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INTRODUCTION 

Fibromyalgia (FM) is a highly disabling syndrome affecting 2.9% of the European population 

[3], mainly women in the fourth decade of life, with a female:male ratio of 21:1 [33]. 

Fibromyalgia is defined by a low pain threshold and a permanent state of pain, 

accompanied by a constellation of symptoms, such as fatigue, sleep disturbances and 

cognitive impairment, among others. In the absence of suitable diagnostic tests, FM 

diagnosis is established by the presence of symptoms for at least three months and the 

exclusion of somatic diseases [43; 44]. 

The mechanisms explaining this chronic pain remain unclear. The most established 

hypothesis underlying FM etiopathogenesis is the existence of a dysfunction in pain 

processing. FM patients have been shown to present structural differences in the brain [13; 

19]. Furthermore, there are several evidences of central sensitization at various levels in 

the nervous system [11], as well as neurochemical imbalances in the central nervous 

system leading to a “central amplification” of pain perception [14; 45]. 

The response to painful stimuli and the FM phenotype have both a genetic component. FM 

shows family aggregation [4; 5] and higher concordance in monozygotic than dizygotic 

twins (0.29 vs. 0.16) [18], while the response to painful stimuli has  an estimated heritability 

of 22% to 55% [28]. However, the exploration of the genetic contribution to pain response 

and chronic pain states is, so far, scarce [27]. 

Genetic studies performed so far in FM have not been able to establish a clear genetic 

association.  Most of them have been candidate gene studies, focused on genes related to 

HLA and neurotransmitters [17; 21; 47]. So far, two studies have attempted to explore the 

genetic contribution to FM in a genome-wide manner. One of them analyzed over 3200 

SNPs in 350 genes implicated in pain transmission, inflammatory responses, and in 

influencing mood and affective states associated with chronic pain conditions, in 496 FM 

cases and 348 controls. However, the strongest associations did not replicate in 

independent cohorts [35]. The other one was a linkage scan evaluating 341 markers in 206 

affected sibling pairs. They detected a signal in chromosome 17 but no replication analysis 

was performed [1]. Another recent GWAS study investigating genetic factors involved in 

chronic widespread pain [30] identified a region of association in chromosome 5, near CCT5 

and FAM173B. These two genes also showed a higher RNA-expression in mouse models of 

inflammatory pain.   
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The aim of this study was to elucidate genetic susceptibility factors for fibromyalgia. We 

addressed this objective through two main approaches: a genome-wide association study 

(GWAS) and the evaluation of copy number variants (CNVs), using genotyping data and 

array comparative genomic hybridization experiments (aCGH). These analyses were 

performed on a large and very well characterized cohort of FM patients. 

 

MATERIALS AND METHODS 

Samples 

Fibromyalgia Units of five Spanish Hospitals participated in the collection of samples. An 

initial set of 313 female samples (FM_discovery), characterized by having low levels of 

psychiatric comorbidities and being the best fitting the FM diagnosis, was collected at the 

beginning of the study, and collection continued until an additional set of 1088 female 

patients (FM_replication) was achieved (total female FM cohort = 1401). All patients 

fulfilled the 1990’s American College of Rheumatology (ACR) criteria for fibromyalgia and 

were selected by the rheumatologists of the units participating in the study. Patients were 

then evaluated by another set of physicians trained in the assessment of FM patients. They 

all passed the same questionnaires and physical examination. For a detailed description of 

the cohort, see Docampo et al,. 2013 [9]. All samples were Spanish of Caucasian origin and 

had signed informed consent before enrolment. The ethics committees at all recruitment 

centers approved the project. 

We recently performed cluster analysis on the whole cohort of patients, and found that 

they could be classified into three empirical subgroups, which we then labeled: “FM with 

low levels of comorbidities and symptomatology” (cluster 1), “FM with high levels of both 

symptomatology and comorbidities” (cluster 2), and “FM with high symptomatology but 

low levels of comorbidities” (cluster 3) [9]. A brief summary of the process is provided in 

the supplementary methods.  

Three different control cohorts were used for this study: a cohort of 220 female Spanish 

samples (ECHRS) from the GABRIEL consortium (http://www.cng.fr/gabriel/index.html) was 

used in the GWAS analysis (con_ECHRS). In the GWAS replication studies, we genotyped a 

cohort of  535 female control samples (con_SAL), corresponding to subjects with low levels 

of pain and fatigue (as assessed by a questionnaire) provided by the National DNA Bank of 

Salamanca, and a set of 142 female Spanish blood donor samples (con_VH). For the CNV 

analysis, only the con_SAL set of control samples was used.  
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A flowchart representing the different cohorts and the analysis in which they were used is 

provided in the supplementary material (supplementary figure 1). 

Whole genome association study 

Genotyping 

FM female cases (313 samples, FM_discovery), selected by clinicians for having low levels of 

psychiatric comorbidities and being the best fitting the FM diagnosis, were genotyped with 

Illumina 1M-Duo chip. Genotyping was performed in CeGen (Barcelona Node), following 

the manufacturer’s protocol. 

Data from 220 general Spanish population samples (GABRIEL consortium 

http://www.cng.fr/gabriel/index.html) genotyped with Illumina 610-quad chip was used as 

control dataset (con_ECHRS). 

Quality control 

Quality control (QC) was performed with PLINK [32] (Supplementary methods). 

Allelic association 

Allelic association analysis was performed with PLINK (5% of significance level). QQ plots 

were performed with the WGAviewer software [12], and Manhattan plot and linkage 

disequilibrium (LD) evaluation with Haploview software [2]. 

Power analysis was performed with Quanto (http://hydra.usc.edu/gxe/), showing that for 

SNPs with MAF≥0.05, and given our sample size, we had over 80% power to detect 

associations with OR≥2.0 but it showed much lower power to detect associations with 

smaller OR (1.2) (supplementary methods). 

Imputation 

For GWAS regions showing positive signals, we performed imputation in a window span of 

100kb with Impute v2 (http://mathgen.stats.ox.ac.uk/impute/impute_v2.html) 

(Supplementary methods).  

SNPs annotation and Pathway analysis 

SNPs showing strongest association were annotated with WGAViewer [12]. The relation to 

disease of the SNPs and their genomic regions was evaluated with the Decipher database 

(http://decipher.sanger.ac.uk/). These SNPs were also analyzed with Ingenuity Systems 
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Pathway analysis (IPA) software (http://www.ingenuity.com/) and GeneSet analysis Toolkit 

v2 (http://bioinfo.vanderbilt.edu/webgestalt/). The function of associated SNPs was 

evaluated with Genevar (http://www.sanger.ac.uk/resources/software/genevar/) (1 MB 

window centred in the transcription start site of the gene, Spearman Rank Correlation (p 

<0.001)), Puppasuite (http://pupasuite.bioinfo.cipf.es/), and the Regulome database 

(http://www.regulomedb.org/). 

Replication 

Twenty-one SNPs showing strongest association values were genotyped in a replication set 

from our cohort, consisting in 952 female FM cases (FM_replication) and 644 female 

controls (529 from con_SAL + 115 from con_VH). These SNPs were prioritized based on 

their p-values, the presence of association peaks (clustering of SNPs with strong 

associations in a genomic region), their function (only including SNPs located in genes or 

gene regions recognizedby UCSC genome browser and WGA viewer software), and pathway 

analysis results, focusing on genes from the highlighted neurological disease pathway. 

Genotyping was performed by Kbiosciences (KASPar®). As quality control, duplicates (two 

HapMap samples in each plate) and negative controls where included. SNPs not fulfilling 

HWE, with a MAF <5% or a low genotyping rate (<95%), as well as samples with low 

genotyping rate (<95%), were excluded from the analysis. This resulted in the exclusion of 

one SNP and 55 samples (12 cases and 43 controls). Association analysis was performed 

with SNPassoc R package. 

 

CNV analysis 

CNVs were assessed by aCGH. Experiments were performed with the Agilent® 400K using a 

pooling strategy to dilute common CNV polymorphisms due to inter-individual variability 

and highlight those common variants with a different frequency between cases and 

controls [8]. From the FM_discovery set, three pools of FM samples were designed, two 

with 20 FM cases each (FM_1 and FM_2) and one with 30 cases (FM_3). All the samples 

included in the pools had a family history of FM, and low levels of psychiatric comorbidities, 

and were grouped based on characteristics such as absence (FM1) or presence (FM2) of 

Chronic Fatigue Syndrome, or early onset of symptoms (FM3).  FM pools were hybridized 

against one pool of controls from the con_SAL set (50 samples). 
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The resulting data was analyzed with Agilent’s Genomic Workbench software, using the 

ADM-2 algorithm. We selected regions with at least three aberrant probes and a smoothed 

log2ratio >0.3 (2 standard deviations). 

Validation of array results 

Breakpoints were detected by PCR amplification of the deleted allele based on data from 

Conrad et al. [6], followed by sequencing of the amplified products and BLAT alignment. 

Multiplex reactions for each CNV, including primers for both the deleted and non-deleted 

forms, were designed for genotyping. PCR conditions for the different experiments are 

described in supplementary methods. 

CNV genotyping reactions included both samples from FM cases and controls in order to 

avoid possible bias, non-template controls and, when available, positive controls (HapMap 

samples with validated genotypes for each CNV [6]). NRXN3_del was also assessed by a 

Veracode assay as described [10].  

Allelic association analysis was performed with Fisher exact test. Genotypic association 

analyses were performed using binomial and multinomial regression models for case-

control and among fibromyalgia clusters studies respectively. Quality control and 

association analyses of the Veracode assay were performed with PLINK software. 

 

RESULTS 

Genome-wide association study 

SNP genotyping analysis highlights the involvement of genes in neurological pathways 

After QC procedures, 505,454 SNPs were considered for allelic association analyses in 300 

FM and 203 controls. These samples did not show evidence of population stratification, as 

illustrated by the QQ plot (Figure 1) and the genomic inflation value (λ = 1.013). Association 

analysis did not yield any SNP association over the GWAS significance threshold, as shown 

in the Manhattan plot (Figure 2). Nevertheless, some possible association peaks emerged at 

chromosomes 3 and X, and eight SNPs showed p-values <1x10-5, while another 69 had p-

values <1x10-4. 

These top 77 SNPs (p-value <1x10-4) (Supplementary Table 4) were selected to perform 

pathway analysis. Out of the 77 gene IDs introduced in IPA, 53 were mapped. IPA pathway 
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analysis identified two top networks that were overrepresented in our geneset: 

reproductive system disease (16 genes) and neurological disease (12 genes). Thirty-one of 

the 77 gene IDs were mapped in Geneset analysis Toolkit to perform GO analysis, 

identifying two main molecular functions: protein binding and ion binding, with 16 and 14 

genes, respectively; in these categories, the analysis also identified metal ion binding as the 

only statistically significant overrepresented molecular function (p-adjusted <0.05, 

Benjamini correction). 

Replication 

Twenty-one of the top 77 SNPs were selected for replication in a larger cohort, after a 

prioritization step based on imputation data and gene function. Replication was performed 

only in females. After QC procedures, 20 SNPs in 940 cases and 601 controls were 

considered for the replication analysis. We performed allelic association tests. In the 

replication data we observed significant evidence of SNP-effect sizes in the same direction 

as the discovery set (9/17). Only one of these SNPs, rs11127292, located in the MYT1L 

(myelin transcription factor 1-like) gene, showed association (p <0.05) (Table 1). Based on 

17 (21, 1 no HWE, 3 not independent) independent SNPs taken forward, we would expect 

0.05x17 = 0.85 to reach p = 0.05 by chance. 

 We then applied the subphenotyping of the samples [9], and three subphenotype cohorts 

were tested for association for the four SNPs showing the strongest joint p-values. Again, 

rs11127292 showed association in female FM cases with low levels of comorbidities and 

high levels of symptomatology (joint p-value = 4.28 x 10-5) (Table 2). Potential functionality 

of this SNP was tested by Genvar cis-eQTL-SNP analysis, which showed a correlation trend 

(p=0.0091, while the empirical threshold for significance is 0.0086) between this SNP and 

expression levels of STNG2 (one expression probe) (supplementary figure 3). Assessing 

functional significance of this SNP with Puppasuite or Regulomedb did not highlight any 

other potential functionality. 

CNV analysis identifies NRXN3 as a novel FM gene 

We detected seven regions showing differential hybridization between FM and control 

pools both in direct and dye swap hybridizations (Supplementary table 5). Three of these 

regions (WDR60, DOCK5 and SIRPB1), were not considered for replication since they 

repeatedly appeared in the aCGH experiments performed in the laboratory for different 
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disorders (data not shown). An additional region detected by the less restrictive ADM-1 was 

also considered for validation as a functional candidate. 

We attempted to validate the remaining four regions coming from ADM-2 analysis, and the 

ADM-1 detected region, MYO5B. We mapped or confirmed CNV breakpoints (GALNTL6: 

rs67651552; PTPRD: rs71315285; MYO5B: rs72192652; WWOX: hg18_chr16: 76929139-

76942400; and NRXN3:hg18_chr14:79175982-79184862) and designed multiplex PCR 

experiments for genotyping. Genotyping was performed first in a subset of 345 FM samples 

(selected randomly from FM_discovery and FM_replication) and 133 controls from con_SAL, 

and, if aCGH findings were supported, in our entire cohort (FM_discovery + FM_replication 

and con_SAL). Only one CNV (NRXN3) was considered for genotyping in the entire cohort. 

The CNV located in the intronic region of NRXN3 showed support for association in the 

initial genotyping step. Genotyping of the initial subset of 345 FM cases and 133 controls 

confirmed the results observed in the pools, showing an association of the deleted allele 

with FM (genotypic association, recessive model p = 9.215x10-5, OR (95%CI) = 3.29 (1.69-

6.41); allelic association p = 0.16 Fisher Test). We then completed the genotyping of our 

entire cohort (genotypic association, recessive model p = 0.021, OR (95%CI) = 1.46 (1.05-

2.04); allelic association Fisher Test p = 0.015, OR (95%CI) = 1.22 (1.03-1.43)), which 

validated the association. 

We then applied the cluster classification described previously [9] and performed 

association analyses for each of the FM clusters against the controls. The significance of the 

association of the deleted allele with FM was maintained when selecting samples with low 

levels of comorbidities (clusters 1 and 3) (genotypic association, recessive model p = 0.019, 

OR (95%CI) = 1.49 (1.06-2.11); allelic association Fisher Test p = 0.004, OR (95%CI) = 1.27 

(1.07-1.50)). The genotypic distribution in the different subsets is summarized in Tables 3 

and 4.  

 
DISCUSSION  

We have explored the genetic susceptibility to FM through GWAS and aCGH assessment of 

CNVs. Our findings identify two associated variants, a SNP in MYT1L, and an intronic CNV in 

NRXN3. Both results suggest a possible role for the central nervous system in FM genetic 

susceptibility. 
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None of the SNPs reached genome-wide significance, but we observed signal peaks at 

chromosomes 3 and X, and identified 77 SNPs with p-values <1x10-4. Since recent studies 

detected linkage to chr17 [1], and association in chr5 [30], we specifically checked our 

GWAS signals in these regions. Among the top 77 SNPs, four were located in chr17 and one 

in chr5, although outside the reported linkage or association regions. Twenty-one SNPs, 

including one in chr17, were selected for replication in a large independent FM cohort. Nine 

of the SNPs showed an effect in the same direction than those identified in the discovery 

cohort, and one, rs11127292, had a nominally significant p-value. 

rs11127292 is located in the third intron of MYT1L, and may be correlated to expression 

levels of SNTG2 in lymphocytes. Both MYT1L and SNTG2 are good candidates for FM: they 

are involved in neuronal pathways, and FM could be characterized by a central nervous 

system (CNS) dysfunction [36]. MYT1L is involved in neuronal differentiation [31; 40], and 

variants in this gene have been associated with neuropsychiatric disorders [25; 41; 42], 

while variants in SNTG2 have been associated to autism [46] and to suicide attempts in 

major depression [29]. 

The potential role for the CNS dysfunction in FM was not only highlighted by the association 

of rs11127292. Neurological disease was one of the two top networks identified by IPA 

analysis of the 77 GWAS top SNPs. Furthermore, Geneset GO analysis showed ion binding 

(and calcium in particular) as one of the two main molecular functions, calcium channel 

complex as the top molecular component, and regulation of calcium mediated signalling 

and calcium ion transport and neurogenesis among the top ten biological functions. These 

results suggest an involvement of the CNS in fibromyalgia, supporting the hypothesis that 

FM could be due to a dysfunction in pain processing. 

Nevertheless, we have to take these results with care since this GWAS presents as its main 

limitation the reduced number of samples considered. Although the samples were carefully 

selected to attain a more homogeneous phenotype, the high genetic and phenotypic 

heterogeneity of FM, coupled with the small discovery sample size, could explain why we 

were not able to detect an association reaching GWAS significance. The small sample size 

could also result in the detection of false positives and a consequent lack of replication of 

associated variants. Since we used a different genotyping platform for the controls, despite 

performing careful QC, some technical bias could remain leading to false positives. 

Nevertheless, the association of rs11127292 was confirmed in the replication phase, and 

stratified analysis improved the replication results, highlighting the importance of a precise 
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phenotyping of the samples in dissecting the genetic components of extremely complex 

disorders like FM.  

We also explored the contribution of CNVs to FM genetic susceptibility using aCGH with a 

pooling strategy. Seven regions showed differential hybridization in aCGH experiments, one 

of which, an intronic 8kb deletion within the NRXN3 gene, was validated on follow-up. 

Further subsetting of the samples also increased the significance of the association in those 

samples with low levels of comorbidities. We could not confirm an association for the CNVs 

within GALNTL6, WWOX, PTPRD and MYO5B, but their participation in FM cannot be 

completely excluded, as they could be low effect variants, requiring larger cohorts for 

validation. These genes have been shown to play a role in the CNS [22; 23; 34; 38], and 

considering our GWAS and aCGH results, this would make them good candidates for FM 

susceptibility. 

The use of pooled samples presents clear economic advantages, but it can also lead to a 

higher number of false positives. Causes of false positives can be due to real but random 

differences in the frequencies between cases and controls, or to unequal sample 

contributions to the pools, leading to biased overrepresentation of rare variants. In order to 

overcome these limitations, we used three independent pools of FM as biological 

replicates. All three FM pools were hybridized against the same control pool, which had 

been frequently tested in the laboratory. Variants recurrently appearing in other 

hybridizations with this control pool were filtered out. In addition, direct and ‘dye-swap’ 

experiments were performed. Nevertheless, only one of the five regions selected for 

follow-up showed association with FM in the larger cohort. 

An intronic CNV in NRXN3 was associated with FM with low levels of comorbidities. NRXN3 

is a good candidate for FM as it is essential for neuronal development and for signal 

transmission. Neurexins are among the most widely studied adhesion and scaffolding 

molecules involved in synapse stability and function. They are transmembrane proteins 

located in the presynaptic neuron. They have three extracellular binding partners: 

neuroligins, dystroglycan and neurexophilins [7]. In particular, the binding with neuroligins 

is essential for the development and function of GABAergic and glutamatergic synapses 

[37]. Several variants in neurexin genes (rare CNVs and SNPs) have been associated with 

different phenotypes, mainly neuropsychiatric disorders, including addictive behavior [16; 

20] and obesity [15]. Changes in NRXN3 and therefore in signal transmission could explain 

the central nervous pain dysfunction characteristic of FM. 
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The detected NRXN3 variant is an intronic CNV. We tried to identify a possible link to other 

functional variants by genotyping additional NRXN3 variants in the FM samples, 

unsuccesfully (data not shown). We then considered possible functional consequences of 

the CNV at the mRNA level. NRXN3 has several different isoforms generated by alternative 

splicing. One of the alternative splicing sites is located relatively close to the CNV. 

Preliminary data from two neuronal cell lines indicate that the CNV could affect differential 

skipping of exon 20, which encodes a protein domain involved in binding to neuroligins 

[44], although data from lymphoblastoid cell lines do not support this hypothesis. In order 

to extract a definite conclusion regarding the correlation between exon-skipping and the 

CNV, it would be advisable to test additional neuronal cells with different genotypes for the 

deletion, as it is possible that the splicing behavior changes between lymphoblastoid and 

neuronal lineages.  

Although our results correspond to the analysis of a small initial dataset, we have found 

further support in a larger, well-characterized cohort, especially when selecting for a 

specific phenotype. It would be particularly interesting to follow up on our results by 

validation of the specific findings in additional large, well characterized, cohorts. This is 

challenging in FM since, to our knowledge, this cohort is the largest existing FM DNA 

collection. 

The two identified FM associations, the SNP in MYTL1 and the CNV in NRXN3, were slightly 

improved after subphenotyping. This indicates that identifying homogeneous phenotypes 

constitutes a key step for the identification of FM genetic susceptibility factors. The slight 

improvement in the association scores further validates the cluster-based classification 

used, indicating that cases with low levels of comorbidities form a more genetically 

homogeneous subset of FM cases. 

In summary, our GWAS and aCGH results point at a role for the CNS in FM genetic 

susceptibility. In fact, variants detected by both studies are linked: calcium transport 

appears as one of the main GWAS molecular functions, and the neurexins-neuroligins 

complex formation is dependent on calcium [26]; also, the SNP showing the strongest 

association has been correlated with expression levels of SNTG2 (in blood) and SNTG2 

interacts with neuroligins 3 and 4, which are neurexin partners [46]. Furthermore, another 

study evaluating gene expression of FM individuals detected changes in genes implicated in 

pain transmission, which would support our findings [24]. This CNS implication in FM would 

be further supported by recently published findings on pain, showing evidence for specific 
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neurophysiologic alterations in FM patients [39]. Of particular interest, functional and 

morphological impairment of small fibers have been reported in FM cases. Individuals 

presenting those electrophysiological changes would be the ideal models to explore the 

association and functionality of our detected genetic variants in order to try to establish a 

correlation with clinical severity, outcome and response to treatment. 

In spite of the difficulties encountered in the study of genetic factors of FM (clinical 

heterogeneity, reduced availability of replication cohorts and non-availability of target 

tissue) we have been able to detect variants that can shed a light on genetic factors 

determining FM susceptibility. To our knowledge, only neurotransmitter related genes 

(including receptors, transporters and enzymes implicated in neurotransmitters 

metabolism) had been tested as FM susceptibility candidates. The possible role of synaptic 

structural molecules such as NRXN3 and molecules implicated in CNS development and 

functioning, such as MYTL1, open a new wide field of research on aetiology and drug 

targets. One consideration that we have to take into account is that all of these molecules 

have been previously associated with neuropsychiatric disorders. If these synapse genes 

associations are confirmed in other FM cohorts, it would constitute an additional argument 

to consider FM as a neuropsychiatric disorder. 
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FIGURE LEGENDS: 

Fig. 1: QQ plot of fibromyalgia GWAS. Observed p-values are plotted against expected p-
values in an association study of 500 k SNPs. The almost perfect correlation between 
observed and expected values was indicative of absence of population stratification as 
proven by a genomic inflation (λ) value of 1.013. Figure obtained with WGA viewer 
software. 

Fig. 2: Manhattan plot representing the results of the fibromyalgia GWAS. The negative 
LOG10 p-values of all SNPs are plotted against their chromosomal positions. Chromosomes 
are represented by different colors. 
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SUMMARY 

Variants in NRXN3 and MYT1L are associated with fibromyalgia. Our results point to a role for 

the central nervous system in susceptibility to fibromyalgia. 

*Summary



Figure 1
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Figure 2
Click here to download high resolution image
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Table 2. rs11127292 allelic association in the different fibromyalgia clusters in GWAS, replication and joint cohorts 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
F: frequency of the effect allele (minor allele; A or T in rs1112792); Discovery: FM_discovery vs CON_discovery; Replication: 
FM_replication vs CON_VH + CON_SAL; FM: fibromyalgia individuals; C: controls; cl1, cl2, cl3, cl1_3: clusters 1, 2, 3, and 1 
and 3, respectively. 

rs11127292 F_FM F_CONTROLS P-value OR (95%CI) 

Discovery  (300 FM vs. 203 C) 0.051 0.125 2.6x10-5 0.37 (0.23-0.60) 

Replication (940 FM vs. 592 C) 0.091 0.114 0.03 0.76 (0.60-0.97) 

Discovery + Replication (1240 FM vs. 795 C) 0.081 0.117 1.76x10-4 0.67 (0.54-0.82) 

Discovery cl3 (196 FM vs. 203 C) 0.045 0.125 6.21x10-5 0.33 (0.19-0.58) 

Replication cl3 (450 FM vs. 592 C) 0.083 0.114 0.019 0.70 (0.52-0.94) 

Discovery cl1 + Replication cl1 (240 FM vs. 795 C) 0.085 0.117 0.05 0.70 (0.49-1.01) 

Discovery cl2 + Replication cl2 (304FM vs. 795 C) 0.092 0.117 0.09 0.76 (0.55-1.04) 

Discovery cl3 + Replication cl3 (646 FM vs. 795 C) 0.071 0.117 4.28x10-5 0.58 (0.44-0.75) 

Discovery cl1_3 + Replication cl1_3 (886 FM vs. 795 C) 0.075 0.117 4.03x10-5 0.61 (0.48-0.77) 

Table



Table 3. Genotype distribution of NRXN3_DEL among cases and controls in the studied cohorts 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

Del: Deleted; NoDel: Non-deleted; CON: Control; FM: Fibromialgia (FM_discovery + FM_replication); FM cl1, FM cl2, FM cl3, FM 

cl1_3: Fibromyalgia cases corresponding to clusters 1, 2, 3, and 1 and 3, respectively. 48 FM samples could not be assigned to 

a cluster. 

GENOTYPES 
CON = 445 

N (%) 

FM = 1358 

N (%) 

FM cl1 = 268 

N (%) 

FM cl2 = 330 

N (%) 

FM cl3 = 712 

N (%) 

FM cl1_3 = 980 

N (%) 

Del/Del 48 (10.8) 204 (15.0) 50 (17.5) 497(14.2) 103 (14.5) 150 (15.3) 

Del/NoDel 207 (46.5) 640 (47.1) 132 (47.4) 146 (44.2) 349 (49.0) 476 (48.6) 

NoDel/NoDel 190 (42.7) 514 (37.8) 95 (35.1) 137 (41.5) 260 (36.5) 354 (36.1) 

Table



Table 1. SNPs selected for replication in our GWAS study of fibromyalgia 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

SNPs are listed in ascending order according to allelic association GWAS p-value (with the exception of the three imputed SNPs). Type indicates the relative 

position of the SNP with respect to the nearest gene, and gene provides the gene in which the SNP is located or the nearest gene in a 500 kb window. IM: 

imputed SNP. Type: SNP location upon the gene according to WGA viewer classification; ‡ rs2901761 was not in HWE in controls (p-value = 0.005). 

 

SNP Rank Type Gene/Region P GWAS OR (95%CI) P replication OR (95%CI) Combined P  OR (95%CI) 

rs12556003 1 intron MCF2 2.14x10-6 0.34 (0.21-0.54) 0.132 0.81 (0.62-1.06) 1.98x10-4 0.65 (0.52-0.81) 

rs12704506 2 intergenic STEAP1/STEAP2 3.20x10-6 2.19 (1.56-3.07) 0.010 0.81 (0.67-0.96) 0.9 1.00 (0.86-1.17) 

rs11923054 3 intron ZBBX 3.52x10-6 0.54 (0.42-0.70) 0.580 0.93 (0.80-1.08) 0.0047 0.83 (0.73-0.94) 

rs2858166 4 5 kb_down ARMCX6 3.61x10-6 1.83 (1.42-2.38) 0.695 0.99 (0.86-1.15) 0.008 1.18 (1.04-1.34) 

rs10782344 5 intergenic RP11-518I13.1 3.63x10-6 2.22 (1.57-3.12) 0.526 1.07 (0.89-1.28) 0.004 1.26 (1.07-1.48) 

rs1998709 6 intron PLCE1 7.62x10-6 1.80 (1.39-2.33) 0.14 0.87 (0.75-1.02) 0.3397 1.06 (0.93-1.21) 

rs2901761 IM Intron PLCE1 5.11x10-7 0.50 (0.38-0.66) ‡ ‡ ‡ ‡ 

rs2194390 7 intron NRXN1 8.06x10-6 0.41 (0.21-0.67) 0.702 1.07 (0.84-1.35) 0.049 0.81 (0.67-0.99) 

rs2701106 8 intergenic TBX5 8.94x10-6 1.84 (1.40-2.42) 0.287 0.90 (0.77-1.05) 0.194 1.09 (0.95-1.24) 

rs7963168 IM intergenic TBX5 1.49x10-8 0.52(0.40-0.67) 0.08 1.17 (1.01-1.36) 0.28 1.07 (0.94-1.22) 

rs17512210 15 intron SHISA6 2.21x10-5 0.56(0.43-0.73) 0.851 1.01 (0.86-1.17) 0.049 0.87 (0.76-0.99) 

rs9381682 18 intergenic - 2.48x10-5 0.45 (0.31-0.65) 0.156 0.87 (0.69-1.09) 7.38x10-4 0.72 (0.59-0.87) 

rs11127292 20 intron MYT1L 2.60x10-5 0.37 (0.23-0.60) 0.039 0.76 (0.60-0.97) 1.76x10-4 0.67 (0.54-0.82) 

rs12770855 32 intergenic ZNF438 4.05x10-5 0.41 (0.27-0.63) 0.149 0.85 (0.67-1.07) 0.001 0.71 (0.58-0.87) 

rs10821659 33 intron ANK3 4.06x10-5 0.58 (0.44-0.75) 0.110 0.88 (0.73-1.03) 6.22x10-4 0.79 (0.70-0.90) 

rs265015 34 intron UNC5C 4.12x10-5 0.41 (0.26-0.63) 0.016 1.41 (1.06-1.88) 0.852 0.97 (0.77-1.23) 

rs9565180 37 intron LMO7 4.53x10-5 0.54 (0.41-0.73) 0.242 1.13 (0.94-1.35) 0.267 0.91 (0.79-1.06) 

rs6043433 43 intron MACROD2 5.00x10-5 0.52 (0.38-0.71) 0.288 1.11 (0.91-1.36) 0.899 0.89 (0.76-1.06) 

rs6131711 IM intron MACROD2 9.92x10-8 1.87 (1.45-2.83) 0.596 1.05 (0.91-1.23) 9x10-4 1.25 (1.09-1.42) 

rs11602757 57 intron LRG_164 7.15x10-5 2.77 (1.64-4.68) 0.795 0.95 (0.74-1.23) 0.077 1.22 (0.97-1.53) 

rs981524 67 intron AKAP6 7.94x10-5 1.98 (1.40-2.81) 0.139 1.18 (0.99-1.42) 0.001 1.30 (1.11-15.52) 

Table



Table 4. Allele distribution of NRXN3_DEL among cases and controls in the 

studied cohorts. 
 

 

 

 

 

 

 

Del: deleted; NoDel: non-deleted; CON: con_VH + con_SAL; FM: FM_discovery + 

FM_replication; Cl1: cluster 1; Cl3: cluster 3. 

ALLELES CON (%) FM (%) FM (cl1+cl3) (%) 

NoDel 587 (65.9) 1668(61.4) 1184 (60.4) 

Del 303 (34.1) 1048(38.6) 776 (39.6) 

Table



SUPPLEMENTARY MATERIAL 

SUPPLEMENTARY METHODS 

Genome-wide association study 

Quality control 

Quality control (QC) was performed with PLINK software. In order to minimize platform bias, 

QC steps were executed separately in the FM and control datasets, taking only into account 

the SNPs that overlapped between the two datasets (582,892 SNPs). Samples were checked 

for origin, heterozygosity, genotyping rate, inbreeding and gender. Sample filtered datasets 

were then filtered at the SNP level considering genotyping rate (≥96%), Hardy Weinberg 

Equilibrium (p>0.0001) and minimum allele frequency (MAF) ≥5%. After QC at the sample and 

SNP levels, the FM dataset included 308 cases (300 females and 8 males) and 513,897 SNPs, 

and the control dataset 395 controls (203 females and 192 males) and 512,615 SNPs. Then, FM 

and control datasets were merged with 505,454 overlapping SNPs. Since 97% of the FM 

samples were females we only included female controls to have a gender matched control set. 

Imputation 

For GWAS regions showing positive signals, we performed imputation in a window span of 

100kb with Impute v2 (http://mathgen.stats.ox.ac.uk/impute/impute_v2.html) 

(Supplementary methods), considering an interval buffer region of 500 kb and using as 

reference panels 1000Genomes and Hapmap3 CEU data. Association analysis of imputed data 

was performed with SNPTEST (http://mathgen.stats.ox.ac.uk/genetics), which allows dealing 

with genotype uncertainty due to the imputation process. For this we used the score approach 

based on missing data likelihood score test. Only SNPs with an Infoscore >0.8 were taken into 

consideration. 

Cluster analysis 

A full description of the cluster analysis is provided in ref. 9. Briefly, the full 1500 fibromyalgia 

samples cohort was randomly divided in two sets. The cluster analysis of the clinical variables 

was performed in one of the sample sets and validated in the second set. Then, two sets of 

variables were used to score all samples, which were a priori divided into three clusters by K-

means analysis. A post-hoc labeling of the clusters based on their clinical characteristics was 

applied.  A few individuals could not be classified into clusters as some of the necessary 

variables were not available. The cluster distribution of the samplesfrom each cohort is given 

below: 

Supplementary Materials: figures, tables
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 Cluster1 Cluster2 Cluster3 

FM_discovery (291) 66(22.7%)    29(10%) 196 (67.3%) 

FM_Replication(1135) 217(19.1%) 328(28.9%) 590 (52%) 

Joint (1398) 283(20.2%) 357(25.6%) 758 (54.2) 

 

CNV analysis: WWOX Breakpoints detection 

PCR conditions 

Primers (Table S1) were designed with Primer3 software taking into account aCGH positive 

probes coordinates and overlapping CNVs described in the Database of Genomic Variants. We 

took advantage of data available in Conrad et al work and included, as positive controls, 

HapMap samples with known genotypes for the CNV (Two copies: NA07019, NA06994; One 

copy: NA12056, NA12145, NA12864; Zero copies: NA06991; NA12761).  

Table S1. Primers used for WWOX breakpoints detection. 

CNV Primers (5’-3’) Product size (bp) 

WWOX WWOX_F1: TGGGTAGGAATCCTGCAGAC 
WWOX_R1: TGCCTAAAAGCACACACTGC 

WWOX_R2: GGGCATCCCAGTTTTCTACC 

WWOX_R3: CCTGCTTCCTGAACATTCCT 

Depending on primers 
combinations 

 

PCR reaction was performed following the PCR program below: 

2’ 94ºC and 30 cycles: 30” 94ºC; 30” 60ºC; 45” 68ºC; 7’ 68ºC 

Mix components: 

50 ng DNA; 10x Roche® PCR reaction buffer + Mg+2; 0.2 mM dNTPs; 0.4 pM/l each primer 

0.1 U/l Taq Polymerase; H2O to reach a final volume of 25 l. 

Removal of PCR primers and reagents 

5 l PCR product of homozygous deleted samples were cleaned up with 2 l of USB® Exo-SAP-

IT® following an incubation of 15’ at 37ºC plus 15’ at 80ºC. 

Sequencing PCR 

1 l of PCR product after Exosap, was added to a mix of 1 l Big Dye Terminator® v3.1 (Applied 

Biosystems), 1.5 l 5X Buffer, 0.5 l of either reverse or forward primer (10 µM) and 6 l H2O, 



and a sequencing PCR reaction was performed following the PCR program below (30 cycles): 

30” 95ºC; 30” 50ºC; 3’ 60ºC 

Purification sequencing PCR 

Sequencing PCR products were purified with sepharose (Sephadex®-G50) columns. Briefly, 800 

µl of sepharose were pipetted into a column and centrifuged at 1000 g for one minute for 

sepharose compactation. Flow-through was discarded and 10 µl of water were added to the 

sepharose column and centrifuged for one minute again at 1000g. Finally, the column was 

introduced in a new eppendorf, the sequencing PCR loaded into the column and centrifuged 

for 1 min at 1000g. The purified PCR was run in a capillary sequenced (3730XL Applied 

Biosystems). 

Sequence analysis and blast to human genome 

Sequencing results were analyzed with CLC workbench with standard settings. Only clean 

sequences were selected for blast analysis in UCSC Genome Browser.  

CNVs genotyping 

PCR conditions 

PCR conditions and primers for CNVs genotyping are summarized in Tables S2 and S3 below. 

Table S2. PCR conditions for CNV genotyping. Grey cells correspond to shared components in 

between reactions 

 ACACA GALNTL6 WWOX MYO5B PTPRD NRXN3 

PCR program 

(30 cycles) 

2’ 94ºC 

30” 94ºC 

30” 60ºC 

1’ 72ºC 

7’ 72ºC 

2’ 94ºC 

30” 94ºC 

30” 63ºC 

30” 72ºC 

25’ 72ºC 

2’ 94ºC 

30” 94ºC 

30” 61ºC 

30” 72ºC 

7’ 72ºC 

2’ 94ºC 

30” 94ºC 

30” 62ºC 

30” 72ºC 

7’ 72ºC 

2’ 94ºC 

30” 94ºC 

30” 60ºC 

30” 72ºC 

7’ 72ºC 

2’ 94ºC 

30” 94ºC 

30” 60ºC 

30” 72ºC 

7’ 72ºC 

Mix components       

50 ng DNA - 75 ng - - - - 

10x Roche® PCR reaction 

buffer+Mg
+2

 
- - - - - - 

dNTPs (mM)  0.125 0.06 0.125 0.2 0.2 0.15 

Del Primers (pM) 0.40 0.02 0.4 0.4 0.24 0.4 

Non-Del primers (pM) 0.24 0.032 0.4 0.4 0.24 0.2 

Taq Polymerase (U)  0.1 0.06 0.1 0.06 0.06 0.02 

H2O to volume of 25 l - - - - - 15l 

 

 



Table S3. Primers for CNV genotyping PCR reactions 

Allele 
Primers (5’-3’) Product size (bp) 

ACAC Del 
 
ACACA Non-Del 

ACACA_DelF: GGCCTCCTCTTCTAGCTGTTG 
ACACA_DelR: AACAGGTGCCCAATAAATGC 
ACACA_F: GAGCCCATTAATCCAGAAAGG 
ACACA_R: TGACTTAGTGCCCATTCAAGG 

1164 
 

449 

GALNTL6 Del 
 
GALNTL6 Non-Del 

FF_Mi_A: [6FAM]GCAAGTAATGCCCAAGGAAA 
RF_Mi_del2: AGAGCATAAACCTCACAGGAC 
FF_Mi_wt: [6FAM]TGGTAATGAGCAGAGGAAAGG 
RF_Mi_wt5: TGAGCACTTACCCTGTCTGC 

250 
 

283 

WWOX Del 
 
WWOX Non-Del 

WWOX_DelF: ATCTGGCCATGTCCTCATTT 

WWOX_DelR: TGTGACCTGATAACCGCTGA 

WWOX_F: AATGGGAATCTTTGCCTGTG 

WWOX_R: ATGGCAACTGACTTGGGAAG 

192 
 

217 

MYO5B Del 
 
MYO5B Non-Del 

MYO5B_DelF: AACAGGCTGTCTCTTCCATGA 
MYO5B_DelR: CAGGGGTGGTTAGAATGAGG 
MYO5B_F: GAATGCATTTTGTCCAGCAGT 
MYO5B_R: CTCATAGAGGCGGTGTTCTTG 

234 
 

201 

PTPRD Del 
 
PTPRD Non-Del 

PTPRD_DelF: GGGTGGTGGAAGGTGGTTAT 
PTPRD_DelR: GGTCTGGCATTTTGACATGA 
PTPRD _F: GCCAATTTCAGATCCTCAGC 
PTPRD _R: TTAGTGGCGTTCACACATGG 

450 Del 
980 Non-Del 

219 

NRXN3 Del 
 
NRXN3 Non-Del 

NRXN3_FDel: CAGTCTTGACTGCTGGGTGAAC 

NRXN3_R: [6FAM]GTGACTGCTGATGAGCCACGC 

NRXN3_FNodel: GTGAGCACTCGATCCAGCATAA 

NRXN3_R: [6FAM]GTGACTGCTGATGAGCCACGC 

466 
 

350 

 

PCR products detection 

PTPRD PCR products were loaded in a 2% agarose gel and visualized with a UV transilluminator 

(Gel Doc® (Bio Rad)). WWOX and MYO5B PCR products were loaded in a 3% agarose gel and 

visualized with a UV transilluminator (Gel Doc® (Bio Rad)). 

GALNTL6 CNV and NRXN3_DEL were genotyped by multiplex PCR with 5’ FAM modification, 

followed by capillary electrophoresis in a 3730XL automatic sequencer and analysis with the 

Gene Mapper package (Applied Biosystems, Foster City, CA). Analysis was performed with the 

Gene Mapper package (Applied Biosystems). Samples showing peak intensities below 1000 

fluorescent units or ratios of deleted allele to non-deleted allele <0.2 or >5 were not 

considered for analysis. For capillary detection, NRXN3_DEL PCR reactions were diluted at 

1:15, and 1 µl of PCR dilution was then added to 9 µl of a formamide/ROX mixture (950 µl + 20 

µl per 100 samples), and samples were loaded into 3730XL. GALNTL6 PCR products were not 

diluted: 1 µl of the PCR was added to the formamide/ROX mixture.  



NRXN3_del was also assessed with 3 SNPs included in a Veracode assay. Two of the SNPs were 

located within the deleted region (rs12894142 and rs12100748), and we designed a third SNP 

assay (NRXN3del) with each of its extension probes flanking the breakpoints of the CNV. A 

combination of the results for these SNPs was used to assess the genotype. A sample was 

considered as homozygous deleted when failing in both SNPs included in the deleted region 

and amplyfing in the breakpoints SNP; an heterozygous sample for the CNV was defined by 

presenting genotype for the three SNPs (the two inside the deletion having to be mandatorily 

homozygous); the homozygous non deleted samples were characterized by the failure of the 

breakpoints SNP and presenting genotype at the SNPs inside the CNV region (being either 

homozygous or heterozygous). 

  



SUPPLEMENTARY RESULTS 

Table S4. SNPs showing the strongest allelic associations (p-value <10-4) 

SNP P-value Chromosome Coordinate (Hg18) Gene/Region 

rs12556003 2,14x10-6 X 138743267 MCF2 

rs12704506 3,20x10-6 7 89621311 STEAP1/STEAP2 

rs11923054 3,52x10-6 3 167051769 ZBBX 

rs2858166 3,61x10-6 X 100875273 ARMCX6 

rs10782344 3,63x10-6 6 156778660 RP11-518I13.1 

rs1998709 7,62x10-6 10 95884574 PLCE1 

rs2194390 8,06x10-6 2 50902931 NRXN1 

rs2701106 8,94x10-6 12 114697547 TBX5 

rs9525923 1,11x10-5 13 44783715 RP11-478K15.2 

rs1347532 1,12x10-5 16 60615455 RP11-51O6.1 

rs12486010 1,53x10-5 3 166942627 ZBBX 

rs7616572 1,61x10-5 3 167046536 ZBBX 

rs10894241 1,75x10-5 11 130635852 AP003486.1 

rs11925091 2,00x10-5 3 166944651 ZBBX 

rs17512210 2,21x10-5 17 11230466 SHISA6 

rs5951332 2,35x10-5 X 100743826 ARMCX4 

rs7060491 2,35x10-5 X 100754149 ARMCX4 

rs9381682 2,48x10-5 6 48620238 AL391538.1 

rs17689185 2,50x10-5 16 77525081 AC025284.1 

rs11127292 2,60x10-5 2 2029943 MYT1L 

rs6523526 2,64x10-5 X 100917910 ARMCX2 

rs3784820 2,76x10-5 16 1569252 IFT140 

rs6621083 2,81x10-5 X 100760626 OTTHUMG00000022030 

rs10432656 2,82x10-5 2 33375032 OTTHUMG00000152118 

rs2071222 3,00x10-5 X 100617372 LRG_128 

rs11971008 3,05x10-5 7 82136025 CACNA2D1 

rs858939 3,10x10-5 2 50971951 NRXN1 

rs11187789 3,23x10-5 10 95871655 RP11-162K11.4 

rs13068321 3,46x10-5 3 167013777 ZBBX 

rs963618 3,79x10-5 X 100743037 ARMCX4 

rs9296606 3,91x10-5 6 48640714 AL391538.1 

rs12770855 4,05x10-5 10 31120198 ZNF438 

rs10821659 4,06x10-5 10 61793424 ANK3 

rs265015 4,12x10-5 4 96360796 UNC5C 

rs882847 4,39x10-5 17 4382729 SPNS3 

rs10507243 4,43x10-5 12 114708798 TBX5 

rs9565180 4,53x10-5 13 76231470 OTTHUMG00000017093 

rs4680657 4,61x10-5 3 166894537 AC112501.2 

rs1994979 4,68x10-5 17 4350990 SPNS3 

rs259154 4,72x10-5 7 89626822 OTTHUMG00000065036 

rs13238853 4,73x10-5 7 135959346 OTTHUMG00000155618 

rs4148965 4,75x10-5 18 9109484 NDUFV2 

rs6043433 5,00x10-5 20 15659486 MACROD2 

rs6537129 5,49x10-5 4 143779613 INPP4B 

rs9299090 5,68x10-5 9 9264932 AL353733.1 

rs5951269 5,99x10-5 X 100778274 ARMCX4 

rs11869601 6,19x10-5 17 11234035 SHISA6 

rs9410632 6,27x10-5 9 90400909 CTSL3 

rs259152 6,42x10-5 7 89626611 OTTHUMG00000065036 

rs8034595 6,43x10-5 15 96719229 AC016251.2 

rs4986649 6,43x10-5 X 100736761 ARMCX4 

rs265018 6,52x10-5 4 96362497 UNC5C 

rs7022749 6,61x10-5 9 90405495 CTSL3 

rs309853 6,62x10-5 8 29873603 OTTHUMG00000163815 

rs10507833 6,97x10-5 13 76226139 OTTHUMG00000017093 



rs4910595 7,15x10-5 11 4049129 STIM1 

rs11602757 7,15x10-5 11 4053881 STIM1 

rs2920137 7,15x10-5 11 4079318 STIM1 

rs6719219 7,19x10-5 2 2010779 MYT1L 

rs1938204 7,24x10-5 6 48787015 AL391538.1 

rs6083017 7,28x10-5 20 23119766 RP4-737E23.4 

rs12588013 7,29x10-5 14 62724837 AL390816.1 

rs9643612 7,39x10-5 8 50430756 RP11-738G5.1 

rs2065703 7,53x10-5 20 31966698 CDK5RAP1 

rs7314743 7,55x10-5 12 114718647 TBX5 

rs2009626 7,84x10-5 3 187600404 RP11-44H4.1 

rs981524 7,94x10-5 14 33186257 AKAP6 

rs6778044 8,16x10-5 3 187594092 RP11-44H4.1 

rs5951340 8,24x10-5 X 100771055 ARMCX4 

rs1323851 8,36x10-5 1 64450437 ROR1 

rs12744386 8,80x10-5 1 24168019 HMGCL 

rs6966421 9,18x10-5 7 155329530 CNPY1 

rs6556373 9,25x10-5 5 158359476 EBF1 

rs2997370 9,42x10-5 6 48778106 AL391538.1 

rs10184672 9,42x10-5 2 11198448 AC062028.1 

rs2009627 9,68x10-5 3 187600359 RP11-44H4.1 

rs5991939 9,73x10-5 X 100712422 ARMCX4 

SNPs are listed on descending order based on p-value. SNPs selected for replication appear in bold. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

TableS5: Analysis of copy number variants (CNV) in pooled samples of fibromyalgia 

 

 

 

 

 

 

 

 

 

 

 

Results are based on hybridization with the 400k-CNV aCGH; genomic locations are based on build Hg 18. DS: Dye swap. 
  

Chromosome Cytoband Gene Start End Probes 
Log2ratio_Dir

ect 

Log2rat

io_ DS 
Pools 

4 q34.1 GALNTL6 173661791 173666272 8 -1.00 1.20 FM_3 

7 q36.3 WDR60 158400565 158402804 9 0.48 -0.32 FM_3 

8 p21.2 DOCK5 25122432 25126488 6 -1.58 1.21 FM_2 

9 p23 PTPRD 10394403 10395130 3 -2.22 1.83 FM_2 

14 q31.1 NRXN3 79175885 79184422 18 -0.54 0.58 FM_3 

16 q23.1 WWOX 76929398 76941774 11 -0.46 0.54 FM_3 

20 p13 SIRPB1 1511432 1531941 28 -0.41 0.47 FM_2 



 

SUPPLEMENTARY FIGURES LEGENDS:  

Supplementary figure 1: Workflow indicating which sample sets were used in each analysis. 

Supplementary figure 2: Power calculation graph. For each OR, the given power for three 

different minor allele frequency variants is calculated (given our sample size). OR are 

represented in the X axis, and power is represented in the Y axis.   

Supplementary figure 3:  SNTG2 expression levels (as assessed by one probe) for the three 

rs11127292 genotypes  in twins’ lymphoblastyoid cell lines (GENVAR software).  
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