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Abstract 

The network approach is increasingly being applied to the investigation of normal brain function 

and its impairment. In the present review, we introduce the main methodological approaches 

employed for the analysis of resting-state neuroimaging data in Parkinson’s disease studies. We 

then summarize the results of recent studies that used a functional network perspective to 

evaluate the changes underlying different manifestations of Parkinson’s disease, with an 

emphasis on its cognitive symptoms. Despite the variability reported by many studies, these 

methods show promise as tools for shedding light on the pathophysiological substrates of 

different aspects of Parkinson’s disease, as well as for differential diagnosis, treatment 

monitoring and establishment of imaging biomarkers for more severe clinical outcomes.  

  



Introduction 

Parkinson’s disease (PD) is a chronic progressive neurological process. Clinically, PD is mainly 

characterized by motor symptoms derived from the severe loss of dopaminergic neurons in the 

substantia nigra pars compacta. PD is not, however, merely a motor disease. Cognitive, 

neuropsychiatric and autonomic manifestations are highly prevalent, and may precede the 

onset of motor symptoms [1]. 

 

For any given task, a host of distributed, functionally specialized brain areas work in concert to 

integrate sensorial inputs with previously stored information, as well as with executive and 

motor regions to generate an appropriate behavior. The set of brain regions that interact in this 

manner make up large-scale functional networks [2]. A network perspective of brain function, 

accounting for the interactions between regions, offers a potentially useful framework for the 

study of normal functioning, and also for the identification of relevant intermediate pathological 

phenotypes [3]. Despite being in its early stages, the network approach applied to PD has shown 

potential clinical usefulness as a tool for differential diagnosis, monitoring disease progression 

and treatment response, and also for the development of biomarkers for complications such as 

dementia. Non-invasive in vivo neuroimaging techniques also offer an unprecedented 

opportunity to characterize the pathophysiological substrates underlying different 

manifestations of the disease.  

 

In the past decade, seminal studies [4–7] showed that coherent patterns of spontaneous neural 

oscillations are observed during ‘rest’. The analysis of these oscillations reveals regions with 

correlated and anti-correlated activity, organized into large-scale intrinsic connectivity networks 

(ICNs). These networks display a highly robust pattern of connectivity, with high test-retest 

reliability [8–10], and a high correspondence with task-related networks [11]. Taken together, 

these data suggest that task-free or resting-state techniques are a useful tool to probe the 

brain’s intrinsic connectivity architecture [12] with potential clinical applications. Of note, it has 

recently been demonstrated that the sites where invasive (i.e., deep-brain) stimulation and 

those where non-invasive (transcranial magnetic stimulation or transcranial direct current 

stimulation) are effective in PD can be shown to belong to the same brain networks through the 

analysis of resting-state data [13]. 

 

The number of studies addressing resting-state functional connectivity has increased 

considerably in the last few years, and the clinical impact of this type of analysis is currently 

being established. For these reasons, in this review we describe recent neuroimaging studies 



addressing alterations in PD through a network approach, mainly focusing on resting-state 

functional connectivity studies. We put special emphasis on studies that searched for 

connectivity changes underlying cognitive deficits in PD, as there are currently no validated 

biomarkers for predicting or following these highly frequent and disabling complications. The 

studies included employed different methodologies, from the analysis of individual circuits or 

subsystems to whole-brain approaches, both through the assessment of ICNs and graph 

theoretical techniques.   

 

Cognitive deficits in PD 

Despite considerable interindividual variation, the vast majority of PD patients develop cognitive 

impairments over time. By 20 years of disease duration, up to 80% of patients develop dementia 

[14], with a mean time from onset of PD to dementia of 10 years [15]. PD-related cognitive 

deficits are heterogeneous [16], mainly affecting attention and executive functions [17–20], 

memory [19,21], psychomotor speed [19,21] and visuospatial/visuoperceptual abilities 

[18,21,22]. Clinical presentations, response to therapy and prognostic implications indicate the 

existence of two overlapping cognitive syndromes in PD: frontostriatal deficits, mainly related 

to dopaminergic imbalances [23]; and a posterior cortical syndrome, not related to dopamine 

deficiency. As the name implies, this syndrome is characterized by impairments with a putative 

posterior cortical basis, such as semantic fluency and visuospatial/visuoperceptual deficits [18]. 

Importantly, the posterior cortical syndrome, possibly related to gray-matter synucleinopathy 

and/or Alzheimer’s disease-type pathology [24], is associated with a higher risk of dementia 

[18,25,26]. Neuroimaging is probably the best tool to try to disentangle the neural 

underpinnings of both syndromes, with potential impact on risk stratification once disease-

modifying treatments become available. 

 

Resting-state connectivity analyses 

Resting-state fMRI (RS-fMRI) connectivity methods are based on the temporal correlations of 

spontaneous blood-oxygen-level-dependent (BOLD) signal fluctuations between different brain 

areas [27–29]. Boxes 1 and 2 describe two of the most frequently used approaches for 

connectivity analyses in RS-fMRI studies: seed-based analysis and independent component 

analysis (ICA). Given that dopamine plays a prominent role in striatal connectivity [30] and that 

dopaminergic deficits are responsible for many of PD’s main clinical manifestations, the majority 

of RS-fMRI studies in PD have focused on the connectivity of striatal networks. More recently, 

other ICNs have also been evaluated [31,32].  



 

Results from RS-fMRI studies in PD are not always consistent; this may be related to the inclusion 

of small study samples and variable use of methodological approaches, including image 

preprocessing steps such as global signal regression [33]. Additionally, head motion is often 

insufficiently reported and controlled for. Motion artefacts can bias connectivity estimates, and 

standard preprocessing methods may not be enough to correct them [34,35]. A discussion of 

state-of-the-art procedures to reduce these artefacts is beyond the scope of this review, but this 

issue is especially relevant when studying patients with movement disorders. Also, 

dopaminergic neurotransmission influences ICN functional connectivity [36,37] as well as 

network topology [38]. Consequently, medication status (i.e., on-state, off-state or drug-naïve 

patients) certainly contributes to the variability in study findings. Finally, the manifestations of 

different clinical phenotypes of PD appear to have different functional substrates [39,40]. 

Clinical heterogeneity can therefore account for some of the variability in study findings.  

 

Striatal functional connectivity in PD 

Studies using seed-to-whole brain approaches have found reduced connectivity between the 

striatal nuclei, especially the putamen, and diffuse cortical/mesolimbic areas in PD patients off 

medication [41–43]. In patients on medication, reduced connectivity with subcortical regions 

and increased connectivity with motor/premotor cortical areas have been described [43–45]. 

Baudrexel et al. focused on subthalamic nucleus (STN) connectivity in off-state PD patients. The 

authors found increased connectivity between the STN and primary sensorimotor cortical 

regions [46]. A recent study confirmed these findings in early, drug naïve as well as in off-state 

moderate-PD patients [47]. 

 

A study by our group recently investigated frontostriatal connectivity changes associated with 

the presence of apathy in PD. Patients were assessed on medication. We found apathy to be 

associated with connectivity reductions, mainly involving the left limbic frontostriatal circuit 

(i.e., ventral striatum and orbitofrontal cortex) [48]. 

 

Using ICA and dual regression, Szewczyk-Krolikowski et al. described reduced connectivity 

between the basal ganglia network and widespread frontal, temporal, parietal cortical as well 

as striatal and brainstem regions in patients off medication compared with healthy controls as 

well as with patients on medication. These connectivity changes yielded an accuracy of 85% in 

differentiating patients from controls [49].  

 



Finally, Kahan et al. recently used a different approach to the study of resting-state connectivity 

in cortico-striatal-thalamic pathways in PD [50]. The authors assessed a sample of patients who 

had undergone STN deep-brain stimulation (STN-DBS), acquiring RS-fMRI data both with and 

without active stimulation. Instead of functional connectivity, authors investigated the effects 

of STN-DBS on effective connectivity (which describes the causal influences of a region over 

another [51]), estimated through dynamic causal modelling [52]. They found STN-DBS to reduce 

the strength of effective afferents and efferents of the STN, and to increase the sensitivity of the 

striatum to cortical afferents, the sensitivity of the cortex to thalamic afferents, and the 

connectivity of the direct pathway. Furthermore, strengthening of the direct pathway explained 

the most beneficial effects of STN-DBS. 

 

Taken together, these study results indicate that dopamine deficits in PD lead to reduced overall 

functional corticostriatal connectivity, and to increased connectivity in specific basal nuclei. 

Connectivity reductions mainly involve the portions of the striatum most affected by 

dopaminergic nigrostriatal denervation (i.e., the posterior putamen). Besides being related to 

the motor symptomology, functional connectivity changes are associated with non-motor 

manifestations of PD such as apathy.  

 

Default mode network functional connectivity in PD 

The most studied cognitively-relevant ICN in PD has been the default mode network (DMN). The 

DMN is mainly comprised of the precuneus/posterior cingulate cortex as well as medial 

prefrontal, inferior parietal and medial and lateral temporal cortical regions (45). Initially 

described by Shulman et al. as a group of areas with reduced activity during active tasks and 

increased activity during passive conditions (46), the DMN is hypothesized to be related to self-

referential processing (47). The deactivation of DMN regions during encoding is related to 

subsequent retrieval of learned information (48). Furthermore, DMN connectivity is relevant for 

externally-directed attention and working-memory task performance [53]. Importantly, the 

overlap between DMN anatomy and the regions of hypometabolism in Alzheimer’s disease (AD) 

led some authors to investigate pathological changes in this network. Subsequent studies 

showed AD patients to have altered patterns of DMN activation/deactivation and abnormal 

functional connectivity between this network’s main nodes (49–51). Data from such studies in 

healthy and pathological populations led to the hypothesis that the DMN can be used as a 

predictive tool in neuroscientific research [54,55]. 

 



In PD, changes in the patterns of activation and deactivation of the DMN have been observed in 

task-based analyses [56,57]. Also, a positive effect of dopaminergic medication on intra-DMN 

connectivity has been suggested [58]. Gorges et al. used a seed-to-seed approach to RS-fMRI 

DMN analysis and observed reduced functional connectivity between the medial PFC and the 

posterior cingulate cortex (PCC), as well as increased connectivity between left and right 

hippocampi [59]. Comparing healthy controls and on-state PD patients with and without visual 

hallucinations through ICA followed by dual regression, Yao et al. found reduced intra-DMN 

resting-state functional connectivity in both PD groups. Patients with hallucinations displayed 

connectivity increases in the right frontal pole and in the precuneus/PCC, compared with 

patients without hallucinations [60]. 

 

Other large-scale intrinsic connectivity networks in PD 

The analysis of resting-state data reveals the existence of other ICNs thought to be related to a 

broad range of neural functions, from sensory/motor to higher-order cognition. Although the 

networks described are similar across studies, a uniform nomenclature has not yet been 

proposed. The dorsal attention network (DAN) is postulated to subserve externally-directed 

cognition – more specifically, top-down allocation of attention [61,62]. The DAN is formed by 

the dorsolateral prefrontal cortex (PFC), frontal eye fields, inferior precentral sulcus, superior 

occipital gyrus, middle temporal motion complex, and superior parietal lobule [4,63]. The 

frontoparietal network (FPN) includes the lateral PFC, precuneus, inferior parietal lobule, medial 

superior PFC and anterior insula. The FPN can flexibly connect to the DMN or the DAN depending 

on task nature, and is hypothesized to mediate the dynamic balance between these networks 

[61,64]. Another network, the salience or cingulo-opercular network, mainly comprised of the 

anterior insula, the dorsal anterior cingulate cortex (ACC) and subcortical limbic structures, is 

believed to be related to reward/motivation processing [65].  

 

Shine et al. assessed a sample of PD patients on medication, divided according to the presence 

or absence of visual hallucinations, using a seed-to-seed approach and without a healthy control 

group. Patients with hallucinations displayed reduced resting-state connectivity between the 

ventral attention network and the DAN, and this reduction was associated with worse 

performance in the perceptual task. Patients with hallucinations also showed reduced functional 

connectivity between a DAN node (right dorsal ACC) and a DMN node (described as the left 

anterior inter-parietal lobule) [66]. Additional task-based fMRI analysis revealed that, when 

viewing monostable or bistable (ambiguous images that can be interpreted in two main ways) 

images, patients with hallucinations had reduced BOLD activation in areas belonging to the DAN. 



Furthermore, lower activation in the right frontal eye field (part of the DAN) was associated with 

increased misperceptions.  

 

Recent studies have assessed the relationship between changes in ICN connectivity and 

cognitive measures. Using ICA, Tessitore et al. found decreased intra-DMN resting-state 

connectivity in cognitively unimpaired PD patients, assessed on medication, namely in the 

medial temporal lobe (associated with worse memory performance) and inferior parietal cortex 

(associated with visuospatial scores) [32]. In a study by our group, PD patients on medication 

and a healthy control group were evaluated using seed-to-seed analyses as well as ICA and dual 

regression to assess changes in intra and internetwork resting-state functional connectivity. 

Seed-to-seed analyses showed that worse cognitive status was associated with reduced 

connectivity within the DAN and the DMN, and reduced DAN-FPN coupling. In ICA/dual 

regression analyses, PD patients with mild cognitive impairment (PD-MCI) were seen to have 

reduced connectivity between the DAN and right frontoinsular regions; these connectivity 

reductions correlated with impairments in attention/executive functions [31]. The anterior 

insula is increasingly being recognized as a brain hub involved in processes of network switch 

that are relevant for attention and executive functions [61,67,68]. Importantly, recent studies 

found that PD-MCI patients have reduced insular dopaminergic D2 receptors, and that this 

reduction correlates with impairments in executive functions [69]. In PD patients with visual 

hallucinations, reduced insular gray matter (GM) density associated with reduced functional 

connectivity between regions of the ventral attention network and the DAN have been 

described [66]. Combined with evidence that dopamine modulates resting-state patterns of 

coupling between cognitively relevant networks such as the DAN, the DMN and the FPN [70], 

these data seem to indicate that ICN changes (likely mediated by insular dopaminergic 

denervation) play a role in dopamine-related frontostriatal deficits in PD [71]. 

 

The association between changes in resting-state DMN connectivity and cognitive functions not 

related to dopamine imbalances (e.g., visuospatial) described by Tessitore et al. suggests that 

the posterior cortical syndrome (related to global cognitive decline) also has detectable resting-

state ICN correlates [32]. Two recent studies seem to corroborate these findings [31,72]. In one 

study, we found that PD-MCI patients had changes in occipito-parietal regions – namely, cortical 

thinning, reduced connectivity with the DAN and loss of the pattern of anti-correlation with the 

DMN – which correlated with visuospatial deficits [31]. In another study, Olde Dubbelink et al. 

used synchronization likelihood as a measure of coupling, assessing PD patients on medication 

in a longitudinal design. The authors describe resting-state functional connectivity reductions, 



mainly involving posterior cortical regions, in association with global cognitive decline. They also 

describe a relationship between lower global mean connectivity levels and worsening cognitive 

status [72].  

 

The observed association between posterior connectivity changes and structural degeneration 

[31] might indicate that disconnection is the result of primary cortical pathology. Nonetheless, 

axonal degeneration might antecede neuron cell body death in PD [73–75]. In this context, 

neuroimaging techniques such as diffusion-weighted imaging (DWI), which offers an in vivo 

indirect measure of microstructural white matter (WM) properties, have the potential to shed 

light on important aspects of PD-related pathological process. 

 

Alterations in WM microstructure have been consistently described in PD through 

neuroimaging, often involving diffuse brain areas [76–83]. Agosta et al. found widespread WM 

fractional anisotropy (FA – a marker of WM microstructural organization that tends to be 

reduced in pathological processes) reductions in PD-MCI subjects compared with healthy 

controls [83]. Similarly, Melzer et al. found that patients with MCI and dementia had diffuse FA 

decrements and mean diffusivity (MD – a microstructural parameter that tends to increase in 

WM disease) increments [78]. Current evidence regarding the relationship between 

topographical WM changes and specific cognitive manifestations in PD is limited. Using a small 

patient sample and no control group, Zheng et al. found that executive functions and language 

correlated with FA and, inversely, with MD in frontal WM tracts; attention was associated with 

DTI measures in widespread regions [80]. Future studies, combining structural and functional 

connectivity techniques, could help clarify the role played by structural disconnection in the 

functional network alterations observed in PD. 

 

Whole-brain topology 

Current neuroimaging techniques allow a complete, whole-brain mapping of structural and 

functional interregional connections, i.e., the connectome (Box 3-A) [84]. The comprehensive 

study of large, complex datasets such as the human neuroimaging connectome necessitates 

systematic analytical approaches that provide quantifiable and biologically meaningful 

measures. In the context of complex network analysis, graph theory is a robust mathematical 

framework that can characterize the functional or structural properties of the brain by modelling 

it as a single network [85]. Within this framework, functional neural networks – the graphs – are 

a collection of anatomical brain regions (nodes). In a functional graph, the connection (described 



in a graph as an edge) between a pair of nodes is defined by the temporal dependency of these 

nodes’ signal variations. 

 

Nodes are the basic elements of a network, assumed to represent its functional units. Since 

neuroimaging methods can only probe the macroscalar organization of the connectome, 

network nodes should be defined by regions as functionally homogeneous as possible, with a 

coherent connectivity pattern [85]. There is currently no consensual approach to define brain 

nodes through neuroimaging. As different parcellation strategies can yield different topological 

properties [86], networks obtained through different schemes are not quantitatively 

comparable [85]. To further complicate the interpretability of graph-theory studies, the 

neuroimaging modality employed and other methodological aspects – such as the use of binary 

or weighted graphs and the thresholding approach used – can influence the topology of the 

reconstructed networks [87–90]. Graph theory metrics inform on different global and local 

network properties; basic network measures are described in Box 3-B.  

 

To this date, very few studies have evaluated patterns of resting-state connectivity in PD using 

graph-theory approaches, and most used RS-fMRI. Lebedev et al. assessed drug-naïve PD 

patients through RS-fMRI as well as with Ioflupane (123I) (DaTSCAN) imaging in a subsample. 

Worse performance in executive function tests was associated with lower nodal strength (sum 

of individual strengths of a node’s links) in dorsal frontal and parietal regions. Additionally, this 

pattern correlated with nigrostriatal dopaminergic function. Memory performance, on the other 

hand, correlated with strength in prefronto-limbic regions, and was not associated with 

dopaminergic innervation [91]. Assessing patients on medication, Göttlich et al. used different 

parcellation schemes and applied a density threshold range of 10-35% to construct binary 

networks. The authors found significantly higher normalized clustering coefficients and 

characteristic path lengths in the PD group at 10 and 15% density. No correlations, however, 

were performed between network parameters and clinical variables [92]. In a study by our 

group, assessing on-state patients and using a weighted network approach, no topological 

differences were found between healthy controls and the total PD sample. Stratifying the 

patient group according to cognitive status, PD-MCI patients were seen to have increased non-

normalized clustering as well as modularity and small-world coefficients. In the overall PD 

sample, these measures correlated negatively with cognitive performance, namely in memory 

and visuospatial/perceptual functions. Additionally, network hubs displayed reduced centrality 

in PD-MCI patients, suggesting a reorganization of functional network traffic away from these 

brain regions [93]. Assessing connectivity through wavelet correlation and using a weighted-



network approach, Skidmore et al. found reduced local and global efficiency in a small sample 

of PD patients off medication compared with controls [94]. No correlations were performed with 

measures of disease severity. 

 

In contrast with the RS-fMRI studies described above, Olde Dubbelink et al. used MEG to assess 

topological changes over time in a longitudinal design [95]. PD patients were evaluated on 

medication, and baseline assessments included a drug-naïve subsample. Longitudinal analyses 

revealed progressive reductions in normalized clustering coefficients at multiple frequency 

bands, and reductions in normalized characteristic path lengths at the alpha2 band in the patient 

group. The apparent discrepancy observed between these clustering coefficient reductions and 

the increases described in RS-fMRI studies may be related to the differential sensitivity to local 

connectivity displayed by different imaging modalities (87).  

 

Conclusions 

The studies discussed in the present review show that resting-state connectivity techniques, 

under a network perspective, are capable of identifying changes related to different clinical 

aspects of PD. In broad terms, these findings indicate that PD is accompanied by dopamine-

dependent functional connectivity disruptions in cortico-striatal-thalamic-cortical networks that 

underlie both motor and non-motor symptoms. The pattern of connectivity of other ICNs is also 

altered in PD. Within- and between-network disruptions involving the DMN, the DAN, the FPN 

and the ventral attention network seem to be associated with cognitive deficits and visual 

hallucinations. Dopaminergic and structural changes in the insula, a region involved in network 

switch, appear to be involved in these network abnormalities. General cognitive decline is also 

accompanied by long-range functional connectivity reductions, possibly with a differential 

involvement of posterior cortical regions. Future studies combining structural and functional 

techniques should investigate whether alterations in structural connectivity contribute to these 

functional changes. 

 

In graph-theoretical analyses, the entire network organization is condensed into abstract 

topological parameters. The biological interpretation of the corresponding metrics, however, is 

often not straightforward. The combined use of methods that assess topographical changes, 

such as those discussed in the previous paragraph, can provide a more complete depiction of 

the reconfiguration of functional networks underlying clinical deficits in PD. The study of the 

connectome as a complex network is a recent field, and the relationship between different 

measures of network communication and brain function is only beginning to be unveiled. 



Advances in connectomics, including the use of multimodal approaches, the development of 

standardized procedures to reconstruct biologically consistent networks, as well as of 

mathematical models to interpret brain networks in physiologically meaningful ways, will 

determine the extent to which graph-theory approaches become reliable tools from a clinical 

standpoint.  

 

It is also clear that there is considerable variability in study results. Appropriate interpretation 

demands that sample characteristics be taken into account, especially with regards to treatment 

status and disease severity. Discrepant results are certainly due in part to the use of different 

methodological approaches, sensitive to different features of the pathological process and to 

different aspects of the complex interactions between functional networks. Susceptibility to 

confounds also varies according to the methodology used. Univariate approaches such as seed-

based correlation are insensitive to the statistical relationship between data points, and are 

more susceptible to structured noise or to be confounded by spatial network overlap than 

multivariate methods such as ICA [96,97]. Seed-based correlation is still useful, however, to 

answer specific research questions. Likewise, the potential effects of confounding factors such 

as motion artifacts on computed graph-theory network metrics cannot be overstated. In light of 

recent publications, it is critical that new studies apply rigorous measures to control the effects 

of head motion and other non-neural sources of signal variation, from subject exclusion to 

‘cleanup’ fMRI preprocessing procedures [35,98].  

 

In conclusion, neuroimaging network approaches are a promising tool in the study of PD, with 

the potential to shed light on relevant aspects of the neurodegenerative process and to provide 

useful biomarkers for more severe disease progression. 

  



BOX 1 – Seed-based correlation techniques are straightforward and easily interpretable 

methods in functional connectivity analysis [96] that necessitate a priori hypotheses for seed 

definition. Briefly, the mean time courses of regions of interest (ROI) – representing structures 

or circuits of interest, or the main nodes of ICNs – are extracted. In seed-to-seed (or node-to-

node) techniques, the mean time course of each ROI is correlated with the mean time courses 

of every other ROI, limiting the analysis to the circuits of interest. Alternatively, in seed-to-whole 

brain analyses, ROI time courses are used as regressors against the time courses of all voxels in 

the brain. Whole-brain r-correlation maps – in which the value assigned to each voxel is given 

by the correlation coefficient between its time series and the time series of the ROI in question 

– are thus generated, corresponding to the functional connectivity maps of each ROI. 

Subsequently, Fisher’s r-to-z transformation is typically applied to ensure that the correlation 

coefficients are approximately normally distributed. The resulting connectivity maps are then 

analyzed using voxelwise statistical testing.  

 

BOX 2 - Independent component analysis (ICA) is a data-driven procedure that identifies 

coherent spatial signal fluctuation patterns in the dataset, extracting maximally independent 

components associated with the underlying signal sources – such as ICN and spatially-structured 

artifacts – while avoiding the potential biases in the a priori selection of ROIs [97,99]. The 

number of components estimated in ICA (i.e., its dimensionality reduction) – is a possible source 

of variability in study results as there is no single best approach for characterizing the complex 

hierarchy of ICN neurobiology [96]. Performing between-subject ICA analysis is not a 

straightforward procedure, as it is difficult to establish a direct, one-to-one correspondence of 

ICNs identified with individual-level ICAs [100]. Most current resting-state fMRI approaches 

involve performing group-level ICA on the temporally-concatenated datasets of all subjects – 

allowing the extraction of subject-specific time courses and group-common spatial maps [100]. 

This is followed by the reconstruction of individual ICN maps through procedures such as dual 

regression or direct back-reconstruction techniques [96,100–102]. These methods minimize the 

problem of intersubject ICN correspondence and takes advantage of the higher signal-to-noise 

ratio offered by analyzing several subjects conjointly [96]. 

 

BOX 3 –  

Panel A: Definition of functional brain networks. 

In its simplest form, the functional connectivity between a given pair of nodes is defined by the 

Pearson correlation between their respective time series. An adjacency matrix representing all 

internodal correlation coefficients is subsequently thresholded to discard weak, possibly noise-



related connections. There is no universally accepted approach for thresholding, however. The 

use of fixed strength thresholds can result in graphs with different connection density, making 

intersubject comparisons difficult [88]. Fixed density thresholds, on the other hand, can be 

inappropriate in the presence of significant overall connectivity differences [88].  

 

The resulting graphs will be weighted if correlation strength is taken into account. Otherwise, 

binary graphs are generated.  

 

Panel B: Global and nodal network metrics. 

In the small network shown, the red line indicates the shortest path between nodes d and e. The 

characteristic path length of a node informs about how closely connected this node is to all other 

network nodes. It is given by the average shortest path length between itself and every other 

node, or, in its binary form, the average number of edges that need to be traversed in order to 

get from this to any other node [89]. Network integration is given by the global characteristic 

path length (average of the characteristic path lengths of all nodes). 

 

The clustering coefficient of node a is represented by the number of triangles formed with its 

neighboring nodes (b, c and d) [103]. Only one triangle (green, a-b-c) is present out of 3 possible 

triangles (dashed lines, a-b-d and a-c-d), yielding a clustering coefficient of 1/3. The clustering 

coefficient describes how interconnected a node’s neighbors are. The global clustering 

coefficient, given by the average of the clustering coefficients of all nodes in a network, is a 

measure of local connectedness or network segregation. A balance between global 

characteristic path length and clustering coefficients defines small-world networks, 

characterized by high local specialization and some global shortcuts, allowing fast information 

transfer [104,103]. The human connectome displays small-world topology in both functional and 

structural networks [104,105]. 

 

The degree of a node (number of input or output connections linked to it) describes this node’s 

accessibility within the network [106]. Degree in neural networks follows a heavy-tailed 

distribution, indicating the existence of a set of highly-connected or hub nodes [107]. Hubs are 

hypothesized to be relevant for overall information transfer [108] and appear to be 

preferentially affected in several disorders [109]. Finally, the measure of modularity indicates 

how well a network can be subdivided into well-defined modules or communities made up of 

densely interconnected nodes with few intermodular connections, possibly representing the 



network’s functional subcomponents. The small network shown contains two modules, 

connected by two connector hub nodes (c and f). 

  

 

Acknowledgments  

 

This work was funded by the Spanish Ministry of Science and Innovation [PSI2013-41393 grant 

to C.J., H.C.B. and B.S.], and by the Generalitat de Catalunya [2014SG98]. 

 

 

References 

 

1  Pont-Sunyer C, Hotter A, Gaig C, et al. The Onset of Nonmotor Symptoms in Parkinson’s 
disease (The ONSET PD Study). Mov Disord 2014;30:229–37.  

2  Bressler SL, Menon V. Large-scale brain networks in cognition: emerging methods and 
principles. Trends Cogn Sci 2010;14:277–90.  

3  Pievani M, de Haan W, Wu T, et al. Functional network disruption in the degenerative 
dementias. Lancet Neurol 2011;10:829–43.  

4  Fox MD, Snyder AZ, Vincent JL, et al. The human brain is intrinsically organized into 
dynamic, anticorrelated functional networks. Proc Natl Acad Sci U S A 2005;102:9673–8.  

5  Greicius MD, Krasnow B, Reiss AL, et al. Functional connectivity in the resting brain: a 
network analysis of the default mode hypothesis. Proc Natl Acad Sci U S A 2003;100:253–
8. 

6  Raichle ME, MacLeod AM, Snyder AZ, et al. A default mode of brain function. Proc Natl Acad 
Sci U S A 2001;98:676–82. 

7  Biswal B, Yetkin FZ, Haughton VM, et al. Functional connectivity in the motor cortex of 
resting human brain using echo-planar MRI. Magn Reson Med 1995;34:537–41. 

8  Shehzad Z, Kelly AMC, Reiss PT, et al. The resting brain: unconstrained yet reliable. Cereb 
Cortex 2009;19:2209–29.  

9  Patriat R, Molloy EK, Meier TB, et al. The effect of resting condition on resting-state fMRI 
reliability and consistency: a comparison between resting with eyes open, closed, and 
fixated. Neuroimage 2013;78:463–73.  

10  Thomason ME, Dennis EL, Joshi AA, et al. Resting-state fMRI can reliably map neural 
networks in children. Neuroimage 2011;55:165–75.  

11  Smith SM, Fox PT, Miller KL, et al. Correspondence of the brain’s functional architecture 
during activation and rest. Proc Natl Acad Sci U S A 2009;106:13040–5.  



12  Bressler SL, Tognoli E. Operational principles of neurocognitive networks. Int J 
Psychophysiol 2006;60:139–48.  

13  Fox MD, Buckner RL, Liu H, et al. Resting-state networks link invasive and noninvasive brain 
stimulation across diverse psychiatric and neurological diseases. Proc Natl Acad Sci U S A 
2014;111:E4367–75.  

14  Aarsland D, Kurz MW. The epidemiology of dementia associated with Parkinson disease. J 
Neurol Sci 2010;289:18–22.  

15  Hely MA, Morris JG, Traficante R, et al. The sydney multicentre study of Parkinson’s disease: 
progression and mortality at 10 years. J Neurol Neurosurg Psychiatry 1999;67:300–7. 

16  Tremblay C, Achim AM, Macoir J, et al. The heterogeneity of cognitive symptoms in 
Parkinson’s disease: a meta-analysis. J Neurol Neurosurg Psychiatry 2013;84:1265–72.  

17  Elgh E, Domellöf M, Linder J, et al. Cognitive function in early Parkinson’s disease: a 
population-based study. Eur J Neurol 2009;16:1278–84.  

18  Williams-Gray CH, Evans JR, Goris A, et al. The distinct cognitive syndromes of Parkinson’s 
disease: 5 year follow-up of the CamPaIGN cohort. Brain 2009;132:2958–69.  

19  Muslimovic D, Post B, Speelman JD, et al. Cognitive profile of patients with newly diagnosed 
Parkinson disease. Neurology 2005;65:1239–45.  

20  Owen AM. Cognitive dysfunction in Parkinson’s disease: the role of frontostriatal circuitry. 
Neuroscientist 2004;10:525–37.  

21  Aarsland D, Brønnick K, Larsen JP, et al. Cognitive impairment in incident, untreated 
Parkinson disease: the Norwegian ParkWest study. Neurology 2009;72:1121–6.  

22  Boller F, Passafiume D, Keefe NC, et al. Visuospatial impairment in Parkinson’s disease. Role 
of perceptual and motor factors. Arch Neurol 1984;41:485–90. 

23  Gotham AM, Brown RG, Marsden CD. Levodopa treatment may benefit or impair ‘frontal’ 
function in Parkinson’s disease. Lancet 1986;2:970–1. 

24  Nombela C, Rowe JB, Winder-Rhodes SE, et al. Genetic impact on cognition and brain 
function in newly diagnosed Parkinson’s disease: ICICLE-PD study. Brain 2014;137:2743–
58.  

25  Kehagia A a, Barker R a, Robbins TW. Neuropsychological and clinical heterogeneity of 
cognitive impairment and dementia in patients with Parkinson’s disease. Lancet Neurol 
2010;9:1200–13.  

26  Robbins TW, Cools R. Cognitive deficits in Parkinson’s disease: a cognitive neuroscience 
perspective. Mov Disord 2014;29:597–607.  

27  Fox MD, Raichle ME. Spontaneous fluctuations in brain activity observed with functional 
magnetic resonance imaging. Nat Rev Neurosci 2007;8:700–11.  

28  Logothetis NK, Wandell BA. Interpreting the BOLD signal. Annu Rev Physiol 2004;66:735–
69.  

29  Logothetis NK. The underpinnings of the BOLD functional magnetic resonance imaging 
signal. J Neurosci 2003;23:3963–71. 



30  Surmeier DJ, Carrillo-Reid L, Bargas J. Dopaminergic modulation of striatal neurons, circuits, 
and assemblies. Neuroscience 2011;198:3–18.  

31  Baggio H-C, Segura B, Sala-Llonch R, et al. Cognitive impairment and resting-state network 
connectivity in Parkinson’s disease. Hum Brain Mapp 2015;36:199–212.  

32  Tessitore A, Esposito F, Vitale C, et al. Default-mode network connectivity in cognitively 
unimpaired patients with Parkinson disease. Neurology 2012;79:2226–32.  

33  Schölvinck ML, Maier A, Ye FQ, et al. Neural basis of global resting-state fMRI activity. Proc 
Natl Acad Sci U S A 2010;107:10238–43.  

34  Van Dijk KR a, Sabuncu MR, Buckner RL. The influence of head motion on intrinsic functional 
connectivity MRI. Neuroimage 2012;59:431–8.  

35  Power JD, Barnes KA, Snyder AZ, et al. Spurious but systematic correlations in functional 
connectivity MRI networks arise from subject motion. Neuroimage 2012;59:2142–54.  

36  Cole DM, Beckmann CF, Oei NYL, et al. Differential and distributed effects of dopamine 
neuromodulations on resting-state network connectivity. Neuroimage 2013;78:59–67.  

37  Esposito F, Tessitore A, Giordano A, et al. Rhythm-specific modulation of the sensorimotor 
network in drug-naive patients with Parkinson’s disease by levodopa. Brain 2013;136:710–
25.  

38  Achard S, Bullmore E. Efficiency and cost of economical brain functional networks. PLoS 
Comput Biol 2007;3:e17.  

39  Zhang J, Wei L, Hu X, et al. Akinetic-rigid and tremor-dominant Parkinson’s disease patients 
show different patterns of intrinsic brain activity. Parkinsonism Relat Disord 2015;21:23–
30.  

40  Prodoehl J, Planetta PJ, Kurani AS, et al. Differences in brain activation between tremor- 
and nontremor-dominant Parkinson disease. JAMA Neurol 2013;70:100–6.  

41  Helmich RC, Derikx LC, Bakker M, et al. Spatial remapping of cortico-striatal connectivity in 
Parkinson’s disease. Cereb Cortex 2010;20:1175–86.  

42  Luo C, Song W, Chen Q, et al. Reduced functional connectivity in early-stage drug-naive 
Parkinson’s disease: a resting-state fMRI study. Neurobiol Aging 2014;35:431–41.  

43  Agosta F, Caso F, Stankovic I, et al. Cortico-striatal-thalamic network functional connectivity 
in hemiparkinsonism. Neurobiol Aging 2014;35:2592:2602.  

44  Hacker CD, Perlmutter JS, Criswell SR, et al. Resting state functional connectivity of the 
striatum in Parkinson’s disease. Brain 2012;135:3699–711.  

45  Yu R, Liu B, Wang L, et al. Enhanced functional connectivity between putamen and 
supplementary motor area in Parkinson’s disease patients. PLoS One 2013;8:e59717.  

46  Baudrexel S, Witte T, Seifried C, et al. Resting state fMRI reveals increased subthalamic 
nucleus-motor cortex connectivity in Parkinson’s disease. Neuroimage 2011;55:1728–38.  

47  Kurani AS, Seidler RD, Burciu RG, et al. Subthalamic nucleus-sensorimotor cortex functional 
connectivity in de novo and moderate Parkinson’s disease. Neurobiol Aging 2015;36:462–
9.  



48  Baggio HC, Segura B, Garrido-Millan JL, et al. Resting-state frontostriatal functional 
connectivity in Parkinson’s disease-related apathy. Mov Disord 2015;30:671–9.  

49  Szewczyk-Krolikowski K, Menke RAL, Rolinski M, et al. Functional connectivity in the basal 
ganglia network differentiates PD patients from controls. Neurology 2014;83:208–14.  

50  Kahan J, Urner M, Moran R, et al. Resting state functional MRI in Parkinson’s disease: the 
impact of deep brain stimulation on ‘effective’ connectivity. Brain 2014;137:1130–44.  

51  Stephan KE, Friston KJ. Analyzing effective connectivity with fMRI. Wiley Interdiscip Rev 
Cogn Sci 2010;1:446–59.  

52  Kahan J, Foltynie T. Understanding DCM: ten simple rules for the clinician. Neuroimage 
2013;83:542–9.  

53  Sala-Llonch R, Peña-Gómez C, Arenaza-Urquijo EM, et al. Brain connectivity during resting 
state and subsequent working memory task predicts behavioural performance. Cortex 
2012;48:1187–96.  

54  Sandrone S. The brain as a crystal ball: the predictive potential of default mode network. 
Front Hum Neurosci 2012;6:261.  

55  Sandrone S, Bacigaluppi M. Learning from default mode network: the predictive value of 
resting state in traumatic brain injury. J Neurosci 2012;32:1915–7.  

56  Eimeren MT van, Monchi O. Dysfunction of the Default Mode Network in Parkinson 
Disease. Arch Neurol 2009;66:877–83. 

57  Ibarretxe-Bilbao N, Zarei M, Junque C, et al. Dysfunctions of cerebral networks precede 
recognition memory deficits in early Parkinson’s disease. Neuroimage 2011;57:589–97.  

58  Krajcovicova L, Mikl M, Marecek R, et al. The default mode network integrity in patients 
with Parkinson’s disease is levodopa equivalent dose-dependent. J Neural Transm 
2012;119:443–54.  

59  Gorges M, Müller H-P, Lulé D, et al. Functional connectivity within the default mode 
network is associated with saccadic accuracy in Parkinson’s disease: a resting-state FMRI 
and videooculographic study. Brain Connect 2013;3:265–72.  

60  Yao N, Shek-Kwan Chang R, Cheung C, et al. The default mode network is disrupted in 
parkinson’s disease with visual hallucinations. Hum Brain Mapp 2014;35:5658–66.  

61  Spreng RN, Sepulcre J, Turner GR, et al. Intrinsic architecture underlying the relations 
among the default, dorsal attention, and frontoparietal control networks of the human 
brain. J Cogn Neurosci 2013;25:74–86.  

62  Vossel S, Weidner R, Driver J, et al. Deconstructing the architecture of dorsal and ventral 
attention systems with dynamic causal modeling. J Neurosci 2012;32:10637–48.  

63  Fox MD, Corbetta M, Snyder AZ, et al. Spontaneous neuronal activity distinguishes human 
dorsal and ventral attention systems. Proc Natl Acad Sci U S A 2006;103:10046–51.  

64  Spreng RN, Stevens WD, Chamberlain JP, et al. Default network activity, coupled with the 
frontoparietal control network, supports goal-directed cognition. Neuroimage 
2010;53:303–17.  



65  Sadaghiani S, D’Esposito M. Functional Characterization of the Cingulo-Opercular Network 
in the Maintenance of Tonic Alertness. Cereb Cortex. doi:10.1093/cercor/bhu072 

66  Shine JM, Halliday GM, Gilat M, et al. The role of dysfunctional attentional control networks 
in visual misperceptions in Parkinson’s disease. Hum Brain Mapp 2014;35:2206–19.  

67  Seeley WW, Menon V, Schatzberg AF, et al. Dissociable intrinsic connectivity networks for 
salience processing and executive control. J Neurosci 2007;27:2349–56.  

68  Sridharan D, Levitin DJ, Menon V. A critical role for the right fronto-insular cortex in 
switching between central-executive and default-mode networks. Proc Natl Acad Sci U S A 
2008;105:12569–74.  

69  Christopher L, Marras C, Duff-Canning S, et al. Combined insular and striatal dopamine 
dysfunction are associated with executive deficits in Parkinson’s disease with mild cognitive 
impairment. Brain 2014;137:565–75.  

70  Dang LC, O’Neil JP, Jagust WJ. Dopamine supports coupling of attention-related networks. 
J Neurosci 2012;32:9582–7.  

71  Christopher L, Koshimori Y, Lang AE, et al. Uncovering the role of the insula in non-motor 
symptoms of Parkinson’s disease. Brain 2014;137:2143–54.  

72  Olde Dubbelink KTE, Schoonheim MM, Deijen JB, et al. Functional connectivity and 
cognitive decline over 3 years in Parkinson disease. Neurology 2014;83:2046–53.  

73  Burke RE, O’Malley K. Axon degeneration in Parkinson’s disease. Exp Neurol 2013;246:72–
83.  

74  O’Malley KL. The role of axonopathy in Parkinson’s disease. Exp Neurobiol 2010;19:115–9.  

75  Dauer W, Przedborski S. Parkinson’s disease: mechanisms and models. Neuron 
2003;39:889–909. 

76  Hattori T, Orimo S, Aoki S, et al. Cognitive status correlates with white matter alteration in 
Parkinson’s disease. Hum Brain Mapp 2012;33:727–39.  

77  Koshimori Y, Segura B, Christopher L, et al. Imaging changes associated with cognitive 
abnormalities in Parkinson’s disease. Brain Struct Funct. doi:10.1007/s00429-014-0785-x 

78  Melzer TR, Watts R, MacAskill MR, et al. White matter microstructure deteriorates across 
cognitive stages in Parkinson disease. Neurology 2013;80:1841–9.  

79  Theilmann RJ, Reed JD, Song DD, et al. White-matter changes correlate with cognitive 
functioning in Parkinson’s disease. Front Neurol 2013;4:37.  

80  Zheng Z, Shemmassian S, Wijekoon C, et al. DTI correlates of distinct cognitive impairments 
in Parkinson’s disease. Hum Brain Mapp 2014;35:1325–33.  

81  Rae CL, Correia MM, Altena E, et al. White matter pathology in Parkinson’s disease: the 
effect of imaging protocol differences and relevance to executive function. Neuroimage 
2012;62:1675–84. 

82  Gattellaro G, Minati L, Grisoli M, et al. White matter involvement in idiopathic Parkinson 
disease: a diffusion tensor imaging study. AJNR Am J Neuroradiol 2009;30:1222–6. 



83  Agosta F, Canu E, Stefanova E, et al. Mild cognitive impairment in Parkinson’s disease is 
associated with a distributed pattern of brain white matter damage. Hum Brain Mapp 
2013;35:1921–9.  

84  Sporns O. Discovering the Human Connectome. Cambridge, MA: : The MIT Press 2012.  

85  Rubinov M, Sporns O. Complex network measures of brain connectivity: uses and 
interpretations. Neuroimage 2010;52:1059–69.  

86  Wang J, Wang L, Zang Y, et al. Parcellation-dependent small-world brain functional 
networks: a resting-state fMRI study. Hum Brain Mapp 2009;30:1511–23.  

87  Liang X, Wang J, Yan C, et al. Effects of different correlation metrics and preprocessing 
factors on small-world brain functional networks: a resting-state functional MRI study. PLoS 
One 2012;7:e32766.  

88  Van Wijk BCM, Stam CJ, Daffertshofer A. Comparing brain networks of different size and 
connectivity density using graph theory. PLoS One 2010;5:e13701.  

89  Bullmore E, Sporns O. Complex brain networks: graph theoretical analysis of structural and 
functional systems. Nat Rev Neurosci 2009;10:186–98.  

90  Stam CJ. Modern network science of neurological disorders. Nat Rev Neurosci 
2014;15:683–95.  

91  Lebedev A V, Westman E, Simmons A, et al. Large-scale resting state network correlates of 
cognitive impairment in Parkinson’s disease and related dopaminergic deficits. Front Syst 
Neurosci 2014;8:45.  

92  Göttlich M, Münte TF, Heldmann M, et al. Altered resting state brain networks in 
Parkinson’s disease. PLoS One 2013;8:e77336.  

93  Baggio H-C, Sala-Llonch R, Segura B, et al. Functional brain networks and cognitive deficits 
in Parkinson’s disease. Hum Brain Mapp 2014;35:4620–34.  

94  Skidmore F, Korenkevych D, Liu Y, et al. Connectivity brain networks based on wavelet 
correlation analysis in Parkinson fMRI data. Neurosci Lett 2011;499:47–51.  

95  Olde Dubbelink KTE, Hillebrand A, Stoffers D, et al. Disrupted brain network topology in 
Parkinson’s disease: a longitudinal magnetoencephalography study. Brain 2014;137:197–
207.  

96  Cole DM, Smith SM, Beckmann CF. Advances and pitfalls in the analysis and interpretation 
of resting-state FMRI data. Front Syst Neurosci 2010;4:8.  

97  Smith D V, Utevsky A V, Bland AR, et al. Characterizing individual differences in functional 
connectivity using dual-regression and seed-based approaches. Neuroimage 2014;95:1–12.  

98  Murphy K, Birn RM, Bandettini PA. Resting-state fMRI confounds and cleanup. Neuroimage 
2013;80:349–59.  

99  Beckmann CF, Smith SM. Probabilistic independent component analysis for functional 
magnetic resonance imaging. IEEE Trans Med Imaging 2004;23:137–52.  

100  Erhardt EB, Rachakonda S, Bedrick EJ, et al. Comparison of multi-subject ICA methods for 
analysis of fMRI data. Hum Brain Mapp 2011;32:2075–95.  



101  Zuo X-N, Kelly C, Adelstein JS, et al. Reliable intrinsic connectivity networks: test-retest 
evaluation using ICA and dual regression approach. Neuroimage 2010;49:2163–77.  

102  Filippini N, MacIntosh BJ, Hough MG, et al. Distinct patterns of brain activity in young 
carriers of the APOE-epsilon4 allele. Proc Natl Acad Sci U S A 2009;106:7209–14.  

103  Sporns O, Honey CJ. Small worlds inside big brains. Proc Natl Acad Sci U S A 
2006;103:19219–20.  

104  Watts DJ, Strogatz SH. Collective dynamics of ‘small-world’ networks. Nature 
1998;393:440–2.  

105  Achard S, Salvador R, Whitcher B, et al. A resilient, low-frequency, small-world human brain 
functional network with highly connected association cortical hubs. J Neurosci 2006;26:63–
72.  

106  Tewarie P, Hillebrand A, van Dellen E, et al. Structural degree predicts functional network 
connectivity: a multimodal resting-state fMRI and MEG study. Neuroimage 2014;97:296–
307.  

107  Van den Heuvel MP, Sporns O. Rich-club organization of the human connectome. J Neurosci 
2011;31:15775–86.  

108  Van den Heuvel MP, Sporns O. Network hubs in the human brain. Trends Cogn Sci 
2013;17:683–96.  

109  Crossley NA, Mechelli A, Scott J, et al. The hubs of the human connectome are generally 
implicated in the anatomy of brain disorders. Brain 2014;137:2382–95.  

 

 

 

 

 

 

 

 

 

 

 

 



 

Figure 1 



 

Figure 2 



 

Figure 3 

 


