 

at the control ammonium concentration (40 %). 

 

 

Figure 5. Shoot growth. P. oceanica shoot growth rate (mean ± SE, n=3) at three thermal treatments and at 

three ammonium concentrations, after 7 days of exposure. 
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Table 2. Results of PERMANOVA (multivariate and univariate analysis) testing for the significance of 

temperature (20 ºC, 30 ºC, and 35 ºC) and nutrient concentration (C: ambient; M: moderate, 30 µM and H: 

high, 120 µM) effects on plant traits. Bold values indicate significant effects (p<0.05). The results of the pairwise 

tests are indicated in factors with significant influence. 

Variable Source df SS MS 

Pseudo-

F P Unique perms Pairwise 

 Main test        

 Temperature (T) 2 1098.4 549.2 12.857 0.0004 9953  

 Ammonium (A) 2 276.8 138.4 3.24 0.0531 9960  

 T X A 4 416.16 104.04 2.4356 0.0741 9950  

 Residual 18 768.9 42.717     

 Individual test        

Fv/Fm         

 Temperature (T) 2 1.21   0.61   76.43   0.0001 9935 20=30>35 

 Ammonium (A) 2 0.05   0.03   3.25   0.0588 9955  

 T X A 4 0.15   0.04   4.75   0.0073 9957 35C > 35H  

 Residual 18 0.14 0.01 0.00      

ΔF/Fm’         

 Temperature (T) 2 0.04   0.02   180.52   0.0001 9941 20=30>35 

 Ammonium (A) 2 0.002 0.001 8.99   0.0019 9957 C>M=H 

 T X A 4 0.0004 0.0001 0.81   0.5396 9946  

 Residual 18 0.0020 0.0001     

ETRmax         

 Temperature (T) 2 364.50   182.25   183.78   0.0001 9953 20=30>35 

 Ammonium (A) 2 27.33   13.66   13.78   0.0005 9946 C>M=H 

 T X A 4 5.06   1.26   1.28   0.3177 9965  

 Residual 18 17.85 0.99     

NPQ         

 Temperature (T) 2 1.65   0.83   76.83   0.0001 9948 30>20>35 

 Ammonium (A) 2 0.21   0.11   9.87   0.0017 9952 C>M=H 

 T X A 4 0.12   0.03   2.85   0.0582 9952  30C ≥ 30M ≥30H 

 Residual 18 0.19 0.01     

Necrosis         

 Temperature (T) 2 731.00   365.50   8.76   0.0019 9958 20=30<35 

 Ammonium (A) 2 249.21   124.61   2.99   0.0692 9940  

 T X A 4 410.83   102.71   2.46   0.0725 9960  

  Residual 18 750.71 41.71      

Growth         

 Temperature (T) 2 0.0007 0.0004 33.34   0.0001 9936 20>30>35 

 Ammonium (A) 2 0.0001 0.0001 5.55   0.0123 9943 C=M, C=H, M>H 

 T X A 4 0.0001 0.00004 3.25   0.0399 9956 35C > 35H 

 Residual 18 0.0002 0.00001     
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DISCUSSION 

While warming has a clear negative effect on most of the variables measured, ammonium 

additions seem to exert only a moderate impact on plant performance when acting in 

isolation. However, we detected synergy between both factors in the response of two-three 

important plant traits, one related to the integrity of the photosynthetic system (maximum 

quantum yield), the second related to the capacity of the plant to activate photoprotective 

mechanisms (NPQ, only suggestive, as indicated based on p-value) and the third related to 

plant production (shoot growth rate), all of which are critical to plant survival. This serves as 

a warning that the impact of global warming on seagrass meadows already subject to 

eutrophication could be worse than expected.  

A certain amount of interest lies in characterizing the thermal response of foundation 

species to warming. In the case of P. oceanica, such studies are relatively scarce (see below). 

In our case, based on the chlorophyll fluorescence responses and other plant traits, it would 

seem that P. oceanica tolerates short-term (i.e. one-week) temperature increases up to 30 ºC. 

This tolerance might be partially attributed to the plant’s capacity to activate photoprotective 

mechanisms (e.g. associated with xanthophyll cycle pigments (Marín-Guirao et al., 2012, 

2016; Ralph and Gademann, 2005)) at this temperature, as suggested by the increasing, albeit 

not statistically significant, NPQ trend (at 30 ºC). In addition, neither the necrosis incidence 

of leaves nor shoot growth were affected by 30 ºC, in line with the findings of previous 

studies (Olsen et al., 2012), which would support its thermal tolerance to temperature 

increases up to 30 ºC. By contrast, we observed negative changes in all variables measured at 

35 ºC. Thus, the decrease in Fv/Fm and ΔF/Fm’, at 35 ºC, indicates a severe reduction in the 

functionality of the photosynthetic apparatus (Campbell et al., 2003). At the same time, the 

electron transport chain and, therefore, the electron transport capacity (ETRmax) were 

severely affected by this high temperature, which could be attributed to a negative effect on 

the PSII donor side (Duarte et al., 2016), as reported in previous studies (Z. noltii, Repolho 

et al., (2017)). This suggests that the heat dissipation pathway likely linked to the xanthophyll 

cycle found at 30 ºC seems to be inhibited when temperature reaches 35 ºC, as demonstrated 

by the drastic reduction in NPQ. This loss of capacity to dissipate the excess thermal energy 

could have induced damage to the PSII and consequently reduced the photosynthetic 

capacity of the plants (Ashraf and Harris, 2013). Impairment of photosynthesis or a likely 

increase on respiration rates, are probably some of the causes behind the clear reduction in 

leaf growth that was observed, and certainly triggered other negative effects on plant fitness 

(reserve accumulation, rhizome growth and probably many others). Finally, the higher leaf 

necrosis incidence, which is a common plant response to several stressors, including salinity 

(Pagès et al., 2010; Salo et al., 2014) and eutrophication (Ceccherelli et al., 2018; Roca et al., 

2016), in plants exposed to 35 ºC indicates not only a loss of functionality of the 

photosynthetic systems, but also tissue damage and cell death. 

In this regard, based on the thermal sensitivity of this species to high temperatures, 

as described above (Marbà and Duarte, 2010; Pagès et al., 2018; Savva et al., 2018), our results 

and the findings of other studies (Marín-Guirao et al., 2018; Olsen et al., 2012; Traboni et 
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al., 2018; Tutar et al., 2017), we suggest a thermal threshold for P. oceanica of between 30 ºC 

and 35 ºC. 

Ammonium additions negatively and moderately affect most of the chlorophyll 

fluorescence-related variables measured (ΔF/Fm’, ETRmax and NPQ), independently of 

temperature (see non-significant interactions in Table 2). No effect of ammonium was 

detected on Fv/Fm at control or moderately high temperatures (20 ºC and 30 ºC). In addition, 

we observed a positive effect of moderate ammonium addition on shoot growth at the 

control temperature, consistent with the nutrient-limited condition of this species (Alcoverro 

et al., 1997; Invers et al., 2004). Therefore, it would seem that the toxicity of ammonium in 

P. oceanica at basal temperatures is much lower than in other seagrass species, which are 

mostly colonizing and opportunistic (sensu Kilminster et al., (2015)) species (Z. noltii, Moreno-

Marín et al., (2016); Z. marina, van Katwijk et al., (1997)). However, the most relevant finding 

of our experiment was that the negative effects of ammonium additions appear when 

temperature increases, thus leading to interactive effects between both stressors. Thus, 

maximum quantum yield (Fv/Fm) was clearly affected by ammonium, but only at extreme 

temperatures (35 ºC), thereby indicating temperature-dependent ammonium toxicity. This 

toxicity is likely related to the damage of the photosynthetic machinery which, due to its 

inability to fix C, hindered the assimilation of ammonium in non-toxic forms (Invers et al., 

2004; Leoni et al., 2008). In addition, our results suggest that the interaction between both 

stressors affected the plant’s capacity to activate photoprotective mechanisms, as indicated 

by a lack of activation of NPQ mechanism at 30 ºC under high ammonium concentration. 

Our findings indicate that moderate ammonium additions stimulated shoot growth at control 

temperature while this stimulation was lost at 30 ºC and 35 ºC. Moreover, the thermal effects 

of extreme temperatures (35 ºC) were clearly worse at high ammonium concentrations, as 

growth rates in this treatments combination were 42 % lower than those found at 35 ºC 

without ammonium addition. 

Even though several studies in opportunistic species have revealed that the combined 

effects of temperature increase and ammonium are not detrimental (Z. marina, Kaldy (2014); 

Moreno-Marín et al., (2018); C. nodosa, Ontoria et al., (2019b)), or may even favour plant 

primary production (C. nodosa, Egea et al., (2018)), our results indicated a negative synergistic 

effect between both stressors in P. oceanica, a species considered to be persistent, thus leading 

to the conclusion that the future impact of warming could be much worse for plants subject 

to high ammonium loading than for plants living in relatively pristine environments. These 

findings are consistent with a large number of studies, which have also reported synergistic 

effects between two simultaneous stressors on seagrasses (Collier et al., 2011; Ontoria et al., 

2019b; Villazán et al., 2013b, 2015). However, most of these studies have focused on 

colonizing and opportunistic seagrass species; further studies are therefore required to shed 

light on the response of this, and other, persistent seagrass species to simultaneous exposure 

to two or more stressors. 

As highlighted in the introduction, exploring the effects of climate change on coastal 

ecosystems already threatened by local factors is critical to determining and understanding 

the future of such ecosystems. Performing factorial experiments, which allow two or more 
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stressors to be combined simultaneously with a view to exploring plant response, could help 

predict future scenarios. Although some caution should be exercised when scaling our results 

up to real-world ecosystems, mainly due to our limited spatial and temporal scales, it is clear 

that our findings serve as a warning not only about the effects of global warming, but also 

about the synergies between warming and other local stressors. The predicted rise in the 

frequency and intensity of heat waves in the Mediterranean Sea (IPCC 2007; Jordà et al., 

2012; Vargas-Yañez et al., 2007) may be tolerated by the plant in the short term, but as 

duration (Marín-Guirao et al., 2018) and/or intensity increase, plant photosynthesis and 

growth will be curtailed and persistence will likely be compromised. Moreover, other 

stressors such as eutrophication, especially in persistent seagrass species such as P. oceanica 

living in oligotrophic environments, can worsen the negative effects of warming. 

Consequently, these heightened effects might threat the survival of these important seagrass 

meadows (Jordà et al., 2012). 

Although this research is not fully conclusive, and more extensive experiments, in 

the field whenever possible, are needed for a proper upscaling to the real world, our results 

clearly indicate a need to broaden the focus to include the potential interaction with other 

stressors when attempting to assess the effects of global warming. This is required not only 

to obtain more accurate, reliable and realistic predictions and therefore aid adaptive 

management, but also to act against global stressors at local level. In effect, attenuating local 

stressors may represent one way to alleviate the effects of global warming, or at least ensure 

they do not worsen. 

 

ACKNOWLEDGEMENTS 

We thank Neus Sanmartí for her help in the plant sampling necessary for conducting this 

experiment, and Rocío García Muñoz for her help in the temperature data analysis and 

graphics. This work was supported by the European Union and the Spanish Government 

through the RECCAM (Seagrass meadows resilience to global warming: an analysis based on 

responses at ecophysiological, population and ecosystem levels, CTM2013-48027-C3-1-R 

and CTM2013-48027-C3-2-R) and UMBRAL (Responses of benthic marine vegetation to 

stress: critical transitions, resilience, and management opportunities, CTM2017-86695-C3-1-

R) projects; and by the Spanish Ministry of Economy and Competitiveness (via grant BES-

2014-069593 awarded to Y. Ontoria). 

 

 

 

 

 



 

 

 Chapter 3 

89 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 Chapter 4  

90 

 

 

 

 

 

 

 
 

 

 

 

 

 



 

 

 Chapter 4 

91 

 

 

 

CHAPTER 4 
 

High salinities buffer the negative effects 

of warming on functional traits of the 

seagrass Halophila ovalis 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Yaiza Ontoria*, Chanelle Webster, Nicole Said, Juan Manuel Ruiz, Marta 

Pérez, Javier Romero, Kathryn McMahon 

 



 

 

 Chapter 4  

92 

ABSTRACT 

Coastal ecosystems, especially estuaries are subject to environmental fluctuations. If two of 

the main environmental factors that can affect plant performance, temperature and salinity, 

are altered under a future scenario of climate change, this may be detrimental for ecosystem 

persistence. This study examined the response of the seagrass Halophila ovalis to a short-term 

salinity and temperature (simulating a heatwave) increase, in isolation and in combination, 

through two indoor mesocosm experiments. Warming caused detrimental effects, a decline 

in photosynthetic efficiency (Fv/Fm) and an increase in maximum photosynthetic rates 

(Gross Pmax), revealing symptoms of thermal stress, a decrease in leaf TNCs content and 

severe reduction in plant growth. Salinity increase in isolation did not alter plant 

performance, however, interestingly, in combination with high temperature the Gross Pmax 

were higher and photosynthetic efficiency (α) was not impacted. Overall, higher salinities 

might ameliorate the negative effects of high temperatures, buffering the impact of climate 

change. 
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INTRODUCTION 

 
Global change is threatening ecosystems worldwide (Bellard et al., 2012; IPCC 2014) and is 

considered a major driver of the erosion of marine biodiversity (Poloczanska et al., 2013). 

Coastal ecosystems are particularly vulnerable to global change because they are exposed to 

a range of cumulative impacts, including eutrophication and physical alterations due to 

engineering works such as marinas or walls. These and many others are strongly linked to 

human population pressures on the coast (Halpern et al., 2015; Orth et al., 2006). Increased 

temperatures also impact coastal ecosystems, often in an additive or synergistic way with 

other stressors (Humanes et al., 2016; Koch et al., 2007; Ontoria et al., 2019a, 2019b; York 

et al., 2013). The current gradual increase of sea surface temperature, which is predicted to 

rise, on average, between 0.6 and 1.5 ºC in the next 40 years (IPCC, 2014) is causing 

deleterious or even lethal impacts on some aquatic organisms (Garrabou et al., 2009; Smale 

and Wernberg, 2013). In addition, this gradual thermal rise is accompanied by extreme events 

such as heat waves where temperatures increase well above background levels (up to ca. 5 

ºC) and can persist for more than five days (Hobday et al., 2016). These are especially 

detrimental for ecosystems integrity and persistence (IPCC 2014; Karl and Trenberth, 2003; 

Oliver et al., 2018; Smale et al., 2019). 

Specially, estuaries and other transitional waters are particularly subject to large 

environmental fluctuations which pose significant physical forcing and influence ecological 

relationships (Day et al., 2012). Furthermore, estuaries are influenced by a wide range of 

physical drivers, which make them particularly vulnerable to climate change (Hallett et al., 

2018), which is expected to change the “rules of play” or the regime under which fluctuations 

occur. 

Fluctuations in salinity are a feature of estuarine environments, where both gradual 

and abrupt changes in salinity can occur. Organisms inhabiting estuaries are generally 

euryhaline, being able to thrive under a wide range of salinities. This ability is attributed to 

features that confer tolerance to salinity changes, including adjustments through a series of 

metabolic pathways, physiological traits and molecular or gene networks (Gupta and Huang, 

2014). With progressive warming and the increased frequency and intensity of heat waves, 

evaporation rates are likely to increase resulting in increases in salinity, especially where 

flushing with fresh or marine water is limited. On the other hand, the predicted increasing 

intensity of rainfall at particular times of year could temporally and abruptly reduce salinity 

in these systems (Hallett et al., 2018). How these climate change drivers manifest will depend 

on the type of estuary, including the patterns of freshwater inputs and exchange with ocean 

waters, physical features such as flushing times, and morphological features such as water 

depth and volume. 

The impact of global warming is of particular concern for species considered as 

ecosystem engineers, such as the habitat forming corals, mangroves, gorgonians, kelps or 

seagrasses, as it will have cascading effects on ecosystem functions and biodiversity (Hoegh-

Guldberg et al., 2007; Smale et al., 2019; Wernberg et al., 2012). Vegetated communities 

provide structure and other key ecosystem functions as primary production, fueling coastal 
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trophic networks and contributing to other ecosystem services (e.g. acting as carbon sinks, 

buffering acidification) (Beaumont et al., 2007; Duarte et al., 2005; Twilley and Day, 1999). 

Specifically, seagrasses are one of the most productive ecosystems on Earth (Hemminga and 

Duarte, 2000), providing multiple ecosystem services and are highly valued economically and 

ecologically (Orth et al., 2006). The sensitivity and vulnerability of seagrasses to warming is 

becoming increasingly evident (Nowicki et al., 2017, 2019; Pearce and Feng, 2013; Thomson 

et al., 2015). Negative effects of warming on plant performance (Collier et al., 2011; Marín-

Guirao et al., 2018; Ontoria et al., 2019a, 2019b) as well on shoot survival (Díaz-Almela et 

al., 2009; Marbà and Duarte, 2010) have resulted in detrimental effects in these ecosystems 

(Kendrick et al., 2019; Waycott et al., 2009). 

However, warming rarely acts in isolation from other factors. Temperature increases 

might affect plant performance not only directly but also through its interaction with plant 

tolerance mechanisms to other factors such as changes in salinity (Sandoval-Gil et al., 2012a, 

2012b, 2014) or grazing pressure (Hernán et al., 2017; Eklöf et al., 2008). In this regard, 

although it is largely accepted that global warming represents a real threat for coastal 

ecosystems worldwide (Harley et al., 2012; IPCC 2014; Poloczanska et al., 2013), it is difficult 

to predict how warming will affect the resilience of those ecosystems that are currently found 

in fluctuating environments, such as the estuaries, and whose survival largely depends upon 

robust regulating mechanisms (Hallett et al., 2018). 

Temperature affects seagrass performance from the molecular to population level 

(Beca-Carretero et al., 2018; Campbell et al., 2006; Collier and Waycott, 2014; Collier et al., 

2011; Marín-Guirao et al., 2016, 2017, 2018; Ontoria et al., 2019a, 2019b; Ruiz et al., 2018; 

Savva et al., 2018; Traboni et al., 2018). Changes in salinity, in turn, can also alter physiological 

functioning and, consequently, influence plant growth and survival (Garrote-Moreno et al., 

2015; Marín-Guirao et al., 2013a, 2013b, 2017; Piro et al., 2015; Ruiz et al., 2009; Sandoval-

Gil et al., 2012a, 2012b, 2014; Touchette and Burkholder, 2000). However, and despite the 

recent growing knowledge (restricted to some seagrass species and geographical areas), 

thermal and salinity tolerance thresholds and acclimation mechanisms are still poorly 

understood for seagrasses overall, compared to terrestrial halophytes and marine algae. In 

this regard, there is still a gap in knowledge about the combined effect or interactions 

between temperature and salinity on seagrasses, particularly for those species living in 

estuarine environments where both factors fluctuate and interact. This is highly relevant 

when trying to predict the ecological consequences of global change on seagrasses.  

It is predicted that estuaries in Mediterranean climate regions, as southwestern 

Australia, will experience high temperatures and marine salinities in summer that favor 

seagrass growth (Forbes and Kilminster, 2014). Halophila ovalis is one of the most common 

seagrass species found in estuaries of southwestern Australia. It is a fast growing, colonizing 

species (sensu Kilminster et al., 2015) with a rapid ability to recover. H. ovalis has a wide 

tolerance range, occurring in waters between 10 ºC and 40 ºC (Ralph 1998) and from 5-45 

psu (Hillman 1995; Tyerman 1982), which coincides with its broad distribution and 

abundance in estuarine environments. Previous short-term experiments (five days, Ralph 

1998) with laboratory-cultured plants revealed that while H. ovalis has its optimum 
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photosynthetic range between 25 and 30 ºC, its tolerance to salinity can range from 9-52 psu. 

However, the lack of knowledge about the responses to periods longer than five days (see 

Ralph 1998) to each one of these factors, as well as the interaction implies that there are 

opportunities to improve our understanding of tolerance limits. 

The present study aims to explore the response of an estuarine seagrass, H. ovalis, to 

climate change pressures of warming and salinity changes and, specifically, to assess whether 

temperature increases affect plant tolerance to salinity fluctuations. To do this, two indoor 

mesocosm experiments were performed to evaluate plant responses to changing salinity 

under thermal increase, at the physiological, individual and population levels. 

 

MATERIAL AND METHODS 

Two independent short-term experiments were conducted in order to assess the response of 

H. ovalis to increases in temperature under different salinity conditions. The two experiments 

were required to enable measurements across a range of plant scales: physiological, individual 

and population levels and also with a range of treatments that were not possible in a single 

experiment due to technical and logistical constraints. In the first experiment (experiment A, 

hereinafter), photosynthesis-irradiance curves were performed under five levels of 

temperature and two salinity conditions, after 1 day of exposure period. In the second 

experiment, (experiment B, hereinafter), photochemical responses, carbon reserves, plant 

growth and survival were measured in plants subjected to two temperature levels and two 

salinity conditions for 13 days.  Both experiments were conducted at the School of Science 

aquarium facilities at Edith Cowan University (Western Australia). 

 

Experiment A: Photosynthesis-Irradiance curves 

Plant collection, experimental set up and incubation equipment 

Plants for the experiment were collected in late spring-early summer 2017 in the Swan-

Canning Estuary (southwestern Australia). The Swan-Canning estuary is a shallow estuary 

permanently open to the ocean. It is characterized by two distinct ‘summer’ and ‘winter’ 

phases due to the region’s Mediterranean climate. During summer (December – March), air 

temperatures are high, and rainfall is typically low. Climatological (1961 – 1990) averages for 

the Perth metropolitan area, where the estuary is located, range from 29–31 ºC and 10–19 

mm (Bureau of Meteorology, http://www.bom.gov.au). Water temperature and salinity are 

greatly influenced by these climatic conditions and fall between 22–24 ºC and 33–38 psu 

respectively (Hillman 1995; http://wir.water.wa.gov.au/Pages/Water-Information-

Reporting.aspx). The majority of H. ovalis meadows occur in shallow, subtidal areas (< 2 m) 

of the estuary. Peak growth and reproduction are generally observed during summer months 

as a consequence of the favorable conditions (Forbes and Kilminster, 2014). Contrastingly, 

during winter (June – August) air temperatures are cooler ~19–19.4 ºC whilst the majority 

(~80 %) of rainfall occurs and averages between 125–126 mm (Bureau of Meteorology, 

http://www.bom.gov.au). 

http://www.bom.gov.au/
http://wir.water.wa.gov.au/Pages/Water-Information-Reporting.aspx
http://wir.water.wa.gov.au/Pages/Water-Information-Reporting.aspx
http://www.bom.gov.au/
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Fragments of H. ovalis (including three or four pair of leaves, rhizomes, roots and a 

growing tip), termed “ramets”, were carefully collected and transported in a cooler box filled 

with in situ seawater to the laboratory. Dark adapted yields were measured from three 

randomly chosen plants in the field using a diving PAM (pulse-amplitude modulated) 

fluorometer (Walz, Germany). These measurements were used afterwards as a dark-adapted 

yield reference to confirm that plants in the experimental tanks had acclimated to the 

laboratory conditions after planting. Temperature and salinity at collection time were on 

average: 23 ºC and 34 psu and were used to set the acclimation conditions in the laboratory. 

Plants were standardized to four leaf pairs with an apical meristem (the growing tip) and were 

carefully cleaned by hand to remove epiphytes before planting. Ramets were then planted 

into aquarium tanks (54 L capacity, 600 x 300 x 300 mm), previously filled with 10 cm depth 

of unsorted and washed quartz river sand and 52 L of seawater at 20 ºC with a salinity of 34 

psu. Each tank had its own independent sump tank containing a pump, filter (300 µm foam 

block) and aquaria heaters which controlled water temperature. Incident light on plants (180 

µmol photons m-2 s-1, based on saturating irradiance for H. ovalis according to Strydom et al., 

2017) was provided by a marine aquarium Light Emitting Diode (LED) modules with a full 

spectrum light (MarinTechTM Pty Ltd) on a 12 h: 12 h light: dark photoperiod. After two days 

of acclimation, temperature was progressively increased or decreased (1 ºC day-1) in the tanks 

until reaching the experimental temperatures (20 ºC, 24 ºC, 28 ºC, 31 ºC and 34 ºC). This 

range of temperatures was established in order to cover the natural temperature range this 

species experiences during spring and summer in the area where they were collected. The 

highest temperature treatment was above what is experienced on average in the estuary and 

was chosen to simulate a heat wave event. Simultaneously, salinity was progressively 

increased (2 psu day-1) from 34 psu (salinity during acclimation days) until reaching 40-42 psu 

(high salinity) in half of the tanks, keeping the other half at 34 psu (low salinity). This high 

salinity is above what is generally experienced in this estuary and might be potentially reached 

in some parts of the estuary as a result of changes in the climatic conditions. Thus, ten 

different conditions were set up: five different temperatures with each temperature treatment 

having two salinity treatments. Once the experimental conditions were reached in the tanks, 

plants were left for 24 hours before measuring maximum quantum yield on five randomly 

chosen plants to confirm their acclimation. Yields indicated were equal or higher to those 

measured in the field at the time of collection: 0.65-0.71, hence the plants were considered 

acclimated. 

P-I determinations, curve fitting and extraction of photosynthetic parameters 

Seagrass respiration and photosynthesis were measured via the consumption or production 

of O2 after 24 hours incubation period to each corresponding experimental condition. Plants 

were incubated in sealed transparent acrylic chambers, with a diameter of 52 mm and a length 

of 150 mm (volume = 318 ml). Water within the chamber was circulated using a small 

submersible pump with a flow rate of 7000 ml hr-1. Dissolved oxygen concentrations within 

the chambers were measured using FireSting™ 3 mm robust REDFLASH technology 

sensors (Pyroscience) inserted through the chamber wall and connected through a 4-channel 

meter to a computer recording O2 concentrations (mg L-1) To maintain a stable temperature 

(± 0.25ºC) chambers were submerged in a 300 L tank containing 150 L of seawater, which 
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was circulated through a chiller-heater unit set to the appropriate experimental temperature. 

For temperature treatments above 30 ºC saltwater was made using aquarium salt and milli-

Q water to remove the additive effect of microbial respiration. The internal temperature of 

the chamber was also measured using a submersible temperature sensor connected to the 

FireSting O2 machine. Light was provided by full spectrum LED light units (GrowPro 320; 

MarinTechTM Pty Ltd) suspended above the chambers, providing light intensities from 30 

to 300 µmol photons m-2 s-1. Prior to each incubation, the oxygen electrodes were calibrated 

using a 2-point method (0 % and 100 % air saturated water) calibration as per the 

manufacturer’s instructions. For P-I determinations, four-five H. ovalis ramets (apical 

meristem with four preceding leaf pairs connected to rhizome) were placed into the 

chambers (Figure 1). Five replicate plant chambers and a blank (no plant material) were 

established and placed into the temperature-controlled tank. The chambers were then 

covered in aluminium foil to exclude light and the inlet of each chamber was connected to 

its individual pump, to allow the chamber to be flushed whilst the plant material was left to 

dark adapt for 30 minutes. When dark adapted, the chamber outlet was connected to the 

pump to create a sealed system. Once sealed, the dissolved oxygen concentration in each 

chamber was monitored every second. Monitoring continued in the dark for at least 20 

minutes after the slope of dissolved oxygen vs time stabilised. The foil was then removed, 

and photosynthetic rates were measured for 10 minutes (once the slope had stabilised) at 

each of the 7 light intensities (30, 60, 90, 120, 180, 240, and 300 µmol photons m-2 s-1). At 

the end of the experiment whole plants were removed from the chambers and were separated 

into above (leaves) and below ground (roots and rhizomes) tissue. Fresh weight was recorded 

before drying the plants (48 hours at 60 ºC) and reweighing for dry weight determination. 

 

 

Figure 1. Incubation of Halophila ovalis plants in acrylic chamber for P-I curve determination (experiment B). 

 

For each replicate incubation (and control) at all unique temperature-light intensity 

combinations, oxygen concentration was plotted against time after discarding the first 2 

minutes of data, which was considered a stabilisation period. The portion of the remaining 

data used to determine the rate, was confined to that where the R2 value was greater than 0.9. 
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At the two lowest light intensities, due to noise, a lower R2 value of 0.5 was used. Rates of 

oxygen exchange were normalised to g DW of seagrass hr-1. Oxygen concentrations within 

the control chamber (containing no seagrass) were measured throughout the experiment as 

a procedural control, data was accepted if there was a stable line with little variation, neither 

decreasing nor increasing in oxygen concentration. This was achieved in all trials. 

Photosynthetic parameters were extracted from the photosynthetic-irradiance (P-I) curves 

using the least-squares method. For each incubation, PI curves were fitted to the data using 

the hyperbolic tangent model equation of Chalker (1981): 

P = Gross Pmax × tanh ( 
𝛼×𝐼

𝐺𝑃𝑚𝑎𝑥
 ) – R, 

where P is the net rate of photosynthesis (mg O2 g DW-1 h-1), Gross Pmax is the maximum 

gross photosynthesis (mg O2 g DW-1 hr-1), α is the photosynthetic efficiency estimated as the 

slope for the linear portion (light-limited portion) of the PI curve, I is irradiance (µmol 

photons m-2 s-1), and R is the rate of oxygen consumption in the dark (mg O2 g DW-1 h-1). 

NPmax was defined as the maximal net rate of photosynthesis (mg O2 g DW-1 h-1) and was 

calculated as: 

NPmax= Gross Pmax - R 

The half-saturating irradiance (Ik; µmol photons m-2 s-1) was calculated as: 

Ik = (NPmax + R) / α 

 

Experiment B: Plant functional traits responses 

Plant collection, mesocosm system and experimental set up 

Undamaged healthy H. ovalis ramets were carefully collected by hand from a shallow, 

undisturbed meadow (< 0.5 m deep) in spring-early summer 2017 in Peel Harvey Estuary 

(southwestern Australia). Similar to the Swan-Canning estuary, the Peel-Harvey Estuary is a 

shallow, permanently open estuary and the salinity and temperature regimes reflect the hot, 

dry conditions during summer. Between December to March, rainfall and temperature range 

between 12.5–19.6 mm and 28–31 ºC, respectively (Bureau of Meteorology, 

http://www.bom.gov.au). In the estuary, water temperatures average between 21–23 ºC 

which also becomes increasingly hypersaline over the summer from 35 psu in December to 

43 psu by March (http://wir.water.wa.gov.au/Pages/Water-Information-Reporting.aspx). 

The estuary was opened to the ocean via the Dawesville channel causing salinity to become 

more stable and similar to marine values (~ 35 psu) except during winter when most of the 

rainfall occurs (Water and Rivers Commission, 1998, link: 

https://www.water.wa.gov.au/__data/assets/pdf_file/0019/5356/10564.pdf). This change 

has favoured the establishment of H. ovalis meadows, the dominant seagrass species in the 

estuary. 

http://www.bom.gov.au/
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At the time of collection, the average field temperature was 20 ºC and salinity 34 psu. 

Plants were transported to the laboratory and kept under constant temperature (20 ºC) 

overnight before planting. Nine ramets of H. ovalis plants (standardized to two pairs of leaves, 

rhizome, roots and a growing tip) were planted in aquarium tanks as described above. The 

ramets were shorter than in the experiment A as the plants were naturally more fragmented 

in the field. 

In order to determine plant response to warming when growing under different levels 

of salinity, H. ovalis plants were exposed to two levels of temperature (control and high) and 

two levels of salinity (low and high) simultaneously in a short-term experiment lasting for 13 

days. Control temperature condition was set as the average field temperature (24 ºC) in late 

spring while 30 ºC was set up as the high thermal treatment. The latter temperature is above 

the average summer temperatures and was selected to simulate the temperature that might 

be reached in these estuarine environments during extreme warming events such as heat 

waves. The salinity measured in the field during plant collection was 34 psu and it was 

considered the low salinity treatment. The high salinity tested (40-42 psu), in turn, is within 

the range experienced in some parts of the estuary, but not where the seagrass was collected. 

Water temperature and salinity were monitored every two days by a WTWTM conductivity 

meter throughout the experiment. Plants were acclimated at 24 ºC (progressive increasing of 

1 ºC day-1) and 34 psu for seven days, after which temperature and salinity were increased 

progressively (1 ºC day-1 and 2 psu day-1, respectively) in the appropriate treatment tanks until 

reaching the temperature and salinity experimental treatments. It took 13 days to reach 

treatment conditions, then the plants were exposed for another 13 days to different 

temperature and salinity treatments as follows: control temperature and low salinity (24 ºC, 

34 psu), high temperature and low salinity (30 ºC, 34 psu), control temperature and high 

salinity (24 ºC, 40-42 psu) and high temperature and high salinity (30 ºC, 40-42 psu). For 

each treatment, four replicate tanks were established (total n=16 independent tanks) and 

randomly allocated. Incident light (200-220 µmol photons m-2 s-1, above the saturation 

irradiance for these plants) was measured using an underwater quantum sensor (MicroPAR) 

and maintained on a 12 h: 12 h light: dark photoperiod. 

 

 
 
Figure 2. Overview of the mesocosm system of the experiment B. 
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Plant traits assessment 

Chlorophyll a fluorescence parameters 

In each tank, chlorophyll a fluorescence parameters were measured in three randomly 

selected shoots from three independent ramets using a diving PAM fluorometer. Maximum 

quantum yield (Fv/Fm) measurements were obtained in the middle portion of the leaf by the 

saturation pulse method after an overnight dark adaptation. After being exposed to 

illumination conditions for three hours, an increasing photosynthetic photon flux density 

was applied directly to the leaf at intervals of 10 s to perform rapid light curves (RLCs), which 

were fitted to the equation described by Jassby and Platt (1976) using SigmaPlot (version 11) 

in order to estimate the maximum electron transport rate (ETRmax). 

Carbohydrates content 

Total non-structural carbohydrates (TNCs) analyses was performed separately in leaves and 

rhizome material. All ramets from each tank were pooled thus having a total of four replicate 

samples of each tissue per treatment. Samples were analyzed for soluble sugars and starch 

content following the anthrone assay described in Marín-Guirao et al., (2013b), based on 

Invers et al., (2004) and Yemm and Willis, (1954). 

Plant growth and survival 

At the beginning of the experiment, all the ramets were tagged to be able to identify the new 

tissue produced in the experiment. All newly produced material (leaves, petioles, rhizomes 

and roots) from each ramet was dried at 60 ºC for 48 h and weighed all together. Plant growth 

was expressed as mg DW ramet-1 day-1. At the end of the experiment, the number of surviving 

ramets in each tank was estimated and expressed in percentage relative to the initial number 

of ramets planted. 

 

Statistical analyses (Experiments A and B) 

PERMANOVA analyses based on a similarity matrix created from the Euclidean distances 

between samples was performed to test the statistical significance of the effects of 

temperature and salinity on seagrass response parameters (fixed factors). For the experiment 

A, we had 10 experimental conditions (with five replicates for each), resulting from the 

combination of five temperatures (20 ºC, 24 ºC, 28 ºC, 31 ºC and 34 ºC) and two salinities 

(low and high, i.e. 34 psu and 40-42 psu). For experiment B, the two factors had two levels 

(temperature: 24 ºC and 30 ºC, salinity: 34 psu and 40-42 psu), resulting in four experimental 

conditions, with four replicate tanks for each. 

Firstly, multivariate PERMANOVA analysis was run (separately for each 

experiment) for all response variables and then univariate PERMANOVA analyses were 

individually performed for each variable (experiment A: photosynthetic and respiration rates, 

half-saturating irradiance and photosynthetic eficiency; experiment B: Fv/Fm, ETRmax, TNC 

content in leaves and rhizomes, plant growth rate and ramets survival). As the 
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PERMANOVA statistical test is produced by permutation, it was not necessary to meet the 

usual ANOVA normality assumptions (Anderson, 2001). When main factors had a 

significant effect on the variable, pair wise comparisons were performed to identify 

significant differences between treatments. When the number of permutations was too low 

(< 999, Anderson et al., 2008), a Monte Carlo test was conducted in order to establish an 

alternative p-value for analysis validation. The significance level (α) used was p=0.05 in all 

tests performed. All analyses were performed using the Primer v6 statistical package (Clarke 

and Gorley, 2006) in conjunction with the Windows PERMANOVA+ module (Anderson 

et al., 2008). 

 

RESULTS 

Experiment A: Photosynthesis-Irradiance curves 

Typical P-I curves with no photoinhibition was observed in each experimental condition in 

H. ovalis plants (Figure 3). 

 

Figure 3. Photosynthesis-Irradiance curves of Halophila ovalis plants at five temperatures (20 ºC, 24 ºC, 28 ºC, 

31 ºC and 34 ºC) and two salinities: A) low (34 psu) and B) high (40-42 psu). 

 

All of the photosynthetic parameters extracted from the photosynthesis-irradiance 

(P-I) curves were affected by the treatments, either temperature only, salinity only, both 

and/or an interaction between the two (Figure 4). Maximum gross photosynthesis values 

ranged from 2.6 to 6.6 mg O2 g DW-1 hr-1, and there was a significant interaction between the 

two factors (Table 1). At low salinity, the effect of temperature was unclear, with highest 

values at 20 ºC and 31 ºC (3.9 and 4.1 mg O2 g DW-1 hr-1, respectively) and lowest at 24 ºC 

and 28 ºC (2.6 mg O2 g DW-1 hr-1) (Figure 4A). In contrast, at high salinity, temperature had 
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a clear and positive effect on maximum gross photosynthesis, reaching 6.6 mg O2 g DW-1 hr-

1 at 34 ºC. Respiration rates ranged from 0.84 to 2.61 mg O2 g DW-1 hr-1 (Figure 4B). 

Temperature had a positive and significant effect on respiration, resulting in an increase of 

81% at the highest temperature (34 ºC) relative to the lowest (20 ºC). Salinity did not 

significantly affect the respiration rate (Table 1). Half-saturating irradiance (Ik) ranged from 

62 to 126 µmol photons m-2 s-1 (Figure 4C). Salinity affected Ik significantly (Table 1) with 

higher Ik at higher salinities. Temperature, in turn, did not affect Ik (Table 1). Photosynthetic 

efficiency (α) ranged from 0.03 to 0.07 mg O2 g DW-1 hr-1 /µmol quanta m-2 s-1 (Figure 4D). 

No individual effects of temperature nor salinity were found, but there was a significant 

interaction (Table 1). This is due to the opposite response of α with temperature, decreasing 

at low salinity (from 0.07 to 0.04 µmol O2 g DW-1 hr-1) and increasing at high salinity (from 

0.03 to 0.07 mg O2 g DW-1 hr-1 /µmol quanta m-2 s-1). 

 

 
 

Figure 4. Photosynthetic parameters obtained from P-I curves for Halophila ovalis plants: A) maximum gross 

photosynthesis (Gross Pmax), B) respiration rate (R), C) half-saturating irradiance (Ik) and D) photosynthetic 

efficiency (α) at five temperatures (20 ºC, 24 ºC, 28 ºC, 31 ºC and 34 ºC) and two salinities (low (34 psu), and 

high (40-42 psu)) in the experiment A. Capital letters over the bars represent significant differences between 

thermal treatments (independent from salinity); lower case letters represent significant differences between 

thermal treatments at each salinity separately (a and b for low salinity treatment and x, y and z for high salinity 

treatment). 
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Table 1. Results of PERMANOVA (multivariate and univariate analysis) testing for the significance of 

temperature (20 ºC, 24 ºC, 28 ºC, 31 ºC and 34 ºC) and salinity (low, 34 psu and high, 40-42 psu) effects on 

photosynthetic parameters extracted from P-I curves obtained from experiment A. Bold values indicate 

significant effects (p<0.05). 

 

Source df     MS Pseudo-F P Unique perms  

Main test       

Temperature (T) 4 2131.6 1.8384 0.1243 9955  

Salinity (S) 1 6785.9 5.8525 0.0176 9945  

T x S 4 2341.2 2.0192 0.1062 9948  

Residual 36 1159.5                    

       

Individual test       

Gross Pmax                            

Temperature (T) 4 4.334 3.472 0.0151 9949  

Salinity (S) 1 26.919 21.565 0.0001 9830 High > Low 

T x S 4 5.440 4.358 0.0068 9965  

Residual 36 1.248                          

Respiration       

Temperature (T) 4 1.744 3.856 0.0098 9952  

Salinity (S) 1 0.659 1.457 0.2333 9865  

T x S 4 0.921 2.037 0.1018 9947  

Residual 36 0.452                    

Ik       

Temperature (T) 4 1235.200 1.260 0.3055 9961  

Salinity (S) 1 6738.500 6.876 0.0131 9840 High > Low 

T x S 4 2167.100 2.211 0.0876 9955  

Residual 36 979.980                    

alpha       

Temperature (T) 4 0.001 1.027 0.4018 9946  

Salinity (S) 1 0.000 0.043 0.8375 9817  

T x S 4 0.002 3.111 0.0223 9961  

Residual 36 0.001                     

 

 

Experiment B: Plant functional traits responses 

The potential photosynthetic capacity of plants had a negative effect with temperature 

increase. High temperature (30 ºC) significantly depressed maximum quantum yield (Fv/Fm) 

by 40 % (Figure 5A; Table 2). Maximum electron transport rate (ETRmax) was significantly 

affected by temperature with a 28 % increase at the high temperature, relative to the control 

(Figure 5B; Table 4). 

High temperature significantly reduced TNCs in leaves by 28 % compared to plants 

at the control temperature (Figure 5C; Table 2), while TNCs in rhizome were not affected 

by temperature nor by salinity (Figure 5D; Table 2). Plant growth was significantly affected 

by high temperature, as indicated by a reduction of 55 % on growth rate compared to the 
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controls (Figure 5E; Table 2). Temperature did not show any effect on plant survival. 

Interestingly, survival was favored under high salinity conditions as indicated by the increase 

of 21 % of surviving ramets (Figure 5F; Table 2). 

 
Figure 5. Halophila ovalis plant traits: A) maximum quantum yield, B) maximum electron transport rate, C) total 

non-structural carbohydrates (TNCs) ) content in leaves and D) TNCs content in rhizomesD) rhizomes, E) 

growth rate and F) ramet survival, measured in plants (mean ± SE, n=4) exposed to two thermal treatments 

(control (24 ºC) and high (30 ºC)) and two levels of salinity (low (34 psu), and high (40-42 psu)) for 13 days. 
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Table 2. Results of PERMANOVA (multivariate and univariate analysis) testing for the effect of temperature 

and salinity on plant functional traits of Halophila ovalis after growing for 13 days under experimental conditions 

in the experiment B. Bold values indicate significant effects (p<0.05). 

 

Source df     MS Pseudo-F P Unique perms  

Main test       

Temperature (T) 1 702.91 4.26 0.046 9936  

Salinity (S) 1 895.98 5.43 0.026 9937  

T x S 1 63.99 0.39 0.673 9936  

Residual 12 165.01                          

       

Individual test       

Fv/Fm       

Temperature (T) 1 0.30 62.56 <0.001 9854 Control > High 

Salinity (S) 1 0.00 1.01 0.333 9814  

T x S 1 0.00 1.01 0.322 9816  

Residual 12 0.00                          

ETRmax       

Temperature (T) 1 303.10 8.06 0.014 9843 High > Control 

Salinity (S) 1 11.49 0.31 0.589 9824  

T x S 1 49.04 1.30 0.274 9830  

Residual 12 37.63                          

TNCs leaves       

Temperature (T) 1 28.96 12.66 0.003 9823 Control > High 

Salinity (S) 1 4.56 1.99 0.185 9816  

T x S 1 7.98 3.49 0.085 9849  

Residual 12 2.29                          

TNCs rhizome       

Temperature (T) 1 0.01 0.01 0.905 9834  

Salinity (S) 1 0.03 0.03 0.862 9839  

T x S 1 0.31 0.33 0.578 9848  

Residual 12 0.95                           

Growth       

Temperature (T) 1 0.13 18.16 0.002 9851 Control > High 

Salinity (S) 1 0.02 2.39 0.145 9835  

T x S 1 0.00 0.61 0.448 9811  

Residual 12 0.01                          

Survival       

Temperature (T) 1 370.41 2.98 0.111 9741  

Salinity (S) 1 879.88 7.09 0.026 9663 High > Control 

T x S 1 6.65 0.05 0.823 9757  

Residual 12 124.13                           
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DISCUSSION 

Estuaries are influenced by a wide range of climate drivers, which make them particularly 

vulnerable to global change. Heatwaves combined with increasing salinity are two expected 

outcomes of climate change that can impact estuarine ecosystems (Hallet et al., 2018), 

including seagrass communities. In this work, the response of H. ovalis to temperature and 

salinity, both individually and in combination, over a duration that represents a heatwave 

event (Hobday et al., 2016), was assayed in two indoor mesocosm experiments. Overall, our 

results evidence negative effects of the heatwave but, interestingly, high salinities seem to 

buffer the impacts of transient warming. 

Symptoms of thermal stress were detected at both physiological and plant levels. The 

sensitivity of the photosynthetic apparatus to warming was reflected by the decline of Fv/Fm 

to values below those commonly accepted for healthy plants (0.7-0.8, Campbell et al., 2006; 

Ralph, 1998), which indicates a damage of the photosynthetic apparatus of the plant after 13 

days of exposure to high temperature (30 ºC). However, this negative effect of temperature 

seemed to have no negative consequences in maximum gross photosynthesis and maximum 

electron transport rate. This lack of decline in maximum gross photosynthesis might be 

attributed to the short duration of the experiment A (1 day). However, it is consistent with 

previous studies on other fast-growing seagrass species inhabiting estuarine environments 

(e.g. Cymodocea nodosa, Marín-Guirao et al., 2018; Halodule uninervis, Collier et al., 2011; 

Halophila johnsonii, Fernández-Torquemada et al., 2005), where photosynthesis was either 

unaffected or affected positively by increasing temperatures. As our plants were 

photosynthetically active throughout the whole range of temperatures tested (20-34 ºC), the 

critical temperature threshold for photosynthesis was not reached in this experiment, and a 

photosynthetic thermal optimum for this species cannot be drawn from here. The observed 

increase of ETRmax at high temperature is consistent with the enhancement of photosynthetic 

rates suggesting high rates of inorganic carbon assimilation. Moreover, ETRmax enhancement 

could also respond to the activation of alternative electron sinks that can be activated under 

stressful conditions to alleviate PSII damage (Sharkey 2005, Marín-Guirao et al., 2016), as 

indicated by the reported decline in Fv/Fm in our experiment. 

As expected, the respiration rate did increase with temperature, as has been observed 

in other species (e.g. Cymodocea serrulata, Halodule uninervis and Zostera muelleri, Collier et al., 

2017; Posidonia oceanica and C. nodosa, Marín-Guirao et al., 2018; Thalassia hemprichii and Enhalus 

acoroides, Pedersen et al., 2016). This increase in respiration, together with a decrease in 

photosynthetic efficiency (α), seemed to have an overall negative effect at the individual plant 

scale, as indicated by a decrease in growth rate and in the carbohydrate content in the leaves 

at high temperature. This can be attributed, most likely, to the use of internal resources to 

cope with the energetic demands increased respiration. In fact, reductions in growth have 

been reported for many species of seagrasses worldwide when the optimal temperature is 

exceeded (Collier and Waycott, 2014; Collier et al., 2011; Olsen et al., 2012; Ontoria et al., 

2019a, 2019b; Traboni et al., 2018). Our results support the well known observation that the 

optimum temperature for photosynthesis is usually higher than for growth (Lee et al., 2007). 

A reliable explanation is that, under thermal stress, despite the photosynthetic rate being 
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maintained, a greater amount of carbon fixed by photosynthesis is used by respiration at the 

expense of the carbon allocation to growth and storage. Despite reduced growth, warming 

did not affect plant survival over the 13 days period of exposure. This has not been the case 

in other studies where increased mortality of H. ovalis was observed following 6 days of 

thermal stress (Collier et al., 2014). These differences can be attributed not only to the 

different temperatures used (30 ºC in this study, 40-43 ºC in Collier et al., 2014) but also to 

the different environments the plants live in (temperate areas here, tropical ones in Collier et 

al., 2014). Different tolerance responses of a single species to environment factors based on 

the location they grow in have also been found in Mediterranean seagrass species (e.g. Marín-

Guirao et al., 2018) highlighting the need for local understanding when predicting impacts 

of changing environmental conditions. Furthermore, our study has shown that the 

eurythermal species H. ovalis (den Hartog 1970; Hillman 1985) tolerates thermal shock up to 

30 ºC for 13 days, at least in terms of mortality, widening the previous 4 days tested by Ralph 

(1998). 

Salinity on its own (that is, at control temperatures, 20-24 ºC in experiment A and 

“low” -24 ºC- in experiment B) had no negative effects on plant performance. This was 

relatively unexpected, as other studies have documented enhanced respiration with increased 

salinity, as for instance P. oceanica, C. nodosa or Zostera japonica (Marín-Guirao et al., 2011; 

Sandoval-Gil et al., 2012a; Shafer et al., 2011). Notwithstanding, respiration reduction at high 

salinities of 40-60 psu was described in a congeneric species (H. johnsonii, Fernández-

Torquemada et al., 2005. Photosynthetic efficiency (α) in our experiment decreased with 

salinity at control temperatures, indicating a decline in plant functioning at high salinity 

conditions. Photosynthesis was stimulated by high salinities, similar to the study of 

Fernández-Torquemada et al., (2005) on H. johnsonii where photosynthesis was favored by 

acute salinity exposure up to 40 psu, but this was opposite to the response of a larger more 

persistent species, P. oceanica, which reduced photosynthetic rate with high salinity (Sandoval-

Gil et al., 2014). 

Interactive effects of temperature and salinity in maximum gross photosynthesis and 

in (α) (photosynthetic efficiency at low irradiances) were identified. Interestingly, the 

interactions were positive. Thus, while maximum gross photosynthesis remained more or 

less constant with rising temperature, it was stimulated at high salinity when temperature 

reached 28 ºC and above. Moreover, photosynthetic efficiency (α) decreased with 

temperature, suggesting increased vulnerability to water turbidity events under a warming 

scenario. However, in plants submitted to high salinity, the photosynthetic efficiency 

presented levels similar to control temperature and salinity conditions values. Plants exposed 

to high salinity can activate different acclimation mechanisms including changes in the 

cellular ion and solute concentrations to the modification of the cell wall (Sandoval-Gil et al., 

2012b; Touchette 2007). These were not assessed in this study, but these types of plant 

responses combined with others induced by high temperatures (e.g. antioxidant enzymes, 

Tutar et al., 2017), may have led to the observed increase in photosynthesis. If this was the 

case, then the TNCs content in leaves of plants grown under high salinity and high 

temperature, would not have as big a decline. Our results did show a trend of dampening the 

reduction in carbohydrates caused by high temperature with high salinity, but the interaction 
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was not significant (p-value of 0.085). However, at the population level, plant survival was 

higher at high salinity. These observations suggest that this species has developed 

mechanisms to acclimate to increased salinity, as has been reported for other seagrass species 

(Marín-Guirao et al., 2017). This is not surprising as H. ovalis is a euryhaline species with a 

distribution across a wide range of environments, in terms of the salinity regime. 

The notion that some consequences of climate change (e.g. increased salinity) can 

dampen those of others (e.g. warming) has great interest and warrants pursing further. This 

finding is based on the two complementary experiments presented here which were designed 

to broadly explore responses and performance at different plant scales (from physiology to 

population, sensu O’Brien et al., 2018) to increased temperature and salinity. Although slightly 

different exposure levels and durations were used, and the populations of H. ovalis were 

collected in different estuaries, there was consistency in the responses giving confidence in 

the general value of our results for this species, at least for those populations inhabiting the 

temperate area where we worked. On the other hand, it is largely accepted that mesocosms 

have the advantage of working under controlled conditions, allowing to assess individual and 

combined effects of different stressors, but they do not fully replicate the complexity of the 

natural environment. So, field observations or natural experiments examining the responses 

of seagrass meadows to heatwave events across a salinity gradient would be very valuable to 

compliment this work for the future. 

This work contributes to an improved understanding of how multiple factors interact 

to influence aquatic plants in coastal ecosystems. This is timely and relevant considering the 

range of possible factors involved in the decline of coastal ecosystems worldwide. We have 

found that H. ovalis populations living in variable salinity environments, such as in the 

estuaries of southwestern Australia, may be negatively impacted by more frequent and 

extreme warming events. However, if this warming, in turn, results in high salinity conditions 

through increased evaporation and reduced rainfall, these high salinities will buffer plant 

survival and reduce the negative effect of temperature on plant performance. These findings 

suggest that the effects of short-term warming (i.e. heatwaves) might not be as negative as 

predicted while, in a future scenario of global change, longer term warming could be more 

detrimental for populations, due to the expected reductions in growth rate.There are 

opportunities for further research to improve predictions of the effects of global change in 

fluctuating environments such as considering other possible drivers and stressors, how other 

species will respond and investigating responses in the more complex field setting. 
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If I have seen further, it is by standing upon the shoulders of giants. 

Isaac Newton 
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This thesis has shed light on some of the responses of seagrasses to global change with a 

special focus on temperature increase, but also assessing the effects of eutrophication and 

salinity, and not only the effects of these stressors in isolation, but also their potential 

interactions. Based on mesocosm experiments, the response to warming, is, in general terms, 

the same for the three temperate seagrass species studied in this work (Posidonia oceanica, 

Cymodocea nodosa (Chapter 1) and Halophila ovalis (Chapter 4)): negative effects on plant 

performance appear when a critical thermal threshold is exceeded. The extent of those 

negative effects, as well as the thermal thresholds, largely differ among species, mostly based 

on their habitat, ecological strategies and biogeographical affinities. Nevertheless, and albeit 

interesting, this kind of results must be extrapolated with caution to real ecosystems, on the 

one hand because of the shortcomings of the approach and the difficulties of the scale-up, 

that will be addressed further. On the other hand, we must also take into consideration the 

already altered status of most ecosystems submitted to the global warming stress. It is a 

matter of fact that the action of a given stressor erodes the resilience of the ecosystem, 

making it more vulnerable to others (Chapin III et al., 2009). To support this notion, in this 

thesis, we have demonstrated, for two Mediterranean species, how the combination of 

eutrophication and warming can be much worse that the isolated effect of each one of them 

in isolation (Chapter 2 and Chapter 3). Surprisingly, the simultaneous occurrence of high 

salinity and warming appears not only to not be detrimental for a estuarine species but it 

appears that high salinity conditions buffer the negative effects of warming (Chapter 4). All 

this confirms the need for making efforts to better understand the effects of increasing 

temperatures attending to the variability of other environmental changes, especially those 

potentially causing detrimental effects on organisms. 

The results obtained throughout this research have been individually discussed in 

deep in each one of the four chapters encompassed in this thesis. To avoid reiterations, this 

general discussion aims to go further and, not losing sight of our findings, make a more 

synthetic analysis of the possible effects of global change, at the light of what has been 

indicated in the previous paragraphs. In this sense, a first section explores seagrass responses 

through different and interacting plant integration levels and suggests a generalized 

framework to address the effects of global warming on seagrasses. A second section 

highlights the importance of interactive effects of global warming, while a third section 

analyzes limitations of mesocosm experiments. Finally, a fourth section focus on the most 

promising directions for future research. 

 

SCALING SEAGRASS RESPONSES  

The worldwide extended concern about the future of seagrasses relies on the possible loss 

of the ecosystem functions and services they provide. Given that world’s seagrass 

distribution seems to have been reduced by 30 % after industrial revolution (Waycott et al., 

2009), mostly due to anthropogenic pressures, increasing efforts are now focused on 

developing more effective science based mainly on the improvement of monitoring, 

conservation, restoration and management outcomes (Kilminster et al., 2015; Orth et al., 

2006; Unsworth et al., 2015). Although these efforts seem to commence to render some 
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results (de los Santos et al. 2019), much better knowledge is still needed to deepen our 

understanding of the effects of stressors on seagrasses and, specially, a framework into which 

to integrate the abundant information already available. 

In this sense, it has to be reminded that, in most cases, seagrass deterioration in response to 

a given stress only becomes evident when signs of degradation are visibly appreciable, i.e. 

when meadows lose integrity, decline ostensibly or retract. However, those are generally the 

ultimate consequences of initially much more subtle changes in response to stressors taking 

place at low (e.g. biochemical, physiological) biological organization levels. This hierarchy of 

responses through multiple biological organization levels is to some extent a tenet not only 

in seagrass biology, but in different approaches related to ecology. In the specific case of 

seagrasses, it has been proposed that their response to a given stressor can be “small and 

fast”, “intermediate” or “large and slow”, following combined increasing spatial and 

temporal scales (O’Brien et al., 2018; Figure 1). Obviously, those responses and scales are 

not independent, and upscaling and downscaling effects occur, leading thus to potentially 

complex effects. 

 

Figure 1. Scale of seagrass responses to environmental changes. Responses can be “small and fast”, 

“intermediate” or “large and slow”. Responses at one scale can influence those at higher or lower scales 

(adapted from O’Brien et al., 2018).  

 

This framework fits particularly well in the intellectual challenge of addressing the effects of 

temperature as a stressful factor. However, a close examination of those effects and the 

multiscale nature of the response show that the diagram in figure 1 is too simplistic. At this 
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respect, it has to be acknowledged that the first response to (almost) any environmental 

change occurs at the molecular level (see Figure 2, scaling effects of a stressor). It is known 

that heat stress alters the expression of thousands of genes involved in a myriad of biological 

processes. As for instance, temperature increase can, on the one hand, stimulate the 

transcript of genes encoding for Heat Shock Proteins (HSP) with chaperone-like functions, 

for antioxidant enzymes, for COX proteins related to electron transport in respiratory chains 

or for enzymes related to programmed cellular death (Tutar et al., 2017). On the other hand, 

it can also decrease expression of other genes, as some related to carbon assimilation (Marín-

Guirao et al., 2016; Purnama et al., 2019). These changes at the molecular level have evident 

influences in the next, biochemical level, impairing essential functions (e.g. decrease in the 

expression of genes encoding for enzymes related to carbon assimilation which leads to a 

lesser activity in the Calvin cycle). However, not all the effects at the biochemical level derive 

from effects at the molecular one, as thermal stress can affect biochemical processes directly, 

that is, independently of changes in gene expression. In effect, photosynthesis is specially 

sensitive to temperature, either in terms of integrity of the photosynthetic apparatus (and, 

specifically, of PSII: Campbell et al., 2006; Chapter 2 and Chapter 3 of this thesis) or in terms 

of photosynthetic electron transport chains (George et al., 2007). Moreover, respiratory rates 

usually increase with temperature because respiratory electron transport chains are also 

highly sensitive to thermal stress (Collier et al., 2011; Marín-Guirao et al., 2018; Pedersen et 

al., 2016), decreasing photosynthesis/respiration balance. In addition, heat stress can 

uncouple enzymes and metabolic pathways, causing the accumulation of harmful reactive 

oxygen species (ROS). To add further complexity, some of the effects at the molecular level 

do not propagate as negative effects at the biochemical level but, in contrast, dampen the 

consequences of malfunctions caused by temperature. This is the case, for example, of 

overexpression of genes encoding for antioxidant enzymes, scavenging ROS, or for the COX 

proteins, counteracting to some extent the negative changes in respiratory chains (Das and 

Roychoudhury, 2014; Tutar et al., 2017). 

Changes at the biochemical level, in turn, scale-up to the next, physiological level. 

There is a great availability of evidences of scaling effects of temperature to this level, 

including a decline in carbohydrates storage, leaf growth impairment (Olsen et al., 2012; 

Chapter 2 and Chapter 3 of this thesis) or depressed content of deterrent substances, whose 

production is very much linked to the primary carbon metabolism (Vergès et al., 2008). Most, 

if not all, of these effects are direct consequences of the impairment of the carbon balance 

(Alcoverro et al., 2001), although direct effects of temperature should not be discarded (e.g. 

effect on cell mitosis, Koutalianou et al., 2016). At this level, flowering induction by thermal 

stress in one ecotype of Posidonia oceanica has been documented (Ruiz et al., 2018; see also 

Díaz-Almela et al., 2007). It has to be remarked that, in this case, the mechanism is rooted 

in the molecular level (expression of floral genes, Marín-Guirao et al., 2019) but the effects 

are at the population level. Moreover, and although as a mere speculation, flowering 

induction by thermal stress can be viewed as a response of the plant (production of new 

genotypes, possibility of colonization of more favorable areas) counteracting the negative 

effects of temperature rise.  
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The detrimental effects of temperature at the population level, also rooted in 

previous levels, and mostly in terms of increased shoot mortality (Collier and Waycott, 2014; 

Marbà and Duarte, 2010; Chapter 1 and Chapter 2 of this thesis), or in the reduction of seed 

germination capacity (Guerrero-Meseguer et al., 2017; Pereda-Briones et al., 2019), are well 

documented. Moreover, temperature causes lower elongation rates in rhizomes (Chapter 2), 

resulting in a decrease in the rate of production of new shoots, which in turn implies a 

decrease in “birth” (recruitment) rates from the population perspective. Finally, changes in 

the demographic balance (births vs. deaths) at population level would obviously result in 

changes in the density, cover and areal extension of seagrass meadows.   

At the community level, the consideration of biological interactions, including at 

least competition, predation, amensalism and mutualism, adds further complexity to the 

whole picture. These aspects, in comparison with those described in previous levels, have 

been less investigated. However, it is known that warming can alter either herbivory 

(Jiménez-Ramos et al., 2017; Pagès et al., 2018), competitive interactions (between seagrass 

species, Chapter 1, or maybe with macroalgae) or amensalism (temperature effects on 

epiphytes, Lepoint et al., 1999). Some of these effects, again, are at least in part a consequence 

of upscaling from lower levels (e.g. at biochemical level, a decrease in production of chemical 

defenses), while others appear as direct effects of temperature (e.g. thermal stimulation of 

herbivores activity). Along with those upscaling effects, downscaling influences from the 

community level to those below appear also here, including changes in carbon balance due 

to reduction in photosynthetic biomass or the induction of chemical defenses (Sanmartí et 

al., 2014; Vergés et al., 2007). 

Finally, when we go beyond the community level (ecosystem, landscape, 

biosphere levels), new actors, new mechanisms and new processes emerge. On the one 

hand, we found other stressors, either natural or anthropogenic that can exacerbate (Chapter 

2 and Chapter 3) or, in some cases, dampen (Chapter 4) the effects of temperature rising. As 

demonstrated in this thesis, this issue is of particular concern, and will deserve further 

attention in this discussion. On the other hand, effects of temperature in large scale processes 

(such as species range distribution shifts, Hyndes et al., 2016; Lonhart et al., 2019), in other 

environmental factors (for example, oxygen consumption in the sediment, see for example 

Chapter 2) or in ecosystems other than seagrass meadows but functionally linked to them 

(Hyndes et al., 2012; Ricart et al., 2017) should be taken into consideration. As these larger 

levels have been not directly investigated in this thesis, we will not go further on in discussing 

them. 
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Figure 2. Scaling-up effects of temperature (blue arrows) and down scaling effects (dashed blue arrows) 

through the different levels of biological organization. Direct effects of temperature at each level (red arrows). 
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The previous paragraphs provide, in our opinion, a reliable framework to understand 

the effects of climate change on seagrass ecosystems. However, at least two additional 

remarks are needed to not overlook important aspects. First, and although this framework 

intends to be of general validity for seagrasses, when going into the detail of the responses 

and the mechanisms implied, the differences among species seems to be the rule (Campbell 

et al., 2006; Collier et al., 2011; Marín-Guirao et al., 2016). We have explored these differences 

in Chapter 1, and the results evidence that thermal effects and thermal responses, assessed 

in Posidonia oceanica and Cymodocea nodosa, were not only very different among them but, in 

some instances, opposite. Therefore, from the available literature and our own results, it 

seems clear that the universe of seagrasses will by no means respond to warming as a whole. 

Instead, some species will be more affected (‘losers’) than others (‘neutrals’), and even others 

will be favored, at least within a given thermal range (‘winners’; see also Pagès et al., 2018). 

This notion is essential to accept that the coming change in underwater landscapes will be 

not only a seagrass meadow regression but, in some instances, a species replacement or a 

species redistribution. Secondly, our framework can wrongly transmit the perception that 

increasing temperature has only negative effects on seagrasses at multiple levels, eventually 

propagating upscale and downscale. We have, however, already suggested the existence of 

mechanisms dampening negative effects, such as ROS scavenging enzymes or induction of 

flowering, among many others. These mechanisms are adaptive and have originated along 

the evolutionary history of each species. To a greater or lesser degree, all seagrass species 

have some plasticity to acclimate to thermal stress (Chapter 1). This, in turn, brings to the 

scene evolution (Grant et al., 2017; Parmesan 2006), and reminds us that thermal increase is 

probably already a selective pressure. With the results of our thesis, we cannot go deeper into 

this aspect, but a warning against making predictions based solely upon present biological 

traits of the species is probably needed. 

 

INTERACTION AMONG STRESSORS 

A large part of this thesis (specifically Chapters 2, 3 and 4) delves into the combined effects 

of a global stressor (warming) with a local one (eutrophication, salinity) on seagrass 

performance. Eutrophication is considered a serious threat for coastal ecosystems, and it is 

caused mainly by local to regional sources such as aquaculture, some industrial waste 

disposal, agriculture runoffs or urban effluents, among other causes. Eutrophication is a 

major concern worldwide (Diaz and Rosenberg, 2008; Nixon and Fulweiler, 2009), and, 

specifically, the Mediterranean Sea has experienced eutrophication problems at least since 

the 60s, mainly in coastal areas (Kitisiou and Karydis, 2011; Krom et al., 2010; 

UNEP/FAO/WHO 1996). The effects of eutrophication on seagrasses have been 

repeatedly evaluated (Burkholder et al., 1992; Ruiz et al., 2001; Short et al., 1995; see review 

of Burkholder et al., 2007) and will not be further discussed here. The concern, and the 

question, is if and to which extent the reaction of seagrasses to a new stressor (warming) will 

be worsened by to the existence of a previous stressor (eutrophication). This question has 

been assessed in this thesis, as far as we have been able, for two species, P. oceanica and C. 

nodosa, which again differed in the response. P. oceanica seemed greatly sensitive to the 

combined effects of eutrophication and warming, and high nutrient concentrations clearly 
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worsened its already weak tolerance to temperature. Although we were not able to evaluate 

the joints effects of increased organic matter in sediment and warming in this species due to 

technical constraints, given its sensitivity to organic enrichment (Holmer et al., 2003; Pérez 

et al., 2007), it is reasonable to assume also a rather negative response. In contrast, C. nodosa 

seemed greatly tolerant to high nutrient concentrations, which did not aggravate the negative 

warming effects found, but not to additions of organic matter to sediment, which negatively 

and synergistically affected growth rate and demographic balance. At the light of these 

results, it seems urgent to make all efforts to decrease eutrophication in coastal 

Mediterranean waters (and elsewhere) in order to not impair the resilience of seagrasses to 

warming. To say it with big words, fighting against eutrophication is fighting against climate 

change consequences. 

However and, to some extent, surprisingly, not all potentially concurring stressors 

have negative effects when combined with warming. The effects of salinity, which is also 

predicted to increase in confined or semi-confined coastal waters (Hallet et al., 2017) and 

assessed in southwestern Australia with the species Halophila ovalis, effects revealed 

unexpected results (Chapter 4). While high temperatures cause severe damage on plant 

performance, increased salinity seems to buffer those negative effects. Within the limitations 

of our study (mesocosm approach, see below; limited salinity range, see Chapter 4), this 

suggests not only that the combination of high temperature and high salinity conditions does 

not account for the mortality events reported in the area (Kieryn Kilminster, pers. comm.)  

but also that the effects of some drivers resulting from climate change (warming) can be 

alleviated by others (salinity increase), at least in some estuarine seagrasses. 

 

LIMITATIONS OF MESOCOSM EXPERIMENTS 

The results of this thesis have been obtained from experimental works conducted in indoor 

mesocosm systems. Although the validity of the information obtained from mesocosm 

experiments has been questioned (Benton et al., 2007), such information is highly valuable 

as long as it is cautiously interpreted and extrapolated. To extract general conclusions from 

the results of this thesis, we consider important to acknowledge and address critically the 

limitations of the approach.   

The experimental approach based on mesocosms is commonly used to overcome the 

logistic constraints the marine researcher faces when attempting to control and manipulate 

the environmental conditions underwater. Despite their technical complexity, mesocosms 

are relatively affordable, and then are commonly used as alternatives to correlational 

approaches, not only in seagrasses (e.g. this work; Egea et al., 2018; Sandoval et al., 2014) but 

also in a number of other organisms (Pagès-Escolà et al., 2018; Rich et al., 2018; Russell et 

al., 2009). It has to be reminded that robust inference can only be made based on 

experimental, reliable and accurate designs, and those designs are much more easily reachable 

using mesocosms. 

However, mesocosm experiments are not a panacea, and the inferences obtained, 

albeit robust, should be treated with great caution when attempting to translate them to 
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predictions and generalizations. Concerning design, the selection of the treatments levels, the 

number of experimental units and the replicates among treatments usually determine the size 

of the experimental system, and, consequently, represent a first shortcoming due to 

limitations imposed by the capacity of the facility used. An optimization of designs is then 

required, but, in those designs, it is fundamental to not skimp on the independent replicates, 

that must properly integrate the variability of the phenomena assessed. Equally critical is that 

the treatment levels established capture the range and magnitude of variation relevant to the 

context of the experiment. Finally, physicochemical conditions are extremely controlled and 

do not reflect the natural variation of the real world, moving away the experiment from how 

nature works (Carpenter, 1996). Moreover, the role of factors others than those specifically 

addressed in the experiment and their variability is occluded. 

Beyond this, probably the main restrictions of the approach are related to time and 

space scales. The time span of this kind of experiments is necessarily short (from days to 

weeks, more rarely months) relative to the time scale of some processes at the 

individual/physiological scale (growth, reproduction, reserves accumulation and 

mobilization, among others) and, not to say, above (see Figure 1). Usually, the most 

technically sound installations allow for longer times, but care should be taken to not create 

artifacts due to plant health deterioration under culture conditions. For example, in our 

simple mesocosms used in Chapters 2 and 3, the experiment could not last for more than 14 

days, while in the more sophisticated facility used in Chapter 1 we were able to expose the 

plants for 5 weeks. In any case, a mesocosm experiment is a kind of clip of video only, 

reflecting a given time lapse belonging to a much more extended dynamics. Determining the 

optimum time for conducting the experiment, according to the objective to reach and the 

seasonality (if any) of the processes examined are key aspects to take into consideration. 

The limitation of the spatial scale should also be taken into account. Firstly, 

individuals (ramets, shoots, clones) are collected from a single population, and even if 

attention is paid so as to perform a good spatial sampling, hardly the most optimal sampling 

will capture in toto the phenotypic and genotypic variability of that population (and distribute 

it randomly among microcosms), not to say when considering variability at large geographical 

areas or across all the species distribution range. Secondly, relevant processes occurring at 

community level and above (see the second section of this discussion) cannot be, for the 

most, reproduced within mesocosms. In fact, therefore, the mesocosm approach only 

addresses a part of the whole diagram in figure 2. 

Taking into account all these limitations, it is clear that this thesis does not aim to be 

sententious about the future of seagrasses. Considering the whole ecosystem as a puzzle, the 

union of the small pieces (in this case, increasing the knowledge about the responses at the 

lower integration levels of the plant) will help to complete the whole puzzle. 

 

DIRECTIONS FOR FUTURE RESEARCH 

We have brought light about a few specific issues after more than four years of efforts, but 

we have also extended the list of the questions that remain open. We attempt here a short 

summary about those open questions. 
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Where are the (thermal) limits? 

In Chapter 1 four temperatures were assessed to evaluate Posidonia oceanica and Cymodocea 

nodosa responses to long-term (5 weeks) exposure to increased temperatures. These results, 

in combination with those of previous works (Savva et al., 2018; Olsen et al., 2012) allow to 

propose a thermal threshold for these two seagrass species, as has been proposed for other 

seagrass species worldwide (e.g. Collier et al., 2017). This represents a basic information that 

can be of some interest in combination with projections of temperature rise (IPCC, 2007; 

Vargas-Yañez et al., 2007). It should not be forgotten, however, that the concept of thermal 

optimum depends on the plant function assessed (Chapter 1), and such thermal optimum 

and limits must be explored for different plant functions. Moreover, further efforts are 

needed to explore, within each species, the geographic variability of their tolerance, their 

plasticity and the functional (and evolutionary) consequences of their genetic variability. Such 

advances will make possible to produce more accurate predictions about the future of 

seagrass ecosystems. 

Delayed effects and recovery 

Global warming can be viewed as a progressive and constant temperature increase, and its 

effects understood as a kind of linear response to the stressor. This view is by no means 

prevalent in the scientific literature, but is present more than desirable in the collective 

imaginarium of the human society. Yet a relevant part of reported effects of global warming 

are linked to discrete events, such as heat waves, which seems specially harmful not only for 

seagrasses but also for a panoply of other organisms (Garrabou et al., 2009; Wernberg et al., 

2013).  Indeed, such heat waves are predicted to increase in frequency and intensity (IPCC 

2013; Meehl and Tebaldi, 2004), and thus the assessment of short-term warming events 

(from days to weeks) have been increasingly present in the literature, being the present thesis 

an example. There is a large consensus about the results of these short-term effects, which 

are, for the most, detrimental (but see, for example, Chapter 2, or Pagès et al., 2017). 

However, what happens once the extreme event has passed? While some negative effects 

can appear after cessation of the heat wave, it is also possible that the plant recovers some 

of its functions (e.g. Marín-Guirao et al., 2016; Ralph 1998). We would like to highlight the 

importance of incorporating an experimental period after removing (or cessation) the 

stressor in this type of experimetns, thus considering the chance of recovery (or for 

expressing delayed effects). More realistic, although also more complex, would be the same 

kind of approach but considering the interaction among stressors, that is, considering which 

stressors other than warming modifies either the delayed response or the recovery capacity 

of the plant. 

The risk of tipping points 

Cumulating experimental evidences, supported by a solid theoretical background, indicates 

that the response of ecosystems to stress is rarely linear. Instead, ecosystems show nonlinear 

behaviour, often aside with critical transitions and tipping points (Carpenter et al., 2011; May 

1977; Scheffer and Carpenter, 2003; Scheffer et al., 2001). While this theoretical framework 

has been widely applied to a wide array of case studies (macroalgae and herbivores: Boada et 
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al., 2017; seagrass and lucinid bivalves with endosymbiotic sulfide-oxidizing bacteria: Fouw 

et al., 2018; predatory fishes in mountain lakes, Koel et al., 2019, among many others), there 

is a surprising lack of works exploring the possibility of warming triggering critical transitions, 

or weakening ecosystem resilience to other stressors and then indirectly facilitating those 

critical transitions, in marine ecosystems. A more explicit approach of the science of global 

warming to this conceptual framework could prevent undesirable surprises in the near future. 

Would increasing biodiversity confer resilience to climate change? 

The contention of species diversity as an element conferring resilience to ecosystem against 

disturbances or stressful conditions has been assessed repeatedly (Downing et al 2010; Isbell 

et al., 2015). Given the near complete monospecific nature of the foundation species in 

seagrass meadows, the concept of specific biodiversity can, to some extent, be replaced by 

that of genetic (or genotypic) diversity. In effect, it has been shown that genotypic diversity 

confers high resistance to heat waves in Zostera marina (Ehlers et al., 2008; Reusch et al., 

2005). The matter deserves further exploration for at least two reasons: (i) if genetic diversity 

increases resistance to warming in seagrasses, all efforts should be done not only to conserve 

seagrasses themselves, but also their genetic diversity; and (ii) the heterogeneity in resistance 

to warming among genotypes to certain extent parallels the heterogeneity in the response to 

warming of different species, already mentioned elsewhere in this discussion. Consequently, 

in the same manner we talk about species being “losers” and “winners”, there will be also 

winner and loser genotypes, open thus an stimulating evolutionary perspective. 

Where do we expect to go through such experiments? 

It is almost impossible to address all the subjects outlined above (as well as others equally 

relevant) based solely on mesocosm experiments. It is therefore necessary to combine those 

smale-scale experimental approaches with more extended field work that would reduce the 

artificiality of the experimental context and would broad the space scale, thus fixing some of 

the limitations mentioned previously. Although, in our context, field manipulative 

experiments are technically very complex, efforts should be done, maybe using natural 

temperature gradients or applying opportunistic strategies (e.g. after a heat wave). Other 

tools, such as modeling, can help to transcend the useful but narrow universe of mesocosms. 

 

*** 

Seagrass ecosystems, as complex systems, are much more than the sum of their parts, and 

each part is much more than the sum of their sub-parts; and so on. To understand how big 

parts work, it is necessary to understand how the smallest parts do, in its individuality and in 

its ensemble to function as a whole. Just, as if they were the pieces that make up a puzzle, 

one of the most valuable puzzles hidden under the ocean waters. Understanding the pieces 

of the puzzle and how they fit are unavoidable steps to protect it from the threats of global 

change. 
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If you can’t explain simply, you don’t understand it well enough. 

Albert Einstein 



 

 

 Conclusions 

125 

 

 

 

CONCLUSIONS 

 

 

 

 

 

 

 



 

 
126 

 

 

 

 

 

 

 

 

 

 

 
 

 



 

 

 Conclusions 

127 

1. The performances of the three seagrass species studied in this thesis were clearly 

influenced by experimental increases in temperature, although there was a great 

interspecific variability in the responses and in the thermal thresholds above which 

the effects became detrimental. Such variability is most likely the result of their 

different life stories, ecological strategies and biogeographical affinities. 

 

2. A very different thermotolerance and response to warming was found between the 

two main Mediterranean species (Posidonia oceanica and Cymodocea nodosa), based on 

diverging strategies to cope with thermal stress. In effect, while in C. nodosa 

antioxidant enzymes were activated in response to warming, seemingly an effective 

thermal protective mechanism, P. oceanica did not and, in turn, seemed only to lightly 

activate dissipation pathways (NPQ and xanthophyll cycle) although with limited 

effects. 

 

3. These differences might potentially cause changes on the distribution and abundance 

of these two species in the Mediterranean, with a potential extension of C. nodosa 

meadows and a contraction of those of P. oceanica, which might be replaced by other 

opportunistic and more thermotolerance species, overall entailing relevant 

consequences not only for the goods and services those ecosystems provide but also 

for the whole Mediterranean ecosystem. 

 

4. The action of warming in combination with other widespread stressors such as 

eutrophication can worsen, either in an additive or synergistic manner, the predicted 

effects of warming alone. Both Mediterranean species studied showed synergistic 

effects, in P. oceanica when combining high nutrient concentration in water and 

increased temperature, and in C. nodosa when combining the organic enrichment of 

sediment and increased temperature. As those synergies seem to be more the rule 

than the exception, efforts should be done to properly assess combinations of 

stressors, more than stressors in isolation. 

 

5. Surprisingly, we have found one stressor (increased salinity) that, instead of causing 

additional deterioration in combination with thermal increase for the estuarine 

seagrass species Halophila ovalis, buffered the detrimental thermal effects. Although 

this result should be viewed with caution due to experimental limitations, it 

underlines the complexity of nature and the difficulties faced when attempting 

predictions on global warming consequences. 

 

6. Thermal stress acts at different levels of biological organization, from the molecular 

to the ecosystem and beyond, and upscale and downscale through these levels, 

resulting in a network of interactions within the organisms, between the organisms 

(of the same or different species), between the organisms and the environment and 

even within and between larger systems. The complexity of this network is 

overwhelming, but unpacking, even partially, some of its components is probably 

one of the main challenges science is facing today. 
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Figure S1. Chlorophyll a content (A), chlorophyll b content (B) and molar ratio chlorophyll b: chlorophyll a 

(C) in leaves of P. oceanica and C. nodosa exposed to four experimental temperatures for five weeks. Values are 

reported as mean ± SE, n=3. 

 

 
 

Figure S2. Carbohydrates (NSCs, either in the form of starch or soluble sugars) content in leaves (left panel) 

and rhizomes (right panel) of P. oceanica (A and B) and C. nodosa (C and D) plants exposed to four experimental 

temperatures. Statistical differences among temperatures are indicated by different letters. Values are reported 

as mean ± SE, n=3.
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Figure S3. Xanthophylls cycle pigments (mean ± SE, n=3) in P. oceanica and C. nodosa plants after being exposed 

to a range of four temperatures for five weeks. (A) Total xanthophyll concentration relative to chlorophyll 

content (VAZ) and (B) the degree of conversion of the xanthophyll cycle to AZ (A+Z:total chlorophyll molar 

ratio). 

 

 

Figure S4. Membrane lipid peroxidation (expressed as MDA equivalents, see text), measured in shoots of P. 

oceanica and C. nodosa exposed to a range of four temperatures. Values are reported as mean ± SE, n=3. 
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Table S1. Results of PERMANOVA (multivariate and univariate analysis) testing for the significance of effects 

of temperature (20 ºC, 24 ºC, 28 ºC and 32 ºC) and species (P. oceanica and C. nodosa) on plant response variables 

after plants were exposed to increased temperatures for five weeks. Numbers in bold indicate significant effects 

(p < 0.05). 

 

Variable Source df MS Pseudo-F P Unique perms 

 Main test      

 Species (Sp) 1 2.31E+05 63.2100 0.0001 9946 

 Temperature (Te) 3 3876.4 1.0610 0.3961 9942 

 SpxTe 3 5194.6 1.4218 0.2271 9933 

 Residual 16 3653.6                   

 Total 23     

       

 Individual test      

Fv/Fm       

 Species (Sp) 1 7.26E-04 70.757 0.0001 9834 

 Temperature (Te) 3 1.55E-04 15.133 0.0003 9955 

 SpxTe 3 1.01E-04 9.8565 0.001 9964 

 Residual 16 1.03E-05                   

 Total 23              

ΔF/Fm'       

 Species (Sp) 1 6.48E-04 7.1131 0.0167 9850 

 Temperature (Te) 3 1.15E-03 12.601 0.0002 9944 

 SpxTe 3 1.09E-03 11.91 0.0006 9953 

 Residual 16 9.12E-05                   

 Total 23                             

ETRmax       

 Species (Sp) 1 817.36 394.02 0.0001 9733 

 Temperature (Te) 3 23.686 11.418 0.0007 9950 

 SpxTe 3 16.275 7.8453 0.0025 9952 

 Residual 16 2.0744                   

 Total 23                          

NPQ       

 Species (Sp) 1 0.42817 22.16 0.0003 9856 

 Temperature (Te) 3 3.08E-02 1.5923 0.2279 9955 

 SpxTe 3 0.14523 7.5163 0.0016 9952 

 Residual 16 1.93E-02                   

 Total 23              

Chla       

 Species (Sp) 1 7893.8 3.7428 0.0718 9840 

 Temperature (Te) 3 1813.2 0.85973 0.5004 9956 

 SpxTe 3 1191.9 0.56514 0.6558 9943 

 Residual 16 2109.1                   

 Total 23           

       

       

       



 

 

 Supplementary material 

160 

Chlb       

 Species (Sp) 1 22.488 3.71E-02 0.8565 9842 

 Temperature (Te) 3 549.44 0.90722 0.4833 9961 

 SpxTe 3 418.19 0.69051 0.5877 9950 

 Residual 16 605.63                    

 Total 23                           

Chlb/Chla       

 Species (Sp) 1 6.63E-02 238.48 0.0001 9808 

 Temperature (Te) 3 6.52E-04 2.3459 0.1065 9952 

 SpxTe 3 5.79E-04 2.084 0.1503 9955 

 Residual 16 2.78E-04                   

 Total 23                             

Gross Pmax       

 Species (Sp) 1 176.7 11.124 0.0023 9833 

 Temperature (Te) 3 7.0352 0.44291 0.7295 9956 

 SpxTe 3 122.43 7.7079 0.0002 9968 

 Residual 16 15.884                   

 Total 23                          

Rd       

 Species (Sp) 1 0.21794 7.64E-02 0.7823 9833 

 Temperature (Te) 3 3.4108 1.1958 0.3392 9949 

 SpxTe 3 2.8691 1.0059 0.4093 9949 

 Residual 16 2.8523                    

 Total 23            

P:Rd       

 Species (Sp) 1 3.6811 5.378 0.0303 9835 

 Temperature (Te) 3 0.92053 1.3449 0.2906 9960 

 SpxTe 3 6.4848 9.4741 0.0007 9949 

 Residual 16 0.68448                   

 Total 23            

Starch Leaf       

 Species (Sp) 1 31.906 102.71 0.0001 9823 

 Temperature (Te) 3 1.2298 3.9589 0.0223 9953 

 SpxTe 3 0.15513 0.49939 0.6748 9952 

 Residual 16 0.31064                   

 Total 23            

Soluble Leaf       

 Species (Sp) 1 24.039 239.98 0.0001 9779 

 Temperature (Te) 3 0.46152 4.6072 0.0148 9946 

 SpxTe 3 0.10803 1.0784 0.3842 9948 

 Residual 16 0.10017                   

 Total 23            

NSCs Leaf       

 Species (Sp) 1 111.33 172.39 0.0001 9818 

 Temperature (Te) 3 2.8814 4.4614 0.013 9968 

 SpxTe 3 0.3178 0.49208 0.6988 9960 

 Residual 16 0.64584                   

 Total 23            
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Starch Rhiz       

 Species (Sp) 1 0.51761 21.561 0.0005 9848 

 Temperature (Te) 3 0.13659 5.6896 0.0072 9952 

 SpxTe 3 0.30267 12.608 0.0005 9947 

 Residual 16 2.40E-02                   

 Total 23                             

Soluble Rhiz       

 Species (Sp) 1 852.09 177.07 0.0001 9819 

 Temperature (Te) 3 25.126 5.2213 0.0118 9953 

 SpxTe 3 37.581 7.8097 0.0022 9967 

 Residual 16 4.8122                   

 Total 23           

NSCs Rhiz       

 Species (Sp) 1 894.61 180.96 0.0001 9821 

 Temperature (Te) 3 26.893 5.4398 0.011 9966 

 SpxTe 3 43.465 8.7919 0.0016 9950 

 Residual 16 4.9437                   

 Total 23                          

Necrosis       

 Species (Sp) 1 671.60 53.79 0.0001 9822 

 Temperature (Te) 3 22.17 1.78 0.1867 9953 

 SpxTe 3 88.67 7.10 0.0033 9952 

 Residual 16 12.49                   

 Total 23                          

Growth       

 Species (Sp) 1 0.32725 20.592 0.0007 9813 

 Temperature (Te) 3 9.42E-02 5.9298 0.005 9955 

 SpxTe 3 0.47746 30.044 0.0001 9950 

 Residual 16 1.59E-02                   

 Total 23                      

Net shoot change       

 Species (Sp) 1 8286.9 166.94 0.0001 9833 

 Temperature (Te) 3 153.6 3.0943 0.0508 9957 

 SpxTe 3 117.07 2.3584 0.1102 9954 

 Residual 16 49.64                   

 Total 23           

Violaxanthin       

 Species (Sp) 1 0.22932 1.17E-02 0.9208 9865 

 Temperature (Te) 3 11.271 0.57338 0.6617 9954 

 SpxTe 3 15.855 0.80657 0.5126 9961 

 Residual 16 19.658                    

 Total 23            

Anteraxanthin       

 Species (Sp) 1 4.09E-02 56.56 0.0001 9826 

 Temperature (Te) 3 1.36E-03 1.8841 0.1663 9960 

 SpxTe 3 2.22E-04 0.30667 0.8206 9952 

 Residual 16 7.23E-04                   

 Total 23                      
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Zeaxanthin       

 Species (Sp) 1 1.2058 16.811 0.0014 9833 

 Temperature (Te) 3 4.81E-02 0.67069 0.5944 9943 

 SpxTe 3 0.3182 4.436 0.0139 9945 

 Residual 16 7.17E-02                   

 Total 23                             

VAZ       

 Species (Sp) 1 60.3 14.158 0.0023 9852 

 Temperature (Te) 3 2.7168 0.6379 0.628 9958 

 SpxTe 3 18.102 4.2503 0.0113 9955 

 Residual 16 4.259                   

 Total 23                   

AZ       

 Species (Sp) 1 58.473 13.696 0.0025 9807 

 Temperature (Te) 3 2.6951 0.63128 0.627 9957 

 SpxTe 3 18.042 4.226 0.0091 9954 

 Residual 16 4.2692                   

 Total 23                   

DR       

 Species (Sp) 1 0.71523 51.227 0.0001 9838 

 Temperature (Te) 3 4.59E-03 0.32892 0.8187 9946 

 SpxTe 3 4.18E-02 2.9962 0.0414 9958 

 Residual 16 1.40E-02                   

 Total 23                      

GPX       

 Species (Sp) 1 787.01 142.25 0.0001 9865 

 Temperature (Te) 3 106.03 19.165 0.0001 9960 

 SpxTe 3 131.9 23.841 0.0002 9962 

 Residual 16 5.5325                   

 Total 23                          

APX       

 Species (Sp) 1 0.46218 9.4211 0.0069 9832 

 Temperature (Te) 3 7.53E-02 1.5341 0.2416 9959 

 SpxTe 3 0.14014 2.8566 0.0698 9956 

 Residual 16 4.91E-02                   

 Total 23              

GST       

 Species (Sp) 1 16.855 84.558 0.0001 9825 

 Temperature (Te) 3 0.38033 1.9081 0.1746 9957 

 SpxTe 3 0.99495 4.9915 0.0147 9952 

 Residual 16 0.19933                   

 Total 23            

GPOX       

 Species (Sp) 1 7354.9 107.23 0.0001 9827 

 Temperature (Te) 3 83.122 1.2119 0.3344 9956 

 SpxTe 3 163.97 2.3907 0.1139 9962 

 Residual 16 68.589                   

 Total 23                   
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SOD       

 Species (Sp) 1 984.36 7.3474 0.0162 9832 

 Temperature (Te) 3 444.6 3.3185 0.0502 9956 

 SpxTe 3 1544.8 11.531 0.0003 9954 

 Residual 16 133.97                   

 Total 23           

DHAR       

 Species (Sp) 1 5.50E-04 4.9131 0.0398 9843 

 Temperature (Te) 3 3.34E-04 2.9834 0.0659 9955 

 SpxTe 3 3.89E-04 3.4678 0.0415 9956 

 Residual 16 1.12E-04                   

 Total 23     

MDA       

 Species (Sp) 1 602 31.786 0.0001 9820 

 Temperature (Te) 3 16.835 8.89E-02 0.9684 9963 

 SpxTe 3 91.645 0.4839 0.6963 9951 

 Residual 16 18.939                    

  Total 23                     
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Table S2. Results of one-way ANOVA assessing the significance of temperature on Posidonia oceanica plant 

response variables after plants were exposed to four temperatures for five weeks. Numbers in bold indicate 

significant effects (p < 0.05). 

Variable Factor Df SS MS F  p-value 

Fv/Fm Temperature 3 0.0007 0.0002 50.537 0.00002 

 Residual 8 0.0000 0.0000   

       

ΔF/Fm' Temperature 3 0.0046 0.0015 22.639 0.0003 

 Residual 8 0.0005 0.0001   

       

ETRmax Temperature 3 17.5526 5.8509 5.138 0.0286 

 Residual 8 9.1094 1.1387   

       

NPQ Temperature 3 0.0663 0.0221 9.525 0.0051 

 Residual 8 0.0186 0.0023   

       

Chla Temperature 3 5929.4288 1976.4763 0.619 0.6218 

 Residual 8 25527.7565 3190.9696   

       

Chlb Temperature 3 2221.9559 740.6520 0.726 0.5646 

 Residual 8 8165.0875 1020.6359   

       

Chlb/Chla Temperature 3 0.0033 0.0011 2877.000 0.103 

 Residual 8 0.0031 0.0004   

       

Gross Pmax Temperature 3 188.3666 62.7889 11.941 0.0025 

 Residual 8 42.0655 5.2582   

       

Rd Temperature 3 12.4516 4.1505 1.418 0.3073 

 Residual 8 23.4210 2.9276   

       

P:Rd Temperature 3 7.8100 2.6033 4.107 0.0489 

 Residual 8 5.0714 0.6339   

       

Starch Leaf Temperature 3 0.8740 0.2913 0.868 0.4965 

 Residual 8 2.6861 0.3358   

       

Soluble Leaf  Temperature 3 0.0832 0.0277 1.916 0.2055 

 Residual 8 0.1158 0.0145   

       

NSCs Leaf Temperature 3 0.1144 0.0381 1.408 0.3098 

 Residual 8 0.2167 0.0271   

       

Starch Rhizome Temperature 3 0.2489 0.0830 2.210 0.1645 

 Residual 8 0.3003 0.0375   
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Soluble Rhizome Temperature 3 6.2173 2.0724 1.543 0.2770 

 Residual 8 10.7478 1.3435   

       

NSCs Rhizome Temperature 3 7.9549 2.6516 1.870 0.2130 

 Residual 8 11.3453 1.4182   

       

Necrosis Temperature 3 107.3309 35.7770 1.668 0.2501 

 Residual 8 171.6369 21.4546   

       

Leaf growth Temperature 3 1.4831 0.4944 18.298 0.0006 

 Residual 8 0.2162 0.0270   

       

Net shoot change Temperature 3 752.3321 250.7774 12.863 0.0020 

 Residual 8 155.9639 19.4955   

       

Violaxanthin Temperature 3 62.3984 20.7995 0.639 0.6107 

 Residual 8 260.2575 32.5322   

       

Anteraxanthin Temperature 3 0.0010 0.0003 0.669 0.5942 

 Residual 8 0.0041 0.0005   

       

Zeaxanthin Temperature 3 0.1050 0.0350 0.850 0.5048 

 Residual 8 0.3296 0.0412   

       

VAZ Temperature 3 21.9386 7.3129 1.036 0.4271 

 Residual 8 56.4571 7.0571   

       

AZ Temperature 3 21.8133 7.2711 1.028 0.4304 

 Residual 8 56.5998 7.0750   

       

DR Temperature 3 0.0144 0.0048 1.309 0.3369 

 Residual 8 0.0292 0.0037   

       

GPX Temperature 3 4.6513 1.5504 2.779 0.1102 

 Residual 8 4.4640 0.5580   

       

APX Temperature 3 0.0323 0.0108 0.455 0.7210 

 Residual 8 0.1892 0.0237   

       

GST Temperature 3 0.4805 0.1602 5.438 0.0247 

 Residual 8 0.2356 0.0294   

       

GPOX Temperature 3 2.0301 0.6767 11.622 0.0028 

 Residual 8 0.4658 0.0582   

       

SOD Temperature 3 2434.6184 811.5395 7.629 0.0099 

 Residual 8 850.9865 106.3733   
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DHAR Temperature 3 0.0001 0.0000 0.591 0.6380 

 Residual 8 0.0004 0.0001   

       

MDA Temperature 3 26.7002 8.9001 0.255 0.8558 

  Residual 8 279.3483 34.9185     
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Table S3. Results of one-way ANOVA assessing the significance of the effects of temperature on Cymodocea 

nodosa plant response variables after plants were exposed to four temperatures for five weeks. Numbers in bold 

indicate significant effects (p < 0.05).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Variable Factor Df SS MS F p-value 

Fv/Fm Temperature 3 0.0001 0.0000 1.650 0.2537 

 Residual 8 0.0001 0.0000   

       

ΔF/Fm' Temperature 3 0.0021 0.0007 6.125 0.0181 

 Residual 8 0.0009 0.0001   

       

ETRmax Temperature 3 102.3292 34.1097 11.331 0.0030 

 Residual 8 24.0818 3.0102   

       

NPQ Temperature 3 0.0898 0.0299 1.671 0.2495 

 Residual 8 0.1433 0.0179   

       

Chla Temperature 3 3085.9756 1028.6585 1.001 0.4405 

 Residual 8 8217.2779 1027.1597   

       

Chlb Temperature 3 680.9257 226.9752 1.191 0.3730 

 Residual 8 1524.9827 190.6228   

       

Chb:Chla Temperature 3 0.0004 0.0001 0.748 0.554 

 Residual 8 0.0014 0.0002   

       

Gross Pmax Temperature 3 0.1198 0.0399 2.789 0.1094 

 Residual 8 0.1145 0.0143   

       

Rd Temperature 3 6.3882 2.1294 0.767 0.5440 

 Residual 8 22.2162 2.7770   

       

P:Rd  Temperature 3 0.3515 0.1172 7.761 0.0094 

 Residual 8 0.1208 0.0151   

       

Starch Leaf Temperature 3 3.2807 1.0936 3.830 0.0572 

 Residual 8 2.2842 0.2855   

       

Soluble Leaf Temperature 3 1.1520 0.3840 3.673 0.0627 

 Residual 8 0.8363 0.1045   

       

NSCs Leaf Temperature 3 6.8523 2.2841 3.495 0.0697 

 Residual 8 5.2279 0.6535   

       

Starch Rhizome Temperature 3 1.0689 0.3563 34.012 0.0001 

 Residual 8 0.0838 0.0105   
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Soluble Rhizome Temperature 3 181.9046 60.6349 7.322 0.0111 

 Residual 8 66.2467 8.2808   

       

NSCs Rhizome Temperature 3 203.1184 67.7061 7.994 0.0086 

 Residual 8 67.7543 8.4693   

       

Necrosis Temperature 3 225.1873 75.0624 21.332 0.0004 

 Residual 8 28.1501 3.5188   

       

Leaf growth Temperature 3 0.1098 0.0366 18.781 0.0006 

 Residual 8 0.0156 0.0019   

       

Net shoot change Temperature 3 59.6761 19.8920 0.249 0.8597 

 Residual 8 638.2726 79.7841   

       

Violaxanthin Temperature 3 18.9807 6.3269 0.933 0.4684 

 Residual 8 54.2626 6.7828   

       

Anteraxanthin Temperature 3 0.0037 0.0012 1.326 0.3320 

 Residual 8 0.0075 0.0009   

       

Zeaxanthin Temperature 3 0.3225 0.1075 11.314 0.0030 

 Residual 8 0.0760 0.0095   

       

VAZ Temperature 3 40.5170 13.5057 9.245 0.0056 

 Residual 8 11.6866 1.4608   

       

AZ Temperature 3 40.3969 13.4656 9.201 0.0057 

 Residual 8 11.7079 1.4635   

       

DR Temperature 3 0.0437 0.0146 5.785 0.0211 

  Residual 8 0.0202 0.0025     

       

GPX Temperature 3 709.1309 236.3770 22.497 0.0003 

 Residual 8 84.0565 10.5071   

       

APX Temperature 3 0.6139 0.2046 2.748 0.1125 

 Residual 8 0.5957 0.0745   

       

GST Temperature 3 3.6454 1.2151 3.291 0.0790 

 Residual 8 2.9537 0.3692   

       

GPOX Temperature 3 710.3291 236.7764 1.740 0.2360 

 Residual 8 1088.4110 136.0514   

       

SOD Temperature 3 3533.6065 1177.8688 7.290 0.0112 

 Residual 8 1292.6074 161.5759   
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Table S4. Variables represented in the principal component analyses (PCA) and their abbreviations as they 

appear in the plot. 

 

DHAR Temperature 3 0.0021 0.0007 4.066 0.0500 

 Residual 8 0.0014 0.0002   

       

MDA Temperature 3 5.8440 1.9480 0.658 0.6003 

  Residual 8 23.6747 2.9593     

Variable Abbreviation (in plot) 

Maximum quantum yield Fv_Fm 
Effective quantum yield F_Fm 
Maximum electron transport rate ETRmax    
Non-photochemical quenching NPQ        
Chlorophyll a in leaves Chl a     
Chlorophyll b in leaves Chl b     
Chlb/Chla ratio Chl b.a   
Maximum net photosynthesis netPmax   
Maximum gross photosynthesis grossPmax 
Photosynthesis:Respiration ratio P_Rd ratio  
Starch content in leaves Starch L 
Soluble content in leaves Soluble Leaf 
Total non-structural carbohydrates in leaves NSC Leaf  
Starch content in rhizome Starch Rhiz 
Soluble content in rhizome Soluble Rhiz  
Total non-structural carbohydrates in rhizome NSC Rhiz  
Leaf necrosis Necrosis 
Leaf growth Growth 
Net shoot change Dem_balance 
Anteraxanthin ANTERAX   
Zeoxanthin ZEAX       
Total xanthophyll concentration relative to chlorophyll content VAZ        
A+Z:total chlorophyll molar ratio AZ         
Xanthophyll de-epoxidation ratio DR         
Glutathione peroxidase GPX        
Ascorbate peroxidase APX        
Glutathione-S-transferase GST        
Guaiacol peroxidase GPOX       
Superoxide dismutase SOD        
Dehydroascorbate reductase DHAR       
Membrane lipid peroxidation MDA        
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A B S T R A C T

Coastal ecosystems, such as seagrasses, are subjected to local (e.g. eutrophication) and global (e.g. warming)
stressors. While the separate effects of warming and eutrophication on seagrasses are relatively well known, their
joint effects remain largely unstudied. In order to fill this gap, and using Cymodocea nodosa as a model species,
we assessed the joint effects of warming (three temperatures, 20 °C, 30 °C and 35 °C) with two potential outcomes
of eutrophication: (i) increase in nutrients concentration in the water column (30 and 300 μM), and (ii) organic
enrichment in the sediment). Our results confirm that temperature in isolation clearly affects plant performance;
while plants exposed to 30 °C performed better than control plants, plants exposed to 35 °C showed clear
symptoms of deterioration (e.g. decline of photosynthetic capacity, increase of incidence of necrotic tissue).
Plants were unaffected by high ammonium concentrations; however, organic enrichment of sediment had de-
leterious effects on plant function (photosynthesis, growth, demographic balance). Interestingly, these negative
effects were exacerbated by increased temperature.
Our findings indicate that in addition to the possibility of the persistence of C. nodosa being directly jeo-

pardized by temperature increase, the joint effects of warming and eutrophication may further curtail its sur-
vival. This should be taken into consideration in both predictions of climate change consequences and in local
planning.

1. Introduction

Coastal ecosystems are facing multiple anthropogenic stressors that
adversely affect their biodiversity and functioning (Vinebrooke et al.,
2004). Such stressors are generated at a range of spatial scales, from the
global to the most local. Global stressors are mostly related to climate
change and include rising sea level, seawater acidification, warming
and an increased frequency of heat waves (IPCC, 2013). The most
prominent and pervasive stressor generated locally is probably eu-
trophication: increased loading of nutrients and organic matter from
human activities (Nixon, 2009). This has come to be considered one of
the major threats confronting coastal ecosystems (Bricker et al., 2008;
Hemminga and Duarte, 2002). The knowledge accumulated to date on
the effects of individual stressors on key species is impressive. However,
stressors rarely occur in isolation in the environment and, when acting
together, they can be synergistic, additive or antagonistic (Todgham
and Stillman, 2013). The interaction between stressors is now viewed as

a crucial issue, to the point that it is recognized that single-factor ex-
periments are of limited use for assessing the effects of climate change
on coastal marine ecosystems subjected to other disturbances, such as
eutrophication (Wernberg et al., 2012). Undoubtedly, experiments with
single stressors can help us gain knowledge of the intrinsic, basic re-
sponse mechanisms involved. However, the results should only be ex-
trapolated to nature with great caution, not only due to problems as-
sociated with scaling up, but also due to potential interactions with
concurrent stressors (Gunderson et al., 2016).

Seagrasses are widespread habitat-forming species of great ecolo-
gical value that are exposed to multiple threats and are currently suf-
fering declines worldwide (Waycott et al., 2009). The effects of climate
change (including increased temperature and acidification) or eu-
trophication on the distribution, abundance and vitality of seagrasses
are relatively well known (see reviews by Koch et al., 2013, for climate
change; and Burkholder et al., 2007, for eutrophication), and even
though their effects have, for the most part, been assessed separately
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(but see Campbell and Fourqurean, 2014, 2018; Ow et al., 2016). Thus,
it is well known that eutrophication has two main consequences for
seagrasses. On the one hand, the effects of increased nutrient con-
centrations are generally considered detrimental, although they
strongly depend on species-specific features and on local conditions
(Kilminster et al., 2015; Romero et al., 2006; Ruiz et al., 2001). Thus,
while a moderate supply of nutrients to plants adapted to nutrient-poor
environments can stimulate growth (Alcoverro et al., 1997; Pérez et al.,
1991; Short, 1987), once a threshold is reached, it may cause negative
effects on plant photosynthesis and may even curtail survival (Brun
et al., 2002, 2008; Hauxwell et al., 2003; van Der Heide et al., 2008).
These negative effects can be caused directly, mainly by ammonium
toxicity (Touchette and Burkholder, 2000; Van Katwijk et al., 1997); or
indirectly, by stimulating phytoplanktonic, epiphytic and macroalgal
overgrowth, and enhancing negative biotic interactions such as macro
herbivore activity (Campbell et al., 2018; Ruiz et al., 2009; Wear et al.,
1999). On the other hand, an increased supply of organic matter to the
seagrass sediment, such as that caused by eutrophication, stimulates its
oxygen demand, eventually leading to hypoxic or anoxic conditions
(Frederiksen et al., 2008; Pérez et al., 2007). This oxygen shortage not
only blocks metabolic function in seagrass roots, including respiration,
growth and nutrient acquisition (Smith and Piedrahita, 1988), but it
also stimulates microbial sulphate reduction, which leads to below-
ground seagrass organs (rhizomes and, specially, roots) being exposed
to sulphide, a strong phytotoxin (Holmer and Bondgaard, 2001). De-
spite seagrass having evolved a number of adaptations which increase
its chances of surviving in naturally organic-rich sediments (Hasler-
Sheetal and Holmer, 2015), additional deposition of organic C can ex-
ceed the seagrass response capacity, and have negative effects such as
reduced photosynthesis, impaired growth or, in some cases, mass
mortality (Collier and Waycott, 2014; Frederiksen et al., 2008; Koch
et al., 2007; Olivé et al., 2009).

Temperature affects seagrass physiology in a number of ways. It is
known that increased temperature usually stimulates both photo-
synthesis (Campbell et al., 2006; Winters et al., 2011) and respiration
(Schulze et al, 2005); but beyond some threshold, it generally increases
the latter more than the former, thus leading to an impaired C balance
and reduced growth (Lee et al., 2005, 2007; Marín-Guirao et al., 2016,
2018; Pérez and Romero, 1992). Temperature also affects other pro-
cesses, such as for instance nutrient uptake (Borum et al., 2004;
Bulthuis, 1987) or protein synthesis (Campbell et al., 2006; Marín-
Guirao et al., 2017). Overall, when the temperature exceeds a given
threshold, which is largely species specific, thermal stress leads to a
reduction in growth (Lee et al., 2007), deterioration of shoot status and
eventually shoot mortality (Marbà and Duarte, 2010). The responses of
seagrasses to increased temperature are relatively well documented;
however, little is known of the potential distortion of these responses
caused by eutrophication.

Global warming is expected to increase in the coming decades and
will affect the surface waters of almost all of the world's oceans.
Meanwhile, a large part of the planet's coastal areas are subjected to
different degrees of eutrophication (Halpern et al., 2007), which is
especially notable in industrialized countries. Consequently, many
cases, thermal stress will have an impact on meadows already affected
by chronic or acute eutrophication, whose responses to thermal stress
will probably differ from that of unaffected plants, thus limiting our
ability to make reliable and realistic predictions for future warming
scenarios. To date, only a few studies have focused on the combined
effects of warming and other stressors, such as anoxia (Koch et al.,
2007, with Halodule wrightii and Thalassia testudinum), nutrients (Kaldy,
2014, with Zostera marina) or light (York et al., 2013 with Zostera
muelleri). These works seem to suggest that synergistic effects are more
the rule than the exception. If this is the case, the consequences of
global warming may be worse than expected based solely on studies of
thermal effects. In fact, a synergistic interaction between eutrophica-
tion and seawater warming has already been suggested for the

Mediterranean seagrass Posidonia oceanica to forecast trajectories in
abundance and distribution of this seagrass species in the context of the
different global climate change scenarios (Jordà et al., 2012). However,
a considerable gap exists in our knowledge of the combined effects of
warming and other stressors; and research is needed to confirm (or
refute) the potential synergies in seagrasses, especially in species that
dominate areas that are particularly sensitive to climate change. The
present study attempts to help fill this gap, by evaluating the joint effect
of warming and eutrophication on a Mediterranean seagrass (Cymo-
docea nodosa). The Mediterranean is one of the regions that are ex-
pected to be most affected by warming, and the sea surface temperature
rise, already in evidence (Burrows et al., 2011; Jordà et al., 2013) may
reach 3 °C by the end of the 21st century (Jordà et al., 2012); while the
frequency of heat waves is also expected to increase (IPCC, 2013).
Moreover, eutrophication has been identified as one of the major en-
vironmental threats to seagrass habitats in coastal areas, mainly due
to loading from urban, agricultural and aquaculture wastes, particularly
in the more confined environments where C. nodosa is dominant
(Boudouresque et al., 2009).

C. nodosa is widely distributed across a broad variety of shallow
Mediterranean environments, from open coastal areas to coastal la-
goons, and extends into the Atlantic, from the south of the Iberian
Peninsula to the Canary Islands and Mauritania (Green and Short, 2003;
Mascaró et al., 2009; Reyes et al., 1995). Its ecological value and its
capacity to survive relatively eutrophic conditions (Oliva et al., 2012),
as well as its considerable phenotypic plasticity (Pérez and Romero,
1994; Sandoval-Gil et al., 2014), make it an interesting model species to
evaluate the joint effects of increased temperatures and eutrophication.

The aim of this study is thus to explore the combined effect of a
global stressor (warming) and a local stressor (eutrophication) on
functional traits of C. nodosa. We partition the eutrophication effects
into an increased nutrient concentration in the water column and an
increase of organic matter loading of the sediment. We then determine
the response of the plant to each one of the three stressors (elevated
temperature, nutrient increase and increased organic matter loading)
separately; and also to the combined effects of temperature and each of
the other two. The main hypothesis we wish to evaluate is that tem-
perature and eutrophication act synergistically, with deleterious con-
sequences for the seagrass. To this end, we perform two fully factorial
experiments on indoor mesocosms in which plants are exposed to three
levels of temperature and, on the one hand, to three different nutrient
concentrations and, on the other hand, to two different levels of organic
matter in the sediment.

2. Material and methods

We explored the interactive effects of eutrophication and tempera-
ture in two separate experiments. In the first experiment (TNUT ex-
periment, hereinafter), temperature increase and nutrient (ammonium)
addition were applied; while in the second (TANOX experiment, here-
inafter) the stressors were temperature increase and addition of labile
organic C to the sediment.

2.1. Plant and sediment collection

Undamaged healthy C. nodosa shoots (including their rhizomes and
roots) were carefully collected by hand from a shallow, undisturbed
meadow (0.5 m deep) in Alfacs Bay (NW Mediterranean) in late April.
Only shoots less than one year old (less than 12 scars on the vertical
rhizome, Mascaró et al., 2014) were selected to reduce the effects of
physiological and morphological variability between shoots of different
ages (Pagès et al., 2010; Pérez and Romero, 1994). Sediment was col-
lected from the same area, extracting the surface layer (up to 10 cm
deep), and immediately sieved (1mm pore) to exclude macro-
invertebrates and detritus. Sediment and plants were then transported
separately in aerated tanks to the laboratory, where they were
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maintained with aeration for one night prior to the experiment being
setup. Temperature was kept constant at the ambient values measured
at the collection site (19.5 °C). The experiments were conducted at the
Experimental Chambers Service of the University of Barcelona.

2.2. Experimental design and setup

Both experiments were conducted using cylindrical transparent
aquaria (12 L capacity, 40 cm height x 20 cm diameter) placed ran-
domly in 3 experimental chambers (2.1m2). Each aquarium had an
independent air pump providing proper aeration. The chambers al-
lowed us to control the water temperature (20 °C, 30 °C and 35 °C) and
incident light (270 μmol photons m−2 s−1), which was above the sa-
turation irradiance for these plants (Pérez and Romero, 1992) on a
12 h:12 h light:dark photoperiod. To avoid experimental bias and
minimize any uncontrolled variability, the aquaria were randomly re-
located within the chambers every two days. Moreover, the aquaria
were moved from one chamber to another (changing the chamber
temperature) so that they spent approximately 1/3 of the experimental
period in each chamber. Within 24 h of collection, twenty shoots (with
their corresponding portion of rhizome and roots) were planted in each
aquarium, previously filled with 10 cm of sediment and 9 L of filtered
seawater. All the aquaria were covered with plastic film to prevent
water evaporation. For the TNUT experiment, a total of 27 aquaria were
prepared and distributed randomly in groups of 9 in the three experi-
mental chambers; while for the TANOX experiment, a total of 18
aquaria were distributed randomly in groups of 6 (see experimental
setting in Fig. 1).

The aquaria were kept at 20 °C for four days (a temperature close to
that registered during sampling) to allow for plant acclimation. After
the acclimation period, the temperature in two chambers was increased
progressively (ca. 3 °C per day) until reaching 30 °C in one and 35 °C in
the other. The third chamber was left at 20 °C as a control. The choice of
the experimental temperatures was based on an unpublished 3-year
temperature data series collected by the authors using continuous in situ
recorders, indicating average summer (July to September) temperatures
close to 30 °C, but peaking to 33 °C in the hottest summer. Based on this,
we consider that 35 °C during heat waves is a reasonable assumption
under a climate change scenario (IPCC, 2013).

For the TNUT experiment, once the experimental temperatures were
reached, NH4Cl was added to obtain the following concentrations:
control (no NH4Cl added), moderate concentration (30 μM of NH4Cl)

and high concentration (300 μM of NH4Cl). The so-called “moderate”
value (30 μM) can be observed at eutrophic sites and can trigger re-
sponses in some seagrass species (Villazán et al., 2013). The “high”
value (300 μM) represents extreme events and would only be reached
during some wastewater discharges (Cabaço et al., 2013). To counter-
balance plant uptake (roughly estimated from growth requirements,
Pérez and Romero, 1994), NH4Cl was further added to the experimental
aquaria every 5 days: 3.8 mg of NH4Cl to the moderate ammonium
treatment aquaria and 7.6mg NH4Cl to the high ammonium treatment
aquaria (with a total of two pulses after the initial addition at the be-
ginning of the experiment). Each ammonium treatment was applied to
three aquaria, chosen at random, within each temperature chamber,
resulting in a complete factorial design with n=3 replicates per ex-
perimental condition. The exposure period to both factors lasted 15
days, after which time leaves in the high-temperature treatment (35 °C)
began to show critical necrosis marks.

For the TANOX experiment, once the experimental temperature was
reached, the organic matter treatments were applied by adding labile
organic C in the form of sucrose to the sediment in the aquaria as fol-
lows: control (no sucrose addition, 0.7% DW sediment C content in
natural conditions) and high (675 g of sucrose added≈ 15% DW sedi-
ment C content). The labile organic C treatments were applied to three
aquaria, chosen at random, within each temperature chamber, resulting
in a complete factorial design with n=3 replicates per experimental
condition. The experiment ended after 7 days of exposure period, when
leaves in the high-temperature treatment (35 °C) began to show critical
necrosis marks.

2.3. Water and sediment analysis

The concentration of ammonium in the water was analysed in each
aquarium at the beginning and end of the TNUT experiment using an FP
2020 Plus fluorometer and following a standard method (Kérouel and
Aminot, 1997). The redox potential of the sediment was measured at
the end of the TANOX experiment using a Thermo Scientific, Orion Star
A211 electrode. Measurements were taken in the upper 5 cm of the
sediment layer.

2.4. Plant biochemical composition

To verify that the additions of ammonium and labile organic C
applied could affect plant conditions, directly (high level of nutrients)
and indirectly (anoxic sediment), we determined the N content (TNUT
experiment) and S content (TANOX experiment) of different plant parts.
To do this, at the end of the experiments, all the remaining shoots were
harvested from the aquaria and separated into leaves, rhizomes, and
roots. Subsequently, all plant tissues were dried at 60 °C and then finely
ground and homogenized; finally, they were weighed and packed into
tin microcapsules.

For the TNUT experiment, the nitrogen content of leaves, rhizomes
and roots was measured using a Carlo-Erba elemental auto-analyser.
For the TANOX experiment, vanadium pentoxide was added, and the
sulphur content of leaves, rhizomes and roots was determined. Samples
were analysed at the Scientific and Technological Centre (CCiT) of the
University of Barcelona.

2.5. Measurement of plant traits

The plant responses to the different stressors (or their combination)
were assessed via measurement of a series of traits, from the physio-
logical to population level.

These included maximum quantum yield of PSII (Fv/Fm), incidence
of leaf necrosis, leaf growth, rhizome elongation, and shoot demo-
graphic balance. All these variables have previously been used in the
assessment of seagrass responses to stress and are related to plant health
and performance (Beer et al., 1998; Frederiksen et al., 2008; Maxwell

Fig. 1. Experimental setting. Grey arrows indicate ammonium addition in
water and yellow arrow indicates labile organic carbon addition to sediment.
TREATMENTS: C, control; M, moderate and H, high (see text). Temporal axis
indicates: day 1, the beginning of the experimental setup with acclimation at
control temperature; day 4, end of acclimation period and progressive increase
of temperature; day 9, nutrient or labile organic carbon addition and start of the
exposure period; day 16, end of TANOX experiment (7 days exposition); day 24,
end of TNUT experiment (15 days exposition). (For interpretation of the re-
ferences to colour in this figure legend, the reader is referred to the Web version
of this article.)
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and Johnson, 2000; Pagès et al., 2010; Romero et al., 2007). Rhizome
elongation was only determined for the TANOX experiment, while all
the other traits were measured in both experiments.

Maximum quantum yield of PSII (Fv/Fm) was determined using a
diving PAM (pulse amplitude modulation) fluorometer (Walz,
Germany) after 10min of plant adaptation to dark conditions. Three
shoots were randomly selected from each aquarium (avoiding apical
shoots due to their more active growth and photosynthesis) and mea-
surements were obtained from the basal portion of the second youngest
leaves, to minimize within-shoot variability (Durako and Kunzelman,
2002; Gera et al., 2012).

The incidence of necrosis was assessed at all leaves of five shoots
from each experimental condition. Leaves were carefully separated
from each shoot and the percentage of necrotic surface, considered as
that partially or totally covered by dark brown or black spots, was vi-
sually estimated for each leaf and averaged for each aquarium.

Leaf growth was measured using a leaf punching method (Zieman,
1974) adapted to the model species (Pérez and Romero, 1994). At the
beginning of the experiments, five shoots from each aquarium
(avoiding apical shoots) were marked by punching a hole just above the
ligule of the outermost leaf with a hypodermic needle. At the end of the
experiments, the marked shoots were harvested, epiphytes were re-
moved, and the leaves were carefully separated to measure leaf growth.
Shoots were individually sorted into old and newly produced tissues,
which were then dried for 48 h at 60 °C before obtaining their dry
weights. Leaf growth rate was expressed as the new tissue produced per
shoot and day (mg DW shoot−1 day−1), averaged for each aquarium.

To measure rhizome growth, we marked two apical shoots per
aquarium with a rubber band. At the end of the experiment, these
shoots were harvested, the new portions of rhizome cut, and their
weight determined (after drying at 60 °C until constant). Rhizome
growth was then expressed as weight of new rhizome per day (mg DW
rhizome day−1).

To estimate the shoot demographic balance (the difference between
recruitment, i.e. the number of new shoots, and mortality, i.e. the
number of dead shoots), all shoots surviving at the end of the experi-
ments were counted. We computed the instantaneous demographic
balance (a) as:

a (days−1)= 1/t ln (Nt/No)

Where N0 is the number of shoots planted in each aquarium at the in-
itial time (20), Nt is the number of shoots alive in each aquarium at the
end of each experiment and t is the duration of the experiment (in
days).

Positive values for a occur when shoot recruitment is higher than
mortality, indicating a net increase in shoot abundance. Conversely,
negative values would indicate a net reduction in shoot abundance, and
hence a negative response to the stressor(s) considered.

2.6. Statistical analysis

For all statistical analysis, an aquarium was considered as the ex-
perimental unit, with n= 3 replicates per experimental condition. The
significance of the effects of temperature and ammonium, on the one
hand, and, temperature and addition of labile organic C, on the other
hand, were determined using PERMANOVA analysis based on a simi-
larity matrix created from the Euclidean distances between samples.
The analysis was run with two fixed factors: temperature (3 levels:
20 °C, 30 °C and 35 °C) and nutrients (3 levels: Control, Moderate and
High, see above) for the TNUT experiment; and temperature (3 levels:
20 °C, 30 °C and 35 °C) and addition of labile organic C (2 levels:
Control and High, see above) for the TANOX experiment.

For each experiment, one multivariate PERMANOVA was carried
out for variables related to plant biochemical composition (N and S
content of plant tissues, for the TNUT and TANOX experiment, re-
spectively), and a second for the other variables (Fv/Fm, incidence of
leaf necrosis, leaf growth, rhizome elongation, and shoot demographic
balance), followed by univariate PERMANOVAs performed separately
for each individual variable. As in PERMANOVA the test is produced by
permutation, the usual normality assumptions of ANOVA (Anderson,
2001), that were not met by most of the variables considered, is not
necessary. Pairwise comparisons were performed to identify significant
differences between individual treatments. In those cases, in which the
number of permutations was too low (<999, Anderson et al., 2008), a
Monte Carlo test was applied to establish an alternative p-value to va-
lidate the analysis. Analysis was carried out using the Primer v6 sta-
tistical package (Clarke and Gorley, 2006), in conjunction with the
Windows PERMANOVA + module (Anderson et al., 2008).

3. Results

3.1. Culture conditions and plant biochemical composition

The different treatments (additions of nutrient and labile organic C)
effectively changed the conditions under which the plants were grown.
Thus, on the one hand, in the TNUT experiment, the ammonium con-
centrations in the water of the moderate and high treatments were in-
creased (relative to the water in the control aquaria) to the target values
at the beginning of the experiment and had decreased at the end of the
experiment, despite the repeated additions of ammonium and irre-
spective of the thermal treatment (Table 1).

These results show that the plants were subjected at least to one
strong initial pulse of ammonium, plus another two pulses during the
experiment. On the other hand, in the TANOX experiment, the redox
potential of the sediments at the end of the experiment, while main-
taining positive values under control conditions, became negative in the
mesocosms subjected to large additions of high labile organic C.
Temperature affected the redox potential, with lower values at higher

Table 1
Ammonium concentrations (in μM, mean ± SEM, n=3) in the water at the beginning (just after adding 30 μM and 300 μM to the “Moderate” and “High” treatments
respectively) and at the end of the TNUT experiment.

Ammonium treatment Thermal treatment

20 °C 30 °C 35 °C

[NH4+] (μM)

Initial Final Initial Final Initial Final

Control 1.20 ± 0.50 1.54 ± 0.53 0.69 ± 0.18 1.96 ± 1.41 8.64 ± 29.63 17.95 ± 8.29
Moderate 27.76 ± 1.12 0.21 ± 0.09 26.10 ± 0.33 0.62 ± 0.08 45.64 ± 1.30 3.83 ± 2.93
High 288.06 ± 34.01 2.21 ± 0.03 252.33 ± 11.23 4.25 ± 0.79 264.55 ± 7.96 15.82 ± 8.36
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temperatures likely due to an enhancement of the bacterial activity
(Table 2).

Overall, the biochemical composition of leaves (N and S content)
changed in response to the treatments. In the TNUT experiment, addi-
tion of ammonium at high concentrations increased the N content of all
plant tissues, up to 23% relative to controls (Fig. 2a, b and c; Table 3).
In the TANOX experiment, the S content of leaves and roots was sig-
nificantly higher under conditions with an addition of labile organic C
than under control conditions (Fig. 2d and f; Table 3). Temperature had
significant effects on biochemical composition in both experiments. The
N content of leaves increased with temperature; while the N content of
rhizomes decreased at the intermediate temperature. The S content of
leaves and rhizomes increased with temperature; and the latter was
even higher due to interactive effects between temperature and the
addition of labile organic C.

3.2. Effects of temperature on plant traits

Temperature had an overall significant effect on the plant traits
measured in both experiments (Table 4). The maximum quantum yield

of PSII (Fv/Fm) revealed that the photosynthetic apparatus maintained
its integrity at 30 °C. However, Fv/Fm was significantly depressed at
35 °C (6% and 42% lower than under control conditions, in the TANOX
and TNUT experiment, respectively), suggesting that significant da-
mage was caused by warming (Fig. 3; Table 5).

The incidence of necrosis on the leaves (Fig. 4; Table 5) was low
under control conditions (20 °C; between 7% and 17% in the TANOX
and TNUT experiment, respectively) and at 30 °C (< 8% in both ex-
periments), but increased significantly to 23%–33% (depending on the
experiment) at 35 °C.

Leaf growth rates (Fig. 5a and b; Table 5) showed higher values at
30 °C than under control conditions (45%) and minimum values at 35 °C
(a decrease of between 63% and 94% relative to control conditions, in
the TNUT and TANOX experiment, respectively). Rhizome elongation
(only measured in the TANOX experiment) was also significantly higher
(74%) at 30 °C than at the other two temperatures (Fig. 5c; Table 5).

The shoot demographic balance (i.e. recruitment – mortality) was
clearly sensitive to temperature, with a sharp increase (83% on average,
relative to the control temperature) under moderate warming (30 °C)
and a clear decrease under extreme warming (35 °C), dropping to ne-
gative values in the TNUT experiment (Fig. 6a; Table 5).

3.3. The effects of additions of ammonium and labile organic C on plant
traits

Ammonium addition did not show any effect on any of the plant
traits measured (Figs. 3a, 4a and 5a and 6a; Tables 4 and 5). The ad-
dition of labile organic C did not affect the maximum quantum yield of
PSII, the incidence of necrosis or the shoot demographic balance
(Figs. 3b, 4b and 6b; Table 5). However, it caused a significant decrease
(relative to plants grown in unaltered sediment at 30 °C) in leaf and
rhizome growth rates (of 44% and 67% respectively; Fig. 5b and c;
Table 5).

Table 2
Redox potential values (mean ± SEM, n=3) of the sediment in the TANOX
experiment for 7 days in three thermal treatments (20 °C, 30 °C, and 35 °C).
Lower case letters indicate significant differences (p > 0.05) between treat-
ments.

Labile organic C
treatment

Thermal treatment

20 °C 30 °C 35 °C

Redox potential (mV)

Control 180.33 ± 8.31a 137.07 ± 16.41b 78.59 ± 9.52c

High −24.81 ± 6.90d −230.19 ± 11.38e −281.78 ± 14.84f

Fig. 2. Cymodocea nodosa biochemical composition (N content (mean ± SE, n=3) and sulphur content (mean ± SE, n=3)) measured in (a & d) roots, (b & e)
rhizomes and (c & f) leaves, at 3 thermal treatments (20 °C, 30 °C, and 35 °C, light grey, dark grey and black respectively) in the TNUT (a, b & c) and TANOX (d, e & f)
experiments, expressed in percentage (%).
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3.4. Interactive effects

Our results did not show any significant interaction between
warming and ammonium addition (TNUT experiment) in terms of their
effects on plant traits. In contrast, we found interactive effects of
warming and the addition of labile organic C to the sediment (TANOX
experiment), both overall (Table 4) and in individual traits. Thus, the

stimulation of leaf and rhizome growth at intermediate temperatures
and the improvement of the shoot demographic balance were cancelled
by labile organic C. In addition to this, with the normal organic C
content of the sediment, high temperature (35 °C) did not alter rhizome
growth or the demographic balance, but it did in the sediment with
labile organic C added to it.

Table 3
Results of PERMANOVA testing for the significance of effects of temperature (20 °C, 30 °C, and 35 °C), nutrient level (Control, Moderate, and High additions) and
labile organic C addition (Control and High) on plant biochemical composition. Numbers in bold indicate significant effects (p < 0.05). The results of the pair-wise
tests are indicated in factors with significant influence.

Experiment Variable Source df SS MS Pseudo-F Unique perms P Pair-wise

TNUT Main test
Temperature 2 1.802 0.901 9.839 9952 0.0001
Ammonium 2 1.467 0.734 8.011 9947 0.0002
Temp x Ammonium 4 0.582 0.145 1.588 9931 0.1377
Res 18 1.648 0.092

N leaves Temperature 2 0.254 0.127 3.153 9952 0.0634
Ammonium 2 0.605 0.302 7.520 9950 0.0042 H > C=M
Temp x Ammonium 4 0.373 0.093 2.317 9958 0.0955
Res 18 0.724 0.04

N rhizome Temperature 2 1.257 0.629 20.145 9949 0.0001 35=20 > 30
Ammonium 2 0.594 0.297 9.519 9953 0.0012 H > C=M
Temp x Ammonium 4 0.188 0.047 1.506 9956 0.2396
Res 18 0.562 0.031

N roots Temperature 2 0.291 0.145 7.219 9943 0.006 35 > 20=30
Ammonium 2 0.268 0.134 6.655 9945 0.0059 H > C=M
Temp x Ammonium 4 0.021 0.005 0.261 9961 0.9
Res 18 0.363 0.02

TANOX Main test
Temperature 2 25.162 12.581 9.972 9961 0.001
Labile organic C 1 8.366 8.366 6.631 9952 0.0087
Temp x Lab. org. C 2 7.581 3.790 3.004 9940 0.0443
Res 12 15.140 1.262

S leaves Temperature 2 0.06 0.03 5.686 9947 0.0228
Labile organic C 1 0.034 0.034 6.456 9823 0.0302 30=35 > 20
Temp x Lab. org. C 2 0.032 0.016 3.088 9955 0.0825 C < H
Res 12 0.063 0.005

S rhizome Temperature 2 0.021 0.011 10.223 9951 0.0012
Labile organic C 1 0.003 0.003 3.013 9851 0.1117 20=30, 20=35, 30 > 35
Temp x Lab. org. C 2 0.021 0.01 9.921 9952 0.0016
Res 12 0.012 0.001

S roots Temperature 2 0.026 0.013 1.435 9951 0.2638
Labile organic C 1 0.146 0.146 16.286 9834 0.0029
Temp x Lab. org. C 2 0.03 0.015 1.648 9954 0.2393 C < H
Res 12 0.108 0.009

Table 4
Multivariate PERMANOVA testing for the significance of the general effect of temperature (20 °C, 30 °C, and 35 °C), nutrient level (Control, Moderate, and High
additions) and labile organic C addition (Control and High) on plant traits. Numbers in bold indicate significant effects (p < 0.05).

Experiment Source df SS MS Pseudo-F Unique perms P

Main test
TNUT Temperature 2 1725.100 862.540 8.612 9950 0.0030

Ammonium 2 50.622 25.311 0.253 9949 0.7830
Temp x Ammonium 4 144.960 36.241 0.362 9958 0.8326
Res 18 1802.700 100.150

TANOX Temperature 2 105420 52709 105.350 9948 0.0001
Labile organic C 1 435410 435410 870.260 9882 0.0001
Temp x Labile organic C 2 25298 12649 25.282 9948 0.0001
Res 12 6003.800 500.320
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4. Discussion

Climate change is having an impact on a world that has already
been altered by a panoply of local stressors. Our results show how cu-
mulative stress, in this case derived from the joint action of warming

and eutrophication, can worsen, either through additive or interactive
effects, the negative consequences of each stressor acting in isolation.

As already known, temperature increases can negatively affect dif-
ferent functional mechanisms of seagrasses (Koch et al., 2013). The
response patterns and the thresholds involved are largely species

Fig. 3. Cymodocea nodosamaximum quantum yield (mean ± SE, n=3) at 3 thermal treatments (20 °C, 30 °C, and 35 °C, light grey, dark grey and black respectively)
in the (a) TNUT and (b) TANOX experiments.

Table 5
Results of PERMANOVA testing for the significance of effects of temperature (20 °C, 30 °C, and 35 °C), nutrient level (Control, Moderate, and High additions) and
labile organic C addition (Control and High) on each plant trait. Numbers in bold indicate significant effects (p < 0.05). The results of the pair-wise tests are
indicated in factors with significant influence.

Variable Experiment Source df SS MS Pseudo-F Unique perms P Pair-wise

Fv/Fm TNUT Temperature 2 0.543 0.272 52.937 9952 0.0001 20=30 > 35
Ammonium 2 0.012 0.006 1.206 9947 0.3277
Temp x Ammo. 4 0.012 0.003 0.597 9943 0.6722
Res 18 0.092 0.005

TANOX Temperature 2 0.139 0.069 11.488 9956 0.001 30 > 20>35
Labile organic C 1 0.016 0.016 2.595 9851 0.1297
Temp x Lab. org. C 2 0.04 0.02 3.283 9951 0.0555
Res 12 0.072 0.006

Necrosis TNUT Temperature 2 1714.000 856.990 8.566 9957 0.0031 30 < 20=35
Ammonium 2 50.242 25.121 0.251 9954 0.7805
Temp x Ammonium 4 144.860 36.215 0.362 9962 0.8436
Res 18 1800.900 100.050

TANOX Temperature 2 4060.000 2030.000 23.683 9948 0.0006 20=30 < 35
Labile organic C 1 354.090 354.090 4.131 9859 0.0655
Temp x Lab. org. C 2 62.753 31.376 0.366 9956 0.7057
Res 12 1028.600 85.714

Leaf growth rate TNUT Temperature 2 10.538 5.269 53.080 9950 0.0001 30 > 20>35
Ammonium 2 0.367 0.183 1.848 9950 0.186
Temp x Ammonium 4 0.091 0.023 0.228 9951 0.9224
Res 18 1.787 0.099

TANOX Temperature 2 12.713 6.357 54.210 9955 0.0001 30 > 20>35
Labile organic C 1 1.070 1.070 9.125 9851 0.0058 C > H
Temp x Lab. org. C 2 1.327 0.663 5.657 9951 0.0075
Res 12 1.407 0.117

Rhizome growth rate TANOX Temperature 2 38.329 19.164 15.536 9954 0.0011 30 > 20=35
Labile organic C 1 23.510 23.510 19.059 9739 0.0012 C > H
Temp x Lab. org. C 2 22.905 11.452 9.284 9948 0.0035
Res 12 14.803 1.234

Shoot demographic balance TNUT Temperature 2 0.005 0.003 33.785 9964 0.0001 30 > 20>35
Ammonium 2 0.001 0.001 1.097 9957 0.3624
Temp x Ammonium 4 0.001 0.001 0.152 9962 0.9594
Res 18 0.001 0.001

TANOX Temperature 2 0.001 0.001 6.767 9952 0.0119 30 > 20=35
Labile organic C 1 0.001 0.001 3.571 9758 0.0887
Temp x Lab. org. C 2 0.001 0.001 5.231 9959 0.0219
Res 12 0.001 0.001
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Fig. 4. Leaf necrosis incidence (average necrotic surface per leaf, in %) in Cymodocea nodosa (mean ± SE, n=3) at 3 thermal treatments (20 °C, 30 °C, and 35 °C,
light grey, dark grey and black respectively) in the (a) TNUT and (b) TANOX experiments.

Fig. 5. Cymodocea nodosa growth rate (mean ± SE, n=3) at 3 thermal treatments (20 °C, 30 °C, and 35 °C, light grey, dark grey and black respectively) in two
experiments: (a) Leaf growth rate in the TNUT experiment; (b) Leaf growth rate in the TANOX experiment; (c) Rhizome growth rate in TANOX experiment.

Fig. 6. Cymodocea nodosa shoot demographic balance (mean ± SE, n=3) at 3 thermal treatments (20 °C, 30 °C, and 35 °C, light grey, dark grey and black re-
spectively) in the (a) TNUT and (b) TANOX experiments.
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specific (Campbell et al., 2006; Collier et al., 2011). In the model spe-
cies used here (C. nodosa), moderate warming seems to be beneficial for
the plant, whose performance (photosynthesis, growth and shoot de-
mographic balance) increase at 30 °C, relative to those found at the
basal spring temperature (control) of 20 °C. This pattern is fully con-
sistent in the two experiments we conducted. This is in accordance with
previous reports for this species, suggesting an optimum temperature
close to 30 °C (Olsen et al., 2012; Pérez and Romero, 1992; Savva et al.,
2018; Terrados and Ros, 1995; Tutar et al., 2017). In contrast, plant
performance was severely depressed at 35 °C; not only relative to the
30 °C optimum, but also relative to control conditions. This suggests
there is a thermal threshold of clear negative effects on plant activity
between 30 °C and 35 °C. This thermal threshold is relatively high (see
Lee et al., 2007 for comparisons), and it is in accordance with the
subtropical distribution of this species (Green and Short, 2003; Reyes
et al., 1995) and its facultative habitat in confined environments, where
summer temperatures can easily be 5 °C above open sea temperatures.

Exposure to extreme thermal values damaged the integrity of the
photosynthetic apparatus, as shown by a clear drop in Fm/Fv to values
below those considered acceptable for healthy plants (0.7–0.8,
Campbell et al., 2006; Ralph, 1998), as previously found for other
seagrass species (e.g. T. testudinum; Koch et al., 2007; e.g. Z. noltii;
Massa et al., 2009). While photosynthesis is depressed, respiration is
probably stimulated by thermal stress (not measured in this study; but
see Pérez and Romero, 1992), leading to impairment of the C budget
(Collier and Waycott, 2014), which could be the cause of the reduced
growth and the low to negative shoot demographic balance observed in
our experiments. Plants exposed to high temperatures may have to use
their energy reserves (stored non-structural carbohydrates) to cope with
this stress and the consequent energy requirement (Collier et al., 2011;
Massa et al., 2009), probably leading to exhaustion of the internal C
reserves (Marín-Guirao et al., 2018). Indeed, thermal stress also affects
other metabolic processes, causing, for instance, oxidative stress (Tutar
et al., 2017), and ultimately affecting plant health, which deteriorated
in our experiments as shown by the increase in the incidence of ne-
crosis.

Reducing the shoot demographic balance can be critical for C. no-
dosa. This species has a very high shoot turnover, with a yearly shoot
mortality reaching 1/2 to 2/3 of the total number of shoots in unaltered
meadows. This mortality takes place in late summer to autumn and is
balanced by massive recruitment in late spring (Mascaró et al., 2014).
Any event altering the shoot demographic balance, such as a heat wave,
will cause a drop in seagrass density, eventually leading to meadow
extinction. This is relevant for projections of distribution and abun-
dance of this species in future warming scenarios since the frequency
and intensity of heat waves are predicted to increase (IPCC, 2013).
Those predictions suggest that the threshold temperature (thermal
tolerance limit) could be reached during these extreme climate events,
mainly in confined areas such as shallow bays or lagoons. However, the
threshold is quite unlikely to be reached in the open sea, where
warming will be much more moderate and could have beneficial effect
on the species which could extend its distribution, maybe at the ex-
penses of the Mediterranean species P. oceanica, which is much more
sensitive to warming (Marín-Guirao et al., 2016; Olsen et al., 2012).

Regarding eutrophication, C. nodosa is affected by an increase in
organic matter in the sediment but not by pulses in nutrient con-
centrations. None of the traits studied were modified by addition of
ammonium, despite the high concentrations attained (up to 300 μM)
and the fact that ammonium was depleted from the aquaria. A coarse N
mass balance, estimating N incorporation in the plant through leaf
growth, new shoots and N increase in tissues, suggests that most of this
depletion was caused by plant activity, being microbial activity in the
sediment the most likely explanation for the rest. Seagrasses seem to be
unable to downregulate N uptake, probably due to a lack of inhibitory
feedback mechanisms (Touchette and Burkholder, 2000). This failure in
regulation could generate ammonium accumulation in cells, which in

turn may have toxic effects (Invers et al., 2004). However, while some
species seem to be more vulnerable to this toxicity (e.g. Z. marina,
Burkholder et al., 1992; Van Katwijk et al., 1997; Villazán et al., 2013;
and Z. noltei, Moreno-Marín et al., 2016) others show great resistance
(C. nodosa, Egea et al., 2018 and Z. marina, Kaldy, 2014). It has been
suggested that the key mechanism to endure large ammonium pulses
may be an efficient mechanism that is capable of rapidly converting the
excess of ammonium into organic forms (Brun et al., 2002; Invers et al.,
2004). Second-order (indirect) effects of ammonium pulses, such as an
increase in epiphytic load or a decrease in water transparency, were not
studied here and cannot be ruled out.

In contrast, the addition of labile organic C had a detrimental effect
on plants. The organic additions to the sediment seemed to enhance
bacterial respiration and thus oxygen demand, leading to oxygen ex-
haustion and anoxic conditions (up to −290mV of redox potential).
Under these conditions, sulphate reduction is stimulated, resulting in
sulphide accumulation. Consistently with this, we found higher sulphur
contents in our exposed plants than in controls. The oxidation of sul-
phide to sulphur compounds that are further stored in tissues has been
shown to be a mechanism that can help cope with sulphide intrusion.
However, once the capacity of detoxification of this mechanism is
surpassed, the detrimental effects appear (Hasler-Sheetal and Holmer,
2015). Although C. nodosa is highly resistant to eutrophication (Oliva
et al., 2012), highly negative values (such as those created in our ex-
periment, close to −250mV) clearly seem to be harmful for plant
production and fitness.

Beyond the effects of warming and eutrophication highlighted
above, and given that both stressors will act jointly in most real-world
conditions, the assessment of their potential interactions is of great
interest. Our results show that there were no interactive effects between
warming and ammonium; but in contrast the effects of warming on key
processes (leaf and rhizome growth and the demographic balance) were
strongly mediated by the amount of labile organic C in the sediment.
The interaction between temperature and organic matter was detected
at the individual (leaf and rhizome growth) and population (shoot de-
mographic balance) level, but not at the physiological one (Fv/Fm).
Clearly, the processes affected are critical for meadow persistence,
which underlines the relevance of such interactions for the prediction of
future seagrass meadow dynamics. However, the mechanisms through
which these interactions function have not been elucidated by our
work. A possible explanation would be a synergistic effect on en-
vironmental conditions. This is supported by the fact that the addition
of labile organic C and temperature decreased sediment redox potential
synergistically, probably through the stimulation of oxygen demand
and cascading effects on sulphide production and plant performances.
Other mechanisms, including the amplification of sulphide effects by
temperature, should not be ruled out.

Despite multiple stressors studies have increased in the last decades,
our results add evidence to the need to further assess the interactive
effects of different stressors, and understanding how the organisms or
communities will respond to the impact of multiple co-ocurrent stres-
sors is still a matter of concern (Côté et al., 2016). Seemingly, sy-
nergistic effects are quite frequent, as revealed by Crain et al. (2008),
which found in a review focused on coastal ecosystems that 36% of the
cases examined showed synergy. A thorough literature search on in-
teractive effects on seagrass ecosystems (Table 6) confirms that synergy
is more the rule (50%) than the exception (36% additive; only a small
part of the studies found antagonistic interaction). There is an urgent
need to incorporate those interactive effects to improve predictions of
the consequences of climate change in marine ecosystems, which can be
seriously underestimated when assessing thermal effects in isolation. In
addition, results such as those presented here can support strategies to
increase ecosystem resilience to climate change by managing other
stressors at a local or regional scale. In this respect, shallow bays and
coastal lagoons, which are more vulnerable to both extreme thermal
events and eutrophication, may represent a critical scenario for the
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survival of seagrass species growing close to their upper thermal limit
(York et al., 2013; Koch et al., 2007), but also an opportunity to test the
above mentioned strategies.

Even though our findings, it is important to keep in mind that the
results of this work were obtained from a mesocosm experiment fo-
cusing only on two factors (warming and eutrophication) without
considering any other disturbance that may be found in the environ-
ment. In this sense, they should only be extrapolated to natural con-
ditions cautiously. In spite of these limitations, this research highlights
the importance of evaluating the impact of global and local stressors
jointly; not only to generate more realistic predictions of the impacts
that climate change might have, but also to design and implement
strategies to improve (or at least not to impair) seagrass resilience to
global warming.
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Abstract

Global warming is increasingly affecting our biosphere. However, in addition to global warm-
ing, a panoply of local stressors caused by human activities is having a profound impact on
our environment. The risk that these local stressors could modify the response of organisms
to global warming has attracted interest and fostered research on their combined effect,
especially with a view to identifying potential synergies. In coastal areas, where human
activities are heavily concentrated, this scenario is particularly worrying, especially for foun-
dation species such as seagrasses. In this study we explore these potential interactions in
the seagrass Posidonia oceanica. This species is endemic to the Mediterranean Sea. It is
well known that the Mediterranean is already experiencing the effects of global warming,
especially in the form of heat waves, whose frequency and intensity are expected to
increase in the coming decades. Moreover, this species is especially sensitive to stress and
plays a key role as a foundation species. The aim of this work is thus to evaluate plant
responses (in terms of photosynthetic efficiency and growth) to the combined effects of
short-term temperature increases and ammonium additions.To achieve this, we conducted
a mesocosm experiment in which plants were exposed to three thermal treatments (20˚C,
30˚C and 35˚C) and three ammonium concentrations (ambient, 30 μM and 120 μM) in a full
factorial experiment. We assessed plant performance by measuring chlorophyll fluores-
cence variables (maximum quantum yield (Fv/Fm), effective quantum yield of photosystem II
(ΔF/Fm’), maximum electron transport rate (ETRmax) and non-photochemical quenching
(NPQ)), shoot growth rate and leaf necrosis incidence. At ambient ammonium concentra-
tions, P. oceanica tolerates short-term temperature increases up to 30˚C. However, at 35˚C,
the plant loses functionality as indicated by a decrease in photosynthetic performance, an
inhibition of plant growth and an increase of the necrosis incidence in leaves. On the other
hand, ammonium additions at control temperatures showed only a minor effect on seagrass
performance. However, the combined effects of warming and ammoniumwere much worse
than those of each stressor in isolation, given that photosynthetic parameters and, above
all, leaf growth were affected. This serves as a warning that the impact of global warming
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could be even worse than expected (based on temperature-only approaches) in environ-
ments that are already subject to eutrophication, especially in persistent seagrass species
living in oligotrophic environments.

Introduction
Climate change represents a major threat to coastal ecosystems worldwide. The urgent need to

gain a better understanding of its impact on the performance of organisms and the subsequent

cascading effects that cause changes in ecological functions and ecosystem services is a wide-

spread concern [1–3]. Warming is probably the most pervasive effect of global change, and is

expected to cause ocean surface temperatures to rise by between 2.6˚C and 4.8˚C by 2100 [4].

Aside from this progressive warming, most climatic models predict that temperature extremes

will increase in frequency and intensity in the coming decades [5–9]. These so-called heat

waves increase temperature by several degrees above the historical mean, usually last for days

or a few weeks and seem to be especially deleterious for the biota, thereby increasing concern

and attracting a great deal of attention in recent years as key drivers of change [7,8,10]. In addi-

tion to global warming, a panoply of stressors caused by human activity [11] is already affect-

ing our environment. Thus, warming will impact ecosystems that are heterogeneously

affected, to varying degrees, by a range of other stressors, most of them local in origin. The risk

that these local stressors could profoundly modify the response of organisms to warming,

thereby altering predictions based solely on thermal responses, is gaining attention and in

recent years has fostered a growing interest in assessing the combined effects of warming and

other stressors [12–14], especially with a view to identifying possible synergies [15,16].

Such a scenario is a particular threat to coastal areas, where human activities are concen-

trated, thereby generating a wide array of stressors that could potentially interact with warm-

ing (continuous or pulsed) and decrease the resilience of the biota. This is especially worrying

in the case of foundation species such as corals, gorgonians and seagrasses due to the propaga-

tion of the effects, which may extend to other organisms and have ecosystem-wide implica-

tions [17–21]. Seagrasses in particular have demonstrated great sensitivity not only to

warming [19,22], but also to other stressors of local origin, including eutrophication [23]. Sea-

grass habitats are considered some of the most valuable coastal ecosystems in terms of the pro-

vision of goods and ecological services [24], thus making the assessment of the combined

effects of warming and other stressors a major challenge for the scientific community.

Indeed, on the one hand, temperature is widely known to be one of the main ecological fac-

tors that determines seagrass performance, survival and distribution limits (see reviews by

[25,26]), and the potential effects of temperature rises are subject to an increasing number of

studies. It is well known that a moderate temperature rise can be favourable for plant physiol-

ogy, since it stimulates photosynthesis. However, it also stimulates the respiration rate and,

since the latter increases at a faster rate than the former, this can generate a carbon imbalance

in plants if it exceeds a certain threshold [22,26–31]. Similarly, it has been demonstrated that

photochemical reactions are highly sensitive to thermal stress, which causes damage to the

photosystem II (PSII) reaction centres [32,33] that is irreversible beyond a certain threshold

(e.g. 37.5˚C, Halophila ovalis [34]; 40–45˚C, Zostera capricorni, Syringodium isoetifolium,

Cymodocea rotundata, Cymodocea serrulata, Halodule uninervis, Thalassia hemprichii and H.

ovalis [35]). Negative responses of seagrasses to warming have also been reported at individual

and population level, including shoot growth impairment [32,36], an increase in leaf shedding
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and a reduction in above-ground biomass [33]. In some cases, elevated temperatures have

been shown to cause plant mortality [19,22,37] and even alter the geographic limits of seagrass

distribution [38,39].

On the other hand, the continuous rise in local nutrient enrichment sources as a conse-

quence of the increasing human population growth and rapid development in coastal areas

means that eutrophication is considered a major threat to coastal ecosystems [24,40–42].

Eutrophication can negatively affect seagrasses in particular, either directly or indirectly [43].

The direct effects of nutrient loading, despite the fact that an adequate nutrient supply is fun-

damental for plant performance [44], include damage caused to seagrasses by excessive inor-

ganic nitrogen (e.g. Zostera marina; [45–47]; Zostera noltii; [48]). In this sense, the toxicity of

high ammonium concentrations has been reported in several studies [48–53], which observed

the negative effects of ammonium on several physiological and morphological response vari-

ables, including a reduction in primary production and significantly decreased shoot, rhizome

and root elongation rates, thus affecting plant survival.

Further research on the isolated effects of each of these two stressors (nutrient loading and

warming) on seagrasses is required, but efforts should also be made to assess their combined

action, not only to increase knowledge of the expected responses in a realistic multi-stressor

scenario, but also to improve the reliability of our predictions about seagrass ecosystem

changes in the coming years. In this regard, temperature is already known to exacerbate the

negative effects of other stressors such as organic matter-enriched sediments (Halodule
wrightii and Thalassia testudinum, [54]; Cymodocea nodosa, [55]) and changes in salinity (Z.

marina; [56]), which act synergistically with thermal stress. Some other works have reported

additive effects of temperature and other stressors (e.g. light availability, Zostera muelleri; [33];

acidification, Z. noltii; [32]; and nutrients, Z. marina; [44]), and, much less commonly, an

antagonistic interaction of temperature and a second stressor (e.g. herbicide, Halophila ovalis;
[57]). All these studies suggest that plant response to the combined impact of temperature and

other stressors is largely species-specific and probably depends on the functional traits of the

specific plant, but knowledge of this topic with respect to seagrass communities remains scarce

and incomplete.

Given the global nature of warming, and the pervasive presence of eutrophication, studying

the combined effects of warming and nitrogen loading is crucial to understanding the future

of coastal communities dominated by seagrasses, especially in light of the specific plant traits

of seagrass foundation species [58]. Although some progress has been made in this area

[44,55,59,60], studies that explore this interaction, especially in persistent seagrass species

(sensu [61]) such as those belonging to the Posidonia genus, remain surprisingly scarce.

The Mediterranean endemic species P. oceanica is an excellent model for exploring the

issues described above. On the one hand, P. oceanica is a paradigm of a persistent species

[62,63] and a key foundation species in Mediterranean oligotrophic waters, where it provides

critical habitats and other ecosystem services. Due to its high sensitivity to stress and vulnerabil-

ity to coastal deterioration, P. oceanica meadows have undergone a substantial decline over the

last 50 years [64]. Consequently, it has been one of the main targets of efforts to protect and

manage the Mediterranean marine environment in the last 20 years [65]. On the other hand,

sea surface temperature in the Mediterranean is increasing at a much faster rate than in the

global oceans [6,66] and, at the same time, temperature extremes and heat waves are becoming

more common in this region. Moreover, eutrophication is considered a major threat to and

stressor for this seagrass, especially near highly populated areas along the Mediterranean coast-

line, where the first problems of eutrophication were detected as far back as the 1960s [67].

While the effects of eutrophication on this species are relatively well known [68–71], the

effects of warming have only recently started being documented [19,27,72–77] and, to the best
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of our knowledge, there is no information on the potential effects of the interaction between

these two stressors.

The aim of this study is thus to explore both the individual and combined effects of warm-

ing, by simulating the effects of a short-term extreme temperature event, and eutrophication,

through nutrient loading in the form of ammonium, in the persistent seagrass species P. ocea-
nica. In order to achieve this, we evaluated physiological and individual plant responses to a

short-term temperature increase (lasting days) and the interactive effects of ammonium addi-

tions. To do so, we conducted an indoor mesocosm experiment in which plants were exposed

to three thermal treatments and three levels of ammonium concentration in a full factorial

experiment.

Material andmethods
Plant collection

Divers hand-picked healthy plant fragments of P. oceanica with at least four interconnected

vertical shoots (apical shoots were avoided) in late September 2016 from an eight-metre deep

meadow in Cala Montgó (42˚ 06’ 23” N / 3˚ 10’ 16” E, NE coast of Spain), where allowances to

collect plants fragments for scientific purposes are not required.

Plants were transported in aerated tanks to the laboratory and aerated overnight until the

experimental setup the following day. The experiment was performed in the University of Bar-

celona’s Experimental Fields Service.

Experimental design and setup

For the experiment, we chose three thermal treatments (20˚C, 30˚C and 35˚C) and three

ammonium concentrations: ambient seawater (control), 30 μM (moderate) and 120 μM

(high).

The temperatures were chosen to represent the following scenarios: 20˚C, close to the tem-

perature of the study site at the collection time, according to a temperature data series recorded

by continuous in situ temperature data loggers (Fig 1), obtained by the authors in Medas

Islands (at a depth of 5 m), an area close to the collection site (< 5 km); 30˚C, an anomalously

high temperature, likely to be reached in the coming years during heat waves (as a reference, >

28˚C recorded during recent heat waves by [18,19]), and relatively common in the Eastern

Mediterranean basin (Galli et al., 2017) [78]; and 35˚C, a temperature during an extreme heat

wave that could be reached in the mid-term future (the temperature is predicted to increase by

4–5˚C in the western Mediterranean by the end of the 21st century, as per [4,19,79]). With

respect to nutrients, the “moderate” value (30 μM) and the “high” value (120 μM) are the low-

est and highest values, respectively, observed in sites affected by sewage discharge [80,81] in

the Mediterranean Sea, and similar values have been used in previous experimental approaches

[44,55].

The plants were incubated in cylindrical and transparent aquaria (12 L capacity, 40 cm

height x 20 cm diameter), each with its own independent air pump and filled with 10 L filtered

seawater. The plants were incubated in water to avoid possible confounding effects from sedi-

ment. Within 24 hours of collection, a single rhizome fragment bearing four interconnected

vertical shoots (apical shoots were avoided) was put in each of the 27 aquaria and covered with

plastic film to prevent water evaporation. The aquaria were then distributed randomly in three

experimental chambers (2 x 1 x 1.5 m, 9 aquaria per chamber), under controlled temperature

and light conditions. The chambers were kept at 210–223 μmoles photons m-2 s-1, above the

saturation irradiance of these plants [71,82–84], under a 12h/12h light/dark photoperiod.

Light was provided by daylight fluorescent tubes.

Synergistic effects of two environmental stressors on Posidonia oceanica
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The three chambers were maintained at 20˚C for four days to allow for plant acclimation.

After the acclimation period, the temperature was progressively increased (at a maximum rate

of 3˚C/day) until it reached 30˚C in one chamber and 35˚C in the other after 5 days, while the

third was kept at 20˚C as a control.

After the experimental temperatures were reached, appropriate amounts of NH4Cl were

added to obtain the ammonium concentration treatments mentioned above. Ammonium was

added just once at the beginning of the experiment, to simulate an ammonium pulse.

While thermal treatments were differentiated in three chambers, ammonium treatments

were applied to three randomly chosen aquaria in each chamber, which resulted in a complete

factorial design with three replicates per experimental condition.

The experiment ended after seven days of exposure to both stressors (temperature and

ammonium), when necrosis marks in plants exposed to the highest temperature (35˚C) indi-

cated critical damage to the plant.

In order to minimize uncontrolled variability due to small heterogeneities in light and/or

temperature, all aquaria were randomly relocated within the chamber every two days.

Fig 1. Three-years temperature data series recorded at 5 m deep in Medas Islands (NW Mediterranean Sea).

https://doi.org/10.1371/journal.pone.0222798.g001
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Moreover, each set of nine aquaria was moved from one chamber to another (changing the

chamber temperature to maintain the thermal treatments) to ensure that each aquarium spend

the same time in each chamber. This was done to discard a potential “chamber effect” and

avoid pseudoreplication (Ontoria et al., 2019).

Water analyses

Nutrients concentration in the water (ammonium, nitrite, nitrate and phosphate) in each

aquarium was analysed at the beginning (just after the experimental ammonium additions)

and at the end of the experiment, using an FP-2020 Plus Fluorescence Detector, in accordance

with standard methodology [85].

Plant trait response

A number of physiological and individual plant traits were measured at the end of the experi-

ment to determine plant responses. These were maximum quantum yield (Fv/Fm), effective

quantum yield of PSII (ΔF/Fm’), maximum electron transport rate (ETRmax), non-photochem-

ical quenching (NPQ), incidence of necrosis on the leaves and shoot growth rate.

Chlorophyll fluorescence parameters were determined in three randomly selected shoots

from each aquarium using a diving PAM (pulse-amplitude Modulated fluorometer, Walz,

Germany). The measurements were obtained from the basal portion of the second youngest

leaf to avoid within-shoot variability [86,87]. Fv/Fm was measured by the saturation pulse

method after a 10-minute period of dark adaptation. After three hours of illumination, leaves

were exposed to increasing photosynthetic photon flux density values (0, 5, 19, 17, 129, 235,

277, 503 and 676 μmol photons m-2 s-1) at intervals of 10 s to perform rapid light curves

(RLCs), which made it possible to obtain ΔF/Fm’, ETR and NPQ measurements. ΔF/Fm’ and

NPQ values extracted from RLCs were those obtained at a similar irradiance to plants that

were maintained (210–223 μmoles photons m-2 s-1), while ETRmax corresponded to the maxi-

mum ETR value obtained in each curve.

The necrosis incidence was assessed in leaves from three shoots in each experimental condi-

tion. Leaves were carefully separated from each shoot and the percentage of necrotic surface

(dark brown or black spots covering leaf tissue) relative to the total leaf surface was visually

estimated in each leaf and averaged for each aquarium.

Shoot growth was measured using a leaf marking technique [88] adapted to our species

[89,90]. On the first day of the experiment, all shoots in each aquarium were marked by

punching a hole just above the ligule with a hypodermic needle. At the end of the experiment,

the shoots were harvested, the epiphytes carefully removed, and three shoots separated to mea-

sure shoot growth. Each shoot was sorted into old and new tissue. Plant material was dried for

48 hours at 60˚C and weighed to obtain the dry weight. Shoot growth rate was expressed as the

new tissue produced per shoot and day (mg DW shoot-1 day-1), and then averaged for each

aquarium.

Statistical procedures

The statistical significance of the effects of temperature and ammonium found between treat-

ments was tested using PERMANOVA analyses based on a similarity matrix created from the

Euclidean distances between samples. The aquarium was considered as the experimental unit,

with a total of n = 3 replicates for each experimental condition. The value for each variable in

each replicate is the averaged value for this variable obtained from the three shoots (subsam-

ples) used from each aquarium. Two fixed factors were used to run the analyses: temperature

(three levels: 20˚C, 30˚C and 35˚C) and ammonium (ambient water, 30 μM and 120 μM).
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Multivariate PERMANOVA was performed for plant response variables and univariate

PERMANOVA analyses were subsequently carried out individually for each plant trait. As the

PERMANOVA statistical test is produced by permutation, the usual ANOVA normality

assumptions [91] were not necessary. Differences between treatments were evaluated using

pairwise comparisons, and a Monte Carlo test was carried out to obtain an alternative p-value

in order to validate the analysis when the number of permutations was too low (<999, [92]).

All analyses were performed using the Primer v6 statistical package [93] in conjunction with

the Windows PERMANOVA+ module [92].

Results
Nutrient experimental conditions

The initial ammonium concentrations obtained in water ranged from 0.25–0.7 μM, 32–60 μM

and 121–132 μM in samples from the control, moderate and high treatments, respectively. At

the end of the experiment, ammonium concentrations were very low (less than 1 μM in most

treatments, except in two cases: the control (no ammonium added) at high temperature,

where some ammonium production took place, and in the high concentration treatment at

35˚C, where the final concentration was ca. 70 μM, 60% of the initially supplied (Table 1).

Concentrations of other nutrients were in the normal range for the NW Mediterranean waters

and did not change significantly during the experiment.

Chlorophyll fluorescence parameters

Temperature had a significant effect on all chlorophyll fluorescence parameters measured

(Table 2). Maximum and effective quantum yields (Fv/Fm and ΔF/Fm’, respectively) and maxi-

mum electron transport rate (ETRmax) showed a similar response pattern, with values at 30˚C

unaltered and a substantial decrease (38%, 81% and 73%, respectively) at 35˚C (in both cases

relative to controls at 20˚C) (Fig 2A, 2B & 2C). Non-photochemical quenching (NPQ) (Fig

2D) showed slightly higher values at 30˚C (up to 17% more) and lower values at 35˚C (58%, in

both cases relative to controls).

Overall, ammonium additions had negative effects in all but one chlorophyll fluorescence

parameter (ΔF/Fm’, ETRmax, and NPQ), which decreased by 19%, 19% and 41%, respectively,

irrespective of the amount added.

Interestingly, NPQ increased at 30˚C in plants submitted to no ammonium addition and

moderate ammonium addition but did not at high ammonium concentrations. This is sugges-

tive of a synergistic effect but, given the significance level of the interaction (p = 0.0582), by no

means conclusive.

In contrast, the combined effect of temperature and ammonium on decreasing Fv/Fm was

clearly synergistic. As mentioned above, warming alone (35˚C) depressed Fv/Fm in the absence

of ammonium additions, while ammonium additions at the control temperature did not cause

any effects (Table 2). However, when ammonium was added and plants were warmed (35˚C),

Table 1. Ammonium concentrations (in μM, mean ± SEM, n = 3) in the water at the beginning (just after ammonium additions) and at the end of the experiment.

Ammonium treatment Thermal treatment

20˚C 30˚C 35˚C

NH4
+ (μM)

Initial Final Initial Final Initial Final

Control 0.25 ± 0.08 0.43 ± 0.18 0.33 ± 0.14 0.27 ± 0.16 0.73 ± 0.27 3.01 ± 1.97

Moderate 40.24 ± 2.18 0.41 ± 0.12 59.87 ± 16.87 0.28 ± 0.23 32.15 ± 1.40 0.85 ± 0.43

High 131.83 ± 2.27 0.15 ± 0.09 123.77 ± 4.47 0.63 ± 0.26 121.27 ± 4.63 72.49 ± 18.83

https://doi.org/10.1371/journal.pone.0222798.t001
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Fv/Fm was depressed to 54–87%, relative to controls. At 35˚C and under high ammonium con-

centrations, Fv/Fm was below 0.1, thus indicating critical damage to the photosynthetic appara-

tus (Fig 2A).

Leaf necrosis incidence

Temperature had a significant effect on leaf necrosis, with an incidence of up to 25% higher at

35˚C than at 20˚C and 30˚C (Fig 3, Table 2). Ammonium addition also appeared to increase

necrosis incidence, although the effect was only marginally significant (p = 0.0692), likely due

to the high variability of this variable.

Table 2. Results of PERMANOVA (multivariate and univariate analysis) testing for the significance of temperature (20˚C, 30˚C, and 35˚C) and nutrient concentra-

tion (C: Ambient; M: Moderate, 30 μM and H: high, 120 μM) effects on plant traits. Bold values indicate significant effects (p<0.05). The results of the pairwise tests

are indicated in factors with significant influence.

Variable Source df SS MS Pseudo-F P Unique perms Pairwise

Main test
Temperature (T) 2 1098.4 549.2 12.857 0.0004 9953

Ammonium (A) 2 276.8 138.4 3.24 0.0531 9960

T X A 4 416.16 104.04 2.4356 0.0741 9950

Residual 18 768.9 42.717

Individual test
Fv/Fm

Temperature (T) 2 1.21 0.61 76.43 0.0001 9935 20 = 30>35

Ammonium (A) 2 0.05 0.03 3.25 0.0588 9955

T X A 4 0.15 0.04 4.75 0.0073 9957 35C > 35H

Residual 18 0.14 0.01 0.00

ΔF/Fm’

Temperature (T) 2 0.04 0.02 180.52 0.0001 9941 20 = 30>35

Ammonium (A) 2 0.002 0.001 8.99 0.0019 9957 C>M = H

T X A 4 0.0004 0.0001 0.81 0.5396 9946

Residual 18 0.0020 0.0001

ETRmax

Temperature (T) 2 364.50 182.25 183.78 0.0001 9953 20 = 30>35

Ammonium (A) 2 27.33 13.66 13.78 0.0005 9946 C>M = H

T X A 4 5.06 1.26 1.28 0.3177 9965

Residual 18 17.85 0.99

NPQ

Temperature (T) 2 1.65 0.83 76.83 0.0001 9948 30>20>35

Ammonium (A) 2 0.21 0.11 9.87 0.0017 9952 C>M = H

T X A 4 0.12 0.03 2.85 0.0582 9952 30C� 30M�30H

Residual 18 0.19 0.01

Necrosis

Temperature (T) 2 731.00 365.50 8.76 0.0019 9958 20 = 30<35

Ammonium (A) 2 249.21 124.61 2.99 0.0692 9940

T X A 4 410.83 102.71 2.46 0.0725 9960

Residual 18 750.71 41.71

Growth

Temperature (T) 2 0.0007 0.0004 33.34 0.0001 9936 20>30>35

Ammonium (A) 2 0.0001 0.0001 5.55 0.0123 9943 C = M, C = H, M>H

T X A 4 0.0001 0.00004 3.25 0.0399 9956 35C > 35H

Residual 18 0.0002 0.00001

https://doi.org/10.1371/journal.pone.0222798.t002
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Shoot growth rate

Both temperature and ammonium had a significant overall effect on plant growth, with a nega-

tive effect of temperature and a positive effect (at the moderate concentration only) of

Fig 2. Photochemical responses of P. oceanica plants to temperature increase and ammonium addition. (a) Maximum quantum yield of dark-adapted leaves (Fv/

Fm), (b) effective quantum yield of PSII (ΔF/F’m), (c) maximum electron transport rate (ETRmax), and (d) non-photochemical quenching (NPQ). Each variable was

measured (mean ± SE, n = 3) at three thermal treatments and at three ammonium concentrations, after 7 days of exposure.

https://doi.org/10.1371/journal.pone.0222798.g002
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ammonium (Fig 4, Table 2). However, these overall effects are misleading, since both stressors

showed a clear synergistic interaction (p = 0.0399) that made their combined effect relatively

complex. Thus, the positive effect of moderate ammonium concentrations on growth occurred

Fig 3. Leaf necrosis incidence. P. oceanica leaf necrosis incidence (mean ± SE, n = 3) at three thermal treatments and at three ammonium concentrations, after 7 days of

exposure.

https://doi.org/10.1371/journal.pone.0222798.g003
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only at the control temperature, while it disappeared at 30˚C and became negative at 35˚C.

Interestingly, the negative effects of extreme temperature (35˚C) were considerably higher at

the high ammonium concentration (65% growth rate reduction) than at the control ammo-

nium concentration (40%).

Fig 4. Shoot growth. P. oceanica shoot growth rate (mean ± SE, n = 3) at three thermal treatments and at three ammonium concentrations, after 7 days of exposure.

https://doi.org/10.1371/journal.pone.0222798.g004
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Discussion
While warming has a clear negative effect on most of the variables measured, ammonium addi-

tions seem to exert only a moderate impact on plant performance when acting in isolation. How-

ever, we detected synergy between both factors in the response of two-three important plant

traits, one related to the integrity of the photosynthetic system (maximum quantum yield), the

second related to the capacity of the plant to activate photoprotective mechanisms (NPQ, only

suggestive, as indicated based on p-value) and the third related to plant production (shoot growth

rate), all of which are critical to plant survival. This serves as a warning that the impact of global

warming on seagrass meadows already subject to eutrophication could be worse than expected.

A certain amount of interest lies in characterizing the thermal response of foundation spe-

cies to warming. In the case of P. oceanica, such studies are relatively scarce (see below). In our

case, based on the chlorophyll fluorescence responses and other plant traits, it would seem that

P. oceanica tolerates short-term (i.e. one-week) temperature increases up to 30˚C. This toler-

ance might be partially attributed to the plant’s capacity to activate photoprotective mecha-

nisms (e.g. associated with xanthophyll cycle pigments; [74,94,95]) at this temperature, as

suggested by the increasing, albeit not statistically significant, NPQ trend (at 30˚C). In addi-

tion, neither the necrosis incidence of leaves nor shoot growth were affected by 30˚C, in line

with the findings of previous studies [76], which would support its thermal tolerance to tem-

perature increases up to 30˚C.

By contrast, we observed negative changes in all variables measured at 35˚C. Thus, the

decrease in Fv/Fm and ΔF/Fm’, at 35˚C, indicates a severe reduction in the functionality of the

photosynthetic apparatus [96]. At the same time, the electron transport chain and, therefore,

the electron transport capacity (ETRmax) were severely affected by this high temperature,

which could be attributed to a negative effect on the PSII donor side [97], as reported in previ-

ous studies (Z. noltii, [32]). This suggests that the heat dissipation pathway likely linked to the

xanthophyll cycle found at 30˚C seems to be inhibited when temperature reaches 35˚C, as

demonstrated by the drastic reduction in NPQ. This loss of capacity to dissipate the excess

thermal energy could have induced damage to the PSII and consequently reduced the photo-

synthetic capacity of the plants [98]. Impairment of photosynthesis or a likely increase on res-

piration rates, are probably some of the causes behind the clear reduction in leaf growth that

was observed, and certainly triggered other negative effects on plant fitness (reserve accumula-

tion, rhizome growth and probably many others). Finally, the higher leaf necrosis incidence,

which is a common plant response to several stressors, including salinity [56,99] and eutrophi-

cation [100,101], in plants exposed to 35˚C indicates not only a loss of functionality of the pho-

tosynthetic systems, but also tissue damage and cell death.

In this regard, based on the thermal sensitivity of this species to high temperatures, as

described above [19,77,102], our results and the findings of other studies [27,76,103,104], we

suggest a thermal threshold for P. oceanica of between 30˚C and 35˚C.

Ammonium additions negatively and moderately affect most of the chlorophyll fluores-

cence-related variables measured (ΔF/Fm’, ETRmax and NPQ), independently of temperature

(see non-significant interactions in Table 2). No effect of ammonium was detected on Fv/Fm at

control or moderately high temperatures (20˚C and 30˚C). In addition, we observed a positive

effect of moderate ammonium addition on shoot growth at the control temperature, consistent

with the nutrient-limited condition of this species [69,105]. Therefore, it would seem that the

toxicity of ammonium in P. oceanica at basal temperatures is much lower than in other sea-

grass species, which are mostly colonizing and opportunistic (sensu [61]) species (Z. noltii;
[53]; Z. marina; [47]). However, the most relevant finding of our experiment was that the nega-

tive effects of ammonium additions appear when temperature increases, thus leading to
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interactive effects between both stressors. Thus, maximum quantum yield (Fv/Fm) was clearly

affected by ammonium, but only at extreme temperatures (35˚C), thereby indicating tempera-

ture-dependent ammonium toxicity. This toxicity is likely related to the damage of the photosyn-

thetic machinery which, due to its inability to fix C, hindered the assimilation of ammonium in

non-toxic forms [69,106]. In addition, our results suggest that the interaction between both stress-

ors affected the plant’s capacity to activate photoprotective mechanisms, as indicated by a lack of

activation of NPQ mechanism at 30˚C under high ammonium concentration. Our findings indi-

cate that moderate ammonium additions stimulated shoot growth at control temperature while

this stimulation was lost at 30˚C and 35˚C. Moreover, the thermal effects of extreme temperatures

(35˚C) were clearly worse at high ammonium concentrations, as growth rates in this treatments

combination were 42% lower than those found at 35˚C without ammonium addition.

Even though several studies in opportunistic species have revealed that the combined effects

of temperature increase and ammonium are not detrimental (Z. marina, [44,60]; C. nodosa,

[55]), or may even favour plant primary production (C. nodosa, [59]), our results indicated a

negative synergistic effect between both stressors in P. oceanica, a species considered to be per-

sistent, thus leading to the conclusion that the future impact of warming could be much worse

for plants subject to high ammonium loading than for plants living in relatively pristine envi-

ronments. These findings are consistent with a large number of studies, which have also

reported synergistic effects between two simultaneous stressors on seagrasses [39,52,55,107].

However, most of these studies have focused on colonizing and opportunistic seagrass species;

further studies are therefore required to shed light on the response of this, and other, persistent

seagrass species to simultaneous exposure to two or more stressors.

As highlighted in the introduction, exploring the effects of climate change on coastal eco-

systems already threatened by local factors is critical to determining and understanding the

future of such ecosystems. Performing factorial experiments, which allow two or more stress-

ors to be combined simultaneously with a view to exploring plant response, could help predict

future scenarios.

Although some caution should be exercised when scaling our results up to real-world eco-

systems, mainly due to our limited spatial and temporal scales, it is clear that our findings

serve as a warning not only about the effects of global warming, but also about the synergies

between warming and other local stressors. The predicted rise in the frequency and intensity

of heat waves in the Mediterranean Sea [6,66,108] may be tolerated by the plant in the short

term, but as duration [27] and/or intensity increase, plant photosynthesis and growth will be

curtailed and persistence will likely be compromised. Moreover, other stressors such as eutro-

phication, especially in persistent seagrass species such as P. oceanica living in oligotrophic

environments, can worsen the negative effects of warming. Consequently, these heightened

effects might threat the survival of these important seagrass meadows [108].

Although this research is not fully conclusive, and more extensive experiments, in the field

whenever possible, are needed for a proper upscaling to the real world, our results clearly indi-

cate a need to broaden the focus to include the potential interaction with other stressors when

attempting to assess the effects of global warming. This is required not only to obtain more

accurate, reliable and realistic predictions and therefore aid adaptive management, but also to

act against global stressors at local level. In effect, attenuating local stressors may represent one

way to alleviate the effects of global warming, or at least ensure they do not worsen.
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Everyone is a genius. 

But if you judge a fish by its ability to climb a tree, 

it will live its whole life believing that it is stupid. 

    Albert Einstein 
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