Manuscript Number:

Title: Depositional biofacies model for Aptian carbonate platforms of the western Maestrat Basin (Iberian Chain, Spain) : a case history of post OAEla Iberian platforms

Article Type: Research Paper
Keywords: Aptian; Carbonate platforms; Rudists; Paleoecology; Maestrat Basin; Spain

Corresponding Author: Dr. Eulàlia Gili,
Corresponding Author's Institution: Universitat Autonoma de barcelona
First Author: Eulàlia Gili
Order of Authors: Eulalia Gili; Peter W Skelton; Telm Bover-Arnal; Ramon Salas; Antoni Obrador; Mükerrem Fenerci-Masse

Abstract: Two well exposed platform successions of late Early Aptian age developed in the central part of the Galve sub-basin (Maestrat Basin): the highstand platform (Camarillas-El Morrón), and the succeeding small lowstand platform (Las Mingachas), built out downslope in the former basin. Both platforms had a flat-topped non-rimmed depositional profile, showing similar platform-top to slope biofacies, which are described here in both qualitative and quantitative terms. The proximal platform top succession is characterized by a Toucasia-dominated rudist association. The margins of the two platforms consist of massive limestone characterized by a Polyconites-dominated association, in which clusters of Polyconites hadriani in life position are joined by both branching and domal corals, as well as the oyster-like Chondrodonta and nerineid gastropods. In Las Mingachas platform, where the massive rudist- and coral-rich platform limestones pass laterally into the slightly more marly and recessive clinoforms of the upper slope facies, Polyconites is especially abundant. Basinwards these slope deposits pass into basinal marls with orbitolinids and ammonoids. The distribution of the two distinct rudist associations recognized here is attributed to the different environmental tolerances of the rudists with respect to such factors as current regime and rate of sedimentation. The prevalence of polyconitids, in place of caprinids, in these late Early Aptian platform margin facies makes a striking contrast with older, earliest Aptian platforms.

Suggested Reviewers: Lucia Simone Dr
Professor, Dipartimento di Scienze della Terra, Università di Napoli
'Federico II'
lusimone@unina.it
Professor Lucia Simone is an expert in carbonate stratigraphy and sedimentology. She has great experience in Cretaceous rudist platforms.

Robert W Scott Dr
Precision Stratigraphy Associates

```
rwscott@cimtel.net
Dr Robert W. Scott is an expert stratigrapher and palaeontologist. He has
a considerable knownlwedge on Cretaceous rudist and coral platforms.
Pedro Angel Fernández-Mendiola Dr
Departamento de Estratigrafía y Paleontología, Universidad del País Vasco
kepa.fernandezmendiola@ehu.es
Dr Fernández-Mendiola, a stratigrapher and sedimentologist expert,
works on Cretaceous rudist platforms in Iberia. The focus of his research
have been on Aptian platforms.
Roberto Graciano Dr
Dipartimento di Scienze delle Terra, dell'Ambiente e delle Risorce,
Università di Napoli Federici II
rgracian@unina.it
Dr R. Graciano is an expert in carbonate stratigraphy and sedimentology.
His main research is on Aptian rudist platforms.
Tvrtko Korbar Dr
Croatian Geological Survey
Tvrtko.korbar@hgi.cgs.hr
Dr T. Korbar carries out research on rudist bivalve carbonate platforms. His works are mainly focused on stratigraphy, sedimentology and rudist palaeoecology.
```


Depositional biofacies model for Aptian carbonate platforms of the western Maestrat Basin (Iberian Chain, Spain): a case history of post OAE1a Iberian platforms

Eulàlia Gili ${ }^{\text {a }}$, Peter W. Skelton ${ }^{\mathrm{b}}$, Telm Bover-Arnal ${ }^{\mathrm{c}}$, Ramon Salas ${ }^{\mathrm{c}}$, Antoni Obrador ${ }^{\text {a }}$, Mükerrem Fenerci-Masse ${ }^{\text {d }}$

${ }^{\text {a }}$ Departament de Geologia, Facultat de Ciències, Universitat Autònoma de Barcelona, Edifici Cs, 08193, Bellaterra (Cerdanyola del Vallès), Spain. eulalia.gili@uab.cat, antoni.obrador@gmail.com
${ }^{\mathrm{b}}$ Department of Environment, Earth and Ecosystems, The Open University, Milton Keynes MK7 6AA, UK. pwskelto@waitrose.com
${ }^{\text {c }}$ Departament de Geoquímica, Petrologia i Prospecció Geològica, Facultat de Geologia, Universitat de Barcelona, Martí i Franquès s/n, 08028, Barcelona, Spain. telm.boverarnal@ub.edu, ramonsalas@ub.edu
${ }^{d}$ CEREGE, Université de Aix-Marseille, Centre Saint Charles, 13331 Marseille Cedex 3, France. mugemasse@hotmail.com

Abstract

Two well exposed platform successions of late Early Aptian age developed in the central part of the Galve sub-basin (Maestrat Basin): the highstand platform (Camarillas-El Morrón), and the succeeding small lowstand platform (Las Mingachas), built out downslope in the former basin. Both platforms had a flattopped non-rimmed depositional profile, showing similar platform-top to slope biofacies, which are described here in both qualitative and quantitative terms. The proximal platform top succession is characterized by a Toucasia-dominated

rudist association. The margins of the two platforms consist of massive limestone characterized by a Polyconites-dominated association, in which clusters of Polyconites hadriani in life position are joined by both branching and domal corals, as well as the oyster-like Chondrodonta and nerineid gastropods. In Las Mingachas platform, where the massive rudist- and coral-rich platform limestones pass laterally into the slightly more marly and recessive clinoforms of the upper slope facies, Polyconites is especially abundant. Basinwards these slope deposits pass into basinal marls with orbitolinids and ammonoids. The distribution of the two distinct rudist associations recognized here is attributed to the different environmental tolerances of the rudists with respect to such factors as current regime and rate of sedimentation. The prevalence of polyconitids, in place of caprinids, in these late Early Aptian platform margin facies makes a striking contrast with older, earliest Aptian platforms.

Keywords: Aptian, Carbonate platforms, Rudists, Paleoecology, Maestrat Basin, Spain

1. Introduction

The vast, low-latitude carbonate platforms of the globally encircling Cretaceous Atlantic-Tethys-Pacific oceanic belt have attracted considerable interest over the last few decades not only for their distinctive facies and biota (e.g., Simo et al., 1993; Gili et al., 1995) but also for what their episodic history of development and demise might tell us about the linkages between global oceanic, climatic and biotic changes (e.g., Skelton, 2003; Föllmi, 2012).

The Aptian Stage has attracted especial interest, as its rich and variegated record exemplifies the wide fluctuations of conditions experienced during the Cretaceous Period, of which it thus serves as a microcosm (Skelton and Gili, 2012). Within that context, Iberian platforms are of particular relevance, both in
occupying a palaeogeographical situation intermediate between those of the northern Tethyan margin and those of the central and southern Tethyan region, and in illustrating the biotic changes that took place throughout the Aptian Age, and especially during the crucial late Early Aptian interval following Oceanic Anoxic Event (OAE) 1a. Thick platform-bearing Aptian successions are spectacularly well-exposed in the Maestrat Basin and have been the subject of several detailed studies published during the last few decades (Canérot et al., 1982; Salas, 1987; Vennin and Aurell, 2001; Tomás et al., 2008; Bover-Arnal et al., 2009, 2010, 2011a, b, 2012, 2014, 2015, 2016; Embry et al., 2010; MartínMartín et al., 2013; Peropadre et al., 2013). These works have been largely concerned with documenting the stratigraphy, sequence-stratigraphic architecture and facies of the successions and their relationships with regional and global events, and to a lesser extent with palaeoecological analysis of their biotic associations.

Complementing these previous studies, the present paper aims to address the last theme with respect to the platform sequences of late Early Aptian age that comprise the Villarroya de los Pinares Formation situated to the west of the village of Miravete de la Sierra, south of Aliaga in the province of Teruel (Fig. 1). After summarising the geological context within which these platform sequences were deposited and their consequent successions and facies architecture, we describe the compositions of the constituent biofacies in both quantitative and qualitative terms and then discuss the implications for understanding of the ambient environmental conditions in which they formed and the palaeoecology of the rudist bivalves that constitute their main macrobiotic elements.

2. Geological Setting of the study area

The study is focused on two successive Aptian (Early Cretaceous) carbonate platforms developed during two different stages of relative sea level change: (1) the highstand normal regressive (HNR) platform of Camarillas-El Morrón; and (2) the lowstand normal regressive (LNR) platform of Las Mingachas (Fig. 1). The platform deposits crop out in the environs of the villages of Camarillas and Miravete de la Sierra (Province of Teruel; E Spain) (Fig. 1A). A detailed geological context for these platform carbonates and the whole of the Aptian sedimentary succession where they are found is given in Bover-Arnal et al. (2009, 2010, 2011a, 2012, 2015, 2016), Moreno-Bedmar et al. (2009, 2010, 2012) and Garcia et al. (2014).

Fig. 1 here

The two carbonate platforms studied are located in the Galve sub-basin, on the western side of the Maestrat Basin in the eastern Iberian Chain (E Spain) (Fig. 1A). This basin developed as a result of Late Jurassic-Early Cretaceous rifting that affected the eastern Iberian Plate. During this time, a Mesozoic sedimentary succession up to a kilometre thick and ranging from continental to hemipelagic deposits accumulated in the basin. From the Paleogene to the Early Miocene, these Mesozoic deposits were inverted owing to the Alpine contraction, forming the Iberian Chain (Salas and Casas, 1993; Salas et al., 2001).

The platform carbonates studied herein correspond to the Villarroya de los Pinares Formation (Fig. 1B; Canérot et al., 1982). These rocks are characterized by floatstone and rudstone textures containing abundant scleractinian corals and rudist bivalves (Bover-Arnal et al., 2009, 2010). In the central Galve sub-basin, where the strata examined are found (Fig. 1A), the Villarroya de los Pinares Formation is of late Early Aptian age (intra Dufrenoyia furcata Zone) (Bover-Arnal et al., 2009, 2010, 2016; Moreno-Bedmar et al., 2010, 2012; Garcia et al., 2014). This formation changes both basinwards and downwards in the succession to the basinal marls of the Forcall Formation, which recorded the four Early Aptian ammonite zones (Fig. 1B; Moreno-Bedmar et al., 2010; Garcia et al., 2014; Bover-Arnal et al., 2016). On the other hand, the upper part of the Villarroya de los Pinares Formation passes laterally and upwards to latest Early-Late Aptian marls of the Benassal Formation (Fig. 1B; Bover-Arnal et al., 2012, 2016; Moreno-Bedmar et al., 2012; Garcia et al., 2014).

3. Platform architecture and context

Both of the uppermost Lower Aptian carbonate platform successions dominated by rudists and corals analysed here (Fig. 1C), had flat-topped, non-rimmed depositional profiles (Figs. 2 and 3), showing similar platform-top to slope biofacies stacked in a prograding pattern (Bover-Arnal et al., 2009).

The Camarillas-El Morrón platform succession (Sequence 'A') extends around 8 km NW-SE, from north of the village of Camarillas to El Morrón, in the vicinity of the village of Miravete de la Sierra, where the platform margin is situated, at Las Mingachas locality (Fig. 1A). It is of tabular form, and up to a maximum of nearly 35 m thick. Platform deposits pass southwestward to slope, then to basinal facies, exhibiting platform-to-slope clinoforms, which fade into basinal marls (Fig. 2).

Figs. 2 and 3 here

The small Las Mingachas carbonate platform (Sequence 'B'), located west of the village of Miravete de la Sierra (Fig. 1A), is for the most part 10 m thick and is traceable over an area of at least $0.16 \mathrm{~km}^{2}$ (Fig 1C). The platform facies pass laterally to clinoforms representative of upper slope environments. Basinwards these slope deposits pass into basinal marls (Fig. 3).

In the Camarillas-El Morrón carbonate platform succession, marls and nodular marly limestones with abundant orbitolinids and ammonoids underlie the external parts of the platform and its margin. The proximal part of the platform (around Camarillas) overlies sandy limestones and calcarenites of shallow marine origin that display cross-bedding and plane-parallel stratification. The top of the preserved platform succession, visible in its proximal part, is capped by a composite stratigraphical surface, formed by a subaerial unconformity superposed by a hardground (maximum regressive surface, 'MRS') (BoverArnal et al., 2009; Fig. 4). This composite sequence boundary marks the
change in stacking pattern from progradation to retrogradation. In the most internal parts of the platform, erosional incisions resulting from late Early Aptian base-level fall are filled by cross-bedded and plane parallel stratified orange calcarenites with abundant oysters, which represent peritidal transgressive deposits of Sequence B (Fig. 4). Toward the platform margin, the upper part of the platform is truncated by Cenozoic and/or Recent erosion.

Fig. 4 here

The composite stratigraphical surface that tops the Camarillas-El Morrón carbonate platform splits into two surfaces toward the basin, the marine correlative conformity below and the maximum regressive surface above (Fig. 5). These two surfaces bound the small Las Mingachas lowstand platform. Above the correlative conformity ('CC'), this prograding carbonate platform downlaps over a forced regressive wedge towards the basin and onlaps the former slope of the Camarillas-EI Morrón highstand platform landwards. The lowstand platform is overlain by transgressive carbonates exhibiting backstepping geometries (Figs. 1C and 5).

Fig. 5 here

4. Methods

In addition to conventional field investigation, logging and thin section analysis of the studied sections by the first five authors, the sixth author (M.F.-M.) carried
out a quantitative fabric analysis of the rudist associations developed within them. The methodology employed for the latter analysis is explained in detail in Fenerci-Masse et al. (2004) and the variables measured are summarised in Table 1.

Table 1 here

Data analysis. Sample fabric relationships were investigated by principal component analysis (PCA) performed on the standardized variables. PCA is a multivariate technique for reducing matrices of data to a visually amenable form. It involves the condensation of a number of possibly correlated variables into a smaller number of uncorrelated variables called principal components. The first principal component accounts for as much of the variability in the data as possible (maximum variance direction), and each succeeding component accounts for as much of the remaining variability as possible. Projecting the data from their original dimensional space onto the dimensional subspace spanned by these principal components then reduces dimensionality with a minimum loss of information. A first plot, called the correlation circle, projects the initial variables on to the new factors space. It is useful in interpreting the meaning of the axes. A second plot shows the projection of row points (samples) on the new axes. The coordinates of samples on a significant number of axes (first two or three axes) were saved for subsequent hierarchical classifications.

The hierarchical classification of samples was made using Ward's method (Saporta, 1978) based on Euclidean distances between samples computed from their coordinates in each PCA (Roux, 1993, pp. 103-104; Lebart et al., 1995). These analyses were performed using the statistical software ADE-4 (Thioulouse et al., 1997).

Finally, in relation to the sequence stratigraphy, it should be noted that the terminology used in this paper follows the standardized nomenclature of genetic sedimentary units and sequence stratigraphic surfaces by Catuneanu et al. (2009), whereas Bover-Arnal et al. $(2009,2011 a)$ previously applied the terminology found in the 'four-systems-tract' model of Hunt and Tucker (1992).

5. Results - description of biofacies

In many respects, the two studied carbonate platforms - the large prograding platform of Camarillas-El Morrón (Fig. 2) and the small prograding platform of Las Mingachas (Fig. 3) - resemble each other closely in terms of biofacies. But whereas the former platform is widely developed and shows a vertical evolution from thicker, aggrading, metre-scale, low energy platform top deposits to thinner, prograding, more marly beds, the latter platform lacks such a stratal development, owing to its lowstand genesis, and to its consequent limited thickness and lateral extent (few tens of metres, only). In this regard, the inner lowstand platform biofacies at Las Mingachas are somewhat similar to the platform margin and upper slope facies of the older but topographically higher highstand platform (Fig. 1C; Bover-Arnal et al., 2009, 2010, 2015). First, we
describe below the biofacies that characterize these platform settings and then interpret the environmental conditions in which they developed and the palaeoecological relationships between them, in the following section.

Two platform biofacies are readily distinguished in the field and are here named after the most abundantly represented rudist taxon in each case (Fig. 6). Assemblages in deposits corresponding to the more internal parts of the platform tops (at both Camarillas and Miravete de la Sierra) are dominated by the requieniid rudist Toucasia carinata (Fig. 6A). Deposits associated with the platform margins and upper slopes (seen only at Miravete de la Sierra) are, by contrast dominated by the polyconitid rudist Polyconites hadriani (Fig. 6B; see also Skelton et al., 2010). Accordingly we refer to them in the following discussion as the 'Toucasia-', and the 'Polyconites biofacies', respectively.

Fig. 6 here

Quantitative fabric analysis using PCA, followed by hierarchical classification, as explained in Section 4, was carried out on ten samples (field macrophotographs) in total, based on the data in Table 2. The Toucasia biofacies is represented by eight samples, six from the HNR internal platform at Camarillas ('Cam 1-6') and two from the internal part of the LNR platform at Miravete de la Sierra ('Mir 1-2'). A further two samples represent the Polyconites biofacies, both located at the margin of the LNR platform at Miravete de la Sierra ('Mir 3$4^{\prime}$). Results from this analysis are summarized in Figure 7, and their implications are incorporated in the descriptions of biofacies that follow.

Table 2 and Fig. 7 here

The first two axes of the PCA account for more than 87% of the observed variation in fabrics. Axis 1, accounting for 50% of the variation, displays, at its positive pole, the packing density, the skeletal contribution, coverage and the packing index, while Axis 2, accounting for 37% of the variation, expresses the increase of shell size (average, maximum and minimum) toward the positive pole (Fig. 7A, B). The clustering of these variables is shown in Fig. 7C.

The cluster analysis of samples (Fig. 7D) performed on the first three axes of the PCA reveals two associations of samples based on their physical characteristics. The first association, representing relatively dense assemblages of shells, groups two samples from the Polyconites biofacies at Miravete de la Sierra and two from the Toucasia biofacies at Camarillas. The discrete development of these genetically distinct dense associations in the two biofacies was based on their constituent rudist taxa, as described in the following sections. The second association comprises looser clusters of shells and includes two samples from Miravete de la Sierra and four from Camarillas, all from the Toucasia biofacies: these samples are all characterized by a low packing density and a low contribution of shelly material versus matrix.

5.1. Platform top biofacies

The internal platform top biofacies of the Camarillas-El Morrón carbonate platform are well exposed near Camarillas village (Figs. 1A and 8) and can be followed southwards for 8 km . The overwhelmingly dominant rudist taxon of this biofacies is the requieniid Toucasia carinata (Fig. 6A).

Above the basal cross-bedded sandy-limestones and calcarenites, the platform succession here continues with two successive units, which are separated by a sharp hardground surface (Fig. 8A, dashed line). Prior emersion of this surface, moreover, is suggested by the replacement of both geopetal cavity cements and the originally aragonitic inner shell in the rudists in unit 1 by red-stained fine-grained internal sediment (Fig. 8B).

Fig. 8 here

The first unit is a massive limestone bed, 6 m thick (Fig. 9A), with abundant displaced shells and fragments of T. carinata (Fig. 9B). According to the cluster analysis of Fig. 7D, both samples from this unit (Cam 1, 2), as well as the corresponding Toucasia-dominated biofacies in the lowstand platform at Miravete (Mir 1, 2) constitute relatively loosely clustered floatstone shell assemblages, with low values of packing index (max., 30.2\%), skeletal contribution (max., 13.7\%) and requieniid coverage (max., 29.4\%) (Table 2). The Toucasia shells here are mostly isolated or are in small clusters and many are disarticulated or broken (Fig. 9B). The matrix of this biofacies varies from a marly fine bioclastic wackestone (Fig. 9C) to medium grained packstone (Fig. 9D). The bioclasts are predominantly plates and spines of echinoids and
fragments of rudists. Other frequent components are small benthic foraminifers and, to a lesser extent, fragments of other molluscs, ostracodes and spicules of sponges, and a very few orbitolinid foraminifers. All the bioclasts are angular, though with well-developed micrite envelopes, implying extensive biological boring but weak and infrequent current activity.

Fig. 9 here

Above the hardground capping the latter bed, the second unit comprises repeated metre-scale cycles of marly limestone passing up to more resistant, nodular bioclastic floatstone dominated by Toucasia (Figs. 8 and 10A). In these Toucasia beds, the abundant spirally coiled shells of this clinger rudist (Gili et al., 1995) - many still articulated (e.g., Fig. 6A) - show less evidence of disturbance than those in the first unit, with parautochthonous to autochthonous preservation (Fig. 10A). They were susceptible to storm disturbance, because their basal surfaces were mainly only in frictional contact with the substrate, although in a few instances the thickened basal anterior faces of their attached (left) valves can also be seen encrusting hardground surfaces that cap some of the cycles (Fig. 10B). Accompanying shelly macrofauna are rare elevator rudists, including localized bouquets of small tubular monopleurids, Mathesia sp. (Fig. 10C) and rare isolated specimens of Polyconites hadriani together with a few small massive corals and rare branching corals (Fig. 10D). In situ bouquets of the small tubular elevator Mathesia show relatively high values of packing density, coverage and packing index (e.g., sample Cam 6; Table 2 and Fig. 7).

Fig. 10 here

The combined emersion/hardground surface separating these two units (Fig. 8 C , lower 'SU + MRS'), implying a succeeding slight transgressive increase in accommodation, could explain the enhanced marl accumulation and the growth of branching and massive corals, besides rudists, in unit 2 .

5.2. Platform margin biofacies

The prograding margins of both platforms - characterized by the Polyconites association (Fig. 6B) - are formed of massive ($\sim 5 \mathrm{~m}$) limestones with both branching (phaceloid) and domal corals at their bases (Fig. 11A), followed upwards by clusters of Polyconites hadriani in life position (Fig. 11B), in turn covered by floatstones (Fig. 11C), the hard tops of which are locally encrusted by Toucasia (Fig. 11D).

Fig. 11 here

Quantitative analyses of a total vertical sectional area of $1,300 \mathrm{~cm}^{2}$ of the polyconitid associations (e.g., Mir 4; Fig. 12) show a relatively high packing density, with a mean of 22 individuals per $100 \mathrm{~cm}^{2}\left(2,200\right.$ individuals $\left./ \mathrm{m}^{2}\right)$. Likewise, high values were recorded for packing index (averaging about 52\%), skeletal contribution (around 24\%) and polyconitid cover (around 50\%) (Table 2).

Fig. 12 here

These closely packed clusters of P. hadriani are generally paucispecific, but may otherwise be joined locally by the elongated oyster-like (though unrelated) Chondrodonta (Fig. 11E) and nerineid gastropods. Also present are subsidiary Toucasia, which nevertheless becomes more abundant towards the upper part of the massive rudist and coral limestone, plus small tubular Mathesia sp., and rare caprinids, notably Caprina parvula (Fig. 11F) and Offneria sp., confirming the latest Bedoulian age of this unit (Bover-Arnal et al., 2010). The matrix is a poorly-sorted wackestone with plates and spines of echinoids, and rudist and coral fragments. Other components are small benthic foraminifers, a few dasycladaceans and localized crusts of microorganisms on coral fragments (Fig. 13).

Fig. 13 here

5.3. Slope biofacies

In both carbonate platforms, marginal facies change laterally into slope clinoforms (Figs. 2 and 3). Slope deposits consist of rudist and coral floatstones and rudstones with a matrix of fine-grained, poorly-washed grainstone to packstone with bioclasts of echinoids and thin-shelled bivalves (Fig. 14A, B). These limestone beds are interbedded with marls and marly limestones rich in
autochthonous coral colonies (see Bover-Arnal et al., 2012 for coral descriptions). In the uppermost slope of the Camarillas-El Morrón platform, autochthonous phaceloid corals (Fig. 14C) associated with Polyconites hadriani, together with displaced Toucasia, are preserved within the floatstones.

Fig. 14 here

At Las Mingachas platform, where the massive rudist- and coral-rich platform limestones pass laterally into the slightly more marly and recessive clinoforms of uppermost slope facies, Polyconites is particularly abundant (Fig. 15A). Locally, individuals are mutually attached preserved either in life position, in dense clusters (Fig. 15B), together with a few platy corals (Fig. 15C), or as overturned bouquets (Fig. 15D), accompanied by other skeletal debris. Basinwards these slope deposits fade into basinal marls rich on orbitolinids and ammonoids.

Fig. 15 here

6. Interpretation of ambient conditions for biofacies and comments on the ecology of the rudists

Two distinct rudist associations have so far been recognized in the two carbonate platforms investigated herein, based on taxonomic and biological attributes (Section 5 Results - description of biofacies). The Toucasia association, in the platform-top facies, is characterized by the dominance of the
requieniid Toucasia carinata, largely with low-packing density, low coverage of individuals and low contribution of shelly material versus matrix, although these variables are locally increased by interspersed bouquets of Mathesia. In the second, Polyconites association, which occupies the platform margin limestones, Polyconites hadriani is overwhelmingly dominant and is densely packed, covering a high percentage of surface area and contributing substantially to it relative to matrix.

The predominance of the clinger rudist Toucasia carinata, with a largely lowspiralling growth form (e.g., Fig. 10A) indicates a slow rate of sedimentation on the platform top. The mode of growth of clingers, maximising the basal area of direct contact with the substrate, required stable sedimentary, or hard surfaces and the relatively large proportion of displaced requieniid specimens moreover implies occasional (probably storm-related) current disturbance during deposition, especially in unit 1 of the HNR platform at Camarillas (Fig. 9B). The reduced disturbance of this kind in unit 2 at Camarillas (Fig. 10A) may reflect its greater distance from the open waters of the basin as a result of progradation of the HNR platform. Nevertheless, the fine-grained matrix textures of samples from the massive Toucasia bed of Camarillas unit 1 (Fig. 9C, D) and the subsidiary fauna of small elevator Mathesia and branching corals (Fig. 10C, D) found in the more marly, nodular beds of unit 2 testify that the background conditions were usually calm. We therefore interpret the platform-top biofacies, dominated by the requieniid rudists to have been deposited in relatively restricted shallow water - the unfavourable environmental conditions of which,
with respect to other biota', may explain its low biotic diversity - only sporadically disturbed by storms.

The greater diversity of fauna (i.e. diverse rudists, Chondrodonta, nerineid gastropods, corals) in the massive rudist- and coral-rich limestones at the platform margin of both sequences points to slightly deeper, more open waters, though the petrography of the matrix (a poorly sorted wackestone; Fig. 13) and the apparent lack of significant transport of bioclasts suggest moderately calm background conditions. However, occasional disturbance of rudist associations and Chondrodonta congregations by storm surges is evident from the floatstones (Fig. 11C).

The asymmetrically conical lower (right) valve and more or less flat upper valve of Polyconites allowed imbricate close-packing of individuals (Figs. 12 and 15A, B; Skelton et al., 2010), as in the living oyster Crassostrea (Fig. 16). This mode of growth would have assisted stabilization in areas of low net rate of sediment accumulation. Marginal bioclastic sediments were propitious for initial polyconitid colonization - as with all rudists, polyconitid spat needed a hard surface (e.g. a shell fragment) on which to settle (Hennhöfer et al., 2014) - and the hard surfaces of polyconitid shells and the nooks between the shells provided further places for new settlements. The apparently monospecific nature of the resulting Polyconites hadriani association may be due to the biochemical attraction of conspecific recruits by the previously established polyconitid individuals, as with living mussels (Bayne, 1964).

Fig. 16 here

An increase in the frequency of storm disturbance towards the top of the massive limestone reflects a shallowing depositional trend in the marginal carbonate sequence, which culminated in the establishment of the clinger requieniid rudists on the platform top, well adapted to shallow-water conditions.

The gently sloping, marly sea floor of upper slope facies also favoured the establishment of Polyconites. Here, the widespread and abundant polyconitids are mostly congregated in small clusters or in bouquets of a few individuals (Fig. 15D), presumably indicating sparse attachment sites. Sedimentation appears to have been sporadic with Polyconites as well as the coral fauna becoming established during lulls between influxes of sediment derived from the shelf settings.

The prolific 'oyster-like' growth of Polyconites hadriani in the low wave-energy platform margin and upper slope habitats of these carbonate platforms implies an abundant supply of suspended food particles (phytoplankton, microphytobenthos) (Skelton et al., 2010). Nutrient supply was probably maintained by surficial water agitation, however resuspension of bacteria and detrital organic particles may also have contributed considerably to sustain such dense populations.

In summary, the biofacies recognized here, from Polyconites-dominated to Toucasia-dominated, can be correlated with a sedimentary facies gradient
expressed both in lateral zonation and vertical succession. The different environmental tolerances of the rudists relating to such factors as current regime and rate of sedimentation determined their distribution in the carbonate platform.

Interestingly, a somewhat contrasting biofacies pattern has recently been documented for an isolated small platform situated just a few km to the south of the present study area and correlated with Sequence A described herein (Bover-Arnal et al., 2015). There, the inner platform was dominated by clusters of slender elevator caprinids (C. parvula), while Polyconites and Toucasia together predominated in the external zone. Reasons for this distinct pattern of rudist colonization, at no great distance from the present study area, remain unresolved at present, though the relatively purer carbonate matrix of the caprinid facies in the isolated platform suggest that differences in the supply of fine detrital sediment and/or associated nutrient flux could have been one contributory factor. Whatever the reason for the difference, it illustrates the diversity of ecological tolerances among rudist taxa that must always be considered in studies of such platform associations (Skelton and Gili, 2012).

7. Conclusions

1. In the Maestrat Basin, the two carbonate platforms of late Early Aptian age, the Camarillas-El Morrón highstand platform and the succeeding small Las Mingachas lowstand platform, each show two distinct biofacies characterized by two different rudist assemblages. In both cases, the requieniid rudist Toucasia carinata dominates the carbonate deposits of the more internal parts of the
platform top, whereas the polyconitid rudist Polyconites hadriani dominates the deposits of the platform margins and upper slopes.
2. The proximal to distal transition from requieniid-dominated to Polyconitesdominated biofacies across the platforms reflects the influence of sedimentation on the distribution of the different rudist palaeoecological morphotypes. The relatively large clinger Toucasia carinata occupied the platform settings where the net rate of sediment accumulation was low and sea-floor surfaces normally stable, i.e. the inner platform top environments. In contrast, the elevator Polyconites hadriani proliferated in more open waters with slightly higher rates of sediment accumulation, in the moderately calm conditions of the platform margins and upper slopes.
3. The prevalence of polyconitids in these late Early Aptian platform margin facies, in particular, makes a striking contrast with older, earliest Aptian platforms, and heralds the widespread proliferation of this group across the Tethyan Realm through the Late Aptian and thereafter.

Acknowledgements

We acknowledge the financial support provided by Project I+D+i CGL200602153 from the Ministerio de Educación y Ciencia, Spain and the Grup de Recerca Reconegut per la Generalitat de Catalunya 2014 SGR 251 "Geologia Sedimentària".

References

Bayne, B.L., 1964. Primary and secondary settlement in Mytilus edulis L. (Mollusca). Journal of Animal Ecology 33, 513-523.

Bover-Arnal, T., Salas, R., Moreno-Bedmar, J.A., Bitzer, K., 2009. Sequence stratigraphy and architecture of a late Early-Middle Aptian carbonate platform succession from the western Maestrat Basin (Iberian Chain, Spain).

Sedimentary Geology 219, 280-301.

Bover-Arnal, T., Salas, R., 2010. Outcrops with seismic-scale geometries: an Aptian example from the western Maestrat Basin (E Iberia). 72nd EAGE Conference \& Exhibition incorporating SPE EUROPEC 2010, Barcelona, Spain, 14-17 June 2010. Abstracts J015.

Bover-Arnal, T., Moreno-Bedmar, J.A., Salas, R., Skelton, P.W., Bitzer, K., Gili, E., 2010. Sedimentary evolution of an Aptian syn-rift carbonate system (Maestrat Basin, E Spain): effects of accommodation and environmental change. Geologica Acta 8, 249-280.

Bover-Arnal, T., Salas, R., Skelton, P.W., Gili, E., Moreno-Bedmar, J.A., 2011a. The Aptian carbonate platforms of the western Maestrat Basin: a textbook example of four systems tract-based sequence stratigraphy, in: Arenas, C., Pomar, L., Colombo, F. (Eds), Pre-Meeting Field trips Guidebook, 28th IAS Meeting, Zaragoza Sociedad Geológica de España, Geo-Guías 7, pp. 27-64.

Bover-Arnal, T., Salas, R., Martín-Closas, C., Schlagintweit, F., Moreno-Bedmar, J.A., 2011b. Expression of an oceanic anoxic event in a neritic setting: Lower

Aptian coral rubble deposits from the western Maestrat Basin (Iberian Chain, Spain). Palaios 26, 18-32.

Bover-Arnal, T., Löser, H., Moreno-Bedmar, J.A., Salas, R., Strasser, A., 2012. Corals on the slope (Aptian, Maestrat Basin, Spain). Cretaceous Research 37, 43-64.

Bover-Arnal, T., Salas, R., Guimerà, J., Moreno-Bedmar, J.A., 2014. Deep incision on an Aptian carbonate succession indicates major sea-level fall in the Cretaceous. Sedimentology 61, 1558-1593.

Bover-Arnal, T., Pascual-Cebrian, E., Skelton, P.W., Gili, E., Salas, R., 2015. Patterns in the distribution of Aptian rudists and corals within a sequencestratigraphic framework (Maestrat Basin, E Spain). Sedimentary Geology 321, 86104.

Bover-Arnal, T., Moreno-Bedmar, J.A., Frijia, G., Pascual-Cebrian, E., Salas, R., 2016. Chronostratigraphy of the Barremian-Early Albian of the Maestrat Basin (E Iberian Peninsula): integrating strontium-isotope stratigraphy and ammonoid biostratigraphy. Newsletters on Stratigraphy.

Canérot, J., Crespo, A., Navarro, D., 1979. Montalbán, hoja no 518. Mapa Geológico de España 1:50.000. 2a Serie. $1^{\text {ª }}$ Edición. Servicio de Publicaciones, Ministerio de Industria y Energía, Madrid, 31 pp.

Canérot, J., Cugny, P., Pardo, G., Salas, R., Villena, J., 1982. Ibérica CentralMaestrazgo, in: García, A. (Ed.), El Cretácico de España. Universidad Complutense de Madrid, pp. 273-344.

Catuneanu, O., Abreu, V., Bhattacharya, J.P., Blum, M.D., Dalrymple, R.W., Eriksson, P.G., Fielding, C.R., Fisher, W.L., Galloway, W.E., Gibling, M.R., Giles, K.A., Holbrook, J.M., Jordan, R., Kendall, C.G.St.C., Macurda, B., Martinsen, O.J., Miall, A.D., Neal, J.E., Nummedal, D., Pomar, L., Posamentier, H.W., Pratt, B.R., Sarg, J.F., Shanley, K.W., Steel, R.J., Strasser, A., Tucker, M.E., Winker, C., 2009. Towards the standardization of sequence stratigraphy. Earth-Science Reviews 92, 1-33.

Fenerci-Masse, M., Masse, J.-P., Chazottes, V., 2004. Quantitative analysis of rudist assemblages: a key for palaeocommunity reconstructions. The Late Barremian record from SE France. Palaeogeography, Palaeoclimatology, Palaeoecology 206, 133-147.

Flügel, E., 1982. Microfacies analysis of limestones. Springer Verlag, Berlin.

Garcia, R., Moreno-Bedmar, J.A., Bover-Arnal, T., Company, M., Salas, R., Latil, J.L., Martín-Martín, J.D., Gomez-Rivas, E., Bulot, L.G., Delanoy, G., Martínez, R., Grauges, A., 2014. Lower Cretaceous (Hauterivian-Albian) ammonite biostratigraphy in the Maestrat Basin (E Spain). Journal of Iberian Geology 40, 99-112.

Gautier, F., 1980. Villarluengo, hoja № 543. Mapa Geológico de España 1:50.000. $2^{\text {a }}$ Serie. $1^{1 \underline{a}}$ Edición. Servicio de Publicaciones, Ministerio de Industria y Energía, Madrid, 45 pp.

Gili, E., Masse, J.-P., Skelton, P.W., 1995. Rudists as gregarious sedimentdwellers, not reef-builders, on Cretaceous carbonate platforms.

Palaeogeography, Palaeoclimatology, Palaeoecology 118, 245-267.

Hennhöfer, D. K., Pascual-Cebrian, E., Korbar,T., Stinnesbeck, W., Götz, S., 2014. Radiolitid rudist colonisation strategies and biostrome development in moderate-energy inner-platform environments (Campanian, Brač Island, Croatia). Palaeogeography, Palaeoclimatology, Palaeoecology 403, 80-87.

Hunt, D., Tucker, M.E., 1992. Stranded parasequences and the forced regressive wedge systems tract: deposition during base-level fall. Sedimentary Geology 81, 1-9.

Lebart, L., Morineau, A., Piron, M., 1995. Statistique exploratoire multidimensionnelle. Dunod, Paris.

Martín-Martín, J.D., Gomez-Rivas, E., Bover-Arnal, T., Travé, A., Salas, R., Moreno-Bedmar, J.A., Tomás, S., Corbella, M., Teixell, A., Vergés, J., Stafford, S.L., 2013. The Upper Aptian to Lower Albian synrift carbonate succession of the southern Maestrat Basin (Spain): Facies architecture and fault-controlled stratabound dolostones. Cretaceous Research 41, 217-236.

Moreno-Bedmar, J.A., Company, M., Bover-Arnal, T., Salas, R., Delanoy, G., Martínez, R., Grauges, A., 2009. Biostratigraphic characterization by means of ammonoids of the lower Aptian Oceanic Anoxic Event (OAE1a) in the eastern Iberian Chain (Maestrat Basin, eastern Spain). Cretaceous Research 30, 864872.

Moreno-Bedmar, J.A., Company, M., Bover-Arnal, T., Salas, R., Maurrasse, F.J., Delanoy, G., Grauges, A., Martínez, R., 2010. Lower Aptian ammonite biostratigraphy in the Maestrat Basin (Eastern Iberian Chain, Eastern Spain). A

Tethyan transgressive record enhanced by synrift subsidence. Geologica Acta 8, 281-299.

Moreno-Bedmar, J.A., Bover-Arnal, T., Barragán, R., Salas, R., 2012. Uppermost Lower Aptian transgressive records in Mexico and Spain: chronostratigraphic implications for the Tethyan sequences. Terra Nova 24, 333-338.

Pérés, J.M., 1961. Océanographie biologique et biologie marine. T. 1: La vie benthique. Presses Univ. France, Paris.

Roux, M., 1993. Classification des données d'enquêtes, in : Grangé, D., Lebart, L. (Eds.), Traitements statistiques des enquêtes. Dunod, Paris.

Salas, R., 1987. El Malm i el Cretaci inferior entre el Massís de Garraf i la Serra d'Espadà. Anàlisi de Conca. PhD thesis, Universitat de Barcelona, 345 p. Salas, R., Casas, A., 1993. Mesozoic extensional tectonics, stratigraphy, and crustal evolution during the Alpine cycle of the eastern Iberian basin. Tectonophysics 228, 33-55.

Salas, R., Guimerà, J., Mas, R., Martín-Closas, C., Meléndez, A., Alonso, A., 2001. Evolution of the Mesozoic Central Iberian Rift System and its Cainozoic inversion (Iberian Chain), in: Ziegler, P.A., Cavazza, W., Roberston, A.H.F., Crasquin-Soleau, S. (Eds.), Peri-Tethys Memoir 6: Peri-Tethyan Rift/Wrench Basins and Passive Margins. Mémoires du Muséum National d'Histoire Naturelle, Paris, 186, pp. 145-186.

Saporta, G., 1978. Théories et methods de la statistique. Technip, Paris.

Simo, J.A.T., Scott, R.W., Masse, J.-P., 1993. Cretaceous carbonate platforms: an overview, in: Simo, J.A.T., Scott, R.W., Masse, J.-P. (Eds.), Cretaceous carbonate platforms. AAPG Mem., 56, pp. 1-14.

Skelton, P.W. (Ed.), 2003. The Cretaceous World. Cambridge University Press and The Open University.

Skelton, P.W., Gili, E Bover-Arnal, T., Salas, R., Moreno-Bedmar, J.A., 2010. A new species of Polyconites from the Lower Aptian of Iberia and the early evolution of polyconitid rudists. Turkish Journal of Earth Sciences 19, 557-572.

Skelton, P.W., Gili, E., 2012. Rudists and carbonate platforms in the Aptian: a case study on biotic interactions with ocean chemistry and climate. Sedimentology 59, 81-117.

Thioulouse, J., Chessel, D., Dolédec, S., Olivier, J.M., 1997. ADE-4: a multivariate analysis and graphical display software. Stat. Comput. 7, 75-83.

Tomás, S., Löser, H., Salas, R., 2008. Low-light and nutrient-rich coral assemblages in an Upper Aptian carbonate platform of the southern Maestrat Basin (Iberian Chain, eastern Spain). Cretaceous Research 29, 509-534.

Vennin, E., Aurell, M., 2001. Stratigraphie sequentielle de l'Aptien du sousbasin de Galvé (Province de Teruel, NE de l'Espagne). Bulletin de la Société Géologique de France 172(4), 397-410.

Weisser, D., 1959. Acerca de la estratigrafía del Urgo-Aptense en las cadenas Celtibéricas de España. Notas y comunicaciones del Instituto Geológico y Minero de España 55, 17-32.

FIGURE CAPTIONS

Fig. 1 -A) Location of study area in eastern Spain and simplified geologic map of the central and eastern parts of the Galve sub-basin showing studied outcrops (modified from Canérot et al., 1979; Gautier, 1980 and Bover-Arnal et al., 2010). B) General stratigraphic framework for the Aptian in the Galve subbasin. Identified ammonoid biozones are marked in grey (Weisser 1959; Moreno-Bedmar et al. 2009, 2010). Modified from Bover-Arnal et al. (2009, 2010). C) Schematic two-dimensional model displaying the Aptian lithofacies architecture, platform development and sequential evolution in the central Galve sub-basin. Based on Bover-Arnal et al. (2009). The situation of the crosssection $A-A$ ' is indicated in Fig. 1A.

Fig. 2 - A) Margin of the Camarillas-El Morrón platform (highstand normal regressive (HNR) of Depositional Sequence A displaying the landward onlapping of Las Mingachas platform (lowstand normal regressive (LNR) of Depositional Sequence B. B) Sequence stratigraphic interpretation of Figure 2A. Note the downlap and prograding clinoforms exhibited by the slopes of the Camarillas-El Morrón platform (HNR of Depositional Sequence A), and how the maximum regressive surface (MRS) superposes the subaerial unconformity (SU) towards the land resulting in a composite sequence boundary (SU+MRS). Observe also the flat-topped non-rimmed depositional profile exhibited by the Camarillas-El Morrón platform. See Fig. 1 for legend. Modified from Bover-Arnal et al. (2009, fig. 8 therein) relative to which the sequence boundary has been located at a slightly lower level, at the base of the uppermost thickest limestone unit, such that the whole of the uppermost limestone body is regarded as a transgressive unit.

Fig. 3 - A) Las Mingachas prograding platform (LNR of Depositional Sequence B), B) Sequence stratigraphic interpretation of Figure 3A. Note the flat-topped non-rimmed depositional profile of Las Mingachas platform and how the facies change laterally from those of shelf settings to slope environments. The massive lithofacies (above) are parautochthonous, while the lithofacies with a nodular aspect (below) correspond to resedimented deposits. See Figure 1 for legend. Modified from Bover-Arnal et al. (2009). C) Complete photo-panorama of Las Mingachas platform, taken from the NE, showing the complete platform-slope-basin transition.

Fig. $4-A$) View of the composite stratigraphical surface (SU+MRS) that caps the Camarillas-El Morrón platform near Camarillas village (Fig. 1A). Bedding is almost vertical. B) Sequence stratigraphic interpretation of Figure 4A. Note that the transgressive system (T) of Depositional Sequence B onlaps the composite sequence boundary. See Fig. 1 for legend. Modified from Bover-Arnal and Salas (2010).

Fig. 5 - A) Panoramic view of the Camarillas-El Morrón platform-to-basin transition area situated in the central part of the Galve sub-basin (west of Miravete de la Sierra; Fig. 1A). B) Sequence stratigraphic interpretation of Fig. 5A. Modified from Bover-Arnal et al. (2009; fig. 6 therein), as explained in the caption to Fig. 2.

Fig. 6 - A) Toucasia carinata (note attachment by the larger, left valve in the extracted specimen at left and the simple posterior myophoral ledges in both valves of the articulated specimen shown in section next to the latter in the rock face). B) Polyconites hadriani, natural section across an articulated specimen (note reflexed posterior myophore at left in the upper, left valve; see also Skelton et al., 2010).

Fig. $7-A$) and B) Plots of the first two axes of the principal component analysis (PCA) performed on 10 samples using 7 biological variables: (A) correlation circle; (B) sample scatter. C) and D) Cluster analyses using the Ward method (Saporta, 1978), based on the first three axes of the PCA: (C) clustering of
variables in two groups; (D) clustering of samples into two groups representing relatively dense-, and loose shell assemblages, respectively. Note that the fabric clusters in (D) do not correspond exactly to the taxonomically identified biofacies recognized in the field: whereas both samples of the Polyconites biofacies comprise dense clusters, six of the samples from the Toucasia biofacies form loose assemblages, while two constitute dense assemblages, as discussed in the text.

Key to abbreviations: Avsize = average size of rudist shells; Maxsize = Maximum size of rudist shells; Minsize = Minimum size of rudist shells; Density = packing density; Packind = packing index; Skeletal = contribution of macroelements of rudist versus matrix; Coverage = coverage of rudist shells.

Fig. 8 - A) View northwards along the ridge beside Camarillas village showing, in the foreground, the steeply dipping beds (younging to the right) comprising the internal zone of the Camarillas-El Morrón platform. The two units (unit 1 and unit 2) visible here within the succession are separated by a composite stratigraphical surface, formed by a subaerial unconformity superposed by a maximum regressive surface (SU+MRS). The top of unit 2 - top of the platform - is capped by another, similar composite stratigraphical surface (SU+MRS). B) Leached rudist inner shell and geopetal cavity cements replaced by red-stained fine- grained internal sediment, in unit 1. C) Sedimentary log of the section here, with units 1 and 2 indicated; modified from Bover-Arnal et al. (2009). The downcutting boundary between Sequences B and A shown in Fig. 4 is visible beyond.

Fig. 9 - Internal platform (unit 1) biofacies near Camarillas village. A) Toucasia dominated platform-top association, seen in vertical section (bedding is almost vertical), hammer shaft is 36 cm long. B) Detail of Fig. 9A, centimetre scale at right. C) Photomicrograph of fine bioclastic wackestone microfacies, containing scattered sponge spicules, benthic foraminifers (including fragments of orbitolinids), ostracode valves and other, indeterminate angular bioclasts ; D) Photomicrograph of medium grained packstone microfacies, containing angular and superficially bored, and/or microbially coated bioclasts, including those derived from echinoids, rudists, benthic foraminifers and other, indeterminate
forms. The thin section photomicrographs are in plane-polarised light and 3.4 mm across. $\mathrm{bf}=$ small benthic foraminifer, $\mathrm{e}=$ echinoid, or $=$ orbitolinid, os $=$ ostracode, $r=$ rudist, $s p=s p o n g e ~ s p i c u l e$.

Fig. 10 - Internal platform (unit 2) biofacies near Camarillas village. A) In situ cluster of Toucasia carinata, viewed from above (2 Euro coin for scale, 25 mm diameter). B) Toucasia encrusting the hardground surface that caps one of the minor cycles. C) Small monopleurid, Mathesia, right valve; with 2 Euro coin for scale, 25 mm diameter. D) Natural vertical section across autochthonous branching corals, with centimetre scale at right.

Fig. 11 - Platform margin limestones; A, B, E and F at Las Mingachas locality, C and D at El Morrón. A, B, C and E in natural vertical section. A) Branching (phaceloid) corals covered by bioclastic floatstone. B) Densely clustered Polyconites hadriani in life position. C) Floatstone showing Polyconites hadriani valves in section. Note, in the centre, the antero-posterior section across both valves of an articulated specimen, viewed towards dorsal side; arrows indicate the two myophores in the left valve (above). Scale, 1 Euro coin, diameter 23 mm. D) Autochthonous cluster of Toucasia encrusting the hard top of the platform margin, viewed from above. E) Clustered Chondrodonta (elongated oyster-like shells) mixed with Polyconites. F) Section across left valve of Caprina parvula; note pallial canals with bifurcating laminae (arrowed). Scale to right in A, E and F in cm .

Fig. 12 - Natural vertical section across autochthonous polyconitid dominated platform-margin association: individuals are mutually attached (from Las Mingachas locality).

Fig. 13 - Photomicrographs of microfacies of platform margin. A) Camarillas-El Morrón platform - transverse section of microbially coated, phaceloid corallite in a poorly-sorted wackestone matrix. B) Las Mingachas platform - poorly-sorted wackestone with plates and spines of echinoids, rudist fragments, small benthic foraminifers and other, indeterminate bioclasts. Both photomicrographs are in
plane-polarised light and 3.4 mm across. $\mathrm{c}=$ coral, $\mathrm{e}=$ echinoid, ef $=$ encrusting foraminifer, $r=$ rudist.

Fig. $14-A$) and B) Photomicrograph in plane-polarised light of slope microfacies: (A) Camarillas-El Morrón platform - floatstone matrix of finegrained, poorly-washed grainstone to packstone with bioclasts of echinoids, gastropods, small benthic foraminifers and other, indeterminate bioclasts; (B) Las Mingachas platform - rudist and coral floatstone with matrix of fine-grained, wackestone to packstone with other bioclasts including those of echinoids, thinshelled bivalves and small benthic foraminifers. C) Phaceloid corals associated with Polyconites hadriani, together with displaced Toucasia, in a clinoformal lithosome at El Morrón locality. Frame in A and B is 3.4 mm across. $b=$ small bivalve, $\mathrm{bf}=$ small benthic foraminifer, $\mathrm{c}=$ coral, $\mathrm{e}=$ echinoid, $\mathrm{g}=$ gastropod.

Fig. 15 - Platform to uppermost slope transition facies at Las Mingachas. A) Cluster of displaced individuals of Polyconites hadriani. B) Polyconites hadriani preserved in life position (viewed from above), densely clustered with their feeding margins oriented sub-vertically, like recent flat oysters. C) Natural vertical section across autochthonous platy coral. D) In situ overturned bouquet of Polyconites. Scale in cm.

Fig. 16 - Cluster of live Crassostrea sp., in life position on mud flat, viewed from above, Florida, USA. Scale bar $=7 \mathrm{~cm}$.

TABLE CAPTIONS

Table 2. Quantitative fabric data (see Table 1 for definitions of variables). Samples Cam 1-6 are from the HNR (Sequence A) at Camarillas, with Cam 1, 2 from unit 1 and Cam 3-6 from unit 2 (Cam 3, 4 from Toucasia clusters and Cam 5, 6 from Mathesia clusters within the Toucasia biofacies); and Mir 1, 2 coming from the Toucasia biofacies, and Mir 3, 4 from the Polyconites biofacies, respectively, in the LNR (Sequence B) at Miravete.

Table 1.

Measures obtained for quantitative analysis of rudist assemblages

All data were obtained from field macro-photographs of exposed natural rock surfaces oriented either parallel or perpendicular to bedding and analyzed by image analysis using ImageJ: Image Processing and Analysis in Java "http:/rsbweb.nih.gov/j/"

Shell size is the averaged linear measurement of shells exposed in transverse section and is recorded together with maximum and minimum measurements.

Packing density is the number of individuals found on a reference surface, in this study normalized to $0.1 \mathrm{~m}^{2}$, as used for the study of living benthic organisms on soft substrates (Pérés, 1961).
Packing index is the quotient of the number of mutual contacts between shells (usually involving cementation) to the total number of shells along a transect line, expressed as a percentage; it is based on the index given by Flügel (1982, pp. 90, 215) to represent grain packing in sedimentary rocks. Coverage is measured either as the percentage intercept with shells along a transect parallel to bedding or as the amount of shell cover versus matrix calculated by image analysis on a given surface.

Skeletal contribution is the percent of macro-shelly material versus sedimentary matrix estimated by image analysis of field photographs.

Table 2.

Samples	Packing Density (per $\left.0.1 \mathrm{~m}^{2}\right)$	Minimum size (cm)	Maximum size (cm)	Average size (cm)	Skeletal contribution $(\%)$	Coverage $(\%)$	Packing Index (\%)
Cam 1	5.8	1	3.7	2.1	13.7	29.4	30.2
Cam 2	3.4	0.7	3.3	2.1	9	28	18.8
Cam 3	8	0.7	3.4	1.6	12.7	27.9	26
Cam 4	5.1	1.8	5.4	2.9	18.8	46	37
Cam 5	7.4	0.9	4.6	1.7	12.1	24.4	47
Cam 6	15.9	0.8	1.7	1.1	16.8	32.4	49.6
Mir 1	6.3	0.8	3.2	1.8	8	23	17.6
Mir 2	3.2	1.4	3.5	2.3	10.2	23.8	25.6
Mir 3	26.3	0.8	3.9	2.1	28.7	58.5	61.6
Mir 4	17.5	0.9	2.6	1.5	20.7	42.1	43

Figure

Click here to download high resolution image

Figure 2
Click here to download high resolution image

retrograding
\qquad m

N

解

Figure 4

Click here to download high resolution image

Key
HNR: Highstand Normal Regressive FR: Forced Regressive
LNR: Lowstand Normal Regressive
T: Transgressive
BSFR: Basal Surface of Forced Regression
SB: Sequence Boundary
MRS: Maximum Regressive Surface
MFS: Maximum Flooding Surface
CC: Correlative Conformity
SU: Subaerial Unconformity

Relative sea level

Figure 6
Click her
Click here to download high resolution image

[

Figure 7
Click here to download high resolution image

Figure 8

Click here to download high resolution image

Figure 9
Click here to download high resolution image
Figure 9
Click her
都

 7列

 $\frac{8}{8}$

 （

\square
號

震
－

Click here to download high resolution image

 $\sqrt{3}$

 ．

ure 1

Figure 11
Click here to download high resolution image

F \qquad

\section*{（

 ．
 $($

 \section*{都

 \section*{都

 正}

 正}

號
 ．

Click here to download high resolution image

Figure 14

Click here to download high resolution image

Click here to download high resolution image

Dear editor,
Please find enclosed our submission of the manuscript, 'Depositional biofacies model for Aptian carbonate platforms of the western Maestrat Basin (Iberian Chain, Spain): a case history of post OAE1a Iberian platforms' by Gili et al., which we would like to publish as a research paper in Palaeogeography Palaeoclimatology Palaeoecology.

We think this study meets the scope of this journal and furthermore represents a multidisciplinary approach combining fields of palaeontology, stratigraphy, and sedimentology. General understanding of how environmental factors could determine the distribution of rudist bivalves on carbonate platforms are very limited. In this publication after summarising the geological context within which two platform sequences of late Early Aptian age developed, we describe the biofacies in both quantitative and qualitative terms and then discuss the ambient environmental conditions in which they formed and the palaeoecology of the rudist bivalves that constitute their main macrobiotic elements.

