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ABSTRACT 

Background: One of the most common neuropsychiatric symptoms in PD is apathy, affecting 

between 23 and 70% of patients and thought to be related to frontostriatal dopamine deficits. 

In the present study, we assessed functional resting-state frontostriatal connectivity and 

structural changes associated with the presence of apathy in a large sample of PD subjects and 

healthy controls, while controlling for the presence of comorbid depression and cognitive 

decline.  

Methods: Thirty-one healthy controls (HC) and 62 age, sex and education-matched PD patients 

underwent resting-state functional MRI. Apathy symptoms were evaluated with the Apathy 

Scale (AS). The 11 Beck Depression Inventory-II items that measure dysphoric mood symptoms 

as well as relevant neuropsychological scores were used as nuisance factors in connectivity 

analyses. Voxel-wise analyses of functional connectivity between frontal lobes (limbic, 

executive, rostral motor and caudal motor regions), striata (limbic, executive, sensorimotor 

regions) and thalami were performed. Subcortical volumetry/shape analysis and fronto-

subcortical voxel-based morphometry were performed to assess structural changes.  

Results: Twenty-five PD patients were classified as apathetic (PD-A) (AS>13). PD-A patients 

showed functional connectivity reductions compared with HC and with non-apathetic patients 

(PD-NA), mainly in left-sided circuits, and predominantly involving limbic striatal and frontal 

territories. Similarly, severity of apathy negatively correlated with connectivity in these 

circuits. No significant effects were found in structural analyses. 

Conclusions: Our results indicate that the presence of apathy in PD is associated with 

functional connectivity reductions in frontostriatal circuits, predominating in the left 

hemisphere and mainly involving its limbic components.  

  



INTRODUCTION 

Parkinson’s disease (PD) has non-motor symptoms. Among them, one of the most common 

neuropsychiatric manifestations is apathy. Affecting between 23 and 70% of PD patients,(1–3) 

apathy is characterized by behavioral (reduced goal-directed behavior), cognitive (lack of 

interest) and affective (flattened affect) symptoms.(2) 

Although the pathophysiologic bases of apathy in PD are not clear, dopamine deficits affecting 

frontostriatal loops are thought to play an important role. Apathy is known to occur as a result 

of lesions affecting the medial and orbital parts of the prefrontal cortex and the portions of the 

basal ganglia connected to them, namely the ventral striatum.(4) In PD, severity of apathy has 

been found to correlate with frontal gray matter (GM)(5) and ventral striatal volume 

reductions (6). Apathy following subthalamic nucleus stimulation surgery was shown to be 

associated with mesolimbic dopaminergic denervation,(7) and is amenable to dopaminergic 

therapy.(8,9) These findings give support to the relevance of frontostriatal circuits in PD-

related apathy; to our knowledge, nonetheless, no published studies evaluated the presence 

of associated functional connectivity (FC) changes. 

The presence of apathy in PD is associated with cognitive deficits(10–12) and with a higher risk 

of dementia(13). Moreover, it often coexists with depression, and the symptomology of both 

syndromes overlaps(2) – specifically, symptoms of apathy occur as part of the depressive 

syndrome.(14) Although there’s evidence to support that apathy exists as a distinct entity in 

PD,(2,10,15–17) the study of its neural substrates, as well as its clinical detection, are 

complicated by such overlap.  

Our aim in the present study was to evaluate resting-state FC and structural changes affecting 

the frontostriatal pathways in a large sample of PD patients and matched controls, while 

controlling for the associated effects of cognitive decline and depressive symptoms. We 

hypothesized that apathy in PD patients would be associated with disrupted FC in circuits, 

especially affecting the ventral striatum and the ventromedial prefrontal cortex. Considering 

that dopamine modulates frontostriatal FC, and that dopamine deficiency due to nigral 

degeneration precedes forebrain GM pathology in PD,(18) we also expected that FC changes 

would be more marked than structural degeneration. 

 

METHODS 



Eighty-four non-demented PD patients and 38 healthy controls (HC) matched for age, sex and 

years of education were included. Patients were recruited from the Parkinson’s Disease and 

Movement Disorders Unit, Hospital Clínic de Barcelona. HC were recruited from individuals 

who volunteered to participate in scientific studies at the Institut de l’Envelliment, Universitat 

Autònoma de Barcelona. The inclusion criterion for patients was the fulfillment of the UK PD 

Society Brain Bank diagnostic criteria for PD (19). Exclusion criteria were: Mini-Mental State 

Examination scores <25 or dementia according to Movement Disorder Society criteria;(20) 

Hoehn and Yahr (HY) score >III; significant neurological, systemic or psychiatric (except 

depressive symptoms) comorbidity; pathological MRI findings other than mild white matter 

(WM) hyperintensities; root-mean-square head motion >0.3 mm translation or 0.6⁰ rotation. 

Four patients were excluded due to macroscopic movement, 14 due to head motion >0.3 mm 

translation or >0.6⁰ rotation, and one for being an outlier in connectivity analyses. Eight HC (2 

due to microvascular WM changes, 5 due to incomplete filling of the AS) were excluded, 

leaving a final sample of 31 HC and 65 PD patients. This subject sample was used in a recent FC 

study (21), and all except one HC and one PD patient were part of the sample used in a cortical 

thickness study (22).  

All patients except one were taking antiparkinsonian drugs, consisting of different 

combinations of levodopa, cathecol-O-methyl transferase inhibitors, monoamine oxidase 

inhibitors, dopamine agonists and amantadine. All assessments were done while patients were 

in the on state. Levodopa equivalent daily dose (LEDD) was calculated as suggested by 

Tomlinson et al.(23) Motor disease severity was evaluated using HY and Unified Parkinson’s 

Disease Rating Scale motor section (UPDRS) scores. 

The study was approved by the institutional ethics committee, and all subjects provided 

written informed consent to participate. 

Neuropsychiatric evaluation 

Apathy symptoms were evaluated with the self-administered Apathy Scale (AS), recommended 

for use in PD.(24) Subjects were classified as apathetic if they scored >13.(15) 

We also administered the Beck Depression Inventory-II (BDI) to all subjects. Kirsch-Darrow et 

al.(25) dissociated BDI items into 4 factors (apathy, dysphoric mood, loss of interest/pleasure, 

somatic factor); the loss of interest/pleasure factor was shown to be sensitive to symptoms of 

both depression and apathy, whereas the somatic factor can be influenced by other PD-related 

symptoms. The 11 items comprising the dysphoric mood factor loaded on negativity/sadness – 



symptoms not related to apathy –, and showed the lowest correlation with apathetic 

symptoms. We used the score in these 11 items (henceforth referred to as dysphoric mood 

score) as covariates of no interest in FC analyses to control for associated depression. 

Neuropsychological assessment 

Subjects underwent a thorough neuropsychological battery assessing cognitive functions 

frequently impaired in PD, using the following tests: 

Attention/executive functions: backward minus forward digit spans; Trail-Making Test part A 

minus part B scores; phonemic fluency scores (words beginning with “P” produced in 60 

seconds), and Stroop Color-Word Test interference scores). Visuospatial/visuoperceptual 

functions: Benton’s Visual Form Discrimination and Judgment of Line Orientation tests. 

Memory: Rey’s Auditory Verbal Learning Test total learning and 20-minute free recall scores. 

Composite z-scores for each cognitive function (referred to as A/E scores, memory scores and 

VS/VP scores) were calculated as the mean of the z-scores of all tests within that function. 

We have also investigated the presence of MCI following the Movement Disorder Society Task 

Force criteria, as described previously.(22)  

MRI acquisition 

Structural T1-weighted images, functional resting-state images and FLAIR images were 

acquired on a 3T Siemens MRI scanner as previously described (26). 

Processing of fMRI 

The preprocessing of resting-state images was performed with FSL (release 5.0.4, 

http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL) and AFNI (http://afni.nimh.nih.gov/afni). Briefly, it 

included removal of the first 5 volumes to allow for T1 saturation effects, skull stripping, 

grandmean scaling and temporal filtering (0.01-0.1 Hz). To control for the effect of subject 

head movement, physiological artifacts and other non-neural sources of signal variation on the 

estimation of connectivity, motion correction and regression of nuisance signals (six motion 

parameters, cerebrospinal fluid and WM) were performed. To remove the effects of images 

corrupted by motion, a scrubbing procedure as suggested by (27) was applied. Images were 

then smoothed with a 6-mm full-width at half maximum Gaussian kernel. 

Additionally, head motion was calculated as the average Euclidean displacement between 

consecutive timepoints for rotatory and translatory motion (28). 



Definition of regions of interest 

The frontal cortices were parcellated into limbic (anterior, posterior and medial orbital gyri, 

gyrus rectus, and subcallosal gyrus/ventral anterior cingulate), executive (rostral superior and 

middle frontal gyri and dorsal prefrontal cortex), rostral motor (caudal portions of lateral and 

medial superior frontal gyrus, caudal middle and inferior frontal gyrus) and caudal motor 

(precentral gyrus and caudal premotor area), as described by Tziortzi et al.(29) In this study, 

these frontal divisions were used as seeds for probabilistic tractography analyses that defined 

the functional striatal subregions included in the Oxford-GSK-Imanova Striatal Connectivity 

Atlas, which we used to parcellate the striata into limbic, executive and sensorimotor regions. 

We also included the thalami, defined using the Harvard-Oxford subcortical structural atlas. 

Supplementary Figure 1 displays the frontal and striatal segmentation scheme used. 

To obtain each seed region’s resting-state fMRI time series, the mask for each structure was 

non-linearly registered to each subject’s T1-weighted image using FSL FNIRT, and subsequently 

linearly registered to native functional space. 

Functional connectivity analysis 

FC analyses were performed with FSL and AFNI. Initially, a mean time series was obtained from 

each seed region (4 frontal, 3 striatal, 1 thalamic per hemisphere) by averaging the time series 

of every voxel contained in it prior to smoothing, in native functional space. Subsequently, 

these time series were correlated with the time series of every voxel inside the regions of 

interest (ROI), thus producing a Pearson’s r coefficient correlation map. These were then 

converted to z maps using Fisher’s r-to-z transformation.  

Cortical and subcortical gray matter volume analysis – voxel-based morphometry 

Structural data was analyzed with FSL-VBM,(30) a voxel-based morphometry (VBM)-style 

analysis. First, non-brain tissue from structural images was extracted. After segmentation, GM 

images were aligned to MNI152 standard space using affine registration. Resulting images 

were averaged to create a study-specific template, to which native GM images were then non-

linearly re-registered. The registered partial volume images were then modulated by dividing 

by the Jacobian of the warp field. The modulated segmented images were then smoothed with 

an isotropic Gaussian kernel (sigma=3 mm). A mask with the structures of interest (frontal 

cortices, striatal divisions and thalamus) was created to define a search volume for subsequent 

statistical testing. 



Subcortical volumetry and shape analysis 

Subcortical structures of interest (accumbens, pallidum, caudate, putamen and thalamus) 

were segmented using FIRST as implemented in FSL. Since subcortical structural volumes scale 

with head size, we used FSL SIENAX to calculate intracranial volumes, to be entered as 

nuisance factors in volume analyses. For shape analysis, surface meshes were fitted for each 

region of interest as a vertex distribution model, modelling its shape. Multivariate testing was 

then performed on the 3-dimensional coordinates of each vertex, followed by multiple-

comparison correction, thus allowing the detection of localized structural changes.(31) 

White-matter hyperintensity load analysis 

To detect and quantify global (periventricular + deep) WM hyperintensity load, we used an 

automated segmentation procedure(32). Results are given in normalized volumes taking brain 

volume into account. 

Statistical analysis 

Voxelwise general linear model was applied using non-parametric testing (5000 permutations) 

for connectivity and VBM, testing all voxels inside the regions of interest (frontal lobes, striata, 

thalami), as well as for shape analyses. To evaluate the association between the presence of 

apathy and changes in FC, GM volume or shape, we performed both intergroup comparisons 

and correlations (AS scores). Sex and dysphoric mood scores were entered as nuisance 

variables in all analyses. Since group differences were found for A/E and memory scores, these 

variables were entered in intergroup analyses; for correlation analyses, memory scores were 

entered as a nuisance factor as they correlated with AS scores. Significance level was set at 

p<.05, corrected for multiple comparisons using false-discovery rate (FDR) control, applied to 

p-value maps obtained from threshold-free cluster enhancement (33). 

Pearson’s chi-square test was used to compare categorical variables (hand dominance, sex, HY 

stage). Student’s t-test was used to compare clinical and connectivity data means between 

patient subgroups (PD-NA, PD-A). Three-level one-way ANOVAs were used to compare clinical 

and sociodemographic data between HC and patient subgroups. Three-level one-way 

ANCOVAs were used to compare subcortical volumes between HC and patient subgroups, 

controlling for variables that showed intergroup differences in the previous step. Pearson’s 

correlation was used to evaluate the relationship between demographic, clinical and 

neuropsychological measures. Partial correlations were performed in the HC group and in the 

collapsed PD group to assess the relationship between subcortical volumes and AS scores, 



controlling for the variables that correlated significantly with them. Statistical significance 

threshold was set at p<.05. 

 

RESULTS 

Neuropsychiatric assessment 

Twenty-six PD patients (41.3%) were classified as apathetic (AS>13). Table 1 shows 

sociodemographic, clinical and head motion data, with intergroup comparisons. There were no 

intergroup differences in age or years of education, although there were significant sex 

differences (men tended to be overrepresented in the apathetic PD (PD-A) group). As 

expected, dysphoric mood scores were significantly higher in apathetic patients (PD-A) than in 

non-apathetic patients (PD-NA). LEDD and measures of disease severity (HY, UPDRS scores) or 

duration were not significantly different between PD-A and PD-NA, and did not correlate 

significantly with AS, BDI or dysphoric mood scores. 

The proportion of PD patients taking antidepressant medication was similar in both groups (6 

PD-NA, 5 PD-A, p=0.702, Pearson’s chi-square=0.146); AS and neuropsychological scores were 

not significantly different between medicated and unmedicated patients. 

AS scores significantly correlated with memory scores (r=-0.36, p=.004), whereas no significant 

effects were found for A/E (p=0.503) or MMSE (p=0.694) scores. Dysphoric mood scores did 

not correlate significantly with cognitive scores. 

Although PD-A patients had lower A/E scores than HC and lower memory scores than HC and 

PD-NA (Table 1), the proportion of patients with MCI was not significantly different between 

patient groups (14 in the PD-NA and 15 in the PD-A group; p=0.120, Pearson’s chi-

square=2.423). 

Fronto-striatal-thalamic functional connectivity analysis 

PD-A patients showed FC reductions (p<.05, FDR-corrected) compared with HC and with PD-

NA, mainly in left sided circuits and involving limbic regions (see Table 2 and Figure 1). 

Compared with HC, PD-A displayed reduced FC between the limbic striatal division and the rest 

of the left striatum. Moreover, the FC between the limbic division of the left striatum and the 

left frontal lobe was significantly reduced in PD-A compared with PD-NA; in PD-A compared to 



HC, there was suggestive evidence (p=.06, FDR-corrected) of reduced connectivity in the left 

orbitofrontal cortex and inferior frontal gyrus. 

Correlation analyses in the collapsed PD sample showed that AS scores correlated negatively 

with the FC between both limbic and executive divisions of the left striatum and the left frontal 

lobe, between the limbic region of the left frontal lobe and the left striatum, and between the 

caudal and rostral frontal lobe and right striatum. Additionally, AS scores correlated negatively 

with the FC between the different subdivisions of the left frontal lobe (see Figure 2 and 

Supplementary Table). These regions of significant correlation with AS scores displayed a 

marked overlap with the clusters of significant intergroup differences described above in the 

left frontal lobe and in the striata. 

Significant intergroup/correlation analysis results are summarized schematically in Figure 3.  

FC results were maintained after adding head movement parameters as nuisance factors. 

No significant correlations were found in the HC group. To confirm that the connectivity 

differences observed were not due to the unequal sex distribution among groups, we 

performed additional connectivity analyses comparing male and female HC; no significant 

differences were observed. Additionally, we performed post-hoc correlation analyses 

separately in male and female PD patients (Supplementary Figure 2), revealing that the 

observed significant negative correlations between AS scores and frontostriatal functional 

connectivity were present in both groups. 

VBM, subcortical volume and shape analysis 

No significant group differences or correlations with AS scores were observed for GM volume 

or subcortical volume/shape. 

White-matter hyperintensity load 

There were no significant intergroup differences or correlations between connectivity values in 

the clusters of intergroup differences and WM hyperintensity load. 

 

DISCUSSION 

The main finding of our study is that the presence of apathy in PD is associated with resting-

state FC reductions affecting frontostriatal circuits, predominantly in the left hemisphere. 



These changes were observed while controlling for the presence of associated depressive 

symptoms and cognitive impairment, and were not accompanied by significant structural 

changes, suggesting that frontostriatal FC disruption plays a relevant role in PD-related apathy.  

Our results indicate that the occurrence of apathy in PD is accompanied by reduced resting-

state FC mainly affecting the limbic divisions of the striatum and prefrontal cortex. These 

structures are central components of the brain’s reward and motivation systems,(34) recently 

shown to be involved in PD-related apathy.(35) Moreover, the limbic division of the left 

striatum showed reduced connectivity with the ipsilateral frontal cortex and with the rest of 

the left striatum. The limbic striatum is hypothesized to influence motor activity as the limbic-

motor interface;(36) Haber et al. found evidence that the mechanism through which this 

region influences other striatal regions – and, consequently, prefrontal and motor cortices – 

involves a “striatonigrostriatal spiral” through connections with mesencephalic dopaminergic 

nuclei.(37) Dopamine deficits have been shown to result in reduced frontostriatal FC.(38) The 

loss of mesencephalic dopaminergic neurons might thereby lead to the intrastriatal, 

frontostriatal and, ultimately, frontofrontal connectivity disruptions found in our study. Finally, 

the worsening of apathetic symptoms during the off state(39) and after dopaminergic 

treatment reduction following deep-brain stimulation surgery,(8) as well as its improvement 

with dopaminergic treatment(7,40) suggest that dopamine deficiency is involved in PD-related 

apathy.  

Taken together with our results, the abovementioned findings provide evidence that reduced 

striato-frontal resting-state FC is associated with apathy in PD, and is probably mediated by 

dopamine deficits. Furthermore, the “striatonigrostriatal spiral” model links the connections 

between the limbic striatum and other striatal/frontal regions not only to ventral tegmental 

area (VTA) but also to substantia nigra pars compacta dopaminergic neurons.(37) 

The FC correlates found in our study had a clear left-sided predominance. This finding, 

alongside recently published studies, indicates that laterality of neuropathological changes 

influences the risk of developing apathy. Cubo et al. (2012), assessing PD patients up to 2 years 

from diagnosis, found that subjects with left-predominant motor symptoms (i.e., with lesser 

left-sided dopamine deficits) were less likely to be apathetic.(3) In line with these 

observations, the striatal volume correlates for apathy described by Carriere et al. were more 

pronounced in left-hemisphere structures.(6) Furthermore, in a recent study, Porat et al. 

(2014) found that off-medication PD patients with greater left-sided dopamine deficits had 

impaired approach motivation – a symptom of apathy –, whereas right-sided predominance 



was associated with impaired loss avoidance (possibly related to impulse control 

disorders).(41) No such relationship was found in our sample, which may be related to the fact 

that most patients had bilateral disease at assessment. 

GM atrophy, which was not found in our study, has been inconsistently reported in association 

with apathy in PD. Reijnders et al. described that the degree of apathy correlated with frontal, 

insular and parietal reductions in GM volume,(5) whereas Isella et al. failed to find structural 

correlates.(17) Carriere et al., on the other hand, studying dopamine-resistant apathy through 

shape analysis, found striatal volume reductions, mainly in the nucleus accumbens, but no 

cortical thinning.(6) These variable results may be a consequence of the distinct techniques 

used, different sample characteristics and different control over potential confounds such as 

cognitive deficits and motor disability.(42) Taking into consideration the known patterns of PD 

evolution, it is conceivable that apathy in early PD is mediated by disrupted frontostriatal FC 

secondary to mesencephalic dopaminergic neuron degeneration; and that, as the degenerative 

process progresses to forebrain structures, frontal and striatal atrophy acquire a more 

important pathophysiological role. Longitudinal and radionuclide imaging studies are 

necessary to confirm this hypothesis and help disentangle the neurochemical and anatomical 

substrates of apathy in PD. Studies assessing PD patients in the on and off states may also shed 

light on the interaction between dopaminergic medication and the underlying pathological 

changes on FC, and provide a better characterization of the pathophysiology of apathy in PD. 

Moreover, future structural connectivity studies may be useful in assessing the involvement of 

microstructural WM changes in the FC disruptions observed here. 

Finally, apathy in our study was associated with worse cognitive performance, giving support 

to the association between apathy and cognitive deficits in PD.(10–12) Apathy was also more 

common in male patients, a finding that has been inconsistently reported.(1,10,11) 

Some limitations must be considered when interpreting our results. Groups were not matched 

for depressive or cognitive status. Although we did correct all connectivity analyses for these 

variables, we cannot exclude that they influenced the results obtained. Nonetheless, 

considering the high coexistence of apathy and depression or cognitive decline, our study 

sample is probably representative of the general population of apathetic PD patients. 

Additionally, with the aim of using a neuroanatomically valid scheme for parcellating the 

frontostriatal circuits, we used data from a carefully-performed structural connectivity 

study.(29) The resulting ROIs, however, are large, and their averaged functional time series 

may fail to reflect the activity of functionally distinct subregions, possibly reducing the 



sensitivity to localized connectivity disruptions.  Finally, despite rigorous exclusion criteria, our 

study groups were not matched for head movement, which can affect FC parameters.(43) We 

have nonetheless applied several preprocessing steps to minimize these effects. The fact that 

results were maintained after adding movement parameters as covariates, and that the main 

group differences were found between HC and PD-A (which did not differ in head motion) 

suggests that the observed effects are not artifactual.  

In conclusion, our findings suggest that apathy in PD is associated with reduced resting-state 

frontostriatal FC, mainly affecting left-hemispheric limbic/ventromedial regions but also 

extending to premotor and primary motor regions, even in the absence of significant structural 

degeneration and while controlling for associated depression and cognitive decline. These 

findings are compatible with the purported involvement of dopamine deficits in frontostriatal 

pathways in the genesis of apathy symptoms in PD. 
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Figure 1. Significant intergroup connectivity differences. 

Color clusters indicate areas of significant (p<.05, false-discovery rate correction) intergroup 

differences in connectivity with the seed regions indicated at the top, controlling for sex, 

dysphoric mood scores, memory scores and attention/executive scores. Corrected p-values are 

indicated in the color bar. MNI coordinates of the slices shown are indicated. Right hemisphere 

is shown on the left in axial and coronal views. SM: sensorimotor; HC: healthy controls; PD-A: 

Parkinson’s disease patients with apathy; PD-NA: Parkinson’s disease patients without apathy.  

  



 

Figure 2. Significant correlations between connectivity and apathy scale scores in the 

Parkinson’s disease patient group. 

Color clusters indicate areas of significant (p<.05, false-discovery rate correction) negative 

correlation between apathy scores and connectivity with the seed regions indicated in the 

adjacent scatterplots (A: striatal seeds; B: frontal seeds), controlling for sex, dysphoric mood 

scores and memory scores. Corrected p-values are indicated in the color bar. Scatterplots show 

the relationship between mean z connectivity values in the main significant clusters and 

apathy scale (AS) scores. Right hemisphere is shown on the left in axial and coronal views. 

  



 

Figure 3. Schematic summary of significant findings. 

Left: significant intergroup connectivity differences (intergroup contrasts indicated by line 

color). Right: significant negative correlations between apathy scale scores and connectivity in 

the Parkinson’s disease patient group. Continuous lines: results from frontal seed analyses; 

dashed lines: results from striatal seed analyses. Right hemisphere is depicted on the left. HC: 

healthy control group; PD-A: Parkinson’s disease patients with apathy; PD-NA: Parkinson’s 

disease patients without apathy; FL: frontal lobe, limbic division; FE: frontal lobe, executive 

division; FrM: frontal lobe, rostral motor division; FcM: frontal lobe, caudal motor division; StL: 

striatum, limbic division; StE: striatum, executive division; StSM: striatum, sensorimotor 

division. 

  



 

Table 1. Sociodemographic, clinical, head motion and white-matter hyperintensity 
characteristics of participants with intergroup comparisons. 

 HC 
n=31 

PD-NA 
n=37 

PD-A 
n=25 Test stats/p Significant post-hoc 

Bonferroni test (p) 
Age 64.55 

(9.21) 63.43 (8.45) 65.60 (12.89) .352/.704  

Education (yrs.) 11.00 
(4.28) 11.16 (5.39) 8.88 (3.57) 2.118/.126  

Sex (male/female) 15/16 17/20 20/5 8.088/.018 χ  
MMSE 29.68 

(0.48) 29.14 (1.06) 28.96 (1.17) 4.621/.012 PD-A<HC (.017),  
PD-NA<HC (.061) 

AS 7.31 (4.44) 7.49 (3.60) 19.36 (4.13) 79.742/<.001 
PD-A>HC (<.001),  

PD-A>PD-NA (<.001) 
BDI 6.37 (5.90) 7.22 (4.44) 14.8 (5.39) 21.497/<.001 
Dysphoric mood 
score 2.16 (2.49) 2.32 (2.33) 5.60 (2.90) 15.834/<.001 

Hand dominance 
(r/l) 30/1 36/1 25/0 .773/.679 χ 

 

Disease duration - 7.54 (5.52) 7.24 (4.13) .245/.807  †  
UPDRS - 15.37 (8.48) 15.56 (7.94) .087/.931 †  
HY (I/II/III) - 13/22/2 8/13/4 1.921/.383 χ  
LEDD (mg) - 687.8 (459.9) 845.2 (471.3) 1.309/.196 †  
A/E scores .09 (.61) -.24 (0.89) -.51 (1.11) 3.257/.043 PD-A<HC (.040) 
Memory scores .06 (.90) -.17 (1.42) -1.16 (1.07) 8.142/.001 PD-A<HC (.001),  

PD-A<PD-NA (.005) 
VS/VP scores .00 (.80) -.41 (.82) -.48 (1.12) 2.503/.098  
Rotatory head 
motion (mm) .03 (.01) .05 (.04) .04 (.02) 4.952/.009 PD-NA>HC (.028) 

Translatory head 
motion (degrees) .08 (.05) .07 (.04) .07 (.04) .428/.653  

Normalized WM 
hyperintensity 
volume 

799.2 
(1017) 

792.9 
(1354.4) 

1000.9 
(992.7) .287/.751 

 

Results are presented in means (SD). Statistically significant results (p<.05) are marked in bold. 
AS: apathy scale; BDI: Beck depression inventory-II; Disease duration: duration of motor 
symptoms, in years; UPDRS: unified Parkinson’s disease rating scale, motor section; HY: Hoehn 
and Yahr scale; LEDD: levodopa equivalent daily dose; A/E: attention/executive; VS/VP: 
visuospatial/visuoperceptual; WM: white matter. Head motion refers to average Euclidean 
displacement between consecutive scans. HC: healthy controls; PD-NA: Parkinson’s disease 
patients without apathy; PD-A: Parkinson’s disease patients with apathy. Test stats: F-statistics, 
Pearson’s chi-square (χ) or Student’s t (†).  

  



 

Table 2. Significant intergroup connectivity differences. 

Seed Contrast Volume 
(mm3) 

maximum 

Topography MNI 
coordinates  

(x,y,z) 
p value  

Left limbic 
frontal 
lobe 

HC>PD-A 4077 -15,6,-6 .032 Left limbic/executive/SM 
striatum 

PD-
NA>PD-A 

2079 -27,-6,3 .016 Left executive/SM 
striatum 

1998 -15,-18,21 .033 Left executive/limbic 
striatum 

297 -18,12,-12 .044 Left limbic striatum 
Right 
limbic 
frontal 
lobe 

HC>PD-
NA 

837 27,-3,-6 .005 Right executive/limbic 
striatum HC>PD-A 1404 27,0,-9 .005 

Left limbic 
striatum 

HC>PD-A 
2808 

-21,-6,-6 .018 
Left posterior 

limbic/executive/SM 
striatum 

PD-
NA>PD-A 

6426 -36,-24,51 .045 Left precentral gyrus 
3672 -27,27,21 .045 Left frontal pole 
1431 -18,54,9 .045 Left paracingulate, frontal 

pole 
1431 -36,27,-18 .045 Left OFC 
702 -60,-6,39 .045 

Left PCG 648 -9,-18,78 .045 
648 -60,3,15 .045 
297 -39,54,12 .048 

Description of clusters (>10 voxels) of significant intergroup connectivity differences, 

controlling for dysphoric mood, memory and attentional/executive scores, as well as sex. HC: 

healthy controls; PD-A: Parkinson’s disease patients with apathy; PD-NA: Parkinson’s disease 

patients without apathy. SM: sensorimotor; OFC: orbitofrontal cortex; PCG: precentral gyrus. 
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