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Objective: To review the metabolomic studies carried out so far to identify metabolic markers associated

with surgical and dietary treatments for weight loss in subjects with obesity.

Methods: The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines

were followed.

Results: Thirty-two studies successfully met the eligibility criteria. The metabolic adaptations shared by

surgical and dietary interventions mirrored a state of starvation ketoacidosis (increase of circulating

ketone bodies), an increase of acylcarnitines and fatty acid b-oxidation, a decrease of specific amino

acids including branched-chain amino acids (BCAA) and (lyso)glycerophospholipids previously associated

with obesity, and adipose tissue expansion. The metabolic footprint of bariatric procedures was specifi-

cally characterized by an increase of bile acid circulating pools and a decrease of ceramide levels, a

greater perioperative decline in BCAA, and the rise of circulating serine and glycine, mirroring glycemic

control and inflammation improvement. In one study, 3-hydroxybutyrate was particularly identified as an

early metabolic marker of long-term prognosis after surgery and proposed to increase current prognostic

modalities and contribute to personalized treatment.

Conclusions: Metabolomics helped in deciphering the metabolic response to weight loss treatments. Mov-

ing from association to causation is the next challenge to move to a further level of clinical application.

Obesity (2016) 24, 2451-2466. doi:10.1002/oby.21686

Introduction
Despite evidence to support their utility, lifestyle-based strategies

for weight loss and treatment of obesity (i.e., based on diet and

physical activity) have met so far with little success in the long term

in terms of permanent weight loss (1). Bariatric surgery is the only

current treatment for obesity leading to sustained weight loss (2)

and to improvements in glucose regulation, up to a complete

remission of type 2 diabetes (T2D) in the short and long follow-up

(3-6). Consistent with the causative role of several organs being

involved in metabolic homeostasis and both the development of

T2D and obesity (e.g., including pancreatic islets, liver, fat cells, but

also brain, gut, vasculature, muscle) (7-9), it is accepted that meta-

bolic surgery (the remodeling of metabolism following weight loss)

would act on a global rather than local scale through the restoration
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of physiological pathways in a wide range of tissues and organs (10).

However, a definitive explanation of its systemic effects is still lack-

ing. Evidence also demonstrates that the remission of insulin resistance

(IR) and T2D takes place even before significant weight loss has been

achieved (within days to weeks after surgery) and does not necessarily

associate either with the overall weight loss in the longer term or the

surgical technique employed, confirming that other mechanisms

beyond weight loss should explain both the rapid and sustained impact

of the surgery on the metabolic improvements detected in individuals

(11-13). Furthermore, the overall weight loss achieved by the different

procedures did not differ in the longer term and was not significantly

associated with T2D outcome; thus other mechanisms beyond weight

loss should explain the rapid and sustained impact of malabsorptive

techniques on IR and glycemic control (14).

Understanding the early and prolonged metabolic adaptations to

both dietary and bariatric weight loss procedures may allow us to

gain insights into shared and exclusive mechanisms of action of

weight loss, help to dissect heterogeneity in response, identify indi-

viduals who would more likely benefit from moderate weight loss,

predict prognosis, and ultimately guide personalized treatment (15-

21) (as reviewed in Ref. 22).

In this context, metabolomics—namely the comprehensive study of

ideally all endogenous and exogenous metabolites contained in a

biological system at a given moment—is currently considered as the

most appropriate omics technology to investigate complex, poly-

genic, and multifactorial diseases with a strong multisystemic meta-

bolic nature (23) such as obesity and T2D (22,24-27).

The primary objective of this article was to review the metabolomic

studies carried out so far to identify metabolic markers of response

to surgical and dietary treatments for weight loss, according to the

Preferred Reporting Items for Systematic Reviews and Meta-

Analyses (PRISMA) guidelines.

Methods
Data sources
Two electronic databases (PubMed and Web of Science) were

searched for keywords (details in Online Supporting Information).

Species (human), language (English), and publication date restric-

tions (from 2000 to date, last search on 4th December 2015) were

imposed. Relevant references identified from pertinent articles were

additionally reviewed.

Study selection
Types of interventions, study designs, and

participants. Prospective intervention trials carried out to study

the metabolic response to surgical and/or dietary treatments for

weight loss in adult subjects with overweight or obesity (males and

females, BMI> 25 kg/m2) were included. Randomization was

expected only for parallel-arm lifestyle intervention trials (surgical

procedures being applied according to clinical decision).

Analytical approach. Targeted and untargeted metabolomic

approaches driven by mass spectrometry (MS) and proton nuclear

magnetic resonance spectroscopy (1H-NMR) techniques were both

included in the selection.

Types of outcome measures. Low-molecular-weight (<1,000

Da) metabolites significantly up- or downregulated following surgical

or behavioral weight loss interventions, with respect to baseline and

to the eventual parallel intervention, were the primary outcome meas-

ures of interest of the review. In the case of single-arm (quasi) trials,

the post-intervention changes with respect to baseline were of pri-

mary interest, while baseline differences with respect to controls (i.e.,

lean healthy subjects) were not considered since they were not univer-

sally available. Weight loss was the cutoff clinical outcome required for

inclusion in the review, except for acute postsurgery studies. In the case

of parallel-arm studies, only those metabolites that differed systemati-

cally post-intervention (within-group variation during follow-up with

respect to baseline) and between interventions (between-group varia-

tion) were considered as potential biomarkers of a given intervention, to

minimize potential confounders. In the case of multi-time point follow-

up studies, only metabolites that significantly differed from baseline at

any follow-up point were considered in the summary tables. Additional

clinical outcome measures such as known descriptors of glycemic con-

trol [i.e., fasting glucose, glucose tolerance, IR—HOMA (homeostasis

model assessment), HbAc1b] were reported, when available.

Data extraction
Eligibility assessment was carried out independently by two authors

using predefined data fields in an unblinded standardized manner. A

third author conducted an independent review of the extracted articles,

and cases of disagreements were resolved by majority consensus.

Results
Of the 304 studies initially retrieved, 32 successfully met the eligi-

bility criteria for inclusion in the review (Figure 1).

Study designs
As summarized in Tables 1 and 2, studies ranged from parallel-arm

trials comparing over time the effects of surgical versus dietary

interventions or of different treatments of the same category (surgi-

cal only and behavioral only) up to the analysis of single-arm anti-

obesity interventions in respect to baseline. Only 2 of the 32

selected studies included an independent cohort in the study design

to replicate/validate the obtained findings (28,29).

Participants
The majority of the studies consisted of small-scale trials (n 5 6-71

participants). Only one large-scale metabolomic study (n 5 500) has

been carried out so far to investigate the effect of a combined

behavioral intervention (diet and exercise) on subjects with obesity

(validation cohort of the WLM trial) (29). The participation of

women was generally higher, or even exclusive (29-33), but gender-

dependent variation in the metabolic response to treatment was only

discussed in three studies (29,34,35).

Interventions
Gastric bypass (Roux-en-Y, RYGB) was the most widely investi-

gated among surgery procedures (28,29,33,36-53), followed by

sleeve gastrectomy (30,40,48,53,54), adjustable gastric banding

(36,39), and biliopancreatic diversion with duodenal switch (BD-

DS) (41,49). Behavioral weight loss strategies mainly consisted of
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randomized controlled dietary intervention trials, and only three

studies also included progressively increasing physical activity in a

lifestyle treatment plan (29,32,55). Except for sporadic exceptions

(56), hypocaloric diets were the most common interventions, albeit
with a variable degree of caloric restriction (i.e., 2600 to 21,200

kcal/day) (30,31,35,54,55), personalization (i.e., 215% of daily

energy requirements) (57), and modification of the macronutrient

proportion (i.e., low- and very-low-carbohydrate diets, high vs. low

protein intake). In a few cases, weight loss was achieved by adopt-

ing a meal replacement diet and through the distribution of specific

dietary items to all subjects during weekly visits (28,58).

Follow-up and bio-specimens
The duration of the interventions, as well as the types of specimens

and the collection frequency varied among studies, being a relevant

source of heterogeneity. Three bariatric studies investigated acute

postsurgical effects (�7 days postoperatively) (40,42,48) as these

studies focused on the cause of T2D remission rather than the effect.

The majority of the works focused on mid-term (�6 months) meta-

bolic adaptations, while long-term effects (�1 year) have rarely

been described to date (n 5 4) (41,47,52,53).

Fasting blood serum and plasma collected in a fasted state were the most

frequently accessed biological matrices, followed by urine (spot or 24

hr). Finally, the metabolomic profiling of dysfunctional tissues has been

rare to date (55), probably due to invasiveness issues of taking biopsies.

Clinical outcomes
The outcomes of parallel-arm and single-arm designed studies are

separately summarized in Supporting Information Tables S1 and S2.

Figure 1 Schematic overview of the search strategy for this review. [Color figure can be viewed at wileyonlinelibrary.com.]
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Besides BMI, measures of glycemic control were the most accessi-

ble criteria for defining the metabolic phenotypes in a study at base-

line (Tables 1 and 2). Significant improvements in glycemic control

(i.e., reduction of circulating HbA1c concentrations, fasting/post-

prandial insulin, fasting/postprandial HOMA) and a more favorable

plasma lipid profile (i.e., increased high-density lipoprotein choles-

terol) were commonly observed, confirming the metabolic benefits

of weight loss.

Metabolomic approaches
Mass spectrometry combined with different metabolite chromato-

graphic separation (i.e., ultra-performance liquid chromatography,

high-performance liquid chromatography, and gas chromatography)

was the most commonly used analytical technique, followed by 1H-

NMR-based approaches or by the integration of multi-platform anal-

yses (54). An array of targeted and untargeted metabolomic

approaches was applied to date, but targeted analysis predominated.

The two distinct approaches are complementary and, if both are not

used, the choice between them should depend on the aim of each

study. Untargeted metabolomics is the most comprehensive analysis

of all the measurable analytes in a sample, including chemical

unknowns. Consequently, among its intrinsic limitations, it provides

wider opportunities for novel metabolite species, pathway, and target

discovery (59). In turn, targeted metabolomics is reliant on a priori

selection of a subset of biochemically characterized and interpreted

metabolites, which often belong to selective established pathways

(reduced coverage). Although the targeted approach allows quantita-

tive results, reduces the likelihood of analytical artifacts, and eases

up the troubles related to big data analysis and interpretation, the

clear definition of the species measured hinders the discovery of

novel metabolic perturbations (hypothesis-driven approach).

Discussion
Bariatric versus dietary approaches: shared
metabolic adaptations
To our knowledge, only five parallel-arm metabolomic studies have

directly compared so far the body systemic response with dietary

and surgical treatments for weight loss (28-30,37,54), and groups

were well matched only in two of them (for age, body weight, BMI,

diabetes duration and management, and also extent of body weight

lost during treatment, in kg or % loss) (28,29). From a clinical view-

point, in all cases the rate of weight loss and reduction of fat mass

were faster after the surgery than the dietary changes, together with

a more robust impact on glucose homeostasis improvement (28).

However, the amount of weight loss was neither solely nor primarily

correlated with improvement in IR. As summarized in Table 3, the

metabolic adaptations shared by surgical and dietary interventions

involved a decrease of several amino acids including branched-chain

amino acids (BCAAs), together with an increase of total circulating

ketone bodies and acylcarnitines. In contrast, bariatric surgery was

associated with a greater decline in circulating BCAAs leucine, iso-

leucine, and valine than after an equivalent weight loss induced by

diet (28), and postsurgical changes were reported soon periopera-

tively. The decrease of BCAAs and their related metabolites corre-

lated with weight loss after RYGB only.

When including results from single-arm studies in the comparison,

the depicted differential metabolic adaptations were confirmed (Sup-

porting Information Table S3). Considering lipid metabolites, both

surgical and dietary approaches promoted an overall decline of circu-

lating (lyso)phospholipid species. Despite large-scale metabolomic

studies such as those focused on the EPIC cohort recently indicating

several choline-containing phospholipids as potential biomarkers of

T2D (26,27), the heterogeneous response of this wide lipid class to both

treatments hampered the generation of mechanistic explanations for

phospholipids. Bariatric procedures were most associated with a signif-

icant decline of circulating ceramides (33,43,44), while dietary weight

loss programs mainly reported the decrease of long- and very-long-

chain fatty acids with variable degrees of saturation, both in the free

and esterified form (diacylglycerols and triglycerides) (34,45,55,57).

Restoration of protein metabolism
BCAA. Following both types of weight loss programs, the circu-

lating BCAAs were described as decreasing significantly, associated

with improvement in IR and, more importantly, predicted metabolic

benefits independently from the amount of weight lost. Although

obesity-associated hyperaminoacidemia and the rise in circulating

BCAAs are the most widely described shift in protein metabolism

associated with obesity and IR, in both adults and childhood (60-

62), the mechanism(s) which may underlie an imbalance of protein

turnover are numerous and remain unclear.

Overall, the decrease in circulating plasma BCAAs observed follow-

ing the different weight loss strategies may result from (i) a decrease

in protein intake (increased AA catabolism), (ii) a decrease in pro-

tein catabolism, observed to be secondary to increased insulin sensi-

tivity, indicative of metabolic amelioration, (iii) an attenuation of

tissue-specific alterations in the BCAA metabolism and a promoted

amino acid uptake and tissue utilization (increased tissue BCAA

catabolism), or (iv) a combination of these factors. Although

BCAAs are found in dietary proteins and, therefore, diet remains a

potential contributor to the modulation of their peripheral levels,

previous studies have suggested that dietary intake accounts for only

a small portion of blood BCAA and for their change during weight

loss (29,63). Furthermore, the more drastic decrease in circulating

AAs detected following surgery should not depend on a decrease in

protein intake as both surgical and dietary treatments actually shared

a certain degree of caloric restriction, and the decrease in non-pro-

teic amino acids such as ornithine and cystathionine would confirm

these suppositions (Supporting Information Table S3). Consequently,

other factors clearly influence the observed variations in BCAAs.

Reversion of tissue-specific alterations in BCAA metabolism could

contribute, at least in part, to the decline of plasma BCAAs follow-

ing weight loss treatments. This hypothesis makes sense since the

surgery was accompanied by a consistent significant decline of spe-

cific products of incomplete mitochondrial oxidation of BCAAs,

namely short-chain acylcarnitines C3 and C5 (28,39,64). Further-

more, the activity of key BCAA catabolic enzymes is known to be

altered in obesity, in a tissue-specific fashion with alterations in

liver and adipose tissue but not in muscle, and these enzymatic

changes contribute to the rise in plasma BCAAs (65). In turn, a

strong correlation between the expression of BCAA catabolic genes,

IR, and T2D has also been demonstrated in humans, and evidence

exists of the reversion of the enzymatic alterations in adipose tissue
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BCAA metabolism by bariatric surgery-induced weight loss in sub-

jects with obesity (66).

Other amino acids. Metabolic surgery was associated with a

more drastic decrease in the total amino acid pools than that

detected in dietary weight loss programs, particularly driven by the

significant decline of the aromatic amino acids phenylalanine and

tyrosine (AAAs), as well as ornithine, proline, and histidine (Table

3) (28,37). Subjects with obesity had approximately twofold higher

serum phenylalanine concentration than control subjects, which has

been proposed as a noninvasive marker of liver dysfunction in obe-

sity, related to liver steatosis. Consequently, AAAs have been pro-

posed as additional markers of metabolic improvement directly or

indirectly involved in postoperative adaptations (67).

Surprisingly, the decline of circulating alanine was even more fre-

quently described than the decrease in BCAAs, especially as a

TABLE 3 Shared and unique metabolic variations observed in parallel-arm bariatric surgery versus dietary intervention
studiesa

Variationb

Metabolite

Post-bariatric

surgery

Post-dietary

treatment Class/function summary Ref.

3-hydroxybutyrate "" "" Ketone body 28,37

Total ketones "" "" Ketone bodies, molar sum 28,37

Phenylalanine ### # Glucogenic and ketogenic AAA 28,29,37

Tyrosine ## # Glucogenic and ketogenic AAA 28,29

Isoleucine ## # Glucogenic and ketogenic BAAA 28,29

Leucine ## # Exclusively ketogenic BCAA 28,29

Valine ### - Glucogenic BCAA 28,37

Alanine ### ## Glucogenic non-essential AA 28,29,37

Asparagine/aspartate - # AA ratio 28

Glutamate " - Glucogenic AA 54

Histidine ## - Glucogenic AA 28,37

Proline # - Glucogenic AA 37

Serine " - Glucogenic AA 37

Ornithine ## # Others, non-proteic AA 28,29

totBCAAs ## - Molar sum 28,37

totAAAs # - Molar sum 37

totAAs ## - Molar sum (proteic AAs) 28,37

C2 "" "" Short-chain ACs 28,37

C3 1 C5 ## -# Short-chain ACs (BCAAs catabolism) 28,37

totACs "" "" Molar sum 28,37

C4-OH " " Short-chain ACs 28

Ci4-D/C4-DC # - Short-chain ACs (BCAAs catabolism) 28

C16, C18:1 " " Long-chain (even-) ACs 28

C18:2 "# "- Long-chain (even-) ACs 28,54

C16-OH/C14-DC, C18-OH/C16-DC, C20-OH/C18-DC - # Long-chain (even-) ACs 28

C22 - " Long-chain (even-) ACs 28

C6 - C12, total - " Medium-chain (even-) ACs, sum 37

C14 - C22, total " " Long-chain (even-) ACs, sum 37

Bile acids, conjugated " - Bile acids, microbial modification 30

NEFA, total "" "- Fatty acids, molar sum 30,37

PC aa C42:0 # - Glycerophospholipids with long- 54

PC aa 32:0, PC aa 32:1, PC aa 40:5 - # Glycerophospholipids with long- 54

aAll changes have been investigated in plasma/serum samples, collected in the fasted state.
b" and # respectively indicate a significant post-intervention increase or decrease in relative metabolite concentration, in respect to basal levels.
AAs, amino acids; ACs, acylcarnitines; BCAAs, branched-chain amino acids; C2, acetyl carnitine; C3, propionyl carnitine; C4/Ci4, butyryl carnitine/isobutyryl carnitine; C5,
isovaleryl carnitine/3-methylbutyryl carnitine/2-methylbutyryl carnitine; C4-OH, 3-hydroxy-butyryl carnitine/b-hydroxy-butyryl carnitine; Ci4-DC/C4-DC, methylmalonyl carni-
tine/succinyl carnitine; C6, hexanoyl carnitine; C16, palmitoyl carnitine; C16-OH/C14-DC, 3-hydroxy-hexadecanoyl carnitine/tetradecanedioyl carnitine; C18-OH/C16-DC;
C18:2, linoleoylcarnitine; C20-OH/C18-DC, 3-hydroxy-eicosanoyl carnitine/octadecanedioyl carnitine; C22, behenoyl carnitine/docosanoyl carnitine; NEFA, nonesterified
fatty acids; PC, phosphatidylcholines; totBCAAs, molar sum of branched-chain amino acids (Val 1 Leu/Ile); totAAAs, molar sum of aromatic amino acids (Phe 1 Tyr);
totAAs, molar sum of all amino acids measured.
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response to surgical procedures. Although the mechanistic explanation

is still unknown, plasma alanine levels may decrease in association

with reduced dietary intake (i.e., through a low-protein diet) or vitamin

deficiency (i.e., alanine metabolism is highly dependent upon enzymes

having vitamin B6 as a cofactor) or even a decrease in fasting glucose

available (68). Alanine is in fact an important substrate and regulator

for glucose metabolism, playing a key role in glucose-alanine cycle

between tissues and liver. In muscle and other tissues that degrade

amino acids for fuel, alanine is produced during BCAA metabolism

and most commonly via reductive amination of pyruvate, a product of

muscle glycolysis. The alanine formed then is passed into the blood

and transported to the liver, where a reverse of the alanine aminotrans-

ferase reaction takes place, and pyruvate regenerated forms glucose

through gluconeogenesis, which then returns to muscle. According to

this latter scenario, decreased circulating levels of alanine could also

indirectly reflect a depletion of pyruvate available in muscle for con-

version (increased local oxidation) in respect to what would be

expected in the “well fed” state, and this has been associated with

blood sugar levels in both diabetes and hypoglycemia.

Finally, despite the overall decreasing aminoacidemia normally associ-

ated with obesity, circulating levels of other amino acids such as gly-

cine have been shown to significantly increase after weight loss treat-

ments, and especially following bariatric techniques (Supporting

Information Table S3). Low fasting levels of glycine have been

observed in individuals with impaired glucose tolerance and proposed

as an early marker for IR (27). The rise in glycine may be associated

with the positive metabolic effects of weight loss treatments, since it

is involved in many different biochemical mechanisms including the

regulation of plasma cholesterol and triglyceride levels as well as the

restoration of antioxidant glutathione synthesis and reduction of tissue

and oxidant damage (69). However, results are still contradictory, as

are any eventual causative associations.

Exclusive metabolic shifts after surgery
Five parallel-arm metabolomic studies have focused so far on dif-

ferentiating the metabolic response to malabsorptive [RYGB and

duodenal jejunal bypass surgery] versus restrictive surgeries (laparo-

scopic sleeve gastrectomy and laparoscopic adjustable gastric band-

ing), and only two of them clearly defined the group-matching strat-

egy (38,39). As shown in Table 4, the main bariatric-specific

metabolic response included a significant increase in circulating bile

acids (BAs). A decrease in BCAAs valine, leucine, and isoleucine

and other glycogenic amino acids (i.e., proline, histidine), the

increase of serine and glycine, and a heterogeneous variation in the

circulating acylcarnitines were also observed. The very similar met-

abolic signatures obtained in response to diversionary and non-

diversionary surgeries suggest that the metabolic effects are down-

stream of the primary effects of the surgery despite the different

approaches. This was consistent with clinical outcomes. Although a

trend of greater improvement in glycemic control was associated

with malabsorptive procedures (i.e., significant reduction of fasting

glucose and fasting insulin and increase in plasma FGF19 levels),

inter-study variation was apparent and hence hampered the defini-

tion of clear-cut differences among bariatric techniques.

Restoration of BA metabolism
Altered BA metabolism has been long observed in obesity and

T2D, with a significant decline in the circulating BA pool,

especially postprandially (70). In contrast, an increase in circulating

BAs in humans has been observed following surgical treatment for

obesity, including perioperative (<7 days) and both in the fasted

(13,38,47) and postprandial state (46). Accordingly, BA secretion

has been associated with improvement in insulin secretion, insulin

sensitivity, and whole-body glucose homeostasis, as well as improv-

ing liver and pancreatic function in animal models of obesity

(reviewed in Ref. 71). Malabsorptive techniques were expected to

have a greater impact on BA metabolism, due to the anatomical

adaptive changes associated with the surgery, including bile deliv-

ery to the terminal ileum, decreased enterohepatic BA circulation

followed by increased conversion of cholesterol to BAs (13).

Nevertheless, the currently available metabolomic studies give

insights for a restoration of BA synthesis also sustained by restric-

tive techniques (30,38). Nevertheless, the high variability in the

study designs and the variable change in the BA pool and composi-

tion over time made it difficult to pick the nuances of BA changes

after dinstict bariatric procedures.

Far from simply being dietary fat emulsifiers and the primary route

governing cholesterol homeostasis, BAs have been recognized over

the past decade as nutrient-responsive hormones that modulate var-

ious metabolic pathways through cell surface and nuclear recep-

tors, including their own synthesis and enterohepatic circulation,

but also triglyceride, glucose, and energy homeostasis (reviewed in

Ref. 72). According to the most recent hypothesis, changes in bile

flow after the surgery may have a direct role in IR amelioration

via (i) increased satiety gut hormone responses (i.e., enhancing

glucagon like peptide-1 response by L-cell stimulation), leading to

reduced food intake and weight loss, (ii) inhibition of gluconeogen-

esis in a farnesoid X receptor-dependent and -independent manner,

or (iii) insulin signaling promotion and glycogen synthase activa-

tion, thus aiding insulin-dependent control of glucose metabolism

in the liver.

Moreover, preliminary evidence has shown that not all BAs act

equally. For instance, Simonen et al. (47) postulated that altered

conjugation of BAs after surgery is the actual mediator of metabolic

consequences, independent of changes in total serum BAs, suggest-

ing the role of gut microbiota, a key regulator of BA conjugation

and secondary BA formation, in the metabolic adaptations observed

postsurgery (73). In line with this hypothesis, a significant increase

in the bile salt glycine/taurine conjugation ratio was also observed

postoperatively (46).

Early prognostic markers of metabolic flexibility:
Ketone bodies
Compared with behavioral antiobesity strategies, bariatric surgery is

known to trigger very early adaptations. Hence, it is theoretically

possible to identify early prognostic markers of the long-term meta-

bolic response, particularly desirable to help clinicians in deciding

whether drug therapy is necessary shortly after surgery and ulti-

mately contributing to personalized treatment for obesity.

A NMR-based metabolomic analysis was specifically applied to dif-

ferentiate the response to metabolic surgery according to diabetic

improvement (42). The analysis showed that the metabolite profile

of two groups (“improved” vs. “non-improved” diabetic individuals

with obesity) differentiated at an early postoperative stage (7 days)

leading to an accurate prognosis prediction of long-term glycemic
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TABLE 4 Shared and unique metabolic variations observed in parallel-arm malabsorptive versus restrictive surgery studiesa

Variationb

Metabolite Class/function summary

Malabsorptive

surgery

Restrictive

surgery Ref.

Bile acids, 1ary Bile acids, hepatic -" ""a 38

Bile acids, 2ary Bile acids, microbial-derived "- ""b 38

Bile acids, total Molar sum "" "- 36, 38

Alanine Glucogenic AA ## ## 39, 40

Proline Glucogenic AA ## #- 39, 40

Histidine Glucogenic AAA ## #- 39, 40

Phenylalanine Glucogenic and ketogenic AAA ## ## 39, 53

Tryptophan Glucogenic and ketogenic AAA # # 39

Tyrosine Glucogenic and ketogenic AAA ## #- 39, 53

Isoleucine Glucogenic and ketogenic BCAA ## ## 39, 53

Leucine Exclusively ketogenic BCAA ## ##b 39, 53

3-methyl-2-oxo-pentanoic acid BCAA metabolite - " 39

Valine Glucogenic and ketogenic BCAA # # 53

Methionine Glucogenic SAA # # 39

Ornithine Others, non-proteic AA # # 39

Glutamine/glutamate AA ratio # # 39

totAAs Molar sum # # 39

Serine Glucogenic AA " " 39

Glycine Glucogenic AA "" ""b,c 39, 53

C2 Short-chain ACs " - 39

C3 Short-chain ACs (BCAAs catabolism) # # 39

C5, C5:1, C5OHC3DC Short-chain ACs (BCAAs catabolism) # # 39

C3 1 C5 Short-chain ACs (BCAAs catabolism) # # 39

C4-OH Short-chain ACs " - 39

C4/Ci4 Short-chain ACs # # 39

C8:1, C8:1OH/C6:1DC, C10:1, C10:2, C10:3 Medium-chain ACs # # 39

C14OH/C12DC Long-chain (even-) ACs # # 39

C16:1OH/C14:1-DC Long-chain (even-) ACs - # 39

C18:1DC, C18:2OH Long-chain (even-) ACs " " 39

totACs Molar sum " - 39

C10:0 SFAs, medium-chain # - 40

Acetoacetate Ketone bodies "b "b 53

3-hydroxybutyrate Ketone bodies "b "b 53

2-hydroxy(iso)butyrate Xeno-metabolite, microbial-derived - " 40

Citrate Energy, Kreb’s intermediate #"b -"b 40, 53

Pyruvate Energy, Kreb’s intermediate # # 53

Propanol Alcohol, microbial-derived # - 53

Isopropanol Alcohol, microbial-derived # #b,c 53

Methanol Alcohol, microbial-derived # - 53

TMAO Amines metabolism, microbial-derived " - 53

Dimethyl sulfone Microbial-derived " " 53

aIncrease observed only 1 m following the surgery.
bIncrease observed only 3 m following the surgery.
cIncrease observed only 6 m following the surgery.
AA, amino acids; AAAs, aromatic amino acids; ACs, acylcarnitines; BCAAs, branched-chain amino acids; C2, acetyl carnitine; C3, propionyl carnitine; C4/Ci4, butyryl car-
nitine/Isobutyryl carnitine; C5, isovaleryl carnitine/3-methylbutyryl carnitine/2-methylbutyryl carnitine; C4-OH, 3-hydroxy-butyryl carnitine/b-hydroxy-butyryl carnitine; C6,
hexanoyl carnitine; C8, octanoyl carnitine; C10:3, decatrienoyl carnitine; C16, palmitoyl carnitine; C16-OH/C14-DC, 3-hydroxy-hexadecanoyl carnitine/tetradecanedioyl car-
nitine; TMAO, trimethylamine N-oxide; totAAs, molar sum of all amino acids measured.
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control after surgery (defined through HbA1c values at 3 months).

Circulating 3-hydroxybutyrate (3-HB), higher in the improved group,

was the most relevant early metabolic feature to positively correlate

with a better glycemic control subsequently, together with lower

glucose and lipid (low-density lipoprotein, very-low-density lipopro-

tein) concentrations. The [3-HB]/[glucose] ratio was observed to

augment current prognostic modalities and proposed to help clini-

cians in deciding whether drug therapy is necessary shortly after sur-

gery, ultimately contributing to personalized treatment.

Although starvation-associated ketoacidosis has been proposed as an

explanation for the observed changes (increased fatty acid oxidation

during perioperative fasting or caloric restriction) (74), this does not

explain the selective increase in 3-HB in subjects with a better gly-

cemic prognosis in the long term, since both the improved and non-

improved groups underwent the surgical stress or fasting immedi-

ately after surgery. A direct effect of 3-HB and ketone bodies on

insulin sensitivity has been already shown (75); thus its rise in the

early days after bariatric surgery might directly mediate glycemic

control enhancement. As 3-HB is formed primarily when the energy

source for the peripheral organs is shifted to lipid from glucose

often during longer-term fasting, these alterations in metabolism at

an early-stage postoperation may be a key factor in the success of

longer-term postoperative glucose control. Increases in 3-HB may

also reflect a change in the mitochondrial redox state of the liver

(from a more oxidative state toward a more reduced state), which

would be induced by the surgery only in patients with better

responses in terms of their metabolic phenotypes (metabolic flexibil-

ity). The rise of circulating metabolites known to alter the liver

redox state, including branched-chain ketoacids, BCAAs, and free

fatty acids, recently associated with obesity and T2D (75), would

support this last hypothesis, in keeping with the recent concept of

redox as a master regulator of metabolism (76-78).

Restoration of lipid metabolism
From traditional clinical lipid measures, it is widely appreciated that

dyslipidemia and abnormal lipid metabolism are characteristics of

obesity, especially in association with abnormal glucose metabolism,

i.e., impaired fasting glucose, impaired glucose tolerance, and T2D,

while weight loss improves the blood lipid profile. Although lipido-

mics is now considered a self-standing “omics” technology, studies

focused on the comprehensive analysis of lipid diversity were

included in this review, due to the overlapping between the metabo-

lomic and lipidomic approach and the strong impact of obesity and

weight loss on all traditional lipid homeostasis measures (79,80).

Decline of proinflammatory ceramides. A significant decrease

in plasma ceramides was observed in diabetic subjects with obesity

after RYGB, in conjunction with significant improvements in cardio-

vascular risk factors and insulin sensitivity (43). This study was the

first to provide in vivo evidence following surgically induced weight

loss. Subsequently, Graessler et al. (45) found a significant positive

correlation between the RYGB-induced decrease of ceramide metab-

olites and the postoperative levels of HbA1c, together with triglycer-

ides, total cholesterol, and low-density lipoprotein cholesterol. An

increasing number of cell systems and animal and human studies

have demonstrated a link between increased circulating ceramides

and accumulation (as a major component of ectopic fat) and diabe-
sity, mediated by inflammatory mechanisms (81). These sphingoli-

pids are generated in response to a variety of mediators, including

proinflammatory cytokines, oxidative stress, and increased levels of

free fatty acids, and would contribute to the state of IR by facilitat-

ing inflammatory signaling pathways (i.e., inhibition of insulin

action and subsequent glucose uptake through inactivation of Akt

pathway and induction of inflammation through activation of the

tumor necrosis factor-a axis) (81,82).

Furthermore, it is noteworthy that ceramides differing in the sphin-

goid base and the fatty acid chain length and saturation are formed

in different cell compartments or membranes, by a variety of differ-

ent mechanisms, at different times, and potentially with distinct bio-

logical functions (e.g., dihydroceramides). In turn, the effect of bari-

atric surgery was most pronounced on specific ceramide species,

such as the long-chain C24:0, already associated with the diabese
phenotype (83).

In light of recent evidence regarding the role of muscle sphingolipid

content in IR (i.e., ceramide enriched with nervonic acid) (56),

Mutch et al. (46) speculated that an increase of ceramides in the

bloodstream may reflect their mobilization from non-adipose tissues,

such as the muscle (26). In confirmation of this hypothesis, elevated

intramyocellular lipid deposition was observed in IR and T2D indi-

viduals with obesity, while a significant decrease in intramyocellular

lipid associated with both reduced circulating sphingolipid molecules

and with improved insulin action after RYGB surgery. However,

conflicting results have been published (84).

Fatty acid metabolism. Obesity and IR/T2D have been posi-

tively associated with decreased fatty acid oxidation, accumulation

in the body both in the free and esterified form (lipotoxicity), and to

impaired fatty acid elongation and desaturation (higher proportions

of saturated species and lower proportions of longer-chain n-6 and

n-3 polyunsaturated fatty acid) (85). In contrast, during dietary-

based weight loss a significant reduction of circulating short- and

medium-chain SFAs has been described, generally coupled with an

improvement in insulin sensitivity (57,86). Blood levels of MUFAs

and x-6/x-3 polyunsaturated fatty acids also decreased significantly

in the majority of the studies (Supporting Information Table S3).

Interestingly, Perez-Cornago et al. also found that individuals with

higher circulating concentrations of palmitoleic acid (C16:1) at base-

line experienced a lower reduction in percentage body fat, thus sug-

gesting a certain individual predisposition to responsiveness to the

dietary treatment (57). However, any potential causative effect

remains controversial (87).

Less-explored metabolic adaptations:
Xeno-metabolism and gut microflora
Finally, metabolic adaptations to both weight loss strategies also

included changes in less explored pathways (Supporting Information

Table S3), such as in purine/pyrimidine metabolism, xeno, and gut

microbial metabolism. Changes in xeno-metabolites including phyto-

chemical derivatives have been observed following both dietary and

surgical treatments (e.g., p-cresol sulfate) or only postoperatively

(i.e., 2-hydroxy(iso)butyric acid) as a consequence of the physical

restructuring of the gastrointestinal tract following surgery which

involves bypassing much of the proximal small intestine (duodenum

and jejunum are the predominant absorption sites for phytochemi-

cals) (33,34,49). Although some of them have been already recog-

nized as early biomarkers of IR and glucose intolerance (88), dis-

crepant results have been collected so far.
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Since the xeno-metabolome is strongly influenced by the intricate

relationship between the host metabolism, the diet, and the gut

microbiota composition and activity (24,89), starvation, alterations

in vitamin status (i.e., biotin, niacin), and changes in the gut micro-

flora following both types of procedures for weight are all possibly

implicated. The gut microbiota have been particularly associated

with the development of obesity and its comorbidities, mainly due

to their contribution in the modulation of several processes including

host energy metabolism, gut epithelial permeability, gut peptide hor-

mone secretion, and host inflammatory state. The symbiotic interac-

tion between the gut microbiota and the host is essentially reflected

in specific metabolic signatures, and the application of metabolo-

mics has already allowed new insights on the mechanisms linking

the gut microbiota composition and activity with disease develop-

ment (24). Since the microbiota composition may change rapidly in

response to both dietary factors and bariatric procedures (49), the

effects of a pronounced alteration of gut microbial ecology postoper-

atively is a particularly hot topic of research currently.

Pitfalls and limitations
The interpretation of the insights accumulated so far needs to be

assessed within the context of the limitations of the reported studies.

Some criticisms are relevant to technical limitations of current

metabolomic studies in general (e.g., results variability depending

on the analytical approaches and platforms employed, the bio-sam-

ple selection, preparation, and storage), while others depend on the

poorly characterized or highly variable designs of the studies pub-

lished so far.

From the study design viewpoint, the small scale of the studies and

the presence of single-arm designed or parallel-arm studies with

poor group-matching criteria were the most common issues hamper-

ing biomarker discovery and data exploitation, followed by the com-

mon lack of a validation cohort for internal data replication. The

limited accessibility of relevant information was another relevant

issue (e.g., lack of medication and dietary intake assessment, poor

definition of the anthropometric and clinical characteristics of the

subjects). Since it is well known that not all subjects with obesity

are at the same increased cardiometabolic risk, the metabolic

response and effectiveness of a surgical or dietary intervention to

treat obesity clearly depend on the metabolic health status of the

subjects at baseline (90). Unfortunately, this clinical fact is not

reflected in the metabolomic studies carried out to date. Among the

reviewed works, in fact, virtually no attempt was observed to stratify

individuals with obesity based on their metabolic health phenotype

at baseline (i.e., “metabolically healthy” vs. “unhealthy/at risk” phe-

notypes with obesity), otherwise necessary for personalized follow-

up (91). Also the definition of adiposity was heterogeneous and the

assessment of body fat percentage, a recognized predictive marker

of cardiometabolic risk and responsiveness to dietary treatments

(92), was considered only sporadically. Limited data on the variation

of inflammatory mediators following weight loss were also available

in the reviewed studies. This prevented the search for associations

between the metabolic response to the treatments and the improve-

ment of the proinflammatory state, recognized as a potential mecha-

nism linking adipose tissue expansion and cardiometabolic risk.

Similarly, the modest length of the follow-up (�1 year) did not

allow us to draw conclusions about the longer-term effects of meta-

bolic surgery, as well as the maintenance phase of any dietary

intervention.

Similarly, it is noteworthy that most of the metabolomic studies

have focused on examining changes in the overnight-fasted state,

although it is trivial that eventual improvement in the metabolic

flexibility would manifest more robustly under dynamic challenged

conditions, such as an oral glucose tolerance test, a meal or mixed

meal tolerance test, or glucose/insulin infusion.

Conclusion
Moving from association to causation is the next challenge for

metabolomics to deepen the link between weight loss treatments and

reduction of cardiometabolic risk, and so move biomarker discovery

to the next level of clinical effectiveness. To achieve this goal,

extrinsic and intrinsic limitations should be faced in the near future,

including suboptimal study designs and the prevalent application of

targeted approaches (hypothesis-driven and not hypothesis-

generating).O

VC 2016 The Obesity Society
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