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Abstract 

The influence of emotional content on language processing remains unclear. Previous 

research conducted in English has obtained contradictory results regarding the effects of 

valence on word recognition. Whereas some studies indicate that valence predicts 

recognition latencies such that negative words are processed more slowly than positive 

words, other studies indicate facilitation of responses to emotional (both positive and 

negative) compared to neutral words. We examined the influence of valence and arousal 

on word recognition reaction time using large-scale word naming and lexical decision 

data-sets in Spanish. We found that linear mixed-effects model estimates revealed a 

valence but not an arousal effect on reading latencies. The influence of valence was 

better captured by a graded (RTs to positive words < neutral < negative) than by a 

categorical (positive < negative) valence effect. A categorical emotional vs. neutral 

effect was not reliably observed. In an advance on previous research, our analyses 

showed that the valence effect is substantially more prominent in lexical decision than 

in pronunciation. These results mirror some of those reported previously in English, 

adding evidence to support their validity, and demonstrating important parallels in word 

recognition processes in orthographically shallow as well as deep languages. 
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The interplay between emotion and cognition is central to the study of human 

psychology (Russell, 2003). Emotion is usually characterized in a bidimensional space 

framed by the theoretically orthogonal dimensions of valence and arousal (Bradley & 

Lang, 1999; Osgood, Suci, & Tannenbaum, 1957; Russell, 2003), and is argued to 

modulate our focus of attention, directly influencing word processing (Lang, Bradley, & 

Cuthbert, 1997). Valence refers to the pleasurable nature of a stimulus, ranging from 

negative or unpleasant to neutral to positive or pleasant, whereas arousal refers to the 

degree of activation elicited by a stimulus, ranging from calming to exciting. Despite 

considerable effort expended in previous studies, based either on direct experimental 

manipulation of the emotional qualities of words (Kanske & Kotz, 2007; Kousta, 

Vinson, & Vigliocco, 2009) or on analyses of data gathered from large-scale studies 

(Algom, Chajut, & Lev, 2004; Estes & Adelman, 2008a; Kousta et al., 2009; 

Kuperman, Estes, Brysbaert, & Warriner, 2014; Vinson, Ponari, & Vigliocco, 2014), the 

effects of valence and arousal during word recognition remain unclear. We report 

findings from an analysis of observations on word recognition in Spanish, in the word 

naming and lexical decision tasks. Our analyses help to clarify the influence of emotion 

on word recognition, in a shallow orthography, and under varying task demands.  

According to the Automatic Vigilance model of emotion (Pratto & John, 1991), 

undesirable aversive events are more likely to retain attention than neutral or pleasant 

ones. This feature of negative stimuli complicates the disengagement of attention, 

delaying a possible response (Fox, Russo, Bowles, & Dutton, 2001). The effect of such 

a bias could then be taken to explain evidence of increased reaction times for negative 

words in a variety of tasks including the Stroop test (Algom et al., 2004; Pratto & John, 

1991) as well as lexical decision or word naming tasks (Algom et al., 2004; Estes & 

Adelman, 2008a; Kuperman et al., 2014; Yao et al., 2016). 
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The model of Motivated Attention and Affective States (Lang et al., 1997), on the other 

hand, proposes that motivationally relevant events, including both positive and negative 

stimuli, are more likely to attract attention compared to affectively neutral events, thus 

speeding responses to emotional words. This hypothesis is supported by emotional 

facilitation effects obtained in lexical decision experiments in which negative and 

positive stimuli elicited faster reaction times than neutral words (Citron, Weekes, & 

Ferstl, 2013; Kanske & Kotz, 2007; Kousta et al., 2009; Palazova, Mantwill, Sommer, 

& Schacht, 2011; Vinson et al., 2014). 

A further inconsistency among the results of previous studies relates to the role of 

arousal during word recognition and its possible interaction with valence effects. Thus, 

whereas Kousta et al. (2009) and Vinson et al. (2014) reported effects of emotional 

valence with no significant influence of arousal, Estes and Adelman (2008a) and 

Kuperman et al. (2014) observed independent effects of both arousal and valence, with 

arousing words being recognized more slowly than calming words.  

Finally, there is a debate concerning whether valence effects are graded or categorical. 

Kousta et al. (2009), who observed facilitatory effects of both negative and positive 

stimuli, and Kuperman et al. (2014), who observed increased reaction times for negative 

words, attributed their otherwise contradictory results to a graded measure of valence. In 

contrast, Vinson et al. (2014) observed significant facilitation for positive and negative 

words, compared to neutral words, as a categorical emotion effect. Furthermore, Estes 

and Adelman (2008b) showed that the interaction between arousal and valence observed 

by Larsen et al. (2008) appeared only when valence was entered in the analyses as a 

continuous factor but not when it was coded as a categorical, positive vs. negative, 

variable. 
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In the current article, we present a set of analyses in which we tested the influence of 

affective content on word naming and lexical decision reaction times obtained from 

previously gathered data in Spanish (Davies, Barbón, & Cuetos, 2013; González-Nosti, 

Barbón, Rodriguez-Ferreiro, & Cuetos, 2014). Given the inconsistencies observed 

among the results of previous research, we aimed to clarify the form of the valence 

effect on word recognition. Does emotional valence have an effect, and, if it does, what 

is the best measure for capturing the effect?  

Spanish is a language in which the spelling-to-sound mappings are regular so that its 

orthography is characterized as shallow or transparent. Research in English has limited 

the observation of the influence of semantic content on reading performance to low 

frequency irregular words that are harder to encode phonologically (Plaut, McClelland, 

Seidenberg, & Patterson, 1996; Strain, Patterson, & Seidenberg, 1995; Woollams, 

Lambon-Ralph, Plaut, & Patterson, 2007; but see Balota, Cortese, Sergent-Marshall, 

Spieler, & Yap, 2004; Cortese & Khanna, 2007; Monaghan & Ellis, 2002). However, 

Davies et al. (2013) and González-Nosti et al. (2014) reported that a semantic 

component is apparent among the factors that influence oral reading in Spanish, 

suggesting that the influence of semantic content may be found more broadly than has 

previously been found (cf. Ricketts, Davies, Masterson, Stuart, & Duff, 2016). Davies et 

al. (2013) and González-Nosti et al. (2014) did not investigate the effects of valence or 

arousal. Finding such effects would therefore add evidence suggesting that reading 

processes are richly influenced by semantic information, not just imageability or, 

arguably, Age-of-Acquisition (Balota et al., 2004; Brysbaert & Ghyselinck, 2006; 

Cortese & Khanna, 2007; Davies et al., 2013), but also by valence or arousal. Extending 

observations on the shape of the emotion effects to a transparent orthography is thus a 

critical contribution of the present study. 
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Another important contribution lies in the fact that by comparing emotion effects on 

reading in different tasks we were able to examine the locus of the effects. 

Psycholinguistic effects -- most prominently, effects associated with lexical or semantic 

knowledge -- are typically reported to be larger in lexical decision than in reading aloud 

(e.g. in English, Balota et al., 2004; Cortese & Khanna, 2007; Davies, Arnell, 

Birchenough, Grimmond, & Houlson, 2017). Critically, a comparison between word 

naming and lexical decision in Spanish provides valuable information on the extent to 

which the effects of emotion variables were moderated by the effects of task demands 

and therefore (Cortese & Khanna, 2007) the extent to which the impact of emotion 

variables could be linked to reliance on semantic processing in word recognition 

(Chumbley & Balota, 1984) in transparent orthographic systems. 

One potentially important source of the discrepancies between the results of previous 

studies is related to the differing extent to which possible psycholinguistic confounds 

were taken into account in different analyses. In a review of 32 studies, Larsen, Mercer 

and Balota (2006) showed that lexical variables like length, frequency or orthographic 

lexical density were confounded with valence differences and therefore the effects of 

these variables were potentially responsible for what had been interpreted as valence 

effects in the Stroop task. Although recent studies using lexical decision and word 

naming tasks have invested considerable effort in the control of potentially confounding 

lexical variables, different research groups have focused on different sets of variables. 

This could explain, at least in part, the inconsistency among results. For example, 

Kuperman et al. (2014) included in their models different measures of word length, 

lexical density and lexical frequency, as well as Age-of-Acquisition (AoA), Context 

Distinctiveness (CD) and initial phoneme information, whereas Vinson et al. (2014) 

included only one predictor variable each to capture effects of length, frequency and 
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density, but introduced positional bigram frequencies and extended the control of 

lexical-semantic factors with the inclusion in models of, not only AoA, but also 

concreteness, imageability and familiarity measures. In our analyses, we included a 

large set of variables as control factors to facilitate comparability with previous research 

and to strengthen our results by isolating the impact of emotional factors, over and 

above the effects of better known psycholinguistic variables. 

We investigated the composition of emotion effects in reading, examining the impact of 

valence and arousal on word recognition in Spanish. We investigated the shape of the 

valence effect, examining whether the valence effect should best be described as a 

graded (positive-neutral-negative) or a categorical positive-negative valence effect, or as 

a categorical emotional-neutral effect. Close examination of recent reports (e.g. 

Kuperman et al., 2014; Vinson et al., 2014) makes it apparent that a number of alternate 

routes can be taken, and have been taken, through the process of analysing word 

recognition data to uncover the effects of emotional variables. Gelman and Loken 

(2014) characterize such variation as resembling a “garden of forking paths”, and 

Silberzahn and Uhlman (2015; see also Simmons, Nelson, & Simonsohn, 2011) have 

demonstrated the consequences of variation in analytic approach in relation to 

differences in the size and direction of the effects that can be estimated. Our approach to 

analyzing the psycholinguistic effects on word recognition therefore, firstly, assimilated 

critical alternative steps employed in previous studies. Secondly, we examined the 

impact on our findings of variation in analytic choices by comparing results across 

critical alternative permutations in analysis steps. We share our data and analysis code 

to enable readers to review our choices or to examine alternative approaches. 
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Method 

Data 

We gathered reaction time data from previous large-scale studies that had examined 

word recognition in Spanish using the word naming (Davies et al., 2013) and lexical 

decision (González-Nosti et al., 2014) tasks. Davies et al. (2013) recorded word naming 

reaction times from 25 monolingual speakers of Spanish using randomized lists of 2,765 

words. Their stimuli set included all nouns, verbs and adjectives between 3-10 letters-

long, excluding compounds, from the LEXESP (Sebastián-Gallés, Carreiras, Cuetos, & 

Martí, 2000) database, which is one of the most used psycholinguistic databases in 

Spanish. González-Nosti et al. (2014) obtained lexical decision reaction times for the 

same words from a group of 36 participants. These data were combined with valence 

and arousal values gathered through Emofinder (Guasch, Padrón, Haro, Ferré, & Fraga, 

2017), a web-based search engine for Spanish word properties from different normative 

databases (Ferré, Guasch, Moldovan, & Sánchez-Casas, 2012; Guasch, Ferré, & Fraga, 

2016; Hinojosa et al., 2016; Redondo, Fraga, Comesaña, & Perea, 2005; Redondo, 

Fraga, Padrón, & Comesaña, 2007; Stadthagen-Gonzalez, Imbault, Pérez Sánchez, & 

Brysbaert, 2017), resulting in lexical decision and word naming data for a set of 2,555 

words. Affective norms were gathered using nine-point scales for valence and arousal 

dimensions by means of the self-assessment manikin standard method (Bradley & Lang, 

1994), a non-verbal pictorial assessment technique that allows direct measurement of 

these dimensions using simple non-verbal icons to depict various points along each of 

them. When data for a given word were available in various databases we used averaged 

values.  



 10 

In addition, we compiled lexical characteristics known to influence word recognition 

including: word length measured as number of letters, phonemes and syllables; initial 

phoneme; written subtitle-based lexical frequency, as CD or as word form occurrence 

count; mean positional bigram frequency; orthographic and phonological 

neighbourhood size (N, Coltheart, Davelaar, Jonasson, & Besner, 1977) as well as 

averaged Orthographic Levenshtein Distance (OLD, see Yarkoni, Balota, & Yap, 2008) 

measures of lexical similarity neighbourhoods; and subjective ratings of familiarity, 

imageability, concreteness and AoA. All the values were gathered from the EsPAL 

database (Duchon, Perea, Sebastián-Gallés, Martí, & Carreiras, 2013) except for the 

AoA data which were obtained by Davies et al. (Davies et al., 2013). Lexical frequency 

values represent per-million occurrences from a 462,611,693 token data-set constructed 

from movie subtitles in Spanish. CD refers to the percentage of movies in which a given 

word appeared in the corpus, out of a total of 98,339 distinct movies. Bigram frequency 

and neighbourhood values were taken from the same database. Familiarity and 

imageability ratings correspond to averaged scores obtained with seven-point scales 

from at least 30 participants, except for the AoA data which correspond to averaged 

scores from 25 informants. A summary of the normative values of the psycholinguistic 

variables is given in Table 1. Note that the distribution of valence and arousal values in 

our stimuli sample is substantially similar to that obtained in previous large-scale 

normative studies conducted in Spanish (Stadthagen-Gonzalez et al., 2017). 

 

(Table 1 about here) 
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Results 

We begin by reporting steps taken to clean the data-set for analysis, removing outliers 

and missing values. We then report the correlations between psycholinguistic variables 

and the steps taken to reduce the problem of multicollinearity indicated by the 

correlations. We firstly report an analysis of the combined cross-task data-set. We then 

report the results of separate task-specific analyses of the lexical decision and word 

naming data, in a step analogous to simple effects analyses, designed to aid the 

interpretation of interactions between the effects of task and of the psycholinguistic 

variables. 

Data treatment 

We analysed trial-level data corresponding to the latencies of correct responses made by 

61 participants to the 2,555 stimulus words for which we had complete critical 

psycholinguistic variable information. After excluding errors, outlier fast responses 

(responses associated with RT < 200ms) or responses to words for which data were 

missing on one or more psycholinguistic variables, we had a data-set of 60,690 word 

naming latencies and 79,616 lexical decision latencies for the task-specific analyses. A 

total of 140,306 observations was available for the primary cross-task analysis.  

Preparation of predictor variables 

Correlations between predictor variables must be examined because of the potential 

problem of multicollinearity. This problem arises in a linear model or, by extension, in a 

linear mixed-effects model, when the information associated with predictors overlaps, 

as indicated by high pairwise correlations (r > .8, according to a commonly used 

threshold) or condition numbers (kappa > 12, according to another common threshold; 

compare Baayen, Davidson, & Bates, 2008; Cohen, Cohen, West, & Aiken, 2003). 
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Table 2 presents the pairwise correlations between critical psycholinguistic variables for 

the stimulus words in our data-set. 

 

(Table 2, about here) 

 

It can be seen that there are correlations r >= .7 for a number of pairs of variables, 

including correlations between length (letters, phonemes, syllables), and orthographic 

similarity measures (orthographic neighbourhood size, phonological neighbourhood 

size, and orthographic Levenshtein distance), as well as between the different measures 

of frequency (word form frequency and CD), and semantic content (imageability and 

concreteness). These correlations or, rather, the multicollinearity they indicate, would if 

ignored pose the risk that analyses would not be capable of estimating the unique 

contributions to outcome variance of separate predictor variables, or would estimate 

effects that would not be stable between different samples (Cohen et al., 2003). 

Therefore we took the following steps to address the multicollinearity, prior to 

conducting our formal analyses: (1.) we combined the length measures, number of 

letters and number of phonemes, by averaging them together to create a new variable, 

“length”; (2.) we combined the orthographic and phonological neighbourhood size 

measures by averaging them together to create another new variable, “N-size”; (3.) we 

selected the CD measure of frequency for use in the analyses, given recent findings 

(Adelman, Brown, & Quesada, 2006; Brysbaert & New, 2009) indicating its superior 

performance compared to word form frequency in explaining variance in reading 

performance; (4.) between concreteness and imageability, we selected imageability as a 

measure of semantic content for inclusion as a model predictor, given its common use in 
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previous analyses of large data samples (e.g. Cortese & Khanna, 2007); and (5.) we 

standardized all continuous numeric predictor variables. We include the aggregated 

length and N-size variables in the Table 2 correlations, for information. 

We examined whether these choices influenced our results. We checked if the choice of 

frequency, orthographic similarity or semantic measure affected the estimates of 

emotion effects. We fitted models: (1.) using either the CD or the word form frequency 

measure, but not both, in separate analyses; (2.) using either the aggregated N-size or 

the OLD measures of neighbourhood similarity (but not both) in separate analyses; and 

(3.) using either the imageability or concreteness measures (but not both) in separate 

analyses. We found that alternation in the choice of frequency, orthographic similarity 

or semantic measures did not substantially influence the size or direction of the 

estimates of the valence or arousal effects. The interested reader is referred to the 

Supplementary Materials for detailed information. 

Standardizing continuous numeric predictors removes non-essential collinearity due to 

scaling (Cohen et al., 2003) and it is critical for the estimation of interaction or 

curvilinear effects because lower- and higher-order terms are collinear if numeric 

predictor variables are not first rescaled to center on zero. Although Vinson et al. (2014) 

and Kuperman et al. (2014) chose to center their numeric predictors on mean values, we 

preferred to standardize predictors because transforming the variables to the same scale 

allowed straightforward comparison of effects. 

Construction of categorical valence variables 

We followed previous authors (Estes & Adelman, 2008a; Vinson et al., 2014) in 

constructing categorical valence predictor variables: (1.) a variable coding for whether 

word valence was positive or negative, termed positive-negative valence; (2.) a variable 
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coding for whether word valence was emotional or neutral, termed emotional-neutral 

valence. We constructed categorical positive-negative and emotional-neutral valence 

terms for the cross-task (naming and decision), the word naming, and the lexical 

decision data-sets. 

In our cross-task data-set, raw valence ratings varied from 1.2 to 8.7, with a mean (SD) 

of 5.3 (1.4); in the valence ratings studies (e.g. Stadthagen-Gonzalez et a., 2017), ratings 

had been elicited for a scale ranging from 1 (unhappy) to 9 (happy) via 5 (neutral, 

neither happy nor sad). To create the positive-negative factor, we divided the data by 

coding words with rated valence < 5 as negative, and words with rated valence >= 5 as 

positive. This division categorised 96,475 observation as responses to positive words 

and 43,831 observations as responses to negative words.  To create the emotional-

neutral factor, following Vinson et al. (2014), we divided the data at lower and upper 

bounds, respectively, of the neutral valence rating value of 5 plus or minus 1.5, 

categorizing 41,035 observations as responses to emotional words (valence < 3.5, or 

valence > 6.5) and 99,271 observations as responses to neutral words (valence >= 3.5, 

or valence <= 6.5). The distributions of observations in relation to valence values are 

illustrated in the barchart plots shown in Figure 1. 

 

(Figure 1, about here) 

 

In the word naming data-set, the same categorization scheme resulted in the 

classification of 19,326 observations as concerning responses to negative words, 41,364 

concerning positive words, 17,478 concerning emotional words, and 43,212 concerning 

neutral words. In the lexical decision data-set, the same scheme resulted in the 
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classification of 24,505 observations as concerning negative words,  55,111 concerning 

positive words, 23,557 concerning emotional words, and 56,059 concerning neutral 

words. It can be noted that we used linear mixed-effects models to analyse latencies, 

and that such models are robust to imbalances in numbers of observations. 

Cross-task analysis 

We examined the latencies of correct responses to words in both the lexical decision and 

naming tasks, in a cross-task analysis, fitting linear mixed-effects models to estimate 

effects  using the lme4 package version 1.1-14 (Bates et al., 2017) in R version 3.4.2 (R 

development core team, 2017). All predictors were entered simultaneously. 

We report the results of analyses of the effects of psycholinguistic variables on reading 

response RT but it is common practice to transform the outcome variable to log10(RT) 

to ameliorate skew in the distribution of latencies. We checked if the choice of outcome 

variable transformation made any difference to our results. We therefore repeated the 

final models (described later), for each valence measure, for the cross-task and for the 

task-specific lexical decision and word naming data-sets. To anticipate, we found that 

the significance and, more critically, the direction and the relative size of 

psycholinguistic effects were replicated in alternate log10(RT) or -1/RT compared to 

the RT models (see Supplementary Materials). 

Following Vinson et al. (2014) and Kuperman et al. (2014), we began our analyses by 

specifying a baseline model. Because our primary focus was on the cross-task data, the 

baseline model had to incorporate effects due to task, psycholinguistic variables, and 

interactions between the effects of task and of the psycholinguistic variables. We report, 

firstly, our observations from the process of specifying an adequate baseline model. We 

report, then, the results from subsequent analysis steps conducted to evaluate the 



 16 

contribution of valence and arousal to our account of the variance of response latencies 

in reading in Spanish. In these steps, as we explain following, we examined whether the 

addition of the affective variables was warranted by improved model fit to data. We 

evaluated model fit using information criterion (e.g. Burnham & Anderson, 2004) and 

Likelihood Ratio Test (LRT, see, e.g., Baayen, 2008; Baayen et al., 2008; Pinheiro & 

Bates, 2000) comparisons. 

The research questions investigated in our analysis were: 

1. Does valence have an effect, and, if it does, what is the best measure for capturing the 

effect? 

2. Does arousal have an effect? 

3. Do the effects of valence and arousal interact? 

4. Do the effects of valence and arousal interact with the effect of task? 

5. Are the effects of valence or arousal modulated by the influence of word frequency in 

interactions between frequency and emotion effects? 

We structure our results reporting correspondingly. We addressed each question in turn, 

examining whether the addition to our model of a term corresponding to the effect of 

interest, for example, of valence, improved model fit to data. We did this separately for 

each valence measure. We compared model fits for models with vs. without the effect of 

interest using the LRT. In addition, we report the results of t-tests of the coefficient 

estimates for each effect of interest, employing Satterthwaite approximations to 

denominator degrees of freedom (p-values were derived with the lmerTest package, 

Kuznetsova, Brockhoff, & Bojesen Christensen, 2016). At present, different methods 

are commonly used to examine the utility of hypothesised effects or, equivalently, the 
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relative utility of alternative models (with or without the effects). It was reassuring to 

find, as we shall report, that, concerning the utility of hypothesized effects, the 

indications from the model fit comparisons and the hypothesis tests coincided. 

We began by comparing models that varied in fixed effects, corresponding to 

psycholinguistic effects, but were consistent in the inclusion of random effects due to 

unexplained differences between sampled participants or between items in intercepts 

(random intercepts). We fitted terms corresponding to all effects of interest, ultimately. 

Model comparisons are reported as tests of the utility (for model fit to data) of the 

inclusion of terms corresponding to these effects, not as the basis for including the 

terms. We conclude this section by presenting a summary of the full model including all 

effects of interest. 

We then examined the utility for model fit of adding random effects due to differences 

between participants in the slopes of the (within-subjects) psycholinguistic effects or 

between items in the slope of the (within-items) task effect. Matuschek, Kliegl, 

Vasishth, Baayen, & Bates (2017; see, also, Barr, Levy, Scheepers, & Tily, 2013) argue 

that an adequate balance between the relative sensitivity and conservatism of an analysis 

can be found by examining whether the inclusion of random effects terms improves 

model fit to data. We did this by fitting a model with all fixed effects of interest and all 

random effects permitted by the study design, then removing random effects terms until 

we arrived at a model with a parsimonious random effects structure (as complex as 

appeared defensible, given the data). We present the cross-task and task-specific 

models, finally, with this random effects structure. We note that the results of 

comparisons between models varying in fixed effects did not differ if we specified only 

random intercepts (as presented) or instead the more complex, but parsimonious, 
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random effects structure identified in our later checks (code and results for both sets of 

models are presented in the Supplementary Materials). 

Baseline task x psycholinguistic effects models 

We began by fitting a baseline model. We examined four candidate baseline models. In 

all models, we included terms corresponding to the following key variables: a word 

initial phoneme coding variable; a variable coding for reading task (word naming vs. 

lexical decision); the CD frequency measure; AoA; familiarity; imageability; the 

aggregate word length measure (the average of length in letters and in phonemes); word 

length in syllables; and the aggregate neighbourhood size measure (the average of 

orthographic and phonological neighbourhood size). The models incorporated fixed 

effects terms corresponding to the effects of the psycholinguistic variables and, at this 

stage, random effects terms corresponding to variance due to unexplained differences 

between sampled participants or words in intercepts (random intercepts). 

In model 1, the fixed effects included the effects of task, phoneme, and the critical 

psycholinguistic variables except valence or arousal. No interactions were included. All 

numeric predictor variables were specified as terms corresponding to linear effects.  

Previous observations have indicated that the effects of some psycholinguistic variables 

on response latencies, like the effects of word frequency or length, may be curvilinear in 

English (e.g. Baayen, Feldman, & Schreuder, 2006; New, Ferrand, Pallier, & Brysbaert, 

2006) and in Spanish (Davies et al., 2013). Studies of the impact of emotion on word 

recognition have included reports suggesting non-linear effects of valence (Estes & 

Adelman, 2008b; Kousta et al., 2009; but see Kuperman et al., 2014). We therefore 

examined, in model 2, if curvilinearity should be allowed for the effects of any of the 

psycholinguistic variables (excluding task, initial phoneme, and length in syllables). A 
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comparison of model 1 and model 2, where, in the latter, all numeric predictors were 

fitted to latencies using restricted cubic splines (with up to k = 3 knots), indicated that 

the model allowing for curvilinearity fit the data better (LRT comparison, χ2(7) =  

357.7, p < .001). (See the Supplementary Materials for summaries of all models.)  

We examined curvilinearity in the effects of psycholinguistic variables using restricted 

cubic splines (e.g. Baayen, 2008; Davies et al., 2013) but checked if the influence of 

emotion effects was the same in analyses using polynomial (up to quadratic) terms. This 

is because, while Vinson et al. (2014) preferred to fit polynomial terms to estimate 

potentially non-monotonic emotion effects, Kuperman et al. (2014) preferred to fit 

restricted cubic splines (in Generalized Additive Models, GAMs; see also Kousta et al., 

2009). The results of the check analyses indicated that the size and direction of critical 

effects estimates were not substantially different if polynomials or splines were used to 

capture curvilinearity in effects (see Supplementary Materials). 

The effects of CD, AoA, familiarity, length and N-size were associated with significant 

curvilinear components (model 2, t-tests on corresponding coefficients, p < .05). Task, 

imageability and length in syllables were associated with significant linear effects only 

(model 1, all t-tests on corresponding coefficients, p < .01). Bigram frequency was 

associated with a marginal linear effect (t-test, p = .074) and a non-significant 

curvilinear effect (t-test, p > .10). To fit the most parsimonious defensible baseline 

model, given our data, we specified the CD, AoA, familiarity, length and N-size effects 

as curvilinear, and specified all other effects as linear, in all further models. The 

simplified model (model 3) fit the data as well as (or not detectably different than) 

model 2 (χ2(2) = .6, p = 0.758). 
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In the final baseline interactions model, we specified the described linear or curvilinear 

psycholinguistic effects, plus the effect of task, and the effects of all possible two-way 

interactions between the effect of task and the effect of each of the psycholinguistic 

variables. An LRT comparison indicated that including interactions between task and 

psycholinguistic effects improved model fit (χ2(36) = 1953.2, p < .001).  Task 

differences significantly modulated the effects of CD, AoA, familiarity and length (t-

tests of task by psycholinguistic interaction effects, all ps < .05). A summary of the 

model is given in Table 3. Response latencies decreased with increasing CD frequency, 

familiarity and neighbourhood size though the impact of each effect diminished for 

higher variable values. Latencies increased with unit increase in AoA, word length 

measured in syllables or with increasing bigram frequency. The effect of the aggregate 

length variable was curvilinear such that latencies decreased slightly for increasing 

length, at first, and then increased with increasing length for longer words. The effect of 

AoA was curvilinear such that the impact of AoA was greater for later-acquired words. 

Each psycholinguistic effect was more pronounced in lexical decision than in naming. 

 

(Table 3, about here) 

 

In the following sequence of analyses, to address each of the research questions, over a 

series of models, we successively added terms corresponding to the effects of interest. 

The addition of terms was cumulative so that later models included all terms specified 

in earlier models. At each step, we first added the term as a “main effect”, that is, 

ignoring any potential interaction with task. We then added the term as both the lower-

order component and as the task x effect interaction. Stepping up the increments in 
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model complexity in this way allowed us to evaluate whether the addition of the effect 

was warranted with or without allowing for the modulation of the effect by task 

differences. In the following, we report the results of LRT comparisons of the model 

with versus without the additional term, added as a “main effect”, then of the model 

with the additional “main effect” versus the model with the additional term added as a 

“main effect” and as a task by effect interaction. 

Test of the effect of valence 

Our first research question was: Does valence have an effect, and, if it does, what is the 

best measure for capturing the effect? To answer the first part of that question, we added 

the main effect of valence to the baseline interactions model, in separate models, one 

model for each valence measure: graded valence, categorical positive-negative valence, 

or categorical emotional-neutral valence. By comparing the fit of the baseline 

interactions model to the fit of the model including a valence measure, we evaluated if 

the addition of valence was useful in accounting for observed variance in Spanish 

reading. Likelihood ratio test comparisons showed that the addition of valence was 

justified by significantly improved model fit with the addition of graded valence (χ2(1) 

= 25.3, p < .001) or positive-negative valence (χ2(1) = 27.7, p < .001) but not of 

emotional-neutral valence (χ2(1) = .8, p = .363).  (Allowing the effect of graded valence 

to be curvilinear did not improve model fit, χ2(2) = 3.5, p = .178.) 

In the second step, we examined whether the valence effect was moderated by the effect 

of task differences. We compared the fit of a model including the baseline interactions 

terms plus valence to the fit of a model with the same baseline interactions terms plus 

valence and the task by valence interaction. LRT comparisons showed that the addition 

of a task by valence interaction was justified by significantly improved model fit for the 
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models including graded valence (χ2(1) = 16.3, p < .001), positive-negative valence 

(χ2(1) = 7.2, p = .007) but not emotional-neutral valence (χ2(1) = .3, p = 599). We term 

these models the baseline-plus-valence models. 

In evaluating competing models using information criteria, we are concerned with the 

relative, not the absolute, AIC values. Criteria with lower values (smaller values if 

positive, closer to negative infinity if negative) indicate that models have higher 

likelihood (log likelihood, scaled by multiplication by -2), that they incorporate effects 

estimates that allow better prediction of observed latencies, minimising Kullback-

Leibler information loss (Burnham & Anderson, 2004; McElreath, 2016). The graded 

rated valence or categorical positive-negative valence models better approximated 

Spanish word recognition performance data than did the baseline or categorical 

emotional-neutral models. A summary of the baseline-plus-valence models  is shown in 

Table 3. The influence of rated valence on word recognition RTs, and its greater 

prominence in lexical decision, is clearly illustrated in Figure 2. 

 

(Figure 2, about here) 

 

Test of the effect of arousal 

Our second research question was: Does arousal have an effect, either as a main effect 

or in a task by arousal interaction? We answered this question by comparing the fit of 

the baseline-plus-valence model with the fit of models including the same terms as the 

baseline-plus-valence model plus, successively, the main effect of arousal, and the 

effects of arousal and the task by arousal interaction. 



 23 

For models representing valence as a graded measure, likelihood ratio tests indicated 

that, compared to the baseline-plus-valence model, the addition of arousal did not 

significantly improve model fit if added as a main effect (χ2(1) = 2.0, p = .158). 

Compared to the baseline-plus-valence and arousal model, the addition of arousal as 

main and task by arousal interaction effects did not improve fit (χ2(1) = 1.3, p = .258). 

For models incorporating valence as a positive-negative factor, the same pattern of 

results was found. LRTs indicated that, compared to the baseline-plus-valence model, 

the addition of arousal did not significantly improve model fit if added as a main effect 

(χ2(1) = 2.2, p = .140). Compared to the baseline-plus-valence and arousal model, the 

addition of arousal as main and interaction effects did not improve fit (χ2(1) = .2, p = 

.622). For models incorporating valence as an emotional-neutral factor, likewise, the 

addition of arousal did not significantly improve model fit if added as a main effect 

(χ2(1) = .3, p = .603) or as main and interaction effects (χ2(1) = .7, p = .403). 

Adding arousal, as a main effect, or as main and task by arousal interaction effects, did 

not improve the fit to data, compared to models incorporating baseline and valence 

terms. The limited impact of arousal in either task is clearly illustrated in Figure 3. We 

termed the models including the arousal and task by arousal interaction effects the 

baseline-plus-affect model. 

 

(Figure 3, about here) 

 

Test of the interaction between the effects of valence and arousal 
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Our third research question was: Do the effects of valence and arousal interact? To 

answer this question, we compared the fit of the baseline-plus-affect model with the fit 

of models including the same terms plus, successively, the valence by arousal 

interaction effect, and the valence by arousal as well as the task by valence by arousal 

interaction effects. 

For models representing valence as a graded measure, LRTs indicated that, compared to 

the baseline-plus-affect model, the addition of the valence by arousal interaction did not 

significantly improve model fit (χ2(1) = .2, p = .695). However, compared to a baseline-

plus-affect model that also included a valence by arousal interaction, further adding the 

task by valence by arousal interaction effect did improve model fit  (χ2(1) = 5.4, p = 

.020). 

For models representing valence as a positive-negative factor, a different pattern of 

results was found. LRTs indicated that, compared to the baseline-plus-affect model, the 

addition of the valence by arousal interaction did not significantly improve model fit 

(χ2(1) = 2.4, p = .118). Nor, if added as valence by arousal and task by valence by 

arousal interaction effects, did that addition improve model fit to data  (χ2(1) = .1, p = 

.796).  

For models representing valence as an emotional-neutral factor, likewise, LRTs 

indicated that, compared to the baseline-plus-affect model, the addition of the valence 

by arousal interaction did not significantly improve model fit (χ2(1) = .0, p = .859). Nor, 

if added as valence by arousal and task by valence by arousal interaction effects, did 

that addition improve model fit (χ2(1) = .4, p = .550). 

In sum, a potential interaction between the effects of valence and arousal was apparent 

but it was expressed in different ways depending on the measure of valence 
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incorporated in the model. For models in which valence was represented using a 

positive-negative or an emotional-neutral categorical factor, the inclusion of the 

interaction between valence and arousal did not improve model fit. For models in which 

valence was represented as a graded valence measure, the impact of the valence by 

arousal interaction appeared to be constrained by task differences. We termed the 

models including the valence, arousal, valence by arousal and task interaction effects 

the baseline-plus-affect-interaction model. 

Evaluating the modulation of valence and arousal effects by task differences 

Our fourth research question was: Do the effects of valence and arousal interact with the 

effect of task? We addressed this question by estimating potential interactions between 

the effect of task and the effects associated with critical psycholinguistic variables. Our 

observations indicated, as seen, that psycholinguistic effects are modulated by task 

differences, with variation in the size and shape of the effects of frequency, AoA, 

familiarity and valence in lexical decision compared to word naming. These differences 

were explored in the task-specific analyses reported in a following section. 

Evaluating the modulation of valence and arousal effects by frequency 

Our final research question was: Are the effects of valence or arousal modulated by the 

influence of word frequency in interactions between the frequency and emotion effects? 

To answer this question, we compared the fit of the baseline-plus-affect-interaction 

model with the fit of models including the same terms plus, successively, both CD 

frequency by valence and CD frequency by arousal interaction effects, and models 

including these interactions as well as terms corresponding to the modulation of the 

interactions by task differences. 
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We found that the addition of interactions between the effects of frequency and the 

effects of valence or arousal did not improve model fit to data, irrespective of the 

valence measure, whether comparing the fit of baseline-plus-affect-interaction models 

to models with the same terms plus just the frequency by valence and frequency by 

arousal interaction effects (graded valence, χ2(4) = 3.6, p = .470; positive-negative 

valence, χ2(4) = 2.4, p = .662; emotional-neutral valence, χ2(4) = 3.7, p = .445) or 

comparing the fit of the latter models to models with the same terms plus the task by 

CD frequency by valence or task by CD frequency by arousal interactions (for graded 

valence, χ2(4) = 5.1, p = .278; for positive-negative valence, χ2(4) = 2.8, p = .597). For 

models including emotional-neutral valence, the addition of terms corresponding to 

interactions between task, frequency and valence or arousal together did improve model 

fit to data (emotional-neutral valence, χ2(4) = 14.5, p = .006). 

We termed the models including the frequency by valence, frequency by arousal, and 

corresponding task interaction effects, the baseline-plus-affect-frequency-interaction 

model. Our conclusion is that frequency did not significantly modulate the effects of 

valence or arousal except where, for models including valence coded as an emotional-

neutral factor, the main effect of categorical valence was not, itself, reliably detected as 

a main effect. 

Comparison of model fit across different measures of valence 

We found that a comparison of information criteria statistics indicated that models 

representing the valence effect with a graded valence or a categorical positive-negative 

measure fit the data better than either a baseline model not including a valence measure, 

or a model including the categorical emotional-neutral measure (see Table 3). A 

comparison of information criteria statistics showed that the ranking of the relative 
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utility of models incorporating different valence measures remained the same after 

models had been expanded to include effects associated with arousal. We evaluated, for 

each valence measure, the models including the baseline effects plus the effects of 

valence, arousal, and the valence by arousal interaction, as well as the interactions 

between these effects and the effects of frequency and task. We found that information 

criteria values indicated better fit to data for the model representing valence as a graded 

measure (AIC =  1666762) compared to the model representing valence as a positive-

negative measure (AIC = 1666776), while both graded and categorical positive-negative 

valence models were better fits than a model including the categorical emotional-neutral 

variable as the valence measure (AIC = 1666800). 

Comparison of model fit when only valence and arousal are entered as predictors 

Readers may ask if the observed utility of the valence or arousal effects would appear to 

be different if only valence or arousal were entered as predictors or if the order in which 

valence or arousal were entered was varied. (We thank an anonymous reviewer for this 

suggestion.) We should note that the psycholinguistic variables were entered 

simultaneously in each of the reported models. However, entering valence and arousal 

as the only fixed effects (alongside random effects due to between-subjects or between-

items differences in intercepts) allowed us to estimate a further measure of relative fit, 

to bring converging evidence to bear on the question of how valence or arousal 

influenced word recognition latencies in Spanish. 

We fitted models of the cross-task data-set response latencies, separately for each 

valence measure, in which we specified as fixed effects: valence alone; arousal alone; 

valence and arousal as additive main effects; valence, arousal, and the interaction 

between valence and arousal. For each model, we calculated the marginal R2_m, the 
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variance explained by the fixed effect(-s) as a proportion of the sum of all the variance 

components, including the fixed effects as well as the random effects and the residuals 

(with R2_m calculated using the MuMIn package, version 1.15.6, Barton, 2016; 

Johnson, 2014; Nakagawa & Schielzeth, 2013). We found that .3% of variance was 

explained by the graded valence effect, compared to .2% explained by the categorical 

positive-negative valence effect, and .1% by the emotional-neutral effect. The valence 

effect is small but, consistent with the results reported in the foregoing, we found that it 

was best captured by the graded valence measure. We estimated that .02% of variance 

was found to be explained by the effect of arousal, entered as a fixed effect on its own. 

We calculated that a valence by arousal interaction explained, at best, .05% of variance. 

Arousal, or the valence by arousal interaction, thus added little to our account. 

Random effects 

The models reported to this point have incorporated fixed effects due to the 

psycholinguistic variables, and random effects due to the differences between 

participants or between stimulus words in intercepts. We did not, up to this point, 

include variance terms corresponding to random differences between participants in the 

slopes of the within-subjects psycholinguistic effects, or between words in the slope of 

the within-items task effect (random slopes). This was a potentially important omission. 

Not including random slopes has been argued to increase the Type I error rate (Barr, 

Levy, Scheepers, & Tily, 2013). However, Matuschek et al. (2017) have demonstrated 

that some caution is required because a loss of sensitivity can be associated with 

including random effects not warranted by the data. 

We fit a model with the same fixed effects as the final baseline-plus-affect-frequency-

interaction models, with both random intercepts and random slopes. We excluded terms 
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corresponding to covariances between random intercepts and random slopes, to random 

differences between subjects in the coefficients of the curvilinear components of the 

psycholinguistic effects, and to random differences between subjects in the coefficients 

of the word initial effect, because models including those terms did not converge. We fit 

a model (1) including the critical fixed effects plus random effects corresponding to 

random differences between subjects or items in intercepts, random differences between 

subjects in the slopes of the linear (main and interaction) psycholinguistic effects, and 

random differences between words in the slope of the task effect. This model fit the data 

approximately as well as a model (2) excluding terms corresponding to random 

differences in the slopes of interactions (χ2(3) = .7, p = .863), the latter fit the data better 

than a model (3) excluding a term corresponding to random differences between items 

in the task effect (χ2(1) = 637.1, p < .001), while the last fit the data better than a model 

with just random intercepts (χ2(10) = 1047.5, p < .001). 

The model comparisons indicate that model (1) represents the best account of the 

Spanish reading data, including fixed effects terms that test theoretically critical 

questions, as well as a random effects structure that is as complex as necessary to fit the 

data, capturing random differences between subjects or items in intercepts and slopes. 

We present a summary of the final model in Table 4. We show effects estimated with a 

model including the graded valence measure only because that measure was found to be 

most useful in capturing the influence of affect. 

 

(Table 4, about here) 

Task-specific analyses 
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The results of the cross-task analysis show that the effects of critical psycholinguistic 

variables are moderated by the influence of differences between reading tasks.The 

psycholinguistic effects were consistent in direction but smaller in size in the word 

naming compared to the lexical decision task. This pattern matches previous 

observations in English and other languages (e.g. Burani, Arduino, & Barca, 2007 in 

Italian; Balota et al., 2004; Cortese & Khanna, 2007 in English). However, we 

observed, for the first time, interactions between curvilinear psycholinguistic effects and 

task differences within the same analysis. To clarify how task differences moderated the 

psycholinguistic effects, we fitted the same model to the lexical decision and word 

naming data-sets. For each task-specific analysis, we estimated the effects of the same 

linear and curvilinear psycholinguistic effects, including the effects of valence, arousal, 

and the valence by arousal interaction. For each analysis, we included the same random 

effects structure as we identified for the cross-task final model, minus the random effect 

of items on the slope of the task effect. We fit models using each different valence 

measure though we report in detail only the results for the models representing valence 

as a graded measure. 

In the task-specific model of lexical decision latencies, we found significant curvilinear 

effects of frequency, AoA, familiarity, length and neighbourhood size, along with linear 

effects of bigram frequency and valence (represented as a graded measure). In the 

model of word naming latencies, we found significant curvilinear effects of frequency, 

AoA, length, and neighbourhood size, along with linear effects of familiarity, word 

length in syllables, and the valence x arousal interaction. In Table 5 we present 

summaries of mixed-effects models of the task-specific data. 
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(Table 5, about here) 

 

It can be seen that the frequency effect in lexical decision was, on average, negative 

going (task-specific estimate of the linear component of the frequency effect,  

coefficient = -60.3, SE = 3.7), with more frequent words associated with faster 

latencies. However, for the most frequent words, the frequency effect diminished 

considerably (estimate of the non-linear component of the frequency effect, coefficient 

= 150.8, SE = 10.1). The impact of task differences was to reduce this curvilinearity so 

that the slope of the negative linear component (estimate of the word naming frequency 

effect, coefficient = -19.5, SE = 2.6), and the slope of the positive curvilinear 

component (estimate of the non-linear component of the word naming frequency effect,  

coefficient = 58.2, SE = 8.2) were both less pronounced in naming.  

The AoA effect in lexical decision was, on average, positive going (estimate of the 

linear component of the AoA effect,  coefficient = 4.7, SE = 1.8) with later acquired 

words eliciting longer latencies, but for words that were even later acquired the AoA 

effect was greater (estimate of the non-linear component of the AoA effect,  coefficient 

= 5.4, SE = 1.7). The impact of task differences was to reduce the slope of the positive 

linear component strongly (task-specific estimate of the linear component of the word 

naming AoA effect,  coefficient = -.1, SE = 1.4), and to reduce the slope of the positive 

curvilinear component very weakly (task-specific estimate of the linear component of 

the word naming AoA effect,  coefficient = 4.3, SE = 1.2), so that the AoA effect 

remained large among responses to later-acquired words in naming. 

The familiarity effect in lexical decision was, on average, negative going (estimate of 

the linear component of the familiarity effect,  coefficient = -14.6, SE = 1.4), with more 
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familiar words associated with faster latencies, but for the most familiar words the 

familiarity effect was smaller (estimate of the non-linear component of the familiarity 

effect,  coefficient = 7.2, SE = 1.5). The impact of task differences was to reduce the the 

slope of the negative linear component (estimate of the linear component of the word 

naming familiarity effect,  coefficient = -4.1, SE = 1.1), about as much as the slope of 

the positive curvilinear component (estimate of the word naming non-linear component 

of the familiarity effect,  coefficient = .9, SE = 1.0).  

The length effect in lexical decision was, on average, weakly negative going (estimate 

of the linear component of the length effect,  coefficient = -8.1, SE = 3.0), with longer 

words associated with slightly faster latencies, on average, but for the longest words the 

direction of the length effects reverses so that increasing length was associated with 

increasing latencies (estimate of the non-linear component of the length effect,  

coefficient = 20.3, SE = 2.9). The impact of task was to comparatively strongly reduce 

the slope of the negative linear component (estimate of the linear component of the 

word naming length effect,  coefficient = -.8, SE = 2.2) and weakly reduce the slope of 

the positive curvilinear component (estimate of the linear component of the familiarity 

effect,  coefficient = 8.4, SE = 2.0). In consequence, the length effect was relatively 

weak or null for shorter words, but stronger for longer words, in naming compared to 

lexical decision. 

The bigram frequency effect in lexical decision was, on average, positive going 

(estimate of the bigram frequency effect,  coefficient = 2.2, SE = .7), with words 

composed of more frequent bigrams eliciting slower responses. The impact of task 

differences was to almost eliminate the bigram frequency effect in naming compared to 

decision (estimate of the word naming bigram effect,  coefficient = .7, SE = .5). 
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The valence effect in lexical decision was, on average, negative going, with words that 

were associated with higher (more positive) valence ratings associated with faster 

responses (estimate of the valence effect,  coefficient = -3.4, SE = 1.5). The impact of 

task differences was to strongly reduce the valence effect in naming compared to lexical 

decision (estimate of the word naming valence effect,  coefficient = .9, SE = 1.0). 

The valence x arousal interaction effect in lexical decision was, on average, small and 

positive (estimate of the interaction effect,  coefficient = .4, SE = .5), suggesting that the 

valence effect was slightly smaller for higher arousal words. In word naming, a 

contrasting pattern was apparent. The valence x arousal interaction effect in naming was 

small and negative (estimate of the word naming valence x arousal interaction effect,  

coefficient = -1.0, SE = .4), suggesting that the valence effect was slightly larger for 

higher arousal words. 

In summary, the graded effect of valence was significant for lexical decision but not for 

word naming, though there was a trend suggesting an effect of valence in naming. 

Consistent with the full cross-task analysis, the task-specific results indicated larger 

effects in lexical decision than naming for variables typically associated with lexical or 

semantic processes, frequency, AoA, familiarity and, critically for our study, valence. 

While we do not report summaries of full models including categorical positive-

negative or emotional-neutral valence measures, we note that positive-negative valence 

was associated with a significant effect in lexical decision but not naming, while 

emotional-neutral valence was not associated with a significant effect in either task.  

 

Discussion 
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We aimed to assess the impact of affective content on word recognition in Spanish. We 

explored the influence of valence on performance in the lexical decision and naming 

tasks. In addition, we examined the effects of arousal, and of the interaction between 

valence and arousal. Our analyses revealed a significant effect of valence on word 

recognition, as emotional negativity delayed the participants’ responses in lexical 

decision and to some extent in naming. These results support theoretical accounts of 

emotional stimulus evaluation in which negative affective values delay reaction times. 

They contradict accounts in which emotional (negative or positive valence) words elicit 

faster responses than neutral words. Our results add to current understanding by 

showing that the valence effect is larger in lexical decision than in word naming, 

consistent with an interpretation of the effect as located in semantic processing. They 

demonstrate the importance of the valence effect in reading in Spanish, a language with 

a transparent orthography, significantly extending the apparent scope of the influence of 

emotion on reading. We discuss the theoretical implications of our observations in the 

following. 

Pratto and John’s Automatic Vigilance model of emotion (1991) proposes that 

undesirable stimuli grab more attention than desirable ones. According to this model, 

the effect occurs during automatic monitoring of the environment  (i.e. monitoring 

without the perceiver's intent), functioning as a signal of potential danger. Based on 

their observations, in which undesirable stimuli retained more attention than positive 

ones, regardless of their relative valence, Pratto and John (1991) proposed that the 

valence effect was categorical in nature (see also Estes & Adelman, 2008a, 2008b). 

However, more recently, Kuperman et al. (2014) reported graded linear valence effects, 

leading those authors to argue that the automatic vigilance process is graded. The 

retention of attention is proportional to the negative affective value of the stimulus. In 
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our study, word recognition reaction times were better explained by models including a 

graded (positive-negative) version of the valence measure, adding to the empirical 

support for a graded view of automatic vigilance. 

We observed that the fit of models incorporating graded versus categorical positive-

negative valence measures were not greatly different. It would be appropriate, then, to 

acknowledge that the impact of valence on word recognition can be captured by graded 

or by categorical measures of positive-negative valence differences. In our analysis, the 

graded measure of valence was found to be a more sensitive means of estimating the 

influence of valence on word recognition latencies. This is consistent with the greater 

information associated with a graded compared to a categorical measure of 

psychological variation (Cohen, 1983). However, as seen, the effect of valence is 

relatively small, the variance explained by the fixed effect of the graded valence effect 

was about .3% (the marginal R2_m; Nakagawa & Schielzeth, 2013) while for the 

positive-negative valence it was about .2%. This means that the graded valence effect 

may be readily detected in the long run. For comparison, we note that Adelman and 

Estes (2008b) reported a valence effect of .8% (lexical decision) or .6% (word naming) 

but remind their readers that the theoretical importance of the effect is nevertheless 

large. The difference between the size of the effect of valence in Spanish compared to 

English is interesting but should be the topic of future research. 

The important point is that the difference between speed of response to positive 

compared to negative valence words was reliably detected in our analyses of Spanish 

reading behaviour. The balance of evidence is that the difference between response 

latencies for positive and negative words is graded. Equally, our results are clearly in 

conflict with findings from previous studies that indicated emotional facilitation during 

word recognition. Both Kousta et al. (2009) and Vinson et al. (2014) observed inverted-
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U effects of valence with faster reaction times for negatively and positively valenced 

stimuli compared to neutral words. Their observations favored the Motivated Attention 

and Affective States model (Lang et al., 1997), according to which both positive and 

negative affective stimuli are more likely to draw attention than neutral stimuli because 

emotional stimuli are motivationally relevant. In our analyses, an emotional-neutral 

coding of valence failed to capture the impact of valence effect that was otherwise 

evident (using positive-negative measures) across an extensive set of analyses. 

Our sample of Spanish reading behaviour, while substantial, did not indicate an effect of 

arousal, either. We did not observe an effect of arousal, overall, or in an interaction, 

moderated by task. The lack of an effect of arousal in our analyses is congruent with the 

results obtained by Kousta et al. (2009) and Vinson et al. (2014), who also observed 

specific effects of valence but no influence of arousal on word recognition. Our results, 

however, contrast with the effect of arousal identified in the large-scale study conducted 

by Kuperman et al. (2014). Although the inclusion of arousal in our analysis did not 

improve the fit of our model to word recognition data, the fact that our word sample was 

smaller than that analysed by Kuperman et al. (2014) does not allow us to rule out the 

existence of a small arousal effect. 

We analyzed if the effects of valence and arousal interacted. A valence by arousal 

interaction was not reliably detected in previous studies (Kousta et al., 2009; Vinson et 

al., 2014; Estes and Adelman,  2008a; Kuperman et al. 2014). In contrast, in our study, 

the effect of valence on word naming latencies was modulated by that of arousal, with 

stronger valence effects for higher arousal words. A similar interaction was not 

observed in lexical decision. Our observations thus suggest that an influence due to 

arousal may be found, to the extent that the valence effect is slightly different for words 

varying in arousal, in Spanish, but not to the extent that the impact of arousal is, on its 
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own, detectable for our data. The variation in the valence by arousal interaction, 

depending on which valence measure is included in the model, suggests that the 

influence of arousal merits further investigation but will be difficult to characterize with 

confidence. 

Critically, we tested whether the effect of valence was different in response to different 

task demands. The inclusion of the interaction between task (lexical decision or word 

naming) and graded valence in the analysis significantly improved model fit. Valence 

affected lexical decision responses more strongly than word naming responses. This 

finding extends previous observations in English (Estes & Adelman, 2008a; Kuperman 

et al., 2014) in which the valence effect was compared between tasks qualitatively but 

not formally. Importantly, our cross-task analysis allowed a direct estimate of the 

moderation of the valence effect by task differences as the effect of the task by valence 

interaction. (See Nieuwenhuis, Forstmann, & Wagenmakers, 2011, for a discussion of 

the inferential problems inherent in comparing effects in different data sub-sets when 

interactions are hypothesized but not formally tested). 

The comparison between the results of lexical decision and word naming tasks is of 

interest because it could help to clarify the nature of the effect. Previous research 

(Balota et al., 2004; Cortese & Khanna, 2007) has indicated that semantic effects tend to 

be larger or easier to detect in lexical decision than in word naming because lexical 

decision response preparation is more reliant or draws more readily on such information 

(although see Plaut, 1997; Seidenberg & McClelland, 1989, for alternative 

interpretations). We do not think that the greater size of psycholinguistic effects, like the 

effect of valence, in lexical decision, is due to the fact that responses were slower than 

in word naming (as is usually observed). The average speed of response varies at 

random between subjects within and between tasks, as well as between items within 
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tasks. Our use of linear mixed-effects models allowed us to include variance terms to 

account for such differences between sampled participants or words in response speed 

(while controlling for all other predictors). We thus observed the interaction between 

task and valence effects while taking into account differences in average speed of 

response. The fact that we observed stronger effects on lexical decision would, in our 

view, therefore support a semantic interpretation of the valence effect. According to this 

account, valence would join the group of variables argued to be related to semantic 

knowledge, like AoA, imageability or familiarity (Balota et al., 2004; Cortese & 

Khanna, 2007; Davies et al., 2013; Davies, Wilson, Cuetos, & Burani, 2014). 

The observation of the valence and task by valence interaction effects in Spanish has 

significant implications for a language-general account of reading. Our findings 

demonstrate that emotional content affects reading in a transparent orthography. 

Granted that valence can be understood as a semantic effect, this contrasts with the 

account proposed by some researchers, that semantic information tends to influence 

word recognition more prominently where words are difficult to encode, as appears to 

be the case, in English, for low frequency irregular words (Plaut et al., 1996; Strain et 

al., 1995). It may well be that semantic information influences word recognition in 

English more widely across the vocabulary (as reported by Balota et al., 2004; Cortese 

& Khanna, 2007). Our results demonstrate with certainty that word recognition is richly 

influenced by semantic content when the words being read have regular pronunciations. 

In sum, we did not observe a significant effect of arousal in word recognition in 

Spanish. Further studies should be conducted to ascertain whether the lack of a reliable 

arousal effect in our data is due to specific characteristics of our stimuli or it rather 

indicates differences between the influence of this variable on word recognition in deep 

and transparent orthographies.  
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In contrast, we identified a substantial effect of emotional valence on word recognition, 

with positive valence words eliciting faster reaction times than negative valence words. 

This finding provides empirical support to the Automatic Vigilance model of emotion 

(Pratto & John, 1991), according to which emotionally negative information slows 

down cognitive activity. In contrast, our data does not support the model of Motivated 

Attention and Affective States (Lang et al., 1997), which predicts faster reaction times 

for both positive and negative stimuli. Our data suggest that the observed effect is 

graded, such that the latency reduction associated with positive compared to negative 

valence is proportional to the positivity of the stimuli. This finding is inconsistent with 

the categorical effect for negative stimuli predicted by the original version of the 

Automatic Vigilance model. Critically, our observation that the influence of valence 

was stronger in lexical decision than naming indicates a semantic location for the effect. 

This has implications for theoretical accounts of the cognitive architecture of the 

reading system, and of the role of semantic information in reading performance in 

different languages. Our observation of a valence effect in Spanish, a language with a 

transparent orthography, shows that emotion influencess the recognition of words with  

regular pronunciations. These results mirror some of those reported previously in 

English, thus demonstrating important parallels in word recognition processes between 

orthographically shallow and deep languages. 
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Table 1. Summary of descriptive statistics for the critical psycholinguistic variables 

 

  

Mean SD Minimum Maximum

Word form frequency 41.7 154.2 0.0 4909.4

Contextual Diversity 9.4 15.3 0.0 98.7

Age-of-Acquisition 4.0 1.2 1.2 6.9

Valence 5.3 1.4 1.2 8.7

Arousal 5.2 1.0 1.9 8.3

Familiarity 5.3 1.0 1.6 7.0

Imageability 4.7 1.2 1.7 7.0

Concreteness 4.7 1.0 2.0 6.8

Letters 6.5 1.8 3.0 10.0

Phonemes 6.4 1.8 2.0 11.0

Syllables 2.7 0.8 1.0 5.0

Length 6.5 1.8 2.5 10.5

Orthographic neighbourhood size 5.0 6.6 0.0 40.0

Phonological neighbourhood size 11.0 12.8 0.0 91.0

Levenshtein distance 1.8 0.6 1.0 3.8

N-size 8.0 9.5 0.0 59.5

Mean bigram frequency 5654.5 3838.7 2.9 30545.9
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Table 2. Summary of pairwise (Pearson) correlations between psycholinguistic variables 

 

 

 

  

CD Frequency AoA Familiarity ImageabilityConcreteness Valence Arousal N-O N-P LevN Nsize Letters Phonemes Syllables Length

cx Context Distinctiveness (CD)

frq Word form frequency (frequency) 0.73

AoA Age-of-Acquisition (AoA) -0.44 -0.25

fam Familiarity 0.43 0.23 -0.67

imag Imageability 0.05 0.01 -0.56 0.38

conc Concreteness -0.10 -0.07 -0.37 0.16 0.72

val Valence 0.15 0.12 -0.19 0.18 0.05 -0.01

aro Arousal 0.01 -0.02 0.14 -0.03 -0.14 -0.19 -0.41

N Orthographic neighbourhood size (N-O) 0.19 0.11 -0.29 0.15 0.19 0.09 0.02 -0.11

Np Phonological neighbourhood size (N-P) 0.21 0.14 -0.30 0.15 0.19 0.09 0.04 -0.10 0.90

LevN Levenshtein distance (LevN) -0.24 -0.13 0.37 -0.23 -0.17 -0.03 -0.07 0.06 -0.71 -0.69

Nsize N-size 0.21 0.13 -0.30 0.16 0.19 0.09 0.04 -0.11 0.96 0.99 -0.71

lett Letters -0.25 -0.17 0.36 -0.14 -0.28 -0.21 -0.05 0.12 -0.63 -0.65 0.73 -0.66

phon Phonemes -0.25 -0.17 0.37 -0.14 -0.30 -0.23 -0.04 0.12 -0.62 -0.66 0.72 -0.66 0.98

sill Syllables -0.25 -0.17 0.35 -0.15 -0.23 -0.14 -0.01 0.05 -0.50 -0.50 0.66 -0.51 0.82 0.82

length Length -0.25 -0.17 0.36 -0.14 -0.29 -0.22 -0.04 0.12 -0.62 -0.65 0.73 -0.66 1.00 1.00 0.82

big Mean bigram frequency 0.20 0.14 -0.19 0.13 0.06 -0.01 0.01 -0.03 0.28 0.23 -0.30 0.25 -0.17 -0.17 -0.25 -0.17

Significant correlations (p < .05) are presented in bold, to avoid visual clutter; CD = Context distinctiveness; Frequency = Lexical frequency; AoA = Age-of-Acquisition; length in Letters, Phonemes or Syllables; Orth N-size = orthographic neighbourhood size; 
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Table 3. Summary of linear mixed-effects models of the cross-task data, including lexical decision and word naming data. Table shows baseline, 

baseline plus monotonic valence, baseline plus categorical positive-negative valence, and baseline plus emotional-neutral valence models. 

effects:

Baseline	model Monotonic	continuous	valence Positive-Negative	categorical	valence Emotional-neutral	categorical	valence

Fixed	effects Estimate SE df t p Estimate SE df t p Estimate SE df t p Estimate SE df t p

Intercept 507.0 8.2 75 61.6 <	.0001 *** 506.7 8.2 74 61.5 <	.0001 *** 510.5 8.3 75 61.8 <	.0001 *** 507.3 8.3 75 61.5 <	.0001 ***

Task -29.7 12.6 68 -2.4 0.0210 * -29.5 12.6 68 -2.3 0.0217 * -31.5 12.6 68 -2.5 0.0148 * -29.4 12.6 68 -2.3 0.0225 *

3)zCD Context	Distinctiveness -60.7 2.9 4040 -21.0 <	.0001 *** -61.0 2.9 4056 -21.1 <	.0001 *** -60.9 2.9 4059 -21.1 <	.0001 *** -60.9 2.9 4041 -20.9 <	.0001 ***

3)zCD' Curvilinear	Context	Distinctiveness 159.2 8.4 4025 19.0 <	.0001 *** 160.4 8.3 4041 19.2 <	.0001 *** 160.0 8.3 4044 19.2 <	.0001 *** 159.6 8.4 4026 19.0 <	.0001 ***

3)zAoA AoA 5.5 1.3 4070 4.3 <	.0001 *** 4.8 1.3 4086 3.7 0.0002 *** 4.9 1.3 4091 3.8 0.0002 *** 5.5 1.3 4070 4.2 <	.0001 ***

3)zAoA' Curvilinear	AoA 5.1 1.4 4336 3.6 0.0003 *** 5.5 1.4 4355 3.9 0.0001 *** 5.3 1.4 4359 3.8 0.0001 *** 5.1 1.4 4338 3.6 0.0003 ***

3)zfam Familiarity -15.1 1.0 4999 -14.9 <	.0001 *** -14.9 1.0 5022 -14.7 <	.0001 *** -14.9 1.0 5024 -14.7 <	.0001 *** -15.1 1.0 4999 -14.9 <	.0001 ***

3)zfam' Curvilinear	familiarity 7.1 1.2 4461 5.8 <	.0001 *** 7.2 1.2 4481 5.9 <	.0001 *** 7.0 1.2 4483 5.8 <	.0001 *** 7.1 1.2 4461 5.9 <	.0001 ***

Imageability 1.1 0.6 4254 1.8 0.0681 . 0.9 0.6 4271 1.5 0.1271 0.8 0.6 4272 1.5 0.1439 1.0 0.6 4254 1.8 0.0723 .

3)zlength Length -7.0 2.2 4216 -3.2 0.0012 ** -7.4 2.2 4235 -3.4 0.0006 *** -7.4 2.2 4237 -3.5 0.0006 *** -7.0 2.2 4217 -3.2 0.0012 **

3)zlength' Curvilinear	Length 19.0 2.3 4223 8.2 <	.0001 *** 19.3 2.3 4242 8.4 <	.0001 *** 19.3 2.3 4244 8.4 <	.0001 *** 19.0 2.3 4223 8.2 <	.0001 ***

Syllables 1.9 0.9 4259 2.2 0.0280 * 2.2 0.9 4280 2.6 0.0101 * 2.1 0.9 4282 2.5 0.0142 * 1.9 0.9 4259 2.2 0.0268 *

3)zNsize Neighbourhood	size -10.2 2.4 4204 -4.3 <	.0001 *** -9.9 2.3 4222 -4.2 <	.0001 *** -10.4 2.3 4224 -4.4 <	.0001 *** -10.2 2.4 4205 -4.3 <	.0001 ***

3)zNsize' Curvilinear	neighbourhood	size 15.1 4.0 4228 3.8 0.0002 *** 14.4 4.0 4246 3.6 0.0003 *** 15.3 4.0 4248 3.8 0.0001 *** 15.2 4.0 4229 3.8 0.0002 ***

Bigram	frequency 2.2 0.5 4200 4.2 <	.0001 *** 2.1 0.5 4218 4.1 <	.0001 *** 2.1 0.5 4220 4.1 <	.0001 *** 2.2 0.5 4201 4.2 <	.0001 ***

Valence -2.9 0.5 4135 -6.4 <	.0001 *** -5.7 1.0 4308 -5.9 <	.0001 *** -0.5 1.0 4119 -0.5 0.5881

3)zCD Task	x	Context	Distinctiveness 42.0 3.3 138000 12.9 <	.0001 *** 42.2 3.3 138100 12.9 <	.0001 *** 42.1 3.3 138100 12.9 <	.0001 *** 41.8 3.3 137900 12.7 <	.0001 ***

3)zCD' Task	x	Curvilinear	Context	Distinctiveness -107.2 9.4 138000 -11.4 <	.0001 *** -108.0 9.4 138100 -11.4 <	.0001 *** -107.5 9.4 138000 -11.4 <	.0001 *** -106.7 9.5 137900 -11.3 <	.0001 ***

3)zAoA Task	x	AoA -5.6 1.5 138200 -3.9 0.0001 *** -5.1 1.5 138200 -3.5 0.0005 *** -5.3 1.5 138200 -3.6 0.0003 *** -5.6 1.5 138100 -3.9 0.0001 ***

3)zAoA' Task	x	Curvilinear	AoA -0.8 1.6 138600 -0.5 0.5989 -1.1 1.6 138700 -0.7 0.4809 -1.0 1.6 138700 -0.6 0.5389 -0.8 1.6 138600 -0.5 0.5963

3)zfam Task	x	Familiarity 10.9 1.1 139300 9.6 <	.0001 *** 10.7 1.1 139400 9.5 <	.0001 *** 10.8 1.1 139400 9.5 <	.0001 *** 10.9 1.1 139200 9.6 <	.0001 ***

3)zfam' Task	x	Curvilinear	familiarity -6.1 1.4 138800 -4.5 <	.0001 *** -6.2 1.4 138900 -4.6 <	.0001 *** -6.1 1.4 138900 -4.5 <	.0001 *** -6.1 1.4 138700 -4.5 <	.0001 ***

taskWN:zimag Task	x	Imageability 0.9 0.6 138500 1.3 0.1780 1.0 0.6 138600 1.5 0.1248 1.0 0.6 138600 1.5 0.1326 0.9 0.6 138400 1.3 0.1865

3)zlength Task	x	Length 6.3 2.4 138500 2.6 0.0098 ** 6.6 2.4 138500 2.7 0.0069 ** 6.5 2.4 138500 2.7 0.0074 ** 6.3 2.4 138400 2.6 0.0100 *

3)zlength' Task	x	Curvilinear	Length -10.7 2.6 138500 -4.1 <	.0001 *** -10.9 2.6 138600 -4.2 <	.0001 *** -10.9 2.6 138600 -4.2 <	.0001 *** -10.7 2.6 138400 -4.1 <	.0001 ***

Task	x	Syllables 1.6 1.0 138600 1.7 0.0924 . 1.4 1.0 138600 1.4 0.1497 1.5 1.0 138600 1.6 0.1177 1.6 1.0 138500 1.7 0.0891 .

3)zNsize Task	x	Neighbourhood	size 1.7 2.6 138500 0.6 0.5297 1.5 2.6 138600 0.6 0.5781 1.8 2.6 138500 0.7 0.5017 1.7 2.6 138400 0.6 0.5333

3)zNsize' Task	x	Curvilinear	neighbourhood	size -3.8 4.5 138500 -0.8 0.4023 -3.3 4.5 138600 -0.7 0.4646 -3.9 4.5 138600 -0.9 0.3885 -3.7 4.5 138400 -0.8 0.4097

Task	x	Bigram	frequency -1.5 0.6 138600 -2.5 0.0129 * -1.4 0.6 138700 -2.5 0.0135 * -1.4 0.6 138700 -2.5 0.0135 * -1.4 0.6 138500 -2.5 0.0132 *

Task	x	Valence 2.1 0.5 138300 4.0 0.0001 *** 2.9 1.1 138600 2.7 0.0072 ** -0.6 1.1 138100 -0.5 0.5993

Random	effects

Variance SD Variance SD Variance SD Variance SD

Words	--	intercepts 219.3 14.8 215.7 14.7 215.3 14.7 219.2 14.8

Participants	--	intercepts 2205.5 47.0 2205.6 47.0 2205.6 47.0 2205.5 47.0

Residual 8280.2 91.0 8279.2 91.0 8279.8 91.0 8280.2 91.0

AIC BIC AIC BIC AIC BIC AIC BIC

1666793 1667552 1666756 1667534 1666762 1667541 1666796 1667574

***	if	p	<	.001;	**	if	p	<	.01;	*	if	p	<	.05;	140,306	observations,2555	words,	61	participants
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Table 4. Summary of the final graded valence model 

Fixed	effects Estimate SE df t p

effects:

Std.

Intercept 506.4 8.6 80 59.0 <	.0001 ***

Task -29.5 13.0 71 -2.3 0.0261 *

3)zCD Context	Distinctiveness -61.8 3.7 2377 -16.8 <	.0001 ***

3)zCD' Curvilinear	Context	Distinctiveness 163.7 10.7 2374 15.3 <	.0001 ***

3)zAoA AoA 4.8 1.7 1058 2.7 0.0062 **

3)zAoA' Curvilinear	AoA 5.8 1.7 2495 3.3 0.0010 ***

3)zfam Familiarity -15.0 1.4 751 -11.0 <	.0001 ***

3)zfam' Curvilinear	familiarity 7.4 1.5 2543 4.9 <	.0001 ***

Imageability 1.0 0.8 392 1.3 0.1896

3)zlength Length -8.1 2.9 1331 -2.8 0.0049 **

3)zlength' Curvilinear	length 20.3 2.9 2453 7.1 <	.0001 ***

Syllables 2.1 1.2 364 1.8 0.0764 .

3)zNsize Neighbourhood	size -9.8 2.9 2411 -3.4 0.0008 ***

3)zNsize' Curvilinear	neighbourhood	size 13.8 5.0 2455 2.8 0.0057 **

Bigram	frequency 2.2 0.7 523 3.3 0.0010 ***

Valence -3.4 1.4 2255 -2.4 0.0168 *

Arousal 0.6 1.4 2079 0.4 0.6923

zvalence:zarousal Valence	x	arousal 0.4 0.5 2389 0.7 0.4699

3)zCD:zvalenceContext	Distinctiveness	x	Valence -0.7 3.3 2415 -0.2 0.8274

3)zCD':zvalenceCurvilinear	context	distinctiveness	x	valence 0.0 9.9 2397 0.0 0.9982

3)zCD:zarousalContext	distinctiveness	x	arousal 3.1 3.4 2428 0.9 0.3629

3)zCD':zarousalCurvilinear	context	distinctiveness	x	arousal -10.8 10.3 2412 -1.1 0.2912

3)zCD Task	x	Context	distinctiveness 42.7 4.3 3668 10.0 <	.0001 ***

3)zCD' Task	x	Curvilinear	context	distinctiveness -110.1 12.5 3737 -8.8 <	.0001 ***

3)zAoA Task	x	AoA -4.9 2.1 538 -2.3 0.0204 *

3)zAoA' Task	x	Curvilinear	AoA -1.5 2.0 3887 -0.7 0.4629

3)zfam Task	x	Familiarity 11.0 1.7 338 6.6 <	.0001 ***

3)zfam' Task	x	Curvilinear	familiarity -6.5 1.7 3940 -3.7 0.0002 ***

taskWN:zimag Task	x	Imageability 0.8 0.9 161 0.9 0.3662

3)zlength Task	x	Length 7.4 3.5 741 2.1 0.0371 *

3)zlength' Task	x	Curvilinear	length -12.0 3.3 3836 -3.6 0.0003 ***

Task	x	Syllables 1.5 1.5 160 1.0 0.3143

3)zNsize Task	x	Neighbourhood	size 1.5 3.4 3468 0.4 0.6545

3)zNsize' Task	x	Curvilinear	neighbourhood	size -2.9 5.8 3826 -0.5 0.6119

Task	x	Bigram	frequency -1.5 0.8 206 -1.9 0.0643 .

taskWN:zvalence Task	x	Valence 4.3 1.7 3108 2.6 0.0089 **

taskWN:zarousal Task	x	Arousal -0.1 1.7 2192 -0.1 0.9550

taskWN:zvalence:zarousal Task	x	Valence	x	arousal -1.1 0.6 3749 -1.9 0.0515 .

3)zCD:zvalenceTask	x	Context	distinctiveness	x	valence 4.0 3.8 3786 1.1 0.2925

3)zCD':zvalenceTask	x	Curvilinear	context	distinctiveness	x	valence -10.4 11.5 3764 -0.9 0.3681

3)zCD:zarousalTask	x	Context	distinctiveness	x	arousal -1.8 3.9 3722 -0.5 0.6383

3)zCD':zarousalTask	x	Curvilinear	context	distinctiveness	x	arousal 4.9 11.9 3772 0.4 0.6781

effects: Random	effects

Name Variance SD

(Intercept) Items	on	intercepts 83.1 9.1

Items	on	task 399.6 20.0

(Intercept) Participants	on	intercepts 2274.0 47.7

Participants	on	CD	x	arousal 0.7 0.8

Participants	on	CD	x	valence 0.0 0.0

Participants	on	valence	x	arousal 0.0 0.0

zarousal Participants	on	arousal 0.6 0.8

zvalence Participants	on	valence 0.0 0.2

zbig Participants	on	bigram	frequency 1.0 1.0

zNsize Participants	on	neighbourhood 1.3 1.2

zsill Participants	on	syllables 9.4 3.1

zlength Participants	on	length 40.3 6.3

zimag Participants	on	imageability 2.7 1.6

zfam Participants	on	familiarity 10.5 3.2

zAoA Participants	on	AoA 13.4 3.7

zCD Participants	on	CD 1.2 1.1

Residual 8108.0 90.0

***	if	p	<	.001;	**	if	p	<	.01;	*	if	p	<	.05;	136,688	observations,	2555	words,	61	participants
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Table 5. Summary of the task-specific model for responses from each task estimated separately. 

 

create	a	copy	version	of	the	sheet	for	edit	--	replace	0.0000	values

Lexical	decision Word	naming

Fixed	effects Estimate SE df t p Estimate SE df t p

Intercept 505.5 8.4 49 60.2 <	.0001 *** 477.4 10.2 27 46.7 <	.0001 ***

3)zCD Context	Distinctiveness -60.3 3.7 2244 -16.5 <	.0001 *** -19.5 2.6 2441 -7.4 <	.0001 ***

3)zCD' Curvilinear	Context	Distinctiveness 150.8 10.1 2256 15.0 <	.0001 *** 58.2 8.2 2468 7.1 0.0000 ***

3)zAoA AoA 4.7 1.7 683 2.7 0.0069 ** -0.1 1.3 120 -0.1 0.9446

3)zAoA' Curvilinear	AoA 5.4 1.7 2378 3.2 0.0013 ** 4.3 1.2 2498 3.6 0.0003 ***

3)zfam Familiarity -14.6 1.4 367 -10.6 <	.0001 *** -4.1 1.0 129 -3.9 0.0001 ***

3)zfam' Curvilinear	familiarity 7.2 1.5 2434 4.9 <	.0001 *** 0.9 1.0 2498 0.8 0.4005

Imageability 1.0 0.8 195 1.3 0.2121 1.9 0.6 41 3.2 0.0025 **

3)zlength Length -8.1 3.0 839 -2.7 0.0062 ** -0.8 2.2 229 -0.4 0.7133

3)zlength' Curvilinear	length 20.2 2.9 2338 7.0 <	.0001 *** 8.3 2.0 2488 4.2 <	.0001 ***

Syllables 2.0 1.1 256 1.8 0.0749 . 3.6 1.1 37 3.3 0.0020 **

3)zNsize Neighbourhood	size -9.7 2.9 2331 -3.3 0.0010 *** -8.2 2.1 1673 -4.0 0.0001 ***

3)zNsize' Curvilinear	neighbourhood	size 13.7 5.0 2341 2.7 0.0065 ** 11.0 3.6 2471 3.1 0.0020 **

Bigram	frequency 2.2 0.7 242 3.2 0.0016 ** 0.7 0.5 65 1.6 0.1127

Valence -3.4 1.5 1791 -2.4 0.0183 * 0.9 1.0 2461 0.9 0.3603

Arousal 0.6 1.4 1774 0.4 0.6859 0.5 1.0 757 0.5 0.6261

zvalence:zarousal Valence	x	arousal 0.4 0.5 391 0.7 0.4631 -0.8 0.3 2470 -2.2 0.0265 *

Context	Distinctiveness	x	Valence -0.7 3.3 2298 -0.2 0.8292 3.4 2.3 2475 1.4 0.1509

Curvilinear	context	distinctiveness	x	valence 0.0 9.4 2279 0.0 0.9959 -11.1 7.5 2471 -1.5 0.1376

Context	distinctiveness	x	arousal 3.1 3.4 2296 0.9 0.3573 1.3 2.4 2309 0.5 0.5871

(Intercept) Curvilinear	context	distinctiveness	x	arousal -10.3 9.7 2294 -1.1 0.2867 -6.4 7.7 2463 -0.8 0.4029

(Intercept)

zarousal Random	effects

zvalence Variance SD Variance SD

zbig Items	on	intercepts 462.9 21.5 84.5 9.2

zNsize Participants	on	intercepts 2147.0 46.3 2490.0 49.9

zsill Participants	on	CD	x	arousal 0.3 0.5 1.0 1.0

zlength Participants	on	CD	x	valence 0.0 0.0 0.0 0.0

zimag Participants	on	valence	x	arousal 0.1 0.4 0.0 0.0

zfam Participants	on	arousal 0.2 0.5 0.9 0.9

zAoA Participants	on	valence 0.1 0.2 0.0 0.0

zCD Participants	on	bigram	frequency 1.7 1.3 0.1 0.3

Participants	on	neighbourhood 0.0 0.0 3.1 1.8

Participants	on	syllables 5.2 2.3 15.2 3.9

Participants	on	length 47.4 6.9 27.9 5.3

Participants	on	imageability 3.3 1.8 2.1 1.4

Participants	on	familiarity 12.8 3.6 6.8 2.6

Participants	on	AoA 13.0 3.6 13.6 3.7

Participants	on	CD 2.0 1.4 0.0 0.1

Residual 9246.0 96.2 6653.0 81.6

***	if	p	<	.001;	**	if	p	<	.01;	*	if	p	<	.05;	in	decisions,	79616	observations,	36	participants;	in	naming,	60690	observationsm,	25	subjects;	in	both,	2555	words
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Figure 1. Distribution of standardized valence values, showing the sub-division of 

observations (word naming and lexical decision) into responses to negative or positive 

valence words (upper plot) or to emotional or neutral words (lower). 
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Figure 2. Scatterplot showing the relationship between word recognition RT and rated 

valence, for each task. Points in grey show trial-level latencies. Black lines show loess 

smoothers. 
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Figure 3. Scatterplot showing the relationship between word recognition RT and rated 

arousal, for each task. Points in grey show trial-level latencies. Black lines show loess 

smoothers. 

 


