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1. Introduction 

In 1997, Fred Foldvary, a somewhat heterodox economist, predicted, based on the 18-year real 

estate market cycle observed by Hoyt (1933), that “the next major bust, 18 years after the 1990 

downturn, will be around 2008, if there is no major interruption such as a global war.” (Foldvary 

1997). No global war ensued, and a major crash did indeed take place in 2008. Not that he would 

be the only author to make such an early, eerily accurate forecast: the same year, for example, 

another heterodox author, Fred Harrison (1997), also relied on this property price cycle to predict 

the same crash, having already anticipated the one in the early nineties in Harrison (1983). 

Yet real estate is by no means the only market displaying such cycles. In commodity markets, for 

instance, several authors (e.g. Cuddington & Zellou 2012 or Erten & Ocampo 2013) identify 

cycles with average wavelengths of more than 30 years. Furthermore, in overall stock market 

returns, Fama & French (1988) and Poterba & Summers (1988) spot a 3–5 year cycle (aligned to 

Kitchin’s 1923 classical cycle – which, incidentally, Foldvary 1998 relied on to successfully 

predict the 1999-2000 dot-com crash), and Gracia (2012) finds a cycle with a wavelength of 31-

33 years in both Tobin’s Q ratio and Shiller’s CAPE (Cyclically-Adjusted Price/Earnings) ratio – 

which, in turn, is generally recognized as a fair predictor of market upswings and downturns. 

Such cycles seem difficult to explain from the viewpoint of rational expectations and the efficient 

markets hypothesis: indeed, if one could predict a price crash just by counting the number of 

years since the last one, then, why would smart investors not just place their bets on this 

opportunity until they arbitraged it out of existence? Faced with this apparent paradox, many 

authors either dismiss the phenomenon as spurious or attribute it to irrational behavior and/or to 

friction assumptions leading to some form of market inefficiency. Yet, in truth, these market 

cycles only constitute evidence against rational expectations under the light of an all-too-



4 

 

commonly held fallacy: that observable recurrent market price patterns departing from a random 

walk trajectory must reflect systematic arbitrage opportunities the market has not been able to 

preclude and, therefore, constitute prima facie evidence against the efficient markets hypothesis. 

Commonsensical as it may seem, this conclusion is fallacious because it assumes the observed 

path will over the long run approximate the mean (i.e. the “expected”) path, where the efficient 

markets hypothesis does indeed require arbitrage opportunities to be instantly precluded, whereas 

in reality it will tend to approximate the median, which in asymmetric probability distributions 

may be very different from the mean, and where marker efficiency imposes no such constraints. 

This is perhaps easiest to see with an example. Consider a gamble where we toss a fair coin: 

heads means the investor receives, say, twenty times the investment, whereas tails implies the 

loss of the entire investment. Assume now that we start by investing $1, and that the gamble must 

take place ten times in a row, each time reinvesting the proceeds of the previous toss. Obviously, 

the expected value at the end of the gamble is very high (specifically $1010 i.e. ten billion 

dollars) but so is the probability of ending empty-handed (namely 1 − 0.510 = 99.9%). This 

implies that, if we observed this gamble as a time series, 99.9% of the times we would see 

investors putting down $1 and ending up with nothing (which is of course the median value), and 

we might therefore wonder why any rational investor would keep throwing away $1 bills. 

That the median, not the mean, is the path that best predicts the observed time series of a 

stochastic variable is actually a fairly standard result in statistics (see Appendix 1 for more detail 

on this) and should therefore constitute no novelty at all. It is in fact implicit in every dynamic 

stochastic model where one or more representative agents are assumed to maximize their future 

expected utilities and then computer simulations are used to study how the model responds to 

random stochastic shocks – for, if the observed path approximated the mean, these computer 
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simulations would tend to mimic the smoothness of the expected path. Unfortunately, the 

economic papers where the observed path’s link to the median instead of the mean is explicitly 

acknowledged and used to draw some relevant conclusions are few and far between (although 

there are some e.g. Roll 1992, Gracia 2005 and Gracia 2012), which effectively, if not formally, 

leaves unchallenged the popular fallacy of treating observed data as if any arbitrage opportunities 

observed in them were also to be found in the expected path. 

The purpose of this paper is to develop a model to explain long-term valuation cycles in perfectly 

rational and efficient yet imperfect-competition markets i.e. markets where some form of 

economic rent exists. It is thus meant to be applicable not just to real estate and commodity 

markets but also, to the extent every market in the real world generates some form of rent (be it 

under the form of returns on natural resources, or fixed capital invested, or agency rents, or 

efficiency wages, or government taxes, or any other), to any market within the economic system. 

An economic rent is defined as the difference between the price of an item and its marginal cost: 

whatever its specific form, no rent can exist in a market with rational players unless there is some 

form of rigidity, barrier of entry or information asymmetry to make it possible – otherwise the 

price of any good would equal its marginal cost. Yet, no matter whether the rigidity is technical 

(as in mining and other fixed assets) or imposed as a means for someone to siphon resources from 

the system (as in taxes, agency rents and efficiency wages), process rigidity in a stochastic world 

must lead to some inefficiencies at least to the extent it limits the players’ ability to adapt 

efficiently to any unexpected random shock. Hence, the heavier these rigidities (and thus also the 

larger the rents that result from them), the more they will act as amplifiers of any random market 

shock on the demand of productive resources – exactly in the same way as taking debt (whose 

interests constitute, of course, another form of rent) amplifies the risk exposure on a company’s 
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equity. This suffices to set the basis for a cycle. When things go well, companies borrow funds 

and invest fixed capital to make their processes more efficient, commodity prices soar, trade 

unions flex their muscle and welfare states become more generous (which must of course be 

financed through either taxes or debt). Rational players correctly discount the impact of these 

developments from their expectations, so the mean path forward remains cycle-free. Yet, as these 

additional rents (and their corresponding sources of rigidity) pile upon the system, it also 

becomes more fragile. for the rigidities amplify random shocks so that in the end it takes a very 

small one to trigger a major crisis. Eventually, once such a trigger shock has taken place, as the 

crisis unfolds the process gradually reverses: commodity prices drop, debt is defaulted, fixed 

capital is allowed to age, trade unions lose their negotiations and governments relearn the hard 

lessons of austerity until the burden of rents on the productive system is lightened enough for the 

process to restart. Since the observed trajectory will most approximate the median path, not the 

mean, then, as long as the probability diffusion process is asymmetric (as those in most of the 

models used today in economics and finance are), a median-path cycle of these characteristics is 

in principle perfectly compatible with both rational expectations and market efficiency. 

The most direct precedents of the model put forward in this paper are Gracia (2005), (2011) and 

(2012). Specifically, Gracia (2005) puts forward an efficient markets’ valuation model based on 

agency rents leading a predator-prey cycle along the median path of a company’s solvency ratio 

and, complementarily to this, Gracia (2012) provides empirical evidence that a cycle of these 

characteristics could indeed explain the long-term valuation cycle observable in both Tobin’s Q 

and Shiller’s CAPE data series. Gracia (2011), on the other hand, develops the production 

function we use in this paper by deriving it from a set of strictly neoclassical axioms, and then 

performs a battery of empirical tests showing it to be a better fit to observed data than the Cobb-

Douglas function (in fact rejecting the Cobb-Douglas specification at 99% confidence). 
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More broadly, and despite its many differences, Richard Goodwin’s growth cycle model 

(Goodwin 1967) constitutes an obvious precedent in its portrayal of economic rents’ fluctuations 

(specifically wages, which he modelled as a sort of scarcity rent) under the guise of a predator-

prey cycle. Goodwin, who regarded himself as a Marxian economist, built his ‘class struggle’ 

model on the basis of assumptions that in his days were commonplace in mainstream literature 

(e.g. Phillips curve, constant-factor-intensity production function, differential saving propensities 

for capitalists and workers, etc.) but would not fit a rational-expectations, efficient-markets 

framework – not that, in fairness, would any of the business cycle models in vogue at the time 

(think e.g. of Samuelson’s 1939 multiplier-accelerator model and its many offshoots). Goodwin’s 

model remains, nevertheless, one of the most elegant analytical expressions of an old idea: that 

economic and social cycles are caused by people’s efforts to capture and institutionalize 

economic rents for themselves, so that, over time, the burden of these rents gradually becomes 

heavier and, like a growing parasite, weakens the productive system so much that in the end even 

a small shock suffices to make it crash – at which point rents inevitably fall and, as they lighten 

their weight over the system, eventually growth resumes and the cycle restarts. 

The model put forward in this paper, however, diverges from this tradition in its explicitly 

adopting the classical assumptions of rational behavior, market efficiency and frictionless price 

formation in a stochastic environment. This also distances it from the irrationality assumptions 

underlying Hyman Minsky’s now-famous Financial Instability Hypothesis (e.g. Minsky 1992) as 

well as the most recent behavioral finance models but also the credit restriction and sticky prices 

assumptions behind rational expectations models such as Kiyotaki & Moore (1997), Bernanke, 

Gertler & Gilchrist (1999) or those following the very rich Rational Bubbles literature (see 

Martín & Ventura 2018 for a survey). Instead, it adopts the assumptions of existence of economic 

rents and time-to-build, the latter thus somehow linking to the tradition following Kydland & 



8 

 

Prescott (1982) or, going much further back, the old Austrian school (e.g. Böhm-Bawerk, Hayek 

or von Mises). It is actually the contention of this paper that, as long as a market does not operate 

under perfect competition, a set of relatively straightforward assumptions may suffice to explain 

the consistent presence of observable nonlinear behavior, including long-term cycles, in the price 

data series of a portfolio operating within a rational, efficient market. 

Importantly, this paper’s main purpose is to model the behavior of fixed-asset-heavy markets 

such as commodities or real estate within a larger overall market and, therefore, it does not aim to 

determine how the market-wide price of risk would be derived from investor’s preferences but 

simply how, given a prevalent price of risk, arbitrage conditions suffice to determine the prices 

prevalent in any rent-generating sub-market. An obvious extension would of course be to perform 

the analysis for a closed market where the price of risk, instead of being exogenous, derived from 

the players’ utility functions – but this would go beyond the scope of this paper. 

From an analytical viewpoint it is also worth mentioning that this model operates within a 

continuous-time stochastic framework. Continuous time is not only conceptually more realistic 

but also analytically easier to manage, as it allows to make use of a set of very powerful 

analytical tools that simply do not exist for discrete time. The commonly held view that “discrete 

time is easier” springs from the fact that many models do not attempt to find explicit solutions 

beyond what discrete time allows so, for example, illustrate the time series generated by a given 

model via computer simulations instead of presenting an explicit time-dependent expression of 

the most likely observed path (which, as explained above, would be the median). Here, 

conversely, we assume continuous time and use it to identify closed-form paths where possible. 
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The structure of this paper is straightforward: Section 2 provides an intuitive rationale for the 

model’s behavior, then Section 3 presents the analytical development of the model, and finally 

Section 4 summarizes the conclusions and potential future directions. 

2. Model Rationale 

2.1. The Production Function 

Consider an economy composed of many production units, each one devoted to transforming 

inputs into a given set of outputs. For every given output volume, there are multiple productive 

processes or “techniques” available, each one requiring a given fixed investment in plant capacity 

in addition to the variable cost per unit produced. Each producer aims to select the output volume 

and productive process that maximizes real profit i.e. the difference between output value and 

input costs, measured in output units. We also assume the optimal technology curve that results 

from their selecting the most profitable technique at each production level displays economies of 

scale i.e. that, given an increase in production volume, there is always a technique that would 

allow to reduce the overall cost per unit (always expressed in terms of output units) and therefore 

increase the real profit. This is represented graphically by curve LT in Figure 1. 

In this diagram, both the horizontal and vertical axes represent output, whereas every line in the 

quadrant represents the cost structure of a given productive process or technique. Hence, if we 

select an output demand level Y on the horizontal axis, its projection on the vertical axis 

according to the curve representing a given technique indicates how much of its output value 

corresponds to Fixed Cost (segment FC), Variable Cost (segment VC) or Net Profit (segment 

NP). For example, curve LT represents the optimal long-term production cost curve i.e. the 

lowest production cost possible for every given output level, regardless of how long it would take 

to deploy the associated production process: every point Y along this curve is tangential to a 
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given optimal production technique (for example B) requiring a fixed upfront cost (i.e. FC) plus a 

certain variable cost per unit (represented by the slope of segment B), up to the plant capacity Y. 

Figure 1: Long-term vs. Short-term Production Functions 

 

Conversely, the bisector line A represents both income (i.e. if the output level is Y, the real 

income measured in output units is obviously also Y) and the cost profile of a production 

technique with constant variable costs per unit, no fixed costs and no barriers of entry, which 

would of course result in the unit price equating its marginal (i.e. variable) cost – hence it forms a 

45° angle respective to the axes. Evidently, technique A has a steeper slope than B because its 

variable costs are higher, and it is more inefficient for a level of production Y because the overall 

cost per unit for technique B, including both fixed and variable costs, is lower than that of 

technique A – the difference being of course the net profit NP. 

In economics we conventionally break down prices into marginal costs i.e. the incremental cost 

of producing the last unit of output (segment VC in Figure 1) and economic rents, that is, the 

difference between marginal cost and actual price (the sum of segments FC and NP). Rational, 

profit-maximizing producers will of course aim to produce up to the point where marginal cost 
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equals marginal income but, unless they operate under perfect competition, this will not equal the 

price: if they enjoy any market power, it will be reflected as positive rents – and if, for instance, 

they happen to confront a monopsony, they might even have to live with negative rents. 

Fixed investments represent sunk costs whose historical size is irrelevant for the maximization of 

future profit and whose return therefore constitutes an economic rent. To be sure, an investor 

considering whether to commit an upfront investment to a productive unit would require the 

present value of its expected return to equal or exceed the upfront cost so, in a deterministic 

world, it would make sense to model those future rents as equating marginal costs to marginal 

returns for that historical investment amount – yet, in an uncertain world, as soon as the 

conditions change so do the rents, after which no link may exist between them and the sunk costs. 

The assumption behind the long-term curve LT is that, when planning for the long run, producers 

can jump from one technique to the next as their output volumes change, choosing for every level 

of production the technique with the lowest cost. Conversely, when unexpected shocks hit 

demand, it is not possible to do this in the short run, for the upfront investments to expand 

capacity and implement a more efficient production process cannot be deployed instantly, nor can 

installed capacity be instantly dismantled. Thus, if demand, for example, drops unexpectedly by a 

magnitude ΔY (i.e. down to Y–ΔY), the producer will use the same technique to produce at less 

than full capacity, whereas, if demand increases instead by ΔY (i.e. up to Y+ΔY), the producer 

will have to resort to the less efficient technique A to produce the supplementary units required 

above the available facilities’  capacity. This means that, precisely because the long-term cost 

function is concave (i.e. has positive returns to scale), the short-term one must be convex (i.e. 

display diseconomies of scale) for, given a planned output level Y, actual production follows 

segment B when it falls below Y but segment A2 (parallel to A) when it raises above Y. 
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Note that, if we assume producers maximize their profit by producing up to the point where 

marginal cost equals marginal income, then segment A2 must necessarily be parallel to segment 

A (which represents income) and therefore cut the vertical axis at 45° for the level of production 

Y to be chosen as optimal. At the same time, if we assume segment B represents the long-term 

optimal technique, then, as capacity approaches that point from the left it must be tangential to 

the curve LT. The point where segments B and A2 meet is where the production capacity of the 

optimal facilities ends and thus less efficient methods must be employed. For diagrammatic 

convenience this is represented as a sharp ‘peak’, although it is perhaps more realistic (as well as 

more analytically convenient) to assume it to be smooth enough to be differentiable at this point: 

in the real world, after all, every plant and piece of machinery can usually be temporarily pushed 

just a bit beyond its natural capacity (e.g. by delaying maintenance, running at non-sustainable 

speeds, etc.) albeit obviously at a higher longer-term cost than under steady state conditions. 

Imagine now that there are many industries in an economy, each producing a different set of 

goods and services but all subject to a similar cost function. If the structure of aggregate demand 

changes unexpectedly, so that demand for one product increases at the expense of another while 

the total consumer budget stays the same, the costs of those industries whose demand dropped 

will fall comparatively less than the costs of the industries with higher demand will raise. This 

will thus cause an aggregate productivity loss that will be more severe, other things being equal: 

1. The larger the variability of demand (i.e. the increment ΔY in the diagram) and 

2. The smaller the angle α between segment B and the horizontal line 

In turn, since any increment in the share of economic rents (i.e. FC+NP) over the total revenue Y 

results in squeezing segment VC and thus flattening segment B and closing angle α, we may say 

that, under demand uncertainty, the higher the ratio 
FC+NP

Y
, the lower the overall short-run 
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productive efficiency. This ratio is far from novel in economics: it is actually Lerner’s classical 

Market Power Index (Lerner 1934), which is defined as 𝐿 ≡
P−C′

P
 (where P represents the price 

and C’ the marginal cost) and therefore, in terms of Figure 1, may be rewritten as 𝐿 ≡
FC+NP

Y
  

or, in trigonometric terms, as 𝐿 ≡ 1 − tan(α). Note that for some of the analysis it will be more 

convenient to use instead the mark-up over marginal cost, whose definition is 𝜇 ≡
P

C′
 and thus, in 

terms of Figure 1, becomes 𝜇 ≡
Y

VC
 (or, in trigonometric terms, 𝜇 ≡ cot(α)). Conversion 

between one and the other is trivial through the formula 𝐿 ≡
𝜇−1

𝜇
 or, in reverse, 𝜇 ≡

1

1−𝐿
 . 

In sum, the model predicts that short-term production fluctuations will be a function of the 

variability of demand composition (which represents the average shock ΔY) amplified by the 

percentage of economic rents over total output (which determines the angle ‘α’ and therefore the 

degree of convexity), which provides a measure of the system’s rigidity. 

Under uncertainty, productivity in the short run behaves exactly opposite to the long run. In the 

long run what matters is curve LT and, since segment B represents the tangent to this curve, the 

larger Lerner’s index, the flatter (i.e. the more efficient) the curve will be at that point. 

Conversely, in the short run, the larger this ratio (i.e. the flatter the LT curve), the smaller the 

angle α will be and, since the segment A2 must be the continuation of segment B at point Y 

(because otherwise Y would not represent the producer’s optimum) and is bound to stand at a 45° 

of the axes, the higher the loss of efficiency due to any unplanned increment ΔY. In a 

deterministic world, to be sure, only the long-term function would matter, as rational agents 

would plan their entire future at one point in the beginning of time and never have to revise their 

expectations again. Yet, in a stochastic world, change takes place continuously and, as economic 
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agents readjust to the new conditions, it is the short-term function that determines the initial 

response so, the larger the weight of rents over output, the lower the system’s flexibility. 

Note that Figure 1 is agnostic respective to the reasons why the long-term curve LT and therefore 

also segment B may flatten, as the angle α simply reflects a relative proportion between the 

overall output Y and the part of it that is distributed under the form of economic rents. Hence, 

although a higher Lerner index (or mark-up) necessarily implies lower flexibility and therefore 

higher inefficiency in the presence of uncertainty, a higher rent ratio may or may not be 

associated to higher absolute efficiency (i.e. higher production for the same input volume) in the 

long run. Fixed capital investment, for example, may indeed increase productivity through 

economies of scale and integration so, at the time of committing the resources, investors would 

logically expect their assets to generate a future rent to compensate for their present sacrifice. Yet 

rents can also be generated e.g. through coercive or lobbying power to enforce monopolies, or to 

charge tolls and taxes for governments, or to increase efficiency wages for trade unions, all of 

which are more likely to limit the system’s productivity per input unit. 

2.2.  Productive and liquidation values 

As we have seen, unexpected changes in demand (which we represented by ΔY) face a convex 

cost curve and therefore constitute a source of inefficiency in the short run whereas, if changes 

are expected, rational producers can prepare for them. In graphical terms (Figure 2), this means 

that a planned output increase ΔY would not meet segment A2 but a flatter segment (say, B2). If, 

for example, we assume output is increased at first by expanding the use of the same techniques 

represented by segment B, then segment B2 would just be a straight-line prolongation of segment 

B – which would leave angle ‘α’ unchanged. Then, of course, as further improvement takes 

place, segment B would gradually tilt downwards until becoming tangent to the long-term curve 
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LT at the point where output is Y+ΔY in the same way as it was before at the point Y (which 

would of course lead to angle α becoming smaller the flatter the curve LT is at the point Y+ΔY). 

Moreover, even if there is no output change, over time new opportunities to extract additional 

rents from the system would pop up and, to the extent they are economically attractive, would 

push the long-term productivity frontier LT further down (i.e. from LT to LT2 in Figure 2). 

Figure 2: Transition from short to long term production functions 

 

The key is that this planned production technique adjustment from its optimum at output volume 

Y to that of Y+ΔY and also from the technology level of long-term curve LT to that of LT2 

gradually flattens segment B and, therefore, also reduces angle α, which, over time, amplifies the 

impact potential of any unexpected shocks – in other words, the production function becomes 

more fragile, more sensitive to negative random shocks. 

Rational investors will of course discount the expected value of this inefficiency from the net 

present value of each production asset and decide whether to invest in more or less rent-intensive 

productive techniques on the basis of which option offers the highest expected value based on 

their degree of risk aversion. Hence, along the mean path (i.e. the trajectory where expectations 
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are systematically fulfilled) there will by definition be no surprises, no bubbles or panics, and 

asset values will always grow at their market discount rate plus or minus the cash flows they 

absorb or generate. At the time rent-generating investments are made, rational players will expect 

them to yield the market return and, along the mean path, such expectations will always come 

true, so accumulated investment will indeed equal the net present value of capital. 

Yet, as explained in the Introduction, to the extent the probability diffusion process is asymmetric 

(so that mean and median paths are different), along the observed path there will be continuous 

surprises that over a long-enough sample will approximate the median, not the mean, trajectory. 

As unexpected shocks take place, investors’ original expectations may not be fulfilled, which 

means historical investments become sunk costs, so the return they yield under the form of rents 

may not bear any resemblance to the rate of return the market offers to fresh investments. 

The market value of the production unit corresponds of course to the aggregate value of all its 

component assets i.e. of the assets tied up as necessary for the production process. Some of these 

assets, to be sure, would not have any value if detached from this process, but others (e.g. 

buildings, vehicles, cash holdings, etc.) are fungible enough to fetch some value if sold for 

redeployment into other activities. Of course, the aggregate liquidation value of these fungible 

assets is different from that of the production unit as a whole so, in a complete market, the owner 

of a productive unit always has two ways to exchange it for cash: either sell it as productive unit 

or dismantle it and sell out its fungible components. If the latter is higher, rational investors will 

obviously proceed to dismantle and liquidate the fungible assets whereas, if it is lower, additional 

fungible assets (e.g. new cash contributions) will be invested in expanding the productive unit, 

which will transform these contributions at least partially into non-fungible assets. In this context, 

however, we introduce three key assumptions: 
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1. Dismantling obviously means decommissioning the productive unit and therefore 

rendering it unable to generate any rents it might have been yielding before 

2. Building up productive assets or dismantling them for liquidation takes time. In the model 

we simplify this by introducing a positive constant 𝜃 ≥ 0 such that, the larger it is, the 

faster the processes of build-up and dismantling are assumed to be 

3. Fungible assets are less risky than the other component assets of the productive unit, if 

nothing else because they can more easily be redeployed if the unit’s profitability does not 

meet expectations. For the sake of simplicity, in the model we assume fungible assets 

yield the risk-free rate of return, whereas the unit as a whole is subject to a risk premium 

As fungible assets are low risk (actually risk-free in the model), they can be pawned or 

mortgaged as credit collateral. Hence we will refer to the ratio of the unit’s market value divided 

by its fungible assets’ liquidation value as the “solvency ratio” (which we will represent as “s”), 

although it should be clear it represents the productive unit’s ability to produce credit collateral, 

irrespective of whether it is actually used to borrow funds from investors outside the unit or not. 

This solvency ratio therefore provides a yardstick against which rational producers can measure 

the relative economic appeal of each course of action. Figure 3 illustrates how this might happen 

in a very simple case: to the basic structure in Figures 1 and 2, Figure 3 adds an alternative, less 

capital-intensive technique associated to lower fixed and higher variable costs (segment B2), 

which could be achieved through partial fungible assets’ liquidation, and also a positive rent 

(segment LR) that the producer could obtain by totally discontinuing production to free-up the 

fungible assets’ returns. In the latter case, to be sure, the production unit would no longer 

produce, so output costs would equal market prices and thus the new supply line (segment A3) 

would run parallel to A so that profit always equal LR regardless of output volume. 
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Figure 3: Production vs. liquidation return 

 

Faced with this choice, any rational producer would naturally take the most profitable option for 

the required output level but, as output demand changes randomly, the best option today may 

become the worst tomorrow. On Figure 3, for example, at an output level Y it is obviously better 

to stick to segment B than to either move to B2 or go all the way to A3. Yet, if demand 

experiences a negative shock bringing it down to Y–ΔY, then production costs following segment 

B go down only from b to b’, thus squeezing the producer’s net profit, whilst a partial liquidation 

to move to segment B2 would bring the producer’s costs down to b’’ and, even more drastically, 

proceeding to full liquidation would bring them down to a’. Assuming the net present value of 

these various options also follows the pattern in Figure 3, asset realignment would logically 

follow – and, as a result, would eventually lead to a gradual fall in the overall mark-up. 

To put this in slightly more precise terms, if the solvency ratio is lower than unity (i.e. 𝑠 < 1) it 

triggers a liquidation process, as it implies the cost of opportunity of keeping at least some of those 

assets locked within the production process is higher than the alternative. Dismantling, by widening 

angle α towards 45°, will of course tend to reduce the average mark-up over time; conversely, if 
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the solvency ratio is above unity (i.e. 𝑠 > 1) then more rent-generating asset build-up will take 

place and as a result the mark-up will tend to increase. There should therefore be a solvency value 

(in principle 𝑠 = 1) where the two trends balance each other and thus the mark-up does not change. 

2.3. Productivity and valuation cycle 

If fungible assets carry a lower risk, in an efficient market with rational, risk-averse investors, they 

must also yield a lower market rate of return. To be sure, new cash injections and subtractions by 

investors could translate into changes in the mix of fungible and non-fungible assets. Yet if, for 

simplicity, we assume in the model that cash flows corresponding to fungible and non-fungible 

assets are proportional to their weight in the production unit’s portfolio, then the higher risk 

premium of the solvency ratio’s numerator respective to its denominator will, at least along the 

expected path, make solvency drift gradually towards higher values. 

Figure 4 illustrates this model’s behavior along the mean (i.e. expected) path, whilst Figure 5 

does the same for the median path (which as we know would be the closest to the observed path). 

In each case the diagram on the left is just the one we saw in Figures 1, 2 and 3 – only, in this 

case we aggregate the rents FC and NP at the bottom of the vertical axis (and refer to the sum 

simply as R ≡ FC + NP) so that the variable cost VC is represented by the segment immediately 

above (i.e. the vertical segment from R to Y) and then set total output to unity (i.e. Y ≡ 1) to 

express rents as a percentage of total output and thus be able to set R ≡ 𝐿 (where L represents 

Lerner’s Market Power Index). Conversely, the diagram on the right-hand side plots the same 

vertical axis (only, now expressed in terms of Lerner’s Index) against the solvency ratio on the 

horizontal axis. Perpendicular to this axis we trace a vertical line indicating the solvency ratio’s 

value (in principle 𝑠 = 1) that would lead to no change in Lerner’s index (so that ∆𝐿 = 0). 

  



20 

 

Figure 4: Output dynamics along the mean (i.e. expected) path 

 

Under these conditions, starting from, say, the point where 𝑠 = S1, the expected path will lead to 

a gradual increase in the solvency ratio due to the higher expected risk premium of its numerator 

(the net present value of future production rents) vs. its denominator (the liquidation value) whilst 

Lerner’s index reduces as rent-generating assets are liquidated: therefore, as the solvency ratio 

grows from S1 to S2, Lerner’s index drops from L to L’ and the production function slope B 

slides to B’, thus opening up angle α to become α’. As the process continues and the solvency 

ratio keeps growing, however, it eventually reaches and then exceeds the threshold value 𝑠 = 1, 

at which point, since it no longer makes sense to liquidate productive assets, the dynamic reverses 

and rents grow again as a percentage of total output. Hence, as the solvency ratio proceeds from 

S3 to S4, Lerner’s index climbs back from L’ to L, the production slope flattens again from B’ to 

B and its angle respective to the horizontal axis goes back from α’ to α. 

In short, there is no cycle along the mean path: regardless of the starting point, the expected 

trajectory under these assumptions leads to ever-higher values of the solvency ratio and, once it 

exceeds the threshold value 𝑠 = 1, to ever-growing shares of rents over total output, which 
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therefore will, after a long enough time, asymptotically approximate Lerner´s index to 𝐿 = 1 or, 

what is the same, the mark-up to 𝜇 = ∞. 

The median path (which would be the closest to the observed path) is very different and, 

arguably, more interesting. As shown in Figure 5, the same factors as for the mean apply, but we 

need to add to them the impact of unexpected shocks on productivity (which by definition are 

excluded from the expected path) and take into account that, the higher the mark-up (i.e. the 

smaller angle α), the more sensitive the productive system becomes to these shocks. Therefore, 

although unexpected shocks come in many flavors and sizes, there must be a value of Lerner’s 

index (let´s call it L*) such that the risk premium difference between the solvency ratio’s 

numerator and denominator is offset by the differential impact of the median random shock, 

which is larger on an asset’s productive value than on its liquidation value (because the former’s 

longer financial duration makes it more exposed to such unexpected shocks – which is of course 

why it also has a higher expected risk premium) so that, on balance, when 𝐿 = 𝐿∗ then ∆𝑠 = 0. 

Note that this threshold point L* does not exist on the expected path diagram (i.e. on Figure 4) 

simply because there the impact of random shocks is, ex hypothesi, fully discounted by rational 

investors out of the valuation and there are therefore no unexpected shocks on it – unlike, of 

course, on the median path. 

These conditions can indeed lead to cyclical behavior along the median path (and therefore also 

on the observed path). Starting, for example, from a value such as L’ in Quadrant I (i.e. where 

𝐿 = 𝐿′ < 𝐿∗ and 𝑠 = 𝑆2 < 1) the trajectory will for a while follow the same pattern as we 

described for the mean i.e. the solvency ratio will move from left to right, and the value of 

Lerner’s index L will drop while 𝑠 < 1 only to start climbing again as it enters Quadrant II, 

where 𝑠 > 1. As Lerner’s index eventually grows beyond L*, however, the probability of a 
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negative shock that more than offsets the return differential between the asset’s productive and 

liquidation values exceeds 50% and therefore the median path leads to lower solvency values1 – 

which results in the value sliding towards the left through Quadrant III. Then, of course, when the 

value moves into Quadrant IV and thus 𝑠 < 1 again, liquidations start to take place and the mark-

up gradually reduces, until Lerner’s index eventually falls again below L* and the cycle restarts 

in Quadrant I. 

Figure 5: Output dynamics along the median path (i.e. the one closest to the observed series) 

 

Section 3, below, develops this same reasoning in a more analytical, rigorous manner. 

  

 

1 There are, however, a couple of theoretical cases in which this would not necessarily happen: if the market price of 

risk (i.e. the rate at which the market rewards asset variability) increases more than proportionally to the standard 

deviation just as Lerner’s index goes up for this particular productive unit or industry, or if the non-diversifiable 

variability that this productive unit or industry is exposed to also drops more than proportionally to compensate for 

the increase of Lerner’s index. For the sake of simplicity, in the model we have ruled out these possibilities by 

assuming that both the variances impacting the unit’s non-diversifiable risk and the median path of the market price 

of risk associated to them are constant. 
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3. Analytical development 

3.1. Definitions and identities 

Consider an economic system within a probability space (Ω, 𝐼, 𝒫), where ‘Ω’ represents the 

universe of all possible states of nature 𝜔 ∈ Ω, ‘I’ the set of all possible subsets of Ω and ‘𝒫’ the 

probability distribution function. In this space, for every point t in time there is a set 𝐼𝑡 ⊂ 𝐼 

representing the information available to market players at that time, which is assumed to be 

cumulative i.e. ∀𝑡 ≥ 𝑇 we assume that 𝐼𝑇 ⊂ 𝐼𝑡. Going forward we will represent with operator 

𝐸𝑡[∘] the expected (i.e. mean) value of the variable within the brackets subject to the information 

available at time t, as 𝑉𝑡[∘] its variance and as 𝑀𝑡[∘] its median path. 

The system encompasses 𝑖 = 1…𝑛 commodities and 𝑗 = 1…𝑚 production units, each one of 

which transforms (at any given point in a continuous time 𝑡 ∈ ℜ) a certain set of input quantities 

of goods and services 𝑿 ≡ {𝑥1,𝑗,𝑡 …𝑥𝑛,𝑗,𝑡} into another set of net output quantities 𝒀 ≡

{𝑦1,𝑗,𝑡…𝑦𝑛,𝑗,𝑡} i.e. output quantities from which the input stock variation experienced by each 

commodity during the production process has been subtracted. We refer to this transformation as 

a technical production function and represent it as a mapping 𝑓𝑗,𝑡: 𝐗 → 𝐘 or, what is the same, as 

a function 𝑓𝑗,𝑡(⋯ ) such that  𝑓𝑗,𝑡(𝑥1,𝑗,𝑡 …𝑥𝑛,𝑗,𝑡) ≡ {𝑦1,𝑗,𝑡…𝑦𝑛,𝑗,𝑡}. 

Following the usual convention, we count human labor as an input but not as an output so that, if 

we identify as “capital” the commodities numbered 𝑖 = 1…𝜈 and as “labor” those numbered as 

𝑖 = 𝜈 + 1…𝑛, then by definition ∀𝑖 ∈ [𝜈 + 1, 𝑛]  →  𝑦𝑖,𝑗,𝑡 ≡ 0. 

The commodities 𝑖 = 1…𝑛 map to a set of market prices 𝑷 ≡ {𝑝1,𝑡…𝑝𝑛,𝑡} expressed in terms of 

a commodity (e.g. money) or a basket of commodities (e.g. average consumer’s basket) selected 
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as numéraire – which we will designate as ζ. Note that, without loss of generality, these 

commodities are defined granularly enough for their prices to be unique within the system – 

hence the price symbol 𝑝𝑖,𝑡 includes a sub-index for the commodity (i) and another for time (t) 

but none for the production unit.  

In this context we define a production unit’s net total output value 𝒴𝑗,𝑡 as the aggregate of the net 

commodities produced over a given time lapse ∆𝑡 multiplied by their values plus the market 

value increment of the inputs’ inventory over the same timeframe i.e.: 

𝒴𝑗,𝑡∆𝑡 ≡∑(𝑝𝑖,𝑡 + ∆𝑝𝑖,𝑡)𝑦𝑖,𝑗,𝑡

𝜈

𝑖=1

∆𝑡 +∑𝑥𝑖,𝑗,𝑡∆𝑝𝑖,𝑡

𝜈

𝑖=1

 

Going forward we will assume time to be continuous and thus every flow variable will be 

assumed to refer to a rate over an infinitesimal time lapse 𝑑𝑡. Under this assumption the net 

output value 𝒴𝑗,𝑡 may be rewritten as follows: 

𝒴𝑗,𝑡𝑑𝑡 ≡∑𝑝𝑖,𝑡𝑦𝑖,𝑗,𝑡

𝜈

𝑖=1

𝑑𝑡 +∑𝑥𝑖,𝑗,𝑡𝑑𝑝𝑖,𝑡

𝜈

𝑖=1

 

Note that, as this is a stochastic environment where new information can always pop up between 

any two points in time t and t+dt, the value of any flow variable such as 𝑦𝑖,𝑗,𝑡 or 𝒴𝑗,𝑡 will not be 

known until time t+dt, whereas decisions to optimize the inputs {𝑥1,𝑗,𝑡 …𝑥𝑛,𝑗,𝑡} devoted to the 

production process will obviously have to rely on the information available at time t. To simplify 

the analysis, therefore, we define the variable 𝑌𝑗,𝑡 ≡ 𝐸𝑡[𝒴𝑗,𝑡] (i.e. the expected instantaneous net 

output value at the time the input allocation decision is made) and define the economic 



25 

 

production function 𝐹𝑗,𝑡(𝑥1,𝑗,𝑡…𝑥𝑛,𝑗,𝑡) as a transformation ℜ𝑛 → ℜ from the input quantities to 

the net output value flow i.e. 𝐹𝑗,𝑡(𝑥1,𝑗,𝑡…𝑥𝑛,𝑗,𝑡) ≡ 𝑌𝑗,𝑡. 

We now define the net profit 𝛱𝑗,𝑡 of production unit j at time t as the difference between its net 

output value and its production cost expressed in terms of a basket of commodities we select as 

numéraire i.e. 𝛱𝑗,𝑡 ≡ 𝒴𝑗,𝑡 − 𝒞𝑗,𝑡, where 𝒞𝑗,𝑡 represents the cost as a function of input quantities 

𝑿 ≡ {𝑥1,𝑗,𝑡 …𝑥𝑛,𝑗,𝑡}. Importantly, since 𝒴𝑗,𝑡 has already been defined as net of asset depreciation 

(or revaluation), the cost function 𝒞𝑗,𝑡 must exclude any depreciation constants and therefore, 

should all the inputs {𝑥1,𝑗,𝑡 …𝑥𝑛,𝑗,𝑡} be zero, 𝒞𝑗,𝑡 would also be nil. 

We also define the combined input 𝑋𝑗,𝑡 as the aggregate of all production inputs weighted by their 

marginal costs i.e. 𝑋𝑗,𝑡 ≡
1

𝑐𝜉,𝑗,𝑡
𝑪𝑿 ≡

1

𝑐𝜉,𝑗,𝑡
∑ 𝑐𝑖,𝑗,𝑡𝑥𝑖,𝑗,𝑡
𝑛
𝑖=1  where 𝑪 ≡ {𝑐1,𝑗,𝑡 …𝑐𝑛,𝑗,𝑡} represent the 

marginal costs per input unit i.e. 𝑐𝑖,𝑗,𝑡 ≡
𝜕𝒞𝑡

𝜕𝑥𝑖,𝑡
 and 𝑐𝜉,𝑗,𝑡 represents the marginal cost of an input 

𝜉 ∈ {1…𝑛} selected as aggregation unit – which could in principle be the same commodity 

selected as the aggregate output numéraire ζ (e.g. money) or a different one (e.g. labor). 

We then define the mark-up ratio 𝜇𝑗,𝑡 as the expected output value over aggregate marginal costs 

i.e. 𝜇𝑗,𝑡 ≡ 𝐸𝑡 [
𝒴𝑗,𝑡

𝑐𝜉,𝑗,𝑡𝑋𝑗,𝑡
]. Note that, as the purpose of the mark-up is to measure market power (for, 

as explained in Section 2, it translates into Lerner’s index 𝐿𝑗,𝑡 through the identity 𝐿𝑗,𝑡 ≡
𝜇𝑗,𝑡−1

𝜇𝑗,𝑡
), it 

is more convenient to define it here as an expected value to weed out any unexpected output price 

or volume fluctuations that might not reflect any market power change. 
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Next, we define the financial variables. We designate by 𝐾𝑗,𝑡 the market value (i.e. the price) at 

time t of the assets employed in production unit j, and the rate of return rate of return 𝓇𝑗,𝑡 as the 

ratio of the unit’s net profit divided by its market price i.e. 𝓇𝑗,𝑡 ≡
𝛱𝑗,𝑡

𝐾𝑗,𝑡
 . For convenience, just as 

we did in the case of net output we also define a variable representing these rates’ expected value 

at time t (i.e. at the start of the infinitesimal time lapse between time t and time t+dt), that is, 

𝑟𝑗,𝑡 ≡ 𝐸𝑡[𝓇𝑗,𝑡]. Furthermore, we define the net cash flow as the portion of net profit that is not 

reinvested to increment the asset value i.e. 𝐶𝑗,𝑡 ≡ 𝛱𝑗,𝑡 −
𝑑𝐾𝑗,𝑡

𝑑𝑡
, so that, rearranging terms, 

𝓇𝑗,𝑡𝐾𝑗,𝑡𝑑𝑡 ≡ 𝑑𝐾𝑗,𝑡 + 𝐶𝑗,𝑡𝑑𝑡. Analogously, we designate by 𝐾𝑗,𝑡
∗  the value of the unit’s fungible 

assets, by 𝐶𝑗,𝑡
∗  the net cash flow associated to them, by 𝓇𝑗,𝑡

∗  its rate of return (so that 𝓇𝑗,𝑡
∗ 𝐾𝑗,𝑡

∗ 𝑑𝑡 ≡

𝑑𝐾𝑗,𝑡
∗ + 𝐶𝑗,𝑡

∗ 𝑑𝑡) and by 𝑠𝑗,𝑡 ≡
𝐾𝑗,𝑡

𝐾𝑗,𝑡
∗  the unit’s solvency ratio. Last but not least, we represent as 𝑟̆𝑡 the 

market risk-free rate of return (so that, by definition, 𝑟̆𝑡 ≡ 𝐸𝑡[𝑟̆𝑡]), as 𝑉𝑡[𝓇𝑗,𝑡] the variance of the 

production unit’s rate of return, as 𝜌̅𝑗,𝑡 the correlation coefficient between unit j’s return and that 

of the overall market portfolio, and as 𝜆𝑗,𝑡 ≡
𝐸𝑡[𝓇𝑗,𝑡]−𝑟̆𝑡

𝜌̅𝑗,𝑡√𝑉𝑡[𝓇𝑗,𝑡]
 the price of risk applicable to the unit. 

3.2. Assumptions 

ASSUMPTION 1: Complete, efficient markets 

At any point t in time market transaction costs are negligible, there is a market price for every 

possible long or short asset, good or service in every possible future state of the world, and it is 

impossible to build a portfolio earning a risk-free return higher than the market risk-free rate (i.e. 

market prices continuously adjust so that no such arbitrage profit portfolio can be devised). 
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Comment: According to standard financial theory (e.g. the CAPM), in a complete, efficient 

market there is a market-wide price of risk 𝜆𝑡 such that 𝐸𝑡[𝓇𝑗,𝑡] ≡ 𝑟𝑗,𝑡 = 𝜆𝑡𝜌̅𝑗,𝑡√𝑉𝑡[𝓇𝑗,𝑡] + 𝑟̆𝑡, 

where 𝜌̅𝑗,𝑡√𝑉𝑡[𝓇𝑗,𝑡] represents the undiversifiable part of the variability of unit j’s rate of return. 

Appendix 2 provides a standard proof of this assertion. 

ASSUMPTION 2: Profit maximization 

Producers select their input volumes to maximize their expected net profit 𝐸𝑇[𝛱𝑗,𝑡] for every 

point in time 𝑡 ≥ 𝑇 (where T represents any point in time selected as ‘current’ or ‘reference’). 

ASSUMPTION 3: Differentiability at optimal point 

The expected net profit function is differentiable respective to all its inputs at its maximum point. 

ASSUMPTION 4: Homogeneous economic production function 

The economic production function 𝑌𝑗,𝑡 ≡ 𝐹𝑗,𝑡(𝑥1,𝑗,𝑡…𝑥𝑛,𝑗,𝑡) is continuous, twice-differentiable 

respective to every one of its inputs and also such that, for a scalar value 𝑎 ∈ ℜ, the expression 

𝐹𝑗,𝑡(𝑎𝑥1,𝑗,𝑡 … . 𝑎𝑥𝑛,𝑗,𝑡) = 𝑎
ℎ𝑗,𝑡𝐹𝑡,𝑗(𝑥1,𝑗,𝑡 … . 𝑥𝑛,𝑗,𝑡) always holds (where the degree of homogeneity 

ℎ𝑗,𝑡 ∈ ℜ is independent of any of the inputs {𝑥1,𝑗,𝑡…𝑥𝑛,𝑗,𝑡}). 

Comment: This assumption is common to many production functions e.g. Cobb-Douglas, CES… 

ASSUMPTION 5: Inputs, costs and prices included in contemporary market information set 

The set 𝐼𝑡 of information available at time t includes the contemporary information corresponding 

to input quantities, marginal costs, market prices and cash flows at that point in time i.e.: 

∀𝑖 ∈ {1…𝑛}   ;   ∀𝑗 ∈ {1…𝑚}   ;   ∀𝑡 ∈ ℜ            ;         {𝑥i,𝑗,𝑡}{𝑐i,𝑗,𝑡}{𝑝𝑗,𝑡}{𝐾𝑖,𝑡}{𝐾𝑖,𝑡
∗ }{𝐶𝑖,𝑡}{𝐶𝑖,𝑡

∗ } ∈ 𝐼𝑡 
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Comment: Following Gracia (2011), if Assumptions 2 to 5 hold, then the economic production 

function of a production unit can be expressed as 𝑌𝑗,𝑡 = 𝐴𝑗,𝑡𝑋𝑗,𝑡

1

𝜇𝑗,𝑡
 where the coefficient 𝐴𝑗,𝑡 (which 

going forward we will refer to as “productivity coefficient”) is a function of time independent of 

𝑋𝑗,𝑡 and 𝑌𝑗,𝑡 – a formal proof is provided in Appendix 3. 

ASSUMPTION 6: Random walk perturbation on productivity coefficient 

Productivity shocks follow an Itô stochastic diffusion process subject to a Wiener perturbation 

(that is, a linear, continuous, normally-distributed random-walk process otherwise known as 

“Brownian motion”). Specifically, we assume: 

𝑑𝐴𝑗,𝑡

𝐴𝑗,𝑡
= 𝐸𝑡 [

𝑑𝐴𝑗,𝑡

𝐴𝑗,𝑡
] + 𝜍𝑗.𝑡𝑑𝑊𝑗,𝑡 

Where 𝐴𝑗,𝑡 represents the productivity coefficient, the operator 𝐸𝑡[∘] indicates the expected value 

according to the information available at instant t, 𝑊𝑗,𝑡 is a Wiener process i.e. a stochastic 

process such that (given a reference time 𝑡 = 0) 𝑊𝑗,0 ≡ 0 and 𝑑𝑊𝑗,𝑡 ≡ 𝜔𝑗,𝑡√𝑑𝑡, where 𝜔𝑗,𝑡 is a 

serially-uncorrelated, normally-distributed standardized white noise (i.e. 𝜔𝑗,𝑡~N[0,1]), and the 

function 𝜍𝑗,𝑡 represents the standard deviation of the increment 
𝑑𝐴𝑗,𝑡

𝐴𝑗,𝑡
. 

ASSUMPTION 7: Random walk perturbation on expected output demand 

The growth rate of expected output demand is also subject to a Wiener perturbation, i.e.: 

𝑑𝑌𝑗,𝑡

𝑌𝑗,𝑡
= 𝐸𝑡 [

𝑑𝑌𝑗,𝑡

𝑌𝑗,𝑡
] + 𝜍𝑗.𝑡𝑑𝑊𝑗,𝑡 + 𝜎𝑗,𝑡𝑑𝑍𝑗,𝑡 
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Where 𝑍𝑗,𝑡 represents another Wiener process i.e. a serially-uncorrelated, normally-distributed 

standardized white noise just as 𝑊𝑗,𝑡 in Assumption 7, and 𝜎𝑗,𝑡 represents the associated standard 

deviation (i.e. 𝜎𝑗,𝑡 ≡
1

𝑌𝑗,𝑡

𝜕𝑌𝑗,𝑡

𝜕𝑍̆𝑗,𝑡
). Furthermore, we designate by 𝜌𝑗,𝑡 the correlation coefficient 

between the two Wiener processes, so that 𝑑𝑊𝑗,𝑡𝑑𝑍𝑗,𝑡 ≡ 𝜌𝑗,𝑡𝑑𝑡 (where −1 ≤ 𝜌𝑗,𝑡 ≤ 1). 

ASSUMPTION 8: Linear time to build and to dismantle 

Expanding a productive unit (and thereby its ability to generate a mark-up over output) when its 

solvency ratio is above unity, as well as dismantling it to liquidate its fungible assets when the 

ratio is below unity, is a time-consuming process which we assume to follow the linear function: 

𝑑𝜇𝑗,𝑡

𝜇𝑗,𝑡
= 𝜃𝑗(𝑠𝑗,𝑡 − 1)𝑑𝑡                       𝑤ℎ𝑒𝑟𝑒   0 ≤ 𝜃𝑗 ≤ ∞   𝑖𝑠 𝑎 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

ASSUMPTION 9: Cost function homogeneous of degree one 

The cost function 𝒞𝑗,𝑡 ≡ 𝒞𝑗,𝑡(𝑥1,𝑗,𝑡 …𝑥𝑛,𝑗,𝑡) is twice-differentiable respective to its inputs and, for 

a scalar value 𝑎 ∈ ℜ, the expression 𝐹𝑗,𝑡(𝑎𝑥1,𝑗,𝑡 … . 𝑎𝑥𝑛,𝑗,𝑡) = 𝑎𝐹𝑡,𝑗(𝑥1,𝑗,𝑡 … . 𝑥𝑛,𝑗,𝑡) always holds. 

Comment: Per Euler’s formula this means that the cost (expressed in terms of the numéraire ζ) is: 

𝒞𝑗,𝑡 =∑
𝜕𝒞𝑗,𝑡

𝜕𝑥𝑖,𝑗,𝑡
𝑥𝑖,𝑗,𝑡

𝑛

𝑖=1

≡∑𝑐𝑖,𝑗,𝑡𝑥𝑖,𝑗,𝑡

𝑛

𝑖=1

≡ 𝑐𝜉,𝑗,𝑡𝑋𝑗,𝑡 

ASSUMPTION 10: Market returns’ correlation to fundamentals   

Changes in the expected rate of return for any given production unit 𝑗 ∈ {1…𝑚} are perfectly 

correlated to the observed changes in the marginal costs in terms of the numéraire ζ i.e.: 
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∀𝑗, 𝑡   →    
𝑑𝑟𝑗,𝑡

𝑟𝑗,𝑡

𝑑𝑐𝜉,𝑗,𝑡

𝑐𝜉,𝑗,𝑡
= (

𝑑𝑐𝜉,𝑗,𝑡

𝑐𝜉,𝑗,𝑡
)

2

    where the reference item 𝜉 is set as 𝜉 = 𝜁 

Comment: We set the reference input 𝜉 for the marginal cost 𝑐𝜉,𝑗,𝑡 as equal to the numéraire 𝜁 

(𝑖. 𝑒. 𝜉 = 𝜁) simply because it is being compared to the return 𝑟𝑗,𝑡 ≡ 𝐸𝑡 [
𝛱𝑗,𝑡

𝐾𝑗,𝑡
] where both 𝛱𝑗,𝑡 and 

𝐾𝑗,𝑡 are defined as expressed in terms of the numéraire 𝜁. 

ASSUMPTION 11: Risk-free fungible assets 

The fungible assets whose aggregate value is represented by 𝐾𝑗,𝑡
∗  are risk-free and therefore yield 

the risk-free rate of return i.e. ∀𝑗, 𝑡   →    𝓇𝑗,𝑡
∗ = 𝑟̆𝑡. 

ASSUMPTION 12: Neutral cash flows respective to asset composition 

Cash flows on average do not alter the overall asset mix into fungible assets backing up the 

liquidation value 𝐾𝑗,𝑡
∗  and other assets making up the balance to the total asset value 𝐾𝑗,𝑡 so that: 

𝐶𝑗,𝑡

𝐾𝑗,𝑡
=
𝐶𝑗,𝑡
∗

𝐾𝑗,𝑡
∗  

The following two additional assumptions have been introduced for simplicity purposes: 

ASSUMPTION 13: Constant market demand variance 

The unit’s non-productivity market demand variance’s standard deviation 𝜎𝑗,𝑡 and its correlation 

coefficient 𝜌̅𝑗,𝑡 respective to the market portfolio’s demand variability are both positive constants. 

ASSUMPTION 14: Constant median market price of risk 

The median market price of risk 𝜆𝑡 is a positive constant. 
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3.3. Propositions 

Following are the main propositions put forward in this paper (proofs provided in Appendix 4). 

LEMMA 1: Under Assumptions 2 to 8, the combined input growth rate may be expressed as: 

𝑑𝑋𝑗,𝑡

𝑋𝑗,𝑡
= 𝐸𝑡 [

𝑑𝑋𝑗,𝑡

𝑋𝑗,𝑡
] + 𝜇𝑗,𝑡𝑋𝑗,𝑡𝑑𝑍𝑗,𝑡 

LEMMA 2: Under Assumptions 1 to 10, a unit’s capital value growth may be expressed as: 

𝑑𝐾𝑗,𝑡

𝐾𝑗,𝑡
= 𝐸𝑡 [

𝑑𝐾𝑗,𝑡

𝐾𝑗,𝑡
] + 𝜇𝑗,𝑡𝜎𝑗,𝑡𝑑𝑍𝑗,𝑡 

THEOREM: Under Assumptions 1 to 12, a production unit’s solvency ratio follows the path: 

𝑑𝑠𝑗,𝑡

𝑠𝑗,𝑡
= 𝜆𝑡𝜌̅𝑗,𝑡𝜇𝑗,𝑡𝜎𝑗,𝑡𝑑𝑡 + 𝜇𝑗,𝑡𝜎𝑗,𝑡𝑑𝑍𝑗,𝑡 

3.4. Dynamic median path 

Adding assumptions 13 and 14 to the mix we obtain the median path (proof in Appendix 5): 

𝑀𝑒𝑑𝑖𝑎𝑛 𝑃𝑎𝑡ℎ =

{
 
 

 
 
𝑑𝑠𝑗,𝑡

𝑑𝑡
= 𝑠𝑗,𝑡𝜎𝑗 (𝜆𝜌̅𝑗 −

𝜎𝑗

2
𝜇𝑗,𝑡) 𝜇𝑗,𝑡

−−−−− −−−−−−−−
𝑑𝜇𝑗,𝑡

𝑑𝑡
= 𝜇𝑗,𝑡𝜃𝑗(𝑠𝑗,𝑡 − 1) }

 
 

 
 

 

This system describes an elliptic phase diagram (Figure 6 – which is really the equivalent of 

Figure 5 in Section 2) orbiting around a central fixed point 𝑠𝑗,𝑡 = 1, 𝜇𝑗,𝑡 =
2𝜆𝜌̅𝑗

𝜎𝑗
 with a frequency 

𝜔 = |𝜆𝜌̅𝑗√2𝜃𝑗| that is, in terms of time, a cycle (Figure 7). 
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Figure 6: Median path example (phase diagram) 

 

Figure 7: Median path example (time series) 
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4. Conclusions and future directions 

The first objective of this paper was to illustrate how prices in an imperfect competition market 

(i.e. any market that generates some form of economic rents) could consistently display an 

observable bull-and-bear cycle even under full rationality and market efficiency. Since virtually 

all markets generate some form of economic rent, this model could help to explain the evidence 

of such patterns in real markets, and particularly in those (e.g. commodities and real estate) where 

fixed asset rents represent a large share of value. As a result, while investor irrationality and 

market inefficiency cannot be ruled out as real-world factors, their introduction as modeling 

devices to explain the observation of such patterns would not be necessary. In other words: 

irrational behavior and inefficient price setting constitute unnecessary assumptions to explain 

observed market patterns, such as recurrent bull-and-bear cycles with identifiable wavelengths, 

that substantially diverge from the expected path of a rational, efficient market – for the simple 

reason that the observed time series does not approximate the expected but the median path. 

The second objective of this paper was to rely on this fact to put forward a model of bull-and-

bear cycles based on relatively generic assumptions. The specific model developed in this paper 

predicts that, over time, the observed solvency rate (i.e. the business-continuity value of 

productive assets expressed as a percentage of their liquidation value) as well as the profit margin 

(measured as mark-up, Lerner’s index or similar metric) of any given industry will follow a 

cyclical path displaying a higher frequency (i.e. a shorter wavelength): 

• The shorter the investment-to-return cycle of that industry (i.e. the higher 𝜃𝑗) and 

• The higher its correlation to the overall market variance (i.e. the higher 𝜌̅𝑗) 
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Taken at face value, these predictions seem compatible with known stylized facts. For instance, 

the oil industry’s notoriously long investment time horizons could explain why its price “super 

cycle” lasts around 30 years on average whereas that of real estate, which has a somewhat shorter 

cash-to-cash turnaround, has been measured as lasting 18 from peak to peak. Similarly, assets 

invested in industries whose demand is closely correlated to the market’s overall fluctuations are 

more exposed to its random shocks and would therefore follow a median path cycle with more 

frequent ups and downs synchronized with those overall market shocks. 

Note that, since the economic system is composed of many different industries, this prediction 

naturally fits Joseph Schumpeter’s old view that the cycle waves with different wavelengths 

previous authors (Kitchin, Juglar, Kondratiev…) had identified in GDP fluctuations corresponded 

to the cyclical behavior of the different industries underlying them, with longer-term investments 

leading to longer-term waves (Schumpeter 1939). Furthermore, the resulting valuation cycle, as 

reflected on the behavior of the solvency ratio, is characterized by periodic hikes and crashes, 

where the crashes are visibly steeper than the hikes, which is also consistent with the historical 

experience of bull and bear markets, where the drop is generally faster than the rise. 

An obvious extension would be to expand this model into a general-equilibrium framework to 

explore its implications from a macroeconomic perspective – a direction already outlined to some 

extent in Gracia (2012), albeit under very restrictive assumptions regarding the potential sources 

of the rents’ cycle (which in that specific paper was assumed to result from agency rents’ 

behavior). Another logical next step would of course be to test the model’s predictions against 

empirical data (along the lines of the tests already conducted in Gracia 2011 and 2012). 

The model as it stands, however, already offers a potential explanation for why rent-generating 

asset markets and industries such as commodities, real estate (or, for that matter, most if not all of 
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the assets quoted in the stock exchange) experience recurrent bull-and-bear cycles with an 

observable average wavelength punctuated by more-or-less periodical hikes and crashes. 

 

5. Appendices 

5.1. Appendix 1: Observed path estimation via the median path 

This appendix aims to clarify why it is the median instead of the mean path the one that best 

approximates the observed trajectory of a stochastic variable’s time series. 

Given a data cloud generated by a stochastic process, the mean path is defined as the path that 

minimizes the average quadratic error between the data points and the path itself. The best 

estimator of a data series, however, would be the path that best predicts the observed value at 

every given point in time i.e. for every arbitrarily chosen point in time, minimizes the error 

between the predicted value and the subset of data points that refer to that same point in time – 

that is, as Figure 5.1.A illustrates, the absolute (as opposed to quadratic) error: 

Figure 5.1.A: Quadratic vs. absolute error 

 

 

 

 

In other words, if we aim to minimize the modelled path’s error respective to the observed data 

series (i.e. to minimize the difference between the observations made at every new point in time 

Quadratic error 

. . 

. . 
. 

. 

. . . 

. . 
. 

. 

. 
Absolute error 

X X 

Time (t) Time (t) 

𝑋̂ = 𝑓(𝑡) 𝑋̂ = 𝑓(𝑡) 
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and their modelled forecast), then it is the absolute error we need to focus on – and, as we prove 

below, the probability path that minimizes the absolute error is the median, not the mean. 

There is a fairly standard proof that the median is the path minimizing the absolute error (here we 

follow a nicely straightforward proof provided in his blog by David E. Giles, retired Professor of 

Econometrics at the University of Victoria, Canada http://web.uvic.ca/~dgiles/blog/median2.pdf). 

Given a stochastic variable X subject to a distribution function 𝐹(𝑋), we define a value M such 

that it minimizes the expected absolute error respective to the observed values of X (i.e. 

𝐸[𝑋 −𝑀] where the operator 𝐸[∘] represents the expected value). Evidently the value of this 

error respective to the observations where 𝑋 > 𝑀 is positive, whereas the one for those where 

𝑋 < 𝑀 is negative, so the overall sum of errors is: 

𝐸[𝑋 −𝑀] = ∫ (𝑀 − 𝑋)𝑑𝐹
𝑀

−∞

+∫ (𝑋 −𝑀)
∞

𝑀

𝑑𝐹 

To minimize this function, we therefore need to differentiate it respective to M so that, applying 

Leibniz’s integral differentiation rule, we obtain: 

𝑑𝐸[𝑋 −𝑀]

𝑑𝑀
= (𝑀 −𝑀) + ∫ 𝑑𝐹

𝑀

−∞

− (𝑀 −𝑀) − ∫ 𝑑𝐹
∞

𝑀

= 0 

Which leads to: 

∫ 𝑑𝐹
𝑀

−∞

= ∫ 𝑑𝐹
∞

𝑀

 

By definition, the distribution function is such that ∫ 𝑑𝐹
∞

−∞
= 1 so, for ∫ 𝑑𝐹

𝑀

−∞
= ∫ 𝑑𝐹

∞

𝑀
 to hold, 

M must be chosen so that ∫ 𝑑𝐹
𝑀

−∞
= ∫ 𝑑𝐹

∞

𝑀
=
1

2
, that is, it must be the median. 

http://web.uvic.ca/~dgiles/blog/median2.pdf
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Just to double-check this is not a maximum, if we differentiate again respective to M we obtain: 

𝑑2𝐸[𝑋 −𝑀]

𝑑𝑀2
=
𝑑

𝑑𝑀
∫ 𝑑𝐹
𝑀

−∞

−
𝑑

𝑑𝑀
∫ 𝑑𝐹
∞

𝑀

= 𝑑𝐹(𝑀) + 𝑑𝐹(𝑀) = 2𝑑𝐹(𝑀) ≥ 0 

Which, again based on the definition of distribution function, must be positive or zero, as no 

individual probability 𝑑𝐹(𝑋) in the density function can be negative – so M corresponds to a 

minimum (or, at the extreme, to a saddle point). 

To illustrate what this means for the most common asymmetric probability diffusion processes 

we resort (following Gracia 2005 and Gracia 2012) to a widely used one: the geometric Brownian 

motion with drift 𝑑𝑋𝑡 = 𝑋𝑡(𝜇𝑑𝑡 + 𝜎𝑑𝑊𝑡), where 𝑋𝑡 represents a stochastic function, t designates 

time, 𝜇, 𝜎 ∈ ℜ are real constants and 𝑊𝑡 is a Wiener process such that 𝑊0 ≡ 0 (for the point in 

time 𝑡 = 0 chosen as the reference) and 𝑑𝑊𝑡 = 𝜔√𝑑𝑡, where 𝜔 is a standardized normally-

distributed (i.e. symmetrical) function such that 𝜔~𝑁(0,1). Assuming 𝑋𝑡,𝑊𝑡 ∈ 𝐼𝑡 (where 𝐼𝑡 

represents the set of information available at time t) the expected value of this function is: 

𝐸0 [
𝑑𝑋𝑡
𝑋𝑡
] = 𝜇𝑑𝑡 + 𝜎 𝐸0[𝑑𝑊𝑡]⏟    

=0

= 𝜇𝑑𝑡 

And therefore, integrating this expression deterministically: 

𝐸0[𝑋𝑡] = 𝑋0𝑒
𝜇𝑡 

Conversely, to find the complete distribution path we must integrate stochastically (using Itȏ’s 

lemma). To do this we first calculate the differential of the variable’s natural logarithm i.e.: 

𝑑 ln 𝑋𝑡 =
𝑑𝑋𝑡
𝑋𝑡

−
1

2
(
𝑑𝑋𝑡
𝑋𝑡
)
2

= 𝜇𝑑𝑡 + 𝜎𝑑𝑊𝑡 −
𝜎2

2
𝑑𝑡 
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Which after integration becomes: 

𝑋𝑡 = 𝑋0𝑒
(𝜇−

𝜎2

2
)𝑡+𝜎𝑊𝑡

 

Since we know the Brownian motion 𝑊𝑡 is symmetrically-distributed around the reference value 

𝑊0 ≡ 0, the median will be the path where 𝑊𝑡 = 0 and therefore (using the operator 𝑀[∘] to 

represent the median value): 

𝑀0[𝑋𝑡] = 𝑋0𝑒
(𝜇−

𝜎2

2
)𝑡
          ⟺           𝑀0 [

𝑑𝑋𝑡
𝑋𝑡
] = (𝜇 −

𝜎2

2
)𝑑𝑡 

Now consider an external observer intending to estimate the parameters that drive this stochastic 

variable e.g. through an ordinary least-squares regression on the basis of an observed data time 

series. To do so, the observer will have to linearize the function to fit the form: 

∆ ln𝑋𝑡 = 𝛼 + 𝛽∆𝑡 + 𝑢𝑡 

Where the operator Δ represents discrete increments (in the same way d represents infinitesimal 

ones), 𝛼, 𝛽 ∈ ℜ are the regression parameters and 𝑢𝑡 is a normally-distributed residual. At the 

same time, the underlying function to be estimated is: 

𝑋𝑡 = 𝑋0𝑒
(𝜇−

𝜎2

2
)𝑡+𝜎𝑊𝑡           ⟺           ∆ ln𝑋𝑡 = (𝜇 −

𝜎2

2
)∆𝑡 + 𝜎(𝑊𝑡+∆𝑡 −𝑊𝑡) 

Since the perturbation 𝜎(𝑊𝑡+∆𝑡 −𝑊𝑡) is normally-distributed, assuming the observed data series 

is long and representative enough, any such econometric analysis will result in the estimated 

regression parameters approximating 𝛼 = 0 and 𝛽 = (𝜇 −
𝜎2

2
) i.e. not the values corresponding 

to the mean but to the median path. 
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5.2. Appendix 2: Complete, efficient markets and the price of risk 

This appendix follows a standard approach to derive the price of risk in a complete, efficient 

market (see examples in e.g. Malliaris & Brock 1982 pp. 236-238 or Björk 1998 pp. 245-247). 

LEMMA 5.2.A: In a complete, efficient market there is a single price of risk 𝜆𝑡 such that the 

expected rate of return of the overall market portfolio will take the form 𝐸𝑡[𝑟𝑡] = 𝜆𝑡𝜎𝑡 + 𝑟̆𝑡. 

PROOF: Consider two contracts, whose market values at time t we indicate as 𝑃𝐴,𝑡 and 𝑃𝐵,𝑡, 

representing different derivatives on the market portfolio (e.g. forward contracts, or options or 

just the portfolio itself), so that their expected returns (which we will represent as 𝑟𝐴,𝑡 and 𝑟𝐵,𝑡) 

and their standard deviations (respectively 𝜎𝐴,𝑡 and 𝜎𝐵,𝑡) are different but, as a result of their 

underlying asset being the same, the random shocks they are exposed to (which we will represent 

as the white noise 𝑊𝑡) are perfectly correlated to each other. Therefore, as long as none of the 

contracts has reached a termination date, their returns will of course be 𝑟𝐴,𝑡 + 𝜎𝐴,𝑡𝑊𝑡 and 𝑟𝐵,𝑡 +

𝜎𝐵,𝑡𝑊𝑡. In a complete market it would always be possible to build a riskless portfolio (whose 

value we represent as 𝑉𝑡) by buying one unit of asset a and simultaneously short-selling a number 

b of units of asset B: the volume b of units of B sold short would be fine-tuned to ensure the 

resulting portfolio is risk free. Such a portfolio would therefore have a value equal to: 

𝑉𝑡 = 𝑃𝐴,𝑡 − 𝑏𝑃𝐵,𝑡 

In an efficient market, however, prices instantly adjust to preclude any potential arbitrage 

opportunity so, if this portfolio is risk-free, then to rule out any arbitrage its return must be the 

market risk-free rate, which we will represent as 𝑟̆𝑡 i.e.: 

𝑟̆𝑡𝑉𝑡 = (𝑟𝐴,𝑡 + 𝜎𝐴,𝑡𝑊𝑡)𝑃𝐴,𝑡 − 𝑏(𝑟𝐵,𝑡 + 𝜎𝐵,𝑡𝑊𝑡)𝑃𝐵,𝑡 
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Of course, for the portfolio to be risk free when each one of the two contracts carries some risk 

separately, the variabilities of A and B must cancel out so that 𝜎𝐴,𝑡𝑃𝐴,𝑡 = 𝑏𝜎𝐵,𝑡𝑃𝐵,𝑡, which can be 

achieved by selecting b so that: 

𝑏 =
𝜎𝐴,𝑡𝑃𝐴,𝑡
𝜎𝐵,𝑡𝑃𝐵,𝑡

 

Replacing into the portfolio value equation this leads to: 

𝑉𝑡 = 𝑃𝐴,𝑡 −
𝜎𝐴,𝑡𝑃𝐴,𝑡
𝜎𝐵,𝑡𝑃𝐵,𝑡

𝑃𝐵,𝑡 =
𝜎𝐵,𝑡 − 𝜎𝐴,𝑡
𝜎𝐵,𝑡

𝑃𝐴,𝑡 

Which, replacing now into the return equation implies that: 

𝑟̆𝑡
𝜎𝐵,𝑡 − 𝜎𝐴,𝑡
𝜎𝐵,𝑡

𝑃𝐴,𝑡 = 𝑟𝐴,𝑡𝑃𝐴,𝑡 − 𝑟𝐵,𝑡
𝜎𝐴,𝑡𝑃𝐴,𝑡
𝜎𝐵,𝑡𝑃𝐵,𝑡

𝑃𝐵,𝑡 

𝑟̆𝑡(𝜎𝐵,𝑡 − 𝜎𝐴,𝑡) = 𝑟𝐴,𝑡𝜎𝐵,𝑡 − 𝑟𝐵,𝑡𝜎𝐴,𝑡 

𝑟𝐴,𝑡 − 𝑟̆𝑡
𝜎𝐴,𝑡

=
𝑟𝐵,𝑡 − 𝑟̆𝑡
𝜎𝐵,𝑡

 

Now, as in complete, efficient markets this expression must be valid for every conceivable asset 

within any timeframe, we conclude that there is a single market price of risk (which we represent 

by 𝜆𝑡) that applies to the overall market portfolio and all its derivatives i.e.: 

𝜆𝑡 =
𝑟𝑡 − 𝑟̆𝑡
𝜎𝑡

 

Q.E.D. 
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LEMMA 5.2.B: In a complete, efficient market the expected return of any asset A will take the 

form 𝐸𝑡[𝑟𝐴,𝑡] = 𝜆𝑡𝜌̅𝐴,𝑡𝜎𝐴,𝑡 + 𝑟̆𝑡. 

PROOF: Consider a portfolio V combining a specific asset A with a weight of a over the total 

portfolio value and the market portfolio representing the rest (i.e. 1 − 𝑎). Its total return will be: 

𝑟𝑉,𝑡 = 𝑎𝑟𝐴,𝑡 + (1 − 𝑎)𝑟𝑡 = 𝑎(𝐸𝑡[𝑟𝐴,𝑡] + 𝜎𝐴,𝑡𝑊𝐴,𝑡) + (1 − 𝑎)(𝐸𝑡[𝑟𝑡] + 𝜎𝑡𝑊𝑡) 

Where 𝑊𝐴,𝑡, 𝑊𝑡 are the white noises of the returns of asset A and the market portfolio (whose 

correlation coefficient is, as defined above, 𝜌̅𝐴,𝑡). Hence the expected portfolio return will be: 

𝐸𝑡[𝑟𝑉,𝑡] = 𝑎𝐸𝑡[𝑟𝐴,𝑡] + (1 − 𝑎)𝐸𝑡[𝑟𝑡] 

Whereas the portfolio standard deviation will be: 

𝜎𝑉,𝑡 = √𝑎2𝜎𝐴,𝑡
2 + (1 − 𝑎)2𝜎̅𝑡

2 + 2𝜌̅𝐴,𝑡𝜎̅𝑡𝜎𝐴,𝑡𝑎(1 − 𝑎) 

In Lemma 5.2.A we established that the expected market portfolio return is 𝐸𝑡[𝑟𝑡] = 𝜆𝑡𝜎𝑡 + 𝑟̆𝑡 and 

therefore its differential respective to the standard deviation is 
𝑑𝐸𝑡[𝑟𝑡]

𝑑𝜎̅𝑡
= 𝜆𝑡. Hence, of course, in the 

particular case of 𝑎 = 0 the differential of the expected return of portfolio V respective to its 

standard deviation will of course also be: 

𝑎 = 0     ⇒      
𝑑𝐸𝑡[𝑟𝑉,𝑡]

𝑑𝜎𝑉,𝑡
= 𝜆𝑡 =

𝐸𝑡[𝑟𝑡] − 𝑟̆𝑡
𝜎𝑡

 

At the same time, the calculus composition rule allows to decompose expression 
𝑑𝐸𝑡[𝑟𝑉,𝑡]

𝑑𝜎𝑉,𝑡
 as follows: 
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𝑑𝐸𝑡[𝑟𝑉,𝑡]

𝑑𝜎𝑉,𝑡
=
𝑑𝐸𝑡[𝑟𝑉,𝑡]

𝑑𝜎𝑉,𝑡

𝑑𝑎

𝑑𝑎
=
𝑑𝐸𝑡[𝑟𝑉,𝑡]

𝑑𝑎
(
𝑑𝜎𝑉,𝑡
𝑑𝑎

)
−1

 

Therefore, if we differentiate 𝐸𝑡[𝑟𝑉,𝑡] and 𝜎𝑉,𝑡 by a and then equate 𝑎 = 0 we obtain that: 

𝑑𝐸𝑡[𝑟𝑉,𝑡]

𝑑𝜎𝑉,𝑡
=
𝑑𝐸𝑡[𝑟𝑉,𝑡]

𝑑𝑎
(
𝑑𝜎𝑉,𝑡
𝑑𝑎

)
−1

=
𝐸𝑡[𝑟𝐴,𝑡] − 𝐸𝑡[𝑟𝑡]

𝜌̅𝐴,𝑡𝜎𝐴,𝑡 − 𝜎𝑡
 

Thus, equating both expressions we obtain: 

𝑑𝐸𝑡[𝑟𝑉,𝑡]

𝑑𝜎𝑉,𝑡
=
𝐸𝑡[𝑟𝐴,𝑡] − 𝐸𝑡[𝑟𝑡]

𝜌̅𝐴,𝑡𝜎𝐴,𝑡 − 𝜎𝑡
=
𝐸𝑡[𝑟𝑡] − 𝑟̆𝑡

𝜎𝑡
 

𝐸𝑡[𝑟𝐴,𝑡] = 𝜌̅𝐴,𝑡
𝜎𝐴,𝑡
𝜎𝑡
𝐸𝑡[𝑟𝑡] − (𝜌̅𝐴,𝑡

𝜎𝐴,𝑡
𝜎𝑡
− 1) 𝑟̆𝑡 = 𝜌̅𝐴,𝑡

𝜎𝐴,𝑡
𝜎𝑡
(𝐸𝑡[𝑟𝑡] − 𝑟̆𝑡) + 𝑟̆𝑡 

𝐸𝑡[𝑟𝐴,𝑡] = 𝜆𝑡𝜌̅𝐴,𝑡𝜎𝐴,𝑡 + 𝑟̆𝑡 

Q.E.D. 

5.3. Appendix 3: The production function 

This appendix follows Gracia (2011) to derive the production function from Assumptions 2 to 5. 

LEMMA 5.3.A: Under Assumptions 2 to 5, the economic production function may be expressed 

as 𝑌𝑗,𝑡 = 𝐴𝑗,𝑡𝑋𝑗,𝑡

1

𝜇𝑗,𝑡
, where the integration coefficient 𝐴𝑗,𝑡 is a function independent of 𝑋𝑗,𝑡 and 𝑌𝑗,𝑡. 

PROOF: Since producers fine-tune their demand for inputs in order to maximize their expected 

net profit (Assumption 2) and a finite maximum profit point exists and at that point the profit 

function is twice-differentiable respective to the input variables (Assumption 3) then at the 
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maximum point the differential must equal zero. Furthermore, as both the input quantities 𝑥𝑖,𝑗,𝑡 

and the marginal costs 𝑐𝑖,𝑗,𝑡 are known at the time t when they are selected (Assumption 5), then 

the net profit maximum is at a point where, for every input 𝑥𝑖,𝑗,𝑡: 

𝐸𝑡 [
𝜕𝛱𝑗,𝑡

𝜕𝑥𝑖,𝑗,𝑡
] = 𝐸𝑡 [

𝜕𝒴𝑗,𝑡

𝜕𝑥𝑖,𝑗,𝑡
−
𝜕𝒞𝑗,𝑡

𝜕𝑥𝑖,𝑗,𝑡
] =

𝜕𝑌𝑗,𝑡

𝜕𝑥𝑖,𝑗,𝑡
− 𝑐𝑖,𝑗,𝑡 = 0          ⟺          

𝜕𝑌𝑗,𝑡

𝜕𝑥𝑖,𝑗,𝑡
= 𝑐𝑖,𝑗,𝑡 

Which, replacing into the definition of mark-up, leads to: 

1

𝜇𝑗,𝑡
≡ 𝑐𝑙,𝑗,𝑡

𝑋𝑗,𝑡

𝑌𝑗,𝑡
≡
1

𝑌𝑗,𝑡
∑ 𝑐𝑖,𝑗,𝑡𝑥𝑖,𝑗,𝑡

𝑛

𝑖=1

=
1

𝑌𝑗,𝑡
∑

𝜕𝑌𝑗,𝑡

𝜕𝑥𝑖,𝑗,𝑡
𝑥𝑖,𝑗,𝑡

𝑛

𝑖=1

 

On the other hand, we know that, per Euler’s homogeneous function theorem, Assumption 4 

implies that, for every production unit 𝑗 = 1…𝑚: 

𝑏𝑗,𝑡𝑌𝑗,𝑡 =∑
𝜕𝑌𝑗,𝑡

𝜕𝑥𝑖,𝑗,𝑡
𝑥𝑖,𝑗,𝑡

𝑛

𝑖=1

 

And therefore, combining the two expressions we find that: 

𝑏𝑗,𝑡 =
1

𝜇
𝑗,𝑡

 

Which implies that, since 𝑏𝑗,𝑡 is by definition independent of the input, so must be 𝜇𝑗,𝑡. 

Selecting commodity a as aggregation unit of the combined input 𝑋𝑗,𝑡 ≡
1

𝑐𝑙,𝑗,𝑡
∑ 𝑐𝑖,𝑗,𝑡𝑥𝑖,𝑗,𝑡
𝑛
𝑖=1  means 

that an increment of one unit of 𝑥𝑙,𝑗,𝑡, other things being equal, leads to an increment of the same 

magnitude in 𝑋𝑗,𝑡 (i.e. 
𝜕𝑋𝑗,𝑡

𝜕𝑥𝑙,𝑗,𝑡
≡ 1) and therefore: 
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1

𝜇𝑗,𝑡
≡ 𝑐𝑙,𝑗,𝑡

𝑋𝑗,𝑡

𝑌𝑗,𝑡
=
𝜕𝑌𝑗,𝑡

𝜕𝑥1,𝑗,𝑡

𝑋𝑗,𝑡

𝑌𝑗,𝑡
=
𝜕𝑌𝑗,𝑡

𝜕𝑋𝑗,𝑡

𝑋𝑗,𝑡

𝑌𝑗,𝑡
 

𝜕𝑌𝑗,𝑡

𝜕𝑋𝑗,𝑡
=
1

𝜇𝑗,𝑡

𝑌𝑗,𝑡

𝑋𝑗,𝑡
 

Thus, integrating this partial differential equation does indeed lead to the following homogeneous 

function of degree 
1

𝜇𝑗,𝑡
: 

𝑌𝑗,𝑡 = 𝐴𝑗,𝑡𝑋𝑗,𝑡

1
𝜇𝑗,𝑡

 

Where the integration coefficient 𝐴𝑗,𝑡 (which we will refer to as “productivity coefficient”) is 

necessarily a function independent of both 𝑋𝑗,𝑡 and 𝑌𝑗,𝑡 (but not necessarily of the mark-up 𝜇𝑗,𝑡). 

Q.E.D. 

5.4. Appendix 4: Production unit’s solvency path 

The purpose of this appendix is to provide a formal proof of the propositions in subsection 3.3. 

LEMMA 1: Under Assumptions 2 to 8, the combined input growth rate may be expressed as: 

𝑑𝑋𝑗,𝑡

𝑋𝑗,𝑡
= 𝐸𝑡 [

𝑑𝑋𝑗,𝑡

𝑋𝑗,𝑡
] + 𝜇𝑗,𝑡𝑋𝑗,𝑡𝑑𝑍𝑗,𝑡 

PROOF: If we take the logarithm of Lemma 5.3.A (Appendix 3) for any given unit we obtain: 

𝑌𝑗,𝑡 = 𝐴𝑗,𝑡𝑋𝑗,𝑡

1
𝜇𝑗,𝑡          ⟺         ln 𝑌𝑗,𝑡 = lnA𝑗,𝑡 +

ln𝑋𝑗,𝑡

𝜇𝑗,𝑡
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Differentiating then stochastically (through Itȏ’s lemma) both sides of this expression: 

𝑑ln 𝑌𝑗,𝑡 = 𝑑 lnA𝑗,𝑡 +
𝑑 ln𝑋𝑗,𝑡

𝜇𝑗,𝑡
−
𝑑𝜇𝑗,𝑡

𝜇𝑗,𝑡
2 ln 𝑋𝑗,𝑡 +

1

2

(𝑑𝜇𝑗,𝑡)
2

𝜇𝑗,𝑡
3 ln 𝑋𝑗,𝑡 −

𝑑𝜇𝑗,𝑡

𝜇𝑗,𝑡
2 𝑑 ln 𝑋𝑗,𝑡 

Which, resorting again to Itȏ’s lemma to differentiate the natural logarithms, becomes: 

𝑑𝑌𝑗,𝑡

𝑌𝑗,𝑡
−
1

2
(
𝑑𝑌𝑗,𝑡

𝑌𝑗,𝑡
)

2

=
𝑑𝐴𝑗,𝑡

𝐴𝑗,𝑡
−
1

2
(
𝑑𝐴𝑗,𝑡

𝐴𝑗,𝑡
)

2

+
1

𝜇𝑗,𝑡
[
𝑑𝑋𝑗,𝑡

𝑋𝑗,𝑡
−
1

2
(
𝑑𝑋𝑗,𝑡

𝑋𝑗,𝑡
)

2

] −
𝑑𝜇𝑗,𝑡

𝜇𝑗,𝑡
2 ln𝑋𝑗,𝑡 +

1

2

(𝑑𝜇𝑗,𝑡)
2

𝜇𝑗,𝑡
3 ln𝑋𝑗,𝑡 −

𝑑𝜇𝑗,𝑡

𝜇𝑗,𝑡
2 [

𝑑𝑋𝑗,𝑡

𝑋𝑗,𝑡
−
1

2
(
𝑑𝑋𝑗,𝑡

𝑋𝑗,𝑡
)

2

] 

Per Assumption 5, the solvency rate 𝑠𝑗,𝑡 ≡
𝐾𝑗,𝑡

𝐾𝑗,𝑡
∗  is deterministic at time t (i.e. 𝑠𝑗,𝑡 ⊂ 𝐼𝑡). Hence, 

squaring Assumption 8 on both sides, (𝜇𝑗,𝑡𝜆𝑗[𝑠𝑗,𝑡 − 1])
2
= (𝑑𝜇𝑗,𝑡)

2
= 𝑑𝜇𝑗,𝑡𝑑𝑋𝑗,𝑡 = 𝑑𝜇𝑗,𝑡𝑑𝑡 = 0, 

which here implies that: 

𝑑𝑌𝑗,𝑡

𝑌𝑗,𝑡
−
1

2
(
𝑑𝑌𝑗,𝑡

𝑌𝑗,𝑡
)

2

=
𝑑𝐴𝑗,𝑡

𝐴𝑗,𝑡
−
1

2
(
𝑑𝐴𝑗,𝑡

𝐴𝑗,𝑡
)

2

+
1

𝜇𝑗,𝑡
[
𝑑𝑋𝑗,𝑡

𝑋𝑗,𝑡
−
1

2
(
𝑑𝑋𝑗,𝑡

𝑋𝑗,𝑡
)

2

] −
𝑑𝜇𝑗,𝑡

𝜇𝑗,𝑡
2 ln 𝑋𝑗,𝑡 

Now, if we replace 
𝑑𝑌𝑗,𝑡

𝑌𝑗,𝑡
 and 

𝑑𝐴𝑗,𝑡

𝐴𝑗,𝑡
 according to Assumptions 7 and 8, this translates into: 

𝐸𝑡 [
𝑑𝑌𝑗,𝑡

𝑌𝑗,𝑡
] + 𝜍𝑗.𝑡𝑑𝑊𝑗,𝑡 + 𝜎𝑗,𝑡𝑑𝑍𝑗,𝑡 −

1

2
(
𝑑𝑌𝑗,𝑡

𝑌𝑗,𝑡
)

2

= 𝐸𝑡 [
𝑑𝐴𝑗,𝑡

𝐴𝑗,𝑡
] + 𝜍𝑗.𝑡𝑑𝑊𝑗,𝑡 −

1

2
(
𝑑𝐴𝑗,𝑡

𝐴𝑗,𝑡
)

2

+
1

𝜇𝑗,𝑡
[
𝑑𝑋𝑗,𝑡

𝑋𝑗,𝑡
−
1

2
(
𝑑𝑋𝑗,𝑡

𝑋𝑗,𝑡
)

2

] −
𝑑𝜇𝑗,𝑡

𝜇𝑗,𝑡
2 ln 𝑋𝑗,𝑡 

Which, rearranging terms, becomes: 

𝜎𝑗,𝑡𝑑𝑍𝑗,𝑡 = 𝐸𝑡 [
𝑑𝐴𝑗,𝑡

𝐴𝑗,𝑡
] − 𝐸𝑡 [

𝑑𝑌𝑗,𝑡

𝑌𝑗,𝑡
] +

1

2
(
𝑑𝑌𝑗,𝑡

𝑌𝑗,𝑡
)

2

−
1

2
(
𝑑𝐴𝑗,𝑡

𝐴𝑗,𝑡
)

2

+
1

𝜇𝑗,𝑡
[
𝑑𝑋𝑗,𝑡

𝑋𝑗,𝑡
−
1

2
(
𝑑𝑋𝑗,𝑡

𝑋𝑗,𝑡
)

2

] −
𝑑𝜇𝑗,𝑡

𝜇𝑗,𝑡
2 ln 𝑋𝑗,𝑡 

As the only stochastic component of the right hand side of this expression is 
1

𝜇𝑗,𝑡

𝑑𝑋𝑗,𝑡

𝑋𝑗,𝑡
, if we square 

both sides we obtain that (
𝑑𝑋𝑗,𝑡

𝑋𝑗,𝑡
)
2

= (𝜇𝑗,𝑡𝜎𝑗,𝑡)
2
𝑑𝑡 and therefore: 
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𝑑𝑋𝑗,𝑡

𝑋𝑗,𝑡
= 𝐸𝑡 [

𝑑𝑋𝑗,𝑡

𝑋𝑗,𝑡
] + 𝜇𝑗,𝑡𝜎𝑗,𝑡𝑑𝑍𝑗,𝑡 

Q.E.D. 

LEMMA 2: Under Assumptions 2 to 10, a unit’s capital value growth may be expressed as: 

𝑑𝐾𝑗,𝑡

𝐾𝑗,𝑡
= 𝐸𝑡 [

𝑑𝐾𝑗,𝑡

𝐾𝑗,𝑡
] + 𝜇𝑗,𝑡𝜎𝑗,𝑡𝑑𝑍𝑗,𝑡 

PROOF: If we obtain the expected value of capital and then apply Assumptions 5 and 9 then: 

𝐸𝑡[𝓇𝑗,𝑡𝐾𝑗,𝑡] = 𝐸𝑡[𝓇𝑗,𝑡]⏟    
≡𝑟𝑗,𝑡

𝐾𝑗,𝑡 = 𝐸𝑡[𝛱𝑗,𝑡] = 𝐸𝑡[𝒴𝑗,𝑡 − 𝑐𝜉,𝑡𝑋𝑗,𝑡] = 𝑌𝑗,𝑡 − 𝑐𝜉,𝑗,𝑡𝑋𝑗,𝑡 

𝑟𝑗,𝑡𝐾𝑗,𝑡 = (𝜇𝑗,𝑡 − 1)
𝜕𝑌𝑗,𝑡

𝜕𝑋𝑗,𝑡
𝑋𝑗,𝑡 = (𝜇𝑗,𝑡 − 1)𝑐𝜉,𝑗,𝑡𝑋𝑗,𝑡 

So, if we now compute the natural logarithm of this expression: 

𝑑 ln𝐾𝑗,𝑡 + 𝑑 ln 𝑟𝑗,𝑡 = 𝑑 ln(𝜇𝑗,𝑡 − 1) + 𝑑 ln 𝑐𝜉,𝑗,𝑡 + 𝑑 ln𝑋𝑗,𝑡 

And then differentiate per Itȏ’s lemma: 

𝑑𝐾𝑗,𝑡

𝐾𝑗,𝑡
−
1

2
(
𝑑𝐾𝑗,𝑡

𝐾𝑗,𝑡
)

2

=
𝑑𝜇𝑗,𝑡

𝜇𝑗,𝑡 − 1
−
1

2
(
𝑑𝜇𝑗,𝑡

𝜇𝑗,𝑡 − 1
)

2

+
𝑑𝑋𝑗,𝑡

𝑋𝑗,𝑡
−
1

2
(
𝑑𝑋𝑗,𝑡

𝑋𝑗,𝑡
)

2

+
𝑑𝑐𝜉,𝑗,𝑡

𝑐𝜉,𝑗,𝑡
−
1

2
(
𝑑𝑐𝜉,𝑗,𝑡

𝑐𝜉,𝑗,𝑡
)

2

−
𝑑𝑟𝑗,𝑡

𝑟𝑗,𝑡
+
1

2
(
𝑑𝑟𝑗,𝑡

𝑟𝑗,𝑡
)

2

 

Assumption 8 implies that (𝑑𝜇𝑗,𝑡)
2
= 0 and Assumption 10 that the variabilities of 𝑐𝜉,𝑗,𝑡 and 𝑟𝑗,𝑡 

are perfectly correlated so they cancel each other. Squaring both sides we obtain (
𝑑𝐾𝑗,𝑡

𝐾𝑗,𝑡
)
2

= (
𝑑𝑋𝑗,𝑡

𝑋𝑗,𝑡
)
2

 

so, resorting now to Lemma 1, the rate of increase of the unit’s asset value becomes: 
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𝑑𝐾𝑗,𝑡

𝐾𝑗,𝑡
=

𝑑𝜇𝑗,𝑡

𝜇𝑗,𝑡 − 1
+
𝑑𝑐𝜉,𝑗,𝑡

𝑐𝜉,𝑗,𝑡
+
𝑑𝑋𝑗,𝑡

𝑋𝑗,𝑡
−
𝑑𝑟𝑗,𝑡

𝑟𝑗,𝑡
= 𝐸𝑡 [

𝑑𝐾𝑗,𝑡

𝐾𝑗,𝑡
] + 𝜇𝑗,𝑡𝜎𝑗,𝑡𝑑𝑍𝑗,𝑡 

Q.E.D. 

THEOREM: Under Assumptions 1 to 12, a production unit’s solvency ratio follows the path: 

𝑑𝑠𝑗,𝑡

𝑠𝑗,𝑡
= 𝜆𝑡𝜌̅𝑗,𝑡𝜇𝑗,𝑡𝜎𝑗,𝑡𝑑𝑡 + 𝜇𝑗,𝑡𝜎𝑗,𝑡𝑑𝑍𝑗,𝑡 

PROOF: If we take a production unit’s solvency ratio, calculate its natural logarithm and then 

differentiate again per Itȏ’s lemma we obtain:  

𝑠𝑗,𝑡 ≡
𝐾𝑗,𝑡

𝐾𝑗,𝑡
∗        ⟺        ln 𝑠𝑗,𝑡 ≡ ln𝐾𝑗,𝑡 − ln𝐾𝑗,𝑡

∗  

𝑑𝑠𝑗,𝑡

𝑠𝑗,𝑡
−
1

2
(
𝑑𝑠𝑗,𝑡

𝑠𝑗,𝑡
)

2

=
𝑑𝐾𝑗,𝑡

𝐾𝑗,𝑡
−
1

2
(
𝑑𝐾𝑗,𝑡

𝐾𝑗,𝑡
)

2

−
𝑑𝐾𝑗,𝑡

∗

𝐾𝑗,𝑡
∗ +

1

2
(
𝑑𝐾𝑗,𝑡

∗

𝐾𝑗,𝑡
∗ )

2

 

If we apply Assumption 11 (which implies 𝐾𝑗,𝑡
∗  is risk-free, so that (

𝑑𝐾𝑗,𝑡
∗

𝐾𝑗,𝑡
∗ )

2

= 0) and square both 

sides of this expression we find that (
𝑑𝑠𝑗,𝑡

𝑠𝑗,𝑡
)
2

= (
𝑑𝐾𝑗,𝑡

𝐾𝑗,𝑡
)
2

 so, replacing above, we obtain: 

𝑑𝑠𝑗,𝑡

𝑠𝑗,𝑡
=
𝑑𝐾𝑗,𝑡

𝐾𝑗,𝑡
−
𝑑𝐾𝑗,𝑡

∗

𝐾𝑗,𝑡
∗  

If we now replace 
𝑑𝐾𝑗,𝑡

𝐾𝑗,𝑡
 and 

𝑑𝐾𝑗,𝑡
∗

𝐾𝑗,𝑡
∗  with their definitions this expression translates into: 

𝑑𝑠𝑗,𝑡

𝑠𝑗,𝑡
= (𝓇𝑗,𝑡 −

𝐶𝑗,𝑡

𝐾𝑗,𝑡
)𝑑𝑡 − (𝑟𝑗,𝑡

∗ −
𝐶𝑗,𝑡
∗

𝐾𝑗,𝑡
∗ )𝑑𝑡 
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Where, squaring both sides of the expression, we obtain that (
𝑑𝑠𝑗,𝑡

𝑠𝑗,𝑡
)
2

= (
𝑑𝐾𝑗,𝑡

𝐾𝑗,𝑡
)
2

= (𝓇𝑗,𝑡𝑑𝑡)
2
 which, 

combined with Lemma 2, yields: 

𝓇𝑗,𝑡𝑑𝑡 = 𝐸𝑡[𝓇𝑗,𝑡]⏟    
≡𝑟𝑗,𝑡

+ 𝜇𝑗,𝑡𝜎𝑗,𝑡𝑑𝑍𝑗,𝑡 = 𝑟𝑗,𝑡 + 𝜇𝑗,𝑡𝜎𝑗,𝑡𝑑𝑍𝑗,𝑡 

Since we know from Assumption 11 that the return of the liquidation value is the market risk-free 

interest rate i.e. 𝑟𝑗,𝑡
∗ = 𝑟̆𝑡. Hence, if we apply Assumption 1 i.e. express the risk premium 𝑟𝑗,𝑡 − 𝑟̆𝑡 

as the market price of risk 𝜆𝑡 multiplied by the non-diversifiable portion of its risk then: 

𝑑𝑠𝑗,𝑡

𝑠𝑗,𝑡
= 𝜆𝑡𝜌̅𝑗,𝑡𝜇𝑗,𝑡𝜎𝑗,𝑡𝑑𝑡 + 𝜇𝑗,𝑡𝜎𝑗,𝑡𝑑𝑍𝑗,𝑡 + (

𝐶𝑗,𝑡
∗

𝐾𝑗,𝑡
∗ −

𝐶𝑗,𝑡

𝐾𝑗,𝑡
)𝑑𝑡 

Which, applying now Assumption 12, simplifies into: 

𝑑𝑠𝑗,𝑡

𝑠𝑗,𝑡
= 𝜆𝑡𝜌̅𝑗,𝑡𝜇𝑗,𝑡𝜎𝑗,𝑡𝑑𝑡 + 𝜇𝑗,𝑡𝜎𝑗,𝑡𝑑𝑍𝑗,𝑡 

Q.E.D. 

5.5. Appendix 5: Median cycle path 

The purpose of this appendix is to obtain the analytical expression of the median path cycle in 

subsection 3.4. To obtain the median we develop the increments of the logarithm of 𝑠𝑗,𝑡 i.e.: 

𝑑 ln 𝑠𝑗,𝑡 =
𝑑𝑠𝑗,𝑡

𝑠𝑗,𝑡
−
1

2
(
𝑑𝑠𝑗,𝑡

𝑠𝑗,𝑡
)

2

= 𝜆𝑡𝜌̅𝑗,𝑡𝜇𝑗,𝑡𝜎𝑗,𝑡𝑑𝑡 + 𝜇𝑗,𝑡𝜎𝑗,𝑡𝑑𝑍𝑗,𝑡⏟                  

=
𝑑𝑠𝑗,𝑡
𝑠𝑗,𝑡

−
1

2
𝜇𝑗,𝑡
2 𝜎𝑗,𝑡

2 𝑑𝑡⏟      

=(
𝑑𝑠𝑗,𝑡
𝑠𝑗,𝑡

)
2

 

Therefore, by integrating this expression we obtain: 
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𝑠𝑗,𝑡 = 𝑠𝑗,0𝐸𝑥𝑝 [∫𝜆𝑡𝜌̅𝑗,𝑡𝜇𝑗,𝑡𝜎𝑗,𝑡𝑑𝑡 + ∫𝜇𝑗,𝑡𝜎𝑗,𝑡𝑑𝑍𝑗,𝑡 −
1

2
∫𝜇𝑗,𝑡

2 𝜎𝑗,𝑡
2 𝑑𝑡] 

Since 𝑑𝑍𝑗,𝑡 is defined as a symmetric, normally-distributed stochastic process, so that its median 

path is zero, whereas, per Assumptions 8 and 13, the increments of both 𝜇𝑗,𝑡 and 𝜎𝑗,𝑡 in the lapse 

between t and t+dt are known  at time t, then ∫𝜇𝑗,𝑡𝜎𝑗,𝑡𝑑𝑍𝑗,𝑡 = 0, so the solvency median path is: 

𝑀𝑡 [
𝑑𝑠𝑗,𝑡

𝑠𝑗,𝑡
] = 𝜆𝑡𝜌̅𝑗,𝑡𝜇𝑗,𝑡𝜎𝑗,𝑡𝑑𝑡 −

1

2
𝜇𝑗,𝑡
2 𝜎𝑗,𝑡

2 𝑑𝑡 

If we now combine this median path with Assumptions 13 and 14 as well as with the mark-up 

growth path defined in Assumption 8 then we obtain the following path expression: 

𝑀𝑒𝑑𝑖𝑎𝑛 𝑃𝑎𝑡ℎ =

{
 
 

 
 𝑠̇𝑗,𝑡 ≡

𝑑𝑠𝑗,𝑡

𝑑𝑡
= 𝑠𝑗,𝑡𝜎𝑗 (𝜆𝜌̅𝑗 −

𝜎𝑗

2
𝜇𝑗,𝑡) 𝜇𝑗,𝑡

−−−−− −−−−−−−−

𝜇̇𝑗,𝑡 ≡
𝑑𝜇𝑗,𝑡

𝑑𝑡
= 𝜇𝑗,𝑡𝜃𝑗(𝑠𝑗,𝑡 − 1) }

 
 

 
 

 

Where 𝜎𝑗 , 𝜌̅𝑗 , 𝜃𝑗  and 𝜆 are positive constants, 𝑠𝑗,𝑡 and 𝜇𝑗,𝑡 are variables and 𝑠̇𝑗,𝑡 and 𝜇̇𝑗,𝑡 their 

differentials respective to time. To study the system’s dynamics, we build its Jacobian matrix i.e.: 

𝐽( 𝑠𝑗,𝑡, 𝜇𝑗,𝑡) =

(

 
 

𝜕𝑠̇𝑗,𝑡

𝜕𝑠𝑗,𝑡
= 𝜎𝑗 (𝜆𝜌̅𝑗 −

𝜎𝑗

2
𝜇𝑗,𝑡) 𝜇𝑗,𝑡 ;

𝜕𝑠̇𝑗,𝑡

𝜕𝜇𝑗,𝑡
= 𝑠𝑗,𝑡𝜎𝑗(𝜆𝜌̅𝑗 − 𝜎𝑗𝜇𝑗,𝑡)

− − − −− −− −− −−−−−− −
𝜕𝜇̇𝑡
𝜕𝑠𝑗,𝑡

= 𝜇𝑗,𝑡𝜃𝑗 ;
𝜕𝜇̇𝑡
𝜕𝜇𝑗,𝑡

= 𝜃𝑗(𝑠𝑗,𝑡 − 1)
)

 
 

 

Resorting to the Linearization or Hartman–Grobman theorem we can characterize the dynamic 

behavior of this function around any given point 𝑠𝑗,𝑡 = 𝑆, 𝜇𝑗,𝑡 = 𝑀 by analyzing its eigenvalues 

Λ1 and Λ1, which would be the solutions of the determinant: 
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𝐷𝑒𝑡 |
Λ − 𝜎𝑗 (𝜆𝜌̅𝑗 −

𝜎𝑗

2
𝑀)𝑀 ; −𝑆𝜎𝑗(𝜆𝜌̅𝑗 − 𝜎𝑗𝑀)

− − − −−−− −− −−−−−−−
−𝑀𝜃𝑗 ; Λ − 𝜃𝑗(𝑆 − 1)

| = 0 

Or, what is the same, the solutions of the characteristic function: 

(Λ − 𝜎𝑗 (𝜆𝜌̅𝑗 −
𝜎𝑗

2
𝑀)𝑀) (Λ − 𝜃𝑗(𝑆 − 1)) − 𝑀𝜃𝑗𝑆𝜎𝑗(𝜆𝜌̅𝑗 − 𝜎𝑗𝑀) = 0 

In this system there is an obvious fixed point at 𝑆 = 1,  𝑀 =
2𝜆𝜌̅𝑗

𝜎𝑗
 where both the solvency rate 

and the mark-up remain constant i.e. 𝑠̇𝑗,𝑡 = 𝜇̇𝑗,𝑡 = 0. Hence its Jacobian matrix is: 

𝐽( 𝑆,M) = (

0 ; −𝜎𝑗𝜆𝜌̅𝑗
−−−−−−− − − −−−−−−−

𝜃𝑗
2𝜆𝜌̅𝑗

𝜎𝑗
 ; 0

) 

So the eigenvalues for this fixed point will be: 

Λ2 + 2𝜆2𝜌̅𝑗
2𝜃𝑗 = 0            ⟺            Λ = ±𝑖𝜆𝜌̅𝑗√2𝜃𝑗         𝑤ℎ𝑒𝑟𝑒 𝑖 ≡ √−1 

Per Hartman–Grobman’s theorem, a fixed point is stable (i.e. small deviations tend to revert back 

to it) if the real part of both roots is negative, whereas if at least one eigenvalue is positive then 

the fixed point is unstable and, when both real parts are zero (as is the case here), then the system 

is dynamically stable and describes an elliptic orbit around the fixed point 𝑠𝑗,𝑡 = 1,  𝜇𝑗,𝑡 =
2𝜆𝜌̅𝑗

𝜎𝑗
 

with a frequency of 𝜔 = |√Λ1Λ2|, which in this case means 𝜔 = |𝜆𝜌̅𝑗√2𝜃𝑗|, and therefore also a 

wavelength from peak to peak (or trough to trough) of  𝒯 =
2𝜋

|𝜆𝜌̅𝑗√2𝜃𝑗|
 (where 𝜋 ≡ 3.14159…). 
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