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ABSTRACT 1 

Graph-theoretical analyses of functional networks obtained with resting-state 2 

functional magnetic resonance imaging have recently proven to be a useful approach for the 3 

study of the substrates underlying cognitive deficits in different diseases. We used this 4 

technique to investigate whether cognitive deficits in Parkinson’s disease are associated with 5 

changes in global and local network measures. Thirty-six healthy controls (HC) and 66 6 

Parkinson’s disease patients matched for age, sex and education were classified as having mild 7 

cognitive impairment (MCI) or not based on performance in the three mainly-affected 8 

cognitive domains in Parkinson’s disease: attention/executive, visuospatial/visuoperceptual 9 

and declarative memory. Resting-state functional magnetic resonance imaging and graph 10 

theory analyses were used to evaluate network measures. We have found that patients with 11 

MCI had connectivity reductions predominantly affecting long-range connections as well as 12 

increased local interconnectedness manifested as higher measures of clustering, small-13 

worldness and modularity. The latter measures also tended to correlate negatively with 14 

cognitive performance in visuospatial/visuoperceptual and memory functions. Hub structure 15 

was also reorganized: normal hubs displayed reduced centrality and degree in MCI PD 16 

patients. Our study indicates that the topological properties of brain networks are changed in 17 

Parkinson’s disease patients with cognitive deficits. Our findings provide novel data regarding 18 

the functional substrate of cognitive impairment in PD which may prove to have value as a 19 

prognostic marker. 20 

Keywords: Parkinson’s disease; cognitive impairment; connectivity; graph theory; 21 

fMRI. 22 

 23 
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INTRODUCTION 1 

Parkinson’s disease (PD), beyond its hallmark motor symptoms, causes variable 2 

degrees of cognitive impairment in a high percentage of patients. The prevalence of cognitive 3 

deficits in untreated, newly-diagnosed patients has been described to be between 19 and 24% 4 

(Muslimovic et al., 2005; Aarsland et al., 2009). In non-demented patients, the most frequently 5 

affected cognitive functions are attention/executive (A/E) (involving attention, working 6 

memory, set shifting, planning or inhibition), episodic memory and 7 

visuospatial/visuoperceptual (VS/VP) (Foltynie et al., 2004; Muslimovic et al., 2005; Aarsland et 8 

al., 2009; Elgh et al., 2009). Patients with cognitive impairment that does not significantly 9 

interfere with daily life activities, i.e., with mild cognitive impairment (MCI), are at a higher risk 10 

of subsequently developing dementia (Janvin et al., 2006; Williams-Gray et al., 2007), which 11 

over time affects around 80% of patients (Aarsland et al., 2005). The risk of future dementia 12 

appears to vary according to the type of cognitive deficit observed, being higher in patients 13 

with cognitive deficits with posterior cortical substrates and not related to dopamine 14 

imbalances (Williams-Gray et al., 2009). 15 

 The study of cognition is increasingly focusing on an integrated model of brain function 16 

rather than on the study of individual areas. In this framework, resting-state functional 17 

magnetic resonance imaging (fMRI) can be used to detect interregional correlations in blood 18 

oxygen level-dependent (BOLD) signal fluctuations (Biswal et al., 1995), considered to reflect 19 

baseline neuronal brain activity (Gusnard et al., 2001), which in turn allows the study of 20 

intrinsic large-scale brain network organization (Biswal et al., 1995; Fox and Raichle, 2007). In 21 

recent years, graph-theory-based complex network analysis, which describes important 22 

properties of complex systems by quantifying topologies of their respective network 23 

representations (Rubinov and Sporns, 2010), has been increasingly used in the study of the 24 

functional and structural organization of the nervous system (Bullmore and Sporns, 2009). For 25 
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graph-theoretical analysis of neural networks through fMRI, anatomical brain regions are 1 

considered as nodes, linked by edges, which represent the connectivity measured by the 2 

temporal correlation of BOLD signal fluctuations between the nodes (Rubinov and Sporns, 3 

2010). Network integration and segregation are measured by the characteristic path length 4 

and the clustering coefficient, respectively. Networks which display a balance between these 5 

two measures are considered to be small-world networks (Sporns and Honey, 2006), 6 

characterized by high local specialization (high clustering) and some global “shortcuts” (low 7 

path length), allowing fast information transfer with reduced energy expenditure (Rubinov and 8 

Sporns, 2010; Karbowski, 2001). Small-world topology has been described in human brain 9 

functional (Achard et al., 2006) and structural (Sporns et al., 2007) networks. 10 

This approach has been used in the study of large-scale network properties both in 11 

healthy subjects (Achard et al., 2006) and in neurodegenerative diseases such as Alzheimer’s 12 

disease (Stam et al., 2007; He et al., 2008; Supekar et al., 2008; Lo et al., 2010; Sanz-Arigita et 13 

al., 2010). Despite ample evidence of changes in connectivity related to motor or cognitive 14 

circuits in PD (Ibarretxe-Bilbao et al., 2011; Wu et al., 2011; Hacker et al., 2012; Segura et al., 15 

2013), little is known about whole-brain network topology changes associated with this 16 

disease. To our knowledge, no published studies addressed graph-theory parameters 17 

associated with cognitive deficits in PD. 18 

The principal aim of the present work was to explore global and local measures of 19 

connectivity and network integration and segregation through a graph-theoretical approach in 20 

a large sample of non-demented PD patients using resting-state fMRI. Specifically, we wanted 21 

to study how these measures of connectivity would relate to the presence of cognitive deficits 22 

in this disease to better understand the functional implications of these deficits on brain 23 

function from a network perspective, and also as part of an effort to find neuroimaging 24 

markers of cognitive decline and dementia. We hypothesized that PD patients with MCI would 25 
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have disrupted functional brain topological organization, and that specific types of deficit 1 

would be associated with distinct patterns of network disruption. 2 

 3 

MATERIALS AND METHODS 4 

 Participants 5 

Eighty-four non-demented PD patients and 38 healthy controls (HC) matched for age, 6 

sex and years of education were included. Patients were recruited from the Movement 7 

Disorders Unit, Hospital Clínic, in Barcelona. HC were recruited from individuals who 8 

volunteered to participate in scientific studies at the Institut de l’Envelliment, Universitat 9 

Autònoma de Barcelona. The inclusion criterion for patients was the fulfillment of the UK PD 10 

Society Brain Bank diagnostic criteria for PD (Daniel and Lees, 1993). Exclusion criteria were: (i) 11 

Mini-Mental State Examination scores less than 25 or the presence of dementia according to 12 

the Movement Disorder Society criteria (Emre et al., 2007), (ii) Hoehn and Yahr (HY) score > III, 13 

(ii) presence of other significant psychiatric, neurological or systemic comorbidity, (iv) 14 

pathological MRI findings other than mild white matter hyperintensities or, in patients, 15 

findings not compatible with PD in the FLAIR sequence, (v) root mean square head motion > 16 

0.3 mm translation or 0.3 degrees rotation. 17 

All patients except one were taking antiparkinsonian drugs, consisting of different 18 

combinations of levodopa, cathecol-O-methyl transferase inhibitors, monoamine oxidase 19 

inhibitors, dopamine agonists and amantadine. The medication was not changed for the study 20 

and all assessments (clinical, neuropsychological and neuroimaging) were done while patients 21 

were in the on state. Levodopa equivalent daily dose (LEDD) was calculated as suggested by 22 

Tomlinson et al. (2010). Motor disease severity was evaluated using HY staging and the Unified 23 

Parkinson’s Disease Rating Scale motor section (UPDRS-III). 24 
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The study was approved by the ethics committee of the University of Barcelona, and 1 

all subjects provided written informed consent to participate. 2 

Neuropsychological assessment 3 

All subjects underwent a neuropsychological battery to assess 4 

visuospatial/visuoperceptual, memory and attention/executive functions. The tests 5 

administered were as follows (for a full description, see Lezak et al., 2004): 6 

VS/VP functions: Benton’s Visual Form Discrimination (VFD) and Judgment of Line 7 

Orientation (JLO) tests. Memory: learning and recall memory were assessed using Rey’s 8 

Auditory Verbal Learning Test (RAVLT) total learning and free recall (after 20 minutes) scores. 9 

A/E functions: difference between backward and forward digit spans from the Wechsler Adult 10 

Intelligence Scale-III Digits subtest; difference between Trail-Making Test (TMT) part A and part 11 

B scores; phonemic fluency scores (number of words beginning with the letter “P” produced in 12 

60 seconds), and Stroop Color-Word Test (SCWT) interference scores.  13 

The Beck Depression Inventory II (BDI) and the MMSE were also administered to all 14 

subjects. 15 

MRI acquisition 16 

Images for all subjects were obtained with a 3T MRI scanner (MAGNETOM Trio, 17 

Siemens, Germany), using an 8-channel head coil. The scanning protocol included a resting-18 

state, 5-minute-long functional gradient-echo echo-planar imaging sequence (150 T2*-19 

weighted volumes, TR=2 s, TE=19 ms, flip angle=90⁰, slice thickness=3 mm, FOV=240 mm, in 20 

which subjects were instructed to keep their eyes closed, not to think of anything in particular 21 

and not to fall asleep), a high-resolution 3D structural T1-weighted MPRAGE sequence 22 

acquired sagittally (TR=2.3 s, TE=2.98 ms, 240 slices, FOV=256 mm; 1 mm isotropic voxel) and a 23 

T2-weighted axial FLAIR sequence (TR=9 s, TE=96 ms). 24 
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Processing of resting-state fMRI data 1 

The preprocessing was carried out using FSL-5.0 (http://www.fmrib.ox.ac.uk/fsl/) and 2 

AFNI (http://afni.nimh.nih.gov/afni). Briefly, it included removal of the first 5 volumes to allow 3 

for T1 saturation effects, skull stripping, grandmean scaling and temporal filtering (bandpass 4 

filtering of 0.01-0.1 Hz). To control for the effect of subject head movement, physiological 5 

artifacts (e.g., breathing and vascular) and other non-neural sources of signal variation on the 6 

estimation of functional connectivity, motion correction (using FSL’s MCFLIRT) and regression 7 

of nuisance signals (six motion parameters, cerebrospinal fluid and white matter) were 8 

performed. 9 

Head motion was calculated separately for translatory and rotatory movements 10 

according to the following formula: 11 

1
𝑀𝑀 − 1

��|𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖−1 |2 + |𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑖𝑖−1 |2 + |𝑧𝑧𝑖𝑖 − 𝑧𝑧𝑖𝑖−1 |2 
𝑀𝑀

𝑖𝑖=2

 12 

Where xi, yi and zi are translations or rotations in three axes at timepoint i, and M is 13 

the total number of timepoints (145) (Liu et al., 2008). 14 

Quality control 15 

From the initially recruited sample, four patients were excluded due to macroscopic 16 

movement artifacts and 14 due to head motion > 0.3 mm translation or > 1⁰ rotation. Two 17 

controls were excluded due to microvascular white matter changes, leaving a final sample of 18 

66 PD patients and 36 HC.  Despite rigorous head motion exclusion criteria, rotational head 19 

motion was significantly higher (t=3.304, p=.001) in the patient (mean=.044⁰, standard 20 

deviation (SD)=.035) than in the control group (mean=.028⁰, SD=.011). Evaluating patient 21 

subgroups, rotational head motion was found to be significantly higher in non-MCI patients 22 

than in controls (p=.028, post-hoc Bonferroni test). No significant differences were found 23 
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between controls and MCI patients or between patient subgroups. No significant intergroup 1 

differences were found in translational motion (see Table II). 2 

Atlas-based definition of nodes 3 

We used the AAL atlas (Tzourio-Mazoyer et al., 2002), the parcellation scheme most 4 

frequently used in fMRI graph-theory studies (Tijms et al., 2013), to parcellate the cerebral 5 

gray matter into 45 regions of interest (ROI) per hemisphere (see Table I). Non-linear 6 

registration using FNIRT (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FNIRT) was used to transform the 7 

AAL ROIs to each subject’s T1-weighted image space; subsequently, a linear registration 8 

(Jenkinson et al., 2001) was applied to bring the ROIs from each subject’s T1-weighted to 9 

native functional space. 10 

Network computation and parameters 11 

BOLD signal temporal series were averaged throughout all voxels within each ROI 12 

(Biswal et al., 1995). The connectivity between two ROIs was estimated using Pearson's 13 

correlation between their timeseries. A 90x90 matrix for each subject was thus obtained, 14 

representing all the edges. Networks were constructed using only positive r values (Tian et al., 15 

2007; Wang et al., 2011; Chen et al., 2013). Because there is no agreement on the selection of 16 

a threshold to define biologically relevant connections, we used a sparsity (S – existing number 17 

of edges in a graph divided by the number of all possible edges) threshold to create a set of 18 

undirected graphs, using correlation strength as edge weights, for each subject (Bassett and 19 

Bullmore, 2006; Zhang et al., 2012), while minimizing the effects of overall connectivity 20 

differences (Achard and Bullmore, 2007). Sparsity is a measure of network density; using it as a 21 

threshold to networks with equal numbers of nodes such as in the present study ensures that 22 

all subjects’ networks will also have the same number of edges, making them more suitable for 23 

comparisons (van Wijk et al., 2010). We evaluated the consistency of the global measures over 24 

a range of sparsities (5% ≤ S ≤ 25%, at 2.5% steps) (Wang et al., 2009; Fornito et al., 2010; 25 

http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FNIRT
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Bullmore and Bassett, 2011). Since a similar trend for intergroup differences was observed 1 

over the range of thresholds for global measures, only results using an S of 15% are reported 2 

for regional measures analysis. 3 

The obtained networks were analyzed in terms of their global (or whole-brain) 4 

characteristics, as well as regional/local (or nodal) measures (for a more detailed, see Rubinov 5 

et al., 2010) using the Brain Connectivity Toolbox (Rubinov and Sporns, 2010). The parameters 6 

evaluated were the following: 7 

Local/regional measures (of a node): 8 

Clustering coefficient is the number of connections between a node’s neighbors 9 

divided by the number of possible such connections, or the probability that a node’s neighbors 10 

are also connected to each other, indicating how close they are to forming a clique. 11 

The local efficiency of a node is calculated as the global efficiency of the subgraph 12 

formed by this node’s neighbors. It is a measure of clustering and indicates the capacity of this 13 

subgraph to exchange information if that node is eliminated (Achard and Bullmore, 2007).  14 

Node's connectivity degree: number of edges linked to a node (i.e., number of 15 

input/output connections). This measure can be interpreted as a node’s accessibility. 16 

Betweenness centrality (BC) is the number of shortest paths between any two nodes 17 

that go through a given node, and indicates the importance of that node to the network.  18 

Brain hubs are highly connected or central nodes (Sporns et al., 2007), which play an 19 

important role in global network communication (Achard et al., 2006). These nodes tend to 20 

have numerous (high degree) and relevant (high BC) connections (Ottet et al., 2013). For each 21 

subject group, nodes were scored according to the sum of their rank position in BC and node 22 

degree. The 20% highest-scoring nodes were classified as hubs.  23 
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Global measures 1 

The clustering coefficient of a network is defined as the average of the clustering 2 

coefficients of all nodes in the network. It quantifies the local interconnectivity of a network 3 

and reflects functional segregation, or the ability for specialized processing within densely 4 

interconnected groups of brain regions. 5 

Characteristic path length, defined as the average of the shortest path length or 6 

distance between any pair of nodes in a network. The minimum path length between two 7 

nodes is the smallest number of edges that must be traversed to connect them. Lower values 8 

indicate higher routing efficiency, as information exchange involves fewer steps.  9 

Small-world coefficient: this measure is defined as the ratio of the average clustering 10 

coefficient to the characteristic path length divided by the ratio of the same measures of 11 

equivalent random networks (Humphries and Gurney, 2008). Small-world networks usually 12 

have small-world coefficients greater than 1. 13 

Global efficiency: measures the ability of a network to transmit parallel information at 14 

the global level. It inversely correlates with path length but is not susceptible to the presence 15 

of disconnected nodes.  16 

Modularity: indicates the degree to which a network can be subdivided into well-17 

delineated modules made up of densely interconnected nodes with few intermodular 18 

connections, and which may represent network functional subcomponents (Grossberg, 2000). 19 

For the study of the distribution of network modules by group, mean group functional 20 

matrices were constructed with the ratio of mean to standard deviation of all subjects’ 21 

matrices as proposed by Chen et al. (2013) to minimize intersubject variation in edge 22 

connectivity strength (see formula in Supplementary Materials). 23 
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The mean network global connectivity was calculated as the mean of all positive 1 

interregional timeseries correlation r values. This measure was calculated for the 2 

unthresholded correlation matrices as well as for the networks constructed after applying each 3 

sparsity threshold (from 200 edges at 5% sparsity to 1001 at 25% sparsity). Cutoff r values 4 

were calculated as the r coefficient of the weakest edge included in each subject’s thresholded 5 

correlation matrix for each S threshold. For intergroup comparisons in interregional 6 

connectivity strengths, r coefficients were converted to z coefficients using Fisher’s r to z 7 

transformation.  8 

Neuropsychological data analysis 9 

Initially, z scores for each test and subject were calculated based on the HC group’s 10 

means and standard deviations. Expected z scores adjusted for age, sex and education for each 11 

test and each subject were calculated based on a multiple regression analysis performed in the 12 

HC group (Aarsland et al., 2009).  13 

We classified subjects as having MCI if the actual z score for a given test was at least 14 

1.5 lower than the expected score in at least two tests in one domain or in at least one test per 15 

domain in at least two domains. As was expected (Muslimovic et al., 2005), most such subjects 16 

had deficits in more than one function, precluding the creation of patient groups with single-17 

domain impairments.  18 

 Statistical analyses 19 

 All statistical analyses were performed using SPSS Statistics 20.0.0 (Chicago, IL, 20 

http://www-01.ibm.com/software/analytics/spss/). Statistical significance threshold was set at 21 

p<0.05. Pearson’s chi-square test was used to compare categorical variables (hand dominance, 22 

sex, HY stage). Student’s t-test was used to compare head motion, clinical and connectivity 23 

data means between patients and controls. Three-level one-way ANOVAs were used to 24 

http://www-01.ibm.com/software/analytics/spss/
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compare head motion, clinical and sociodemographic data between HC and patient subgroups 1 

(non-MCI, MCI). Three-level one-way analyses of covariance were used to compare network 2 

measures (normally distributed) between HC and patient subgroups while controlling for 3 

variables that presented intergroup differences in the previous step. Significance p values were 4 

adjusted using post-hoc Bonferroni tests considering the number of intergroup comparisons. 5 

Test statistics and significance levels are given in Supplementary Table II. To study the effects 6 

of different types of deficits on the evaluated network parameters in the PD group, the entire 7 

patient sample was analyzed through linear regression models entering the difference 8 

between expected and actual z scores for each of the three cognitive domains assessed plus 9 

relevant normally-distributed variables that significantly correlated with these scores as 10 

independent variables. Non-normally distributed variables were analyzed using Spearman rank 11 

correlations, Mann-Whitney tests and Kruskal-Wallis tests. 12 

 13 

RESULTS 14 

Sociodemographic and clinical features 15 

 Twenty-three patients (34.8%) fulfilled criteria for MCI. Table II shows 16 

sociodemographic, clinical and head motion data and the corresponding group comparisons. 17 

Supplementary table I shows the results of neuropsychological assessment and group 18 

comparisons. 19 

Mean connectivity changes 20 

No significant intergroup differences were observed for global mean connectivity 21 

values (Supplementary Table II). The exploratory analysis of correlation strengths over all 22 

edges, controlling for the effect of rotational head movement, revealed that the collapsed 23 

sample of PD patients had several widespread connectivity decrements, most often affecting 24 
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interlobular edges, as well as some increments, mainly in interlobular prefrontal connections 1 

(see Supplementary Figs. 1 and 2). The analysis of PD subgroups revealed that MCI patients 2 

had widespread reductions compared with HC; connectivity increases were also present, 3 

mostly involving shorter-range frontal and temporal links (see Fig. 1 and Supplementary Fig. 2). 4 

Non-MCI patients were also seen to have some connectivity reductions compared with HC 5 

mainly involving connections between frontal, occipital and parietal areas. A more detailed 6 

description of the pattern of interregional connectivity changes in PD subgroups can be found 7 

in Supplementary Figure 3. No significant group differences in cutoff r coefficients were 8 

observed for any of the sparsity thresholds applied (see Supplementary Figure 4). 9 

Global network topological parameters 10 

The networks of HC and both PD subgroups displayed small-world and modular 11 

characteristics (see Fig. 2). No significant differences were found for any of the global 12 

measures when comparing HC and the collapsed PD-patient group at any of the sparsity 13 

thresholds applied, with or without controlling for differences in BDI scores and rotational 14 

head motion.  15 

 Global measures analysis revealed that MCI patients presented significantly higher 16 

small-world and modularity coefficients than HC and non-MCI patients (see Fig. 2 and 17 

Supplementary Table II). Clustering coefficients were higher in MCI than in non-MCI patients at 18 

stricter thresholding (see Fig. 2 and Supplementary Table II). 19 

Community structure and hub distribution 20 

Figure 3 shows the nodes that ranked highest in clustering coefficient and BC in each 21 

group and were therefore classified as hubs, as well as the modular structure identified in each 22 

group. Mean brain networks in the three groups were decomposed into four basic modules: 23 

fronto-parietal, insulo-operculo-striatal, fronto-parieto-parahippocampal and occipito-24 
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temporal (see Fig. 3). In HC, an additional module composed of the thalami was identified. A 1 

significant group effect was found for the number of modules (Kruskal-Wallis H=6.756, 2 

p=.034); Bonferroni-corrected post-hoc Mann-Whitney tests showed a tendency for more 3 

modules in MCI patients than in HC (p=.069) (see Figure 3). The number of modules did not 4 

correlate significantly with motion parameters. 5 

Local network topological parameters 6 

To assess the reorganization of local topological measures (node degree, BC, nodal 7 

clustering coefficient and local efficiency) in the subgroups of PD patients, we correlated the 8 

mean nodal values for the HC group and the differences between each individual subject’s 9 

value and the mean value in HC (Achard et al., 2012). This strategy allows the analysis of 10 

whether changes in nodal parameters in the patient groups are related to their respective 11 

values in HC, and also provides a visual representation of increases or decreases in these 12 

properties in individual nodes. Intergroup comparisons of z-transformed correlation 13 

coefficients revealed that, for BC, both PD subgroups had significantly more negative 14 

correlations than HC, indicating that hubs tend to lose centrality, and nodes which normally 15 

have low centrality undergo the most significant increases (F=11.090, p<.001; post-hoc 16 

Bonferroni test: PD-MCI>HC p<.001, PD-non-MCI>HC p=.001) in PD patients. For node degree, 17 

a similar effect was found in PD-MCI compared with HC (F=4.429, p=.014; post-hoc Bonferroni 18 

test: PD-MCI>HC p=.011) (see Fig. 4). No significant differences in correlation coefficients were 19 

found for measures of nodal clustering coefficient and local efficiency.  20 

Figures 4 and 5 show the distribution of mean changes in nodal parameters as a 21 

function of mean values in HC for both PD subgroups. Differences between MCI patients’ 22 

values and HC’s for clustering coefficient and local efficiency were more often positive, 23 

indicating a tendency for increased clustering, especially for nodes that in HC belong to the 24 

occipito-temporal or the fronto-parietal modules (see Fig. 5). 25 
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Effect of types of cognitive deficits on topological measures 1 

VS/VP scores did not correlate significantly with A/E or memory scores, with 2 

clinical/demographical variables such as age, education, LEDD, disease duration or UPDRS-III or 3 

BDI scores, or with head motion parameters; a simple regression model was therefore used to 4 

evaluate the corresponding cognitive function. A/E scores significantly correlated with memory 5 

scores (r=.31, p=.011); the latter, in turn, also correlated significantly with age (r=-.34, p=.006) 6 

and LEDD (r=-.27, p=.027). These variables were entered as independent variables in the 7 

analysis of A/E and memory functions in a multiple regression model. 8 

Regression analyses performed in the patient group revealed that composite z scores 9 

for VS/VP and memory correlated negatively with clustering, modularity and small-world 10 

coefficients over a range of thresholds (see Fig. 6). A/E scores, on the other hand, did not 11 

correlate significantly with global measures at any of the thresholds applied. 12 

At the regional level, measures of clustering (clustering coefficient and local efficiency), 13 

degree and BC had mainly negative correlations with VS/VP scores, predominantly in temporal 14 

and parietal cortices, as well as with basal ganglia, thalamus and medial temporal nodes nodes 15 

(see Figure 6 and Supplementary Table III). Memory scores were likewise seen to correlate 16 

with local parameters predominantly in frontal and temporal areas. Memory scores correlated 17 

negatively with measures of clustering in prefrontal and medial temporal regions. Node degree 18 

correlated with these scores in frontal and occipital areas (see Figure 6 and Supplementary 19 

Materials). Significant nodal correlates for A/E scores were found mainly in frontal regions. BC 20 

in several frontal areas correlated both positively and negatively with these scores (see Figure 21 

6 and Supplementary Table III). 22 

No significant correlations were found between HC scores in any of the 3 cognitive 23 

domains assessed and global network measures at any of the thresholds applied. 24 
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 1 

DISCUSSION 2 

 In the current study, we evaluated brain network topologies associated with the 3 

presence of cognitive deficits in a large sample of non-demented, treated PD patients through 4 

resting-state fMRI. We thresholded subjects’ correlation matrices to construct weighted, 5 

undirected networks composed of identical numbers of nodes and edges. Our findings suggest 6 

that graph-theoretical approaches can evidence cerebral functional network reorganization in 7 

PD patients in association with cognitive deficits and may prove useful as imaging biomarkers 8 

of cognitive decline in this disease. Our main findings were that MCI PD patients’ functional 9 

connectomes had increased modularity and small-worldness. Although more advanced disease 10 

may partially account for these changes, regression analyses controlling for clinical confounds 11 

showed that global parameters of clustering, modularity and small-worldness were negatively 12 

associated with performance in VS/VP and memory functions. These findings suggest that the 13 

presence of cognitive impairments is per se associated with network topological 14 

reorganization in non-demented PD patients. 15 

 In the present study, widespread long-range connectivity decreases were observed in 16 

the PD group, most notably in patients with MCI. In this group, these decrements were seen to 17 

affect connections between all major cortical and subcortical areas. Connectivity increases of a 18 

possible compensatory nature were also observed, mainly affecting shorter connections within 19 

the frontal and temporal lobes. The presence of both decreased and increased edge strength 20 

explains the absence of intergroup mean global connectivity differences. Previous resting-state 21 

functional connectivity fMRI studies in PD have found connectivity increases and decreases 22 

depending on the networks or circuits studied. Wu et al. (2009), in a study addressing motor 23 

network connectivity, described increases in the off state which were normalized after 24 

levodopa administration. In another study, the same group found both increments and 25 
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decrements in the rostral supplementary motor area’s connectivity compared with HC (Wu et 1 

al., 2011). More recently, Tessitore et al. (2012) described functional connectivity decreases 2 

between regions of the default mode network (in parietal cortical and medial temporal areas) 3 

and the rest of the same network in cognitively preserved PD patients. Recent evidence 4 

indicates that white matter degeneration plays a role in PD-related cognitive impairment 5 

(Agosta et al., 2012; Baggio et al., 2012; Hattori et al., 2012). Studies using genetic animal 6 

models suggest that primary axonopathy is part of the PD pathological process (Li et al., 2009; 7 

see also Burke and O’Malley, 2013). We hypothesize that the observed connectivity 8 

decrements result from structural connectivity deficits due to neurite dysfunction, and that 9 

these changes contribute to cognitive impairment in PD. No group differences were found in 10 

the measures of integration (characteristic path length and global efficiency) assessed in the 11 

present study, probably due to the strengthening of alternative pathways. Nonetheless, this 12 

hypothesis would merit testing through the combined analysis of connectivity patterns and 13 

white matter integrity. Evidence from animal studies using genetic models also indicates that 14 

α-synuclein aggregates lead to impairments in neurotransmitter release and subsequent 15 

synaptic dysfunctions, further contributing to connectivity impairments (Scott et al., 2010). 16 

The overall topographic distribution of the network modules was preserved in the PD 17 

group, although brain modularity was seen to be increased in patients with MCI. This finding is 18 

probably related to the increases in these patients’ local interconnectedness (i.e., higher nodal 19 

clustering coefficients and local efficiency), which were found to preferentially involve nodes 20 

that normally belong to the occipito-temporal and fronto-parietal modules, and which also 21 

lead to increases in the calculated small-world coefficients. It could be speculated that the 22 

increments in local interconnectivity result from shorter-range, within-module compensatory 23 

plasticity mechanisms as a response to long-range connectivity loss or primary cortical 24 

pathology (Compta et al., 2011).  25 



Carme  Junque 
 

18 
 

We also evaluated changes in parameters that identify the most relevant nodes to 1 

information traffic, i.e., network hubs. We found that PD, especially in the presence of 2 

cognitive deficits, was associated with a reorganization of hub structure, characterized by 3 

reduced importance – as measured by BC and degree – of nodes that are normal hubs and 4 

increased importance of nodes that normally have low network relevance. The increase in 5 

hubness was most noticeable in prefrontal nodes, several of which were classified as hubs only 6 

in the PD subgroups. Our findings indicate that, in PD, hubs may be especially vulnerable to the 7 

degenerative pathogenic process that amounts to cognitive impairment, as has been described 8 

in Alzheimer's disease (Stam et al., 2009) and hypothesized to be derived from these region's 9 

higher metabolic activity (de Haan et al., 2012). Considering the relevance of Alzheimer’s type 10 

pathology in the genesis of cognitive deficits in PD (Compta et al., 2011), a common 11 

mechanism could underlie these changes in both diseases. 12 

The analysis of topological patterns associated with specific types of deficits revealed 13 

that VS/VP and memory deficits, although not mutually correlated, were associated with the 14 

same global parameters that were altered in MCI patients. A/E deficits, on the other hand, did 15 

not correlate with global network measures. Dopaminergic antagonism has been seen to 16 

reduce both global and local efficiency in healthy subjects (Achard and Bullmore, 2007). PD 17 

patients off medication (i.e., in a state of dopamine deficiency) have also been described to 18 

have reduced global and local efficiency (Skidmore et al., 2011). The extrapolation of these 19 

data to treated Parkinson’s disease subjects is not straightforward, however, as these patients 20 

are not in a consistent hypodopaminergic state. Midbrain dopaminergic neuron loss 21 

progresses heterogeneously (Damier et al., 1999). Affected areas thus coexist with spared 22 

areas, which may ultimately suffer dopaminergic overstimulation or dopamine overdose as a 23 

result of antiparkinsonian treatments (Gotham et al., 1986). Longitudinal population-based 24 

studies indicate that the presence of deficits related to dopamine imbalance in PD does not 25 

increase the risk of subsequent dementia, whereas deficits with posterior-cortical, non-26 
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dopaminergic bases are markers of worse cognitive prognosis (Williams-Gray et al., 2007; 1 

Williams-Gray et al., 2009). The role played by primary cortical pathology in cognitive 2 

impairment and in the development of dementia in PD, which according to post-mortem 3 

studies can be related to synucleinopathy as well as to Alzheimer’s-type pathology (Fields et 4 

al., 2011; Compta et al., 2011; see also Ferrer, 2009), is likely to explain these associations. 5 

VS/VP deficits in PD appear to be independent from dopamine imbalances (Lange et al., 1992) 6 

and are accompanied by temporo-parieto-occipital gray matter atrophy (Pereira et al., 2009). 7 

And although striatofrontal circuit disruptions are considered to play a part in declarative 8 

memory deficits associated with PD (Dujardin et al., 2001), recent work has described 9 

structural hippocampal changes associated with these impairments (Apostolova et al., 2012; 10 

Carlesimo et al., 2012; Beyer et al., 2013; Pereira et al., 2013). The global changes observed in 11 

the present study to be associated with MCI and with VS/VP and memory deficits may, 12 

therefore, reflect primary white-matter changes as well as the gray-matter pathological 13 

processes responsible for more severe cognitive decline and conversion to dementia. Future 14 

longitudinal studies are needed to establish if these changes have predictive value for worse 15 

cognitive outcomes. The regional network reorganization associated with A/E deficits, on the 16 

other hand, may be a reflection of the dopamine imbalances affecting frontal areas, a finding 17 

compatible with the known relationship between these impairments and frontostriatal 18 

dopaminergic imbalances (see Cools and D’Esposito, 2011). These data provide valuable 19 

evidence about the different pathological implications of distinct types of neuropsychological 20 

impairment in PD.  21 

The results found in the present study do not conform to the patterns described in 22 

Alzheimer’s disease, currently the best-studied neurodegenerative process. Graph theory 23 

studies in this disease with different methodological approaches have yielded variable results 24 

(see Tijms et al., 2013), but studies using resting-state fMRI have described reduced (Supekar 25 

et al., 2008) or unchanged (Sanz-Arigita et al., 2010) clustering coefficients. Characteristic path 26 
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lengths have been described to be reduced in patients with AD (Sanz-Arigita et al., 2010) and 1 

increased in patients at risk for this disease (Wang et al., 2013). Our findings of increased 2 

segregation and modularity with no significant changes in integration may therefore be more 3 

specific of cognitive impairment in PD. 4 

One possible limitation of the present work is that patients were evaluated in the on 5 

state, i.e., under the influence of dopaminergic medication. As previous work has shown 6 

(Achard and Bullmore, 2006), dopaminergic manipulations impact measures of network 7 

efficiency. Besides the constraint of conceivably more severe motion artifacts in the off state, 8 

with subsequent effects on functional connectivity estimations (van Dijk et al., 2012), we 9 

wanted to study cognitive deficits and their substrate as they occur in patients’ daily lives – i.e., 10 

under the effect of their usual medication. In this way, we expect our findings can be 11 

extrapolated to the clinical setting and can be more useful in future efforts to establish 12 

neuropsychological and neuroimaging biomarkers for dementia. Additionally, despite the 13 

rigorous head motion exclusion criteria and preprocessing steps aimed at minimizing the effect 14 

of motion artifacts, we cannot guarantee that our results were not influenced to some degree 15 

by them. Nonetheless, the fact that connectivity changes were more significant in the MCI 16 

group – which displayed less pronounced head motion than the non-MCI group – indicates 17 

that the observed effect has actual biological origins. 18 

In conclusion, our results indicate that complex network analysis through resting-state 19 

fMRI is a useful method for the investigation of functional changes related to cognitive decline 20 

in Parkinson’s disease. This study suggests that MCI in PD is accompanied by increases in 21 

network modularity and small-world coefficients, as well as by changes in network hub 22 

regions. Additionally, cognitive deficits in PD are accompanied by network disruptions 23 

characterized by the weakening of long-range connections alongside increases in local 24 

connectedness. The observed pattern of these changes and their anatomical distribution 25 
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indicates that they may be part of the distinct substrates underlying different types of PD-1 

related cognitive impairment. Future longitudinal studies could provide relevant information 2 

about the potential use of specific changes in network parameters as predictors of subsequent 3 

cognitive decline. 4 

 5 
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FIGURE LEGENDS 19 

Figure 1. Comparisons of interregional connectivity strength between HC and Parkinson’s 20 

disease subgroups. 21 
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Top row: mean connectivity matrices according to group (Pearson’s r coefficients, indicated in 1 

the color bar) for all pairs of ROIs. Bottom row: edges with significant post-hoc group 2 

differences (p<.05) in z correlation values are marked in color. Bottom left: non-MCI versus 3 

MCI patients; bottom middle: HC vs. MCI patients; bottom right: HC vs. non-MCI patients. 4 

Color bars indicate post-hoc Bonferroni test p values according to direction of differences. 5 

Anatomical regions, ordered in roughly anterior-posterior sequence and grouped according to 6 

lobes or subcortical structures, are numbered in the vertical and horizontal axes according to 7 

Table I. CS: corpus striatum; thal: thalamus. 8 

 9 

Figure 2. Small-world, modularity and clustering coefficients (vertical axis) as a function of 10 

sparsity thresholds (horizontal axis) for HC and Parkinson’s disease subgroups.  11 

* indicates significant differences between HC and MCI patients (p<.05, post-hoc Bonferroni 12 

test); § indicates significant differences between non-MCI and MCI patients (p<.05, post-hoc 13 

Bonferroni test). SW: small-world coefficient.  14 

 15 

Figure 3. Community structure and hub distribution according to group. 16 

Colors in nodes and links correspond to the modules indicated at the top of the figure. Black 17 

nodes in the HC group represent the thalami. Only intramodular edges are shown. Mean 18 

number of modules and standard deviations per group are shown at the right. Nodes classified 19 

as hubs in each group are listed, as well as the communities to which they belong in each 20 

group’s mean network.  21 

 22 
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Figure 4. Changes in measures of node degree and BC in non-MCI and MCI PD patients relative 1 

to HC as a function of HC’s means. 2 

Left side: mean differences between PD-non-MCI and HC (A, C) and between PD-MCI and HC 3 

(B, D) for node degree (K) (A, B) and betweenness centrality (BC) (B, D) are plotted against the 4 

mean values in the HC group (horizontal axes) for all nodes. Nodes classified as hubs in the 5 

control group are numbered (see Table I). Colors indicate the modules to which each node 6 

belongs in HC as indicated at the top of the figure. Right side: correlation between HC’s mean 7 

values for K (above) and BC (below) (horizontal axes) and the individual differences between 8 

subjects’ values in the corresponding parameters and mean HC values (vertical axes). Mean r 9 

correlation values and standard deviations according to group are shown. 10 

 11 

Figure 5. Changes in nodal parameters of segregation in non-MCI and MCI PD patients relative 12 

to healthy controls as a function of HC’s means. 13 

Mean differences between PD-non-MCI and HC (A, C) and between PD-MCI and HC (B, D) for 14 

node nodal clustering coefficients (C) (A, B) and local efficiency (eLoc) (B, D) are plotted against 15 

the mean values in the HC group (horizontal axes) for all nodes. Nodes classified as hubs in HC 16 

are numbered (see Table I). Colors indicate the modules to which each node belongs in the HC 17 

group as indicated at the top of the figure.  18 

 19 

Figure 6. Relationship between network parameters and composite scores for memory and 20 

VS/VP functions. 21 

A: Significant linear regression analysis results for global measures and VS/VP (top) and 22 

memory (bottom) z scores. β – standardized beta regression score. B: Regions where regional 23 
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measures correlated significantly with A/E, memory or VS/VP scores. Top row: negative 1 

correlations; bottom row: positive correlations. C: clustering coefficient; Mod: modularity; SW: 2 

small-world coefficient; eLoc: local efficiency. 3 
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