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A 500-year flood history of the arid environments of southeastern Spain. 

The case of the Almanzora River. 

Carlos Sánchez-García1, Lothar Schulte1, Filipe Carvalho1 and Juan Carlos 

Peña1,2. 

1FluvAlps Research Group, Department of Geography, University of Barcelona, 

Spain. 

2Meteorological Service of Catalonia, Barcelona, Spain. 

Abstract 

The study of flood events, especially analyses of flood magnitude and flood 

frequency, is crucial for the planning and management of settlements and 

infrastructure located near river channels. This work studies the historical floods 

of the Almanzora catchment, in southeastern Spain, one of the driest regions in 

Europe. We compile, describe and statistically process flood data that extend 

back to the year 1500 AD. The data were collected from historical sources held 

in both local and regional archives. The analysis of the flood record shows that 

the most destructive events occurred in 1550, 1729, 1879 and 1973, the last of 

these being the most catastrophic event on record. The synoptic configurations 

of the four most destructive floods in the time-series were explored and found to 

present the same type of pattern (cold drop). Historical flood discharges were 

estimated by calibrating historical flood magnitudes with instrumental data. This 

assessment was undertaken using a cumulative function applied to flood 

episodes that exceeded the threshold of magnitudes ≥3. The flood frequency 

analysis performed by combining instrumental and historical data shows that 

catastrophic events, such as the 1973 flood with a discharge of 5600 m3 s-1, 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

occur with a return period of less than 100 years. We also estimate that high 

magnitude floods with a discharge between 684 and 3081 m3 s-1 can occur 

every 10-50 years. During recent decades, several municipalities and, above 

all, the coastal area of the Almanzora catchment have experienced significant 

urban growth and land use changes, as a result of the development of both 

tourism and extensive agricultural. This, in turn, has contributed to an increase 

in flood exposure. 

Keywords: Historical floods; Flood Frequency Analysis; Discharge estimation; 

Natural Hazards. 

1. INTRODUCTION 

Floods are the natural hazard that affects the greatest number of people 

worldwide (Bouaakkaz et al., 2018) and which causes the highest global 

economic losses (Benfield, 2016). In recent decades, exposure to floods has 

increased dramatically in certain regions (Tanoue et al., 2016), due to an 

increase in world population but also to human occupation of and inadequate 

land use in floodplains and alluvial fans. Yet, in other regions, flood activity 

during the 20th century fell thanks to effective mitigation measures (Schulte et 

al., 2019a). Given the threat they pose, it is crucial we improve our knowledge 

of flood events, especially as regards flood frequency and magnitude, flood 

triggering mechanisms, and different types of forcing.  

The study of historical floods allows us to extend the flood series further back in 

time and so enhance our understanding of the influence of climate change on 

flood dynamics (Pfister, 1999; Glaser et al., 2010). Studies of this nature 

depend mainly on historical records of casualties and of damage suffered by 
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buildings and infrastructure and descriptions of the affected areas. Many such 

studies have focused their attention on the rivers of Central Europe and Great 

Britain, where handwritten archives stretch back to the Middle Ages (Brázdil et 

al., 1999, 2006; Glaser and Stangl, 2003; Glaser et al., 2010; Wetter et al., 

2011; Elleder et al., 2013; Schulte et al., 2015, Macdonald and Sangster 2017; 

Schulte et al., 2019b). In Spain, too, many studies of historical floods have been 

undertaken. Some examined catchments of the Mediterranean basin (Capel 

Molina, 1987; Barriendos and Martín-Vide, 1998; Machado et al., 2011; Pino et 

al., 2016 and Balasch et al., 2018), while others studied catchments of the 

Atlantic basin (Barriendos and Coeur, 2004; Barriendos and Rodrigo, 2006 and 

Santos et al., 2018). Although the results of these studies are indisputably 

relevant to our knowledge of the historical floods of the Iberian rivers, an 

exhaustive analysis of the historical databases of various basins in the arid 

southeastern region has yet to be undertaken (Barriendos et al., 2014).  

This study reconstructs the flood events of the Almanzora River. Few historical 

flood studies have been conducted in this area (but see Ferre Bueno, 1979; 

Capel Molina, 1987), due, in the main, to its remote rural history, located some 

distance from Spain’s main cities and production centers. As a result, few 

instrumental flood series  are available and most of the extant data are either 

recent or discontinuous, for example, low-frequency aggradation pulses in the 

flood plains, reconstructed by the geomorphological studies undertaken by 

Schulte (2002). Despite this lack of information, historical flood data can be 

found in municipal historical archives and local newspapers (Brázdil et al., 2006; 

Barriendos et al., 2014). Moreover, in the early 1990s, the local government 

began to take a growing interest in the area’s flood hazard, which led to an 
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increase in the amount of flood data and to studies of the occurrence of floods 

and the vulnerability of urbanized areas and infrastructure. This interest was 

spurred by the development of tourism in the region and an increasing 

awareness of the hazardous location of hotels and apartments on the area’s 

floodplains. 

An examination of the historical evolution of settlements in the southeastern 

Iberian Peninsula shows that most of its older towns were located on higher 

ground, including Pleistocene fluvial and marine terraces, the paleosurfaces of 

alluvial fans, pediments, hills and slopes (Schulte, 2002). For this reason, most 

of its historical settlements have not been seriously affected by floods.  

In recent decades, however, the regions have rather undergone land use 

changes with its traditional dryland-farming being replaced by tourism and 

intensive agriculture, exposing a larger part of the population to the risk of 

flooding. This process has been characterized by a lack of awareness – 

intransigence, even – on the part of local real estate developers, making it 

necessary to improve knowledge of local floods and their main triggering 

factors. In this regard, the historical study of the Almanzora catchment, with one 

of the highest number of catastrophic flood events in the region, is of particular 

interest.  

Our paper aims to gather historical flood data for the Almanzora catchment and, 

moreover, we seek to estimate the flood frequency of its most catastrophic 

events. In order to improve our knowledge of the triggering patterns of 

catastrophic floods, we also undertake an analysis of the synoptic 

configurations of high magnitude events over the last 450 years.  
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2. REGIONAL SETTING 

The Almanzora catchment is considered one of the main catchments in the 

eastern Andalusian region, in terms of its fresh water resources. The catchment 

occupies an area of 2,611 km2  and is 105 km long. It runs from west to east, 

along the northern flank of the Filabres Range that reaches a maximum height 

of 2,168 m a.s.l. (Calar Alto peak). The river is fed mainly by precipitation and 

snowmelt from the Filabres, Estancias and Almagro ranges (see Fig. 1).  

The basin’s geology is dominated by rocks from the Pennibetic basement and 

from Neogene and Quaternary basin infill. The lower catchment forms part of 

the Vera basin, a wider accumulation comprising interbedded layers of marine 

and continental origin (Völk, 1966; Schulte and Julià, 2001). The catchment 

landscape is highly diverse, shifting from steep slopes in the main mountain 

ranges to an almost flat surface in the tectonic basins and coastal plain where 

the river flows into the Mediterranean Sea (Fig. 1). In these areas, we find 

pediments, alluvial fans and sequences of fluvial terraces (Schulte and Julià, 

2001; Schulte et al., 2008).  
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Figure 1. Location of the Almanzora catchment and the region’s main settlements and the demographic 

evolution of the town of Cuevas del Almanzora. 

The headwater catchment of the Almanzora River has a seasonal flow that is 

affected mainly by precipitation events during the fall and winter months. The 

mean precipitation of the Almanzora valley on the northern slopes of the 

Filabres range (SAIH Hidrosur, 2018) ranges between 312.2 mm yr-1 at the Oria 

meteorological station (located near the southern slopes of the Estancias range) 

and 325.6 mm yr-1 at the Tahal meteorological station. The lower catchment is 

marked by a drier climate, due to higher temperatures and lower annual 

precipitation (Vera mean annual precipitation: 312 mm yr-1), contributing to an 

ephemeral flow regime. River flow is only appreciable during winter or during 

torrential rainstorms during summer and autumn, as was the case during the 

flood event of September 28th of 2012, when a precipitation of 240.4 mm/24 h 

was recorded in the Almagro range (SAIH Hidrosur, 2012).  

Land cover and land use in the study area are categorized as disused and are 

typical of the dryland of southeastern Spain. Traditionally, the land cover is 
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dominated by semi-desert open woodland and shrubland. On glacis surfaces, 

fluvial terraces and valley floors, there is a prevalence of agricultural land. 

Agricultural land use in recent decades has seen a dramatic change towards an 

intensification of cropping, with cultivated land occupying an area of 30,873 ha 

(Vera-Rebollo et al., 2016), representing 11.8% of the lower Almanzora 

catchment. This has meant the introduction of intensive irrigation cropping. In 

contrast, the catchment’s upper basin is dedicated to extensive farming, which 

occupies an area corresponding to approximately 47% (Taguas et al., 2008).  

Traditional dryland irrigation river management has been adopted at various 

points along the main valleys, a practice that dates back at least to the Moorish 

occupation (from the 8th until the end of the 15th century) and probably even 

earlier, to the Roman period (Bermúdez, 2014). Historical hydraulic 

interventions on the river channel consisted mainly of a complex system of 

agricultural channels, terraces and small dams that were used to divert and 

store the river sediment (normally floods) in the agricultural plots. Modern 

hydraulic interventions include the construction of a reservoir in the lower 

Almanzora course, built between 1986 and 1993, to meet the increasing 

demand for crop irrigation in the region. The last 15 km of the Almanzora River 

have been channelized since 1994, in order to protect settlements and 

agricultural land from flooding. 

3. MATERIAL AND METHODS 

In order to reconstruct flood frequencies in the Almanzora catchment, we 

compiled flood data from documentary sources, including municipal historical 

archives and old newspapers, photographs and research papers (Capel Molina, 

1987; Paprotny et al., 2018). Instrumental data from the Santa Bárbara and 
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Cantoria gauging stations were also used for purposes of calibration, but these 

data series are relatively short term. For example, the gauging record at the 

Santa Bárbara station began in 1962, but the series are not continuous. There 

is a gap between 1973 and 1975, coinciding with the 1973 flood event that 

damaged the gauging station. Meteorological data are used to link high intensity 

precipitation events with flood episodes. The oldest meteorological station 

opened in 1945 and is located at Albox, a historical settlement on the Rambla 

del Saliente valley floor, a northern tributary of the Almanzora River.  

3.1. Historical data 

Extreme flood events recorded by the government and published in the 

“Catálogo de Inundaciones Históricas” (National Historical Floods Catalog; 

DGPCE, 2011) were first identified. This information was then compared and 

validated to publications describing flooding in the Almanzora catchment (Capel 

Molina, 1987) and nearby regions (Machado et al., 2011). Likewise, information 

about flood events retrieved from the municipal proceedings (see details below) 

were first classified, then validated and classified again according to a flood 

magnitude index (Table 1). We identified several inconsistencies in the flood 

data drawn from the National Historical Floods Catalog. For example, the 

figures for some dates had been transposed, affecting not only days and 

months, but even years (e.g. instead of 11/09/1891, the catalog recorded 

11/09/1819). 

The most accurate sources used in this study were the aforementioned 

municipal proceedings (local government records) from the secular settlements 

of Cuevas del Almanzora and Vera. The documents from Albox were not well 

conserved and could not be integrated into the flood series.  
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The Cuevas del Almanzora archive is well preserved and includes municipal 

proceedings that date back to the 16th century. Descriptions of flood events 

were found in documents from the 17th century onwards. Most of the events are 

described in detail and provide information about the number of fatalities, the 

areas flooded, the destruction of roads and the damage caused to buildings. 

Older written sources were in a poorer state of conservation. Pages were 

missing from several books from the 16th century, pages were also ripped and 

entire years were missing from the record. 

One of the most important periods in the demographic history of Cuevas del 

Almanzora occurred during the second half of the 19th century. During this 

period, Cuevas del Almanzora became the main settlement for the region’s 

mining activities, which centered on the Almagro Range and the west of the 

Almagrera Range. This mining activity attracted many people in search of work 

and prosperity (Fernández-Bolea, 2006). Indeed, the town’s population rose to 

reach 26,000 inhabitants in 1900, more than twice its present-day population of 

12,000. Thanks to this activity, the newspaper El Minero de Almagrera was 

founded in 1870. The paper kept local inhabitants informed about events in the 

mining industry, but also recorded other daily events of note.  

The Vera municipal archive lies outside the Almanzora catchment and, although 

the town does not lie close to a major river floodplain, we found several 

descriptions of floods on the Almanzora River from local inhabitants that owned 

buildings or agricultural plots in flood-prone areas. The documents held in this 

archive are the oldest of all the archives in this region, dating back to the 15th 

century. From these records, it is possible to identify and obtain descriptions of 

flood events from the beginning of the 16th century. 
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In addition, we consulted the Albox municipal proceedings. However, the 

descriptions of flood events were much poorer than in the other primary sources 

described above. The documents available in these archives did not contribute 

to increase the number of flood events, nor was it possible to extract more 

information about the events already identified from the other primary and 

secondary sources.  

Old newspapers proved to be one of the most important sources of information. 

Local newspapers included reports from the last 150 years and, so, provided a 

considerable amount of flood information for the 19th and 20th centuries. The 

oldest local newspaper in the region is the Crónica Meridional and dates back to 

1866. The El Minero de Almagrera, one of the most important and best-known 

newspapers in the region, was founded a couple of years later. Publication of 

this newspaper stopped in 1910 (Fernández-Bolea, 2014) but it includes several 

descriptions of flood events (e.g. the 1879 flood reported on its front page, as 

shown in Fig. 2). Many of the descriptions of flood events in these two local 

newspapers are accurate and the flood information was taken into consideration 

for the classification of flood magnitudes. Other sources of information included 

letters to the editor and first hand reports from local inhabitants affected by the 

flood event. These letters are typically very detailed because, as well as 

informing the readers of the flood damage suffered, a primary objective of the 

sender was to obtain monetary relief from the national or regional authorities, 

therefore they are largely credible and accurate, but perhaps prone to 

exaggeration to secure more relief (Wetter et al., 2011; Macdonald et al., 2014). 
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Figure 2. Front page of the historical newspaper El Minero de Almagrera, 1879. The left-hand column 

(highlighted in red) describes a flood event on October 14
th 

of 1879. 

3.2. Classification of flood magnitudes 

The magnitude of each flood event was determined according to its social-

economic impact and field observations conducted in the floodplain areas. This 

impact ranges from the loss of human life and the destruction of buildings and 

infrastructure to damage to agricultural plots and infrastructure adjacent to the 

river channel. Flood magnitudes were grouped into four classes: magnitude 1 – 

ordinary floods; magnitude 2 – extraordinary floods; magnitude 3 – catastrophic 

floods; and magnitude 4 – flood events that caused significant impact on more 
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than one river stretch (see Table 1 for a detailed description of each magnitude 

class). 

Information about the flood events obtained from the municipal proceedings 

included the following details: the event date, number of fatalities and/or 

damage to buildings, infrastructure and agricultural plots affected, water levels 

reached during the flooding, number of agricultural fields affected, and the 

coordinates of the recorded flood-data. However, this characterization was not 

entirely homogeneous given that the event description varied from year to year, 

being highly dependent on the individual responsible for recording the event. 

Moreover, some flood events (mostly of low magnitude), which only caused 

damage to agricultural fields, were not as exhaustively described as other 

higher magnitude events that caused fatalities and damage to buildings and 

infrastructure. These low magnitude events also tend to be overlooked, as 

people, it has been shown, typically forget non-catastrophic events (Wetter, 

2017; Schulte et al., 2019b, this issue). It appears, therefore, that when these 

low magnitude events are being documented the memory of the facts and the 

area affected is often blurred and, on occasion, even lost in the mist of time 

(Barriendos et al., 2014). 

In addition to classifying the flood magnitudes, a matrix of flood damage 

categories was also constructed. To do so, we adhered to the methodology 

described in Brázdil et al. (2012) and Schulte et al. (2015). To validate poorly 

reported events we also followed the methodology proposed by Barriendos et 

al. (2014).  

Table 1. Classification of historical floods according to the magnitude. 
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Flood 

magnitude 
Classification Primary Indicators 

Secondary 

Indicators 

1 Ordinary floods -Flooding, erosion, damage to 

crops next to the riverbank 

-Short event 

duration 

2 Extraordinary 

floods 

-Agriculture plots affected at some 

distance from the riverbank. 

-Damage to buildings and 

hydraulic infrastructure 

-Severe 

damage to 

fields close to 

the river 

-Loss of 

livestock  

3 Catastrophic 

floods 

-Fatalities  

 

-Partial or complete destruction of 

settlements  

 

-Flood event is 

recognized by 

name (common 

in very 

important 

foods)  

-Population 

migration 

-High economic 

impact 

4 +1 Added when the event was recorded in more than one stretch of the 

river. 

3.3.  Discharge estimation and flood frequency analysis 

In order to estimate the recurrence of flood events, a flood frequency analysis 

(FFA) was performed on the Almanzora flood series. FFAs have been widely 

used in similar studies employing historical data (Leese, 1973; Stedinger and 

Cohn, 1986; Salinas et al., 2016) and requires a knowledge of the peak 
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discharge reached in each flood event. Instrumental discharge data were 

obtained from three sites: the Serón, Cantoria and Santa Bárbara gauging 

stations (see Fig. 1). Discharge values for events with no instrumental readings 

were calculated as follows: i) flood magnitudes were assigned to all historical 

and 20th century flood events, according to the flood damage classification 

presented above in section 3.2.; ii) median values were assigned to each flood 

magnitude based on the measured flood data obtained at the Santa Bárbara 

gauging station, and extrapolated to all historically documented floods (Salinas 

et al., 2016).  

To calculate the return period, we applied the cumulative function described in 

Bayless and Reed (2001, p. 34) and Macdonald et al. (2006).   

Equation 1: 

𝑃𝑖 =
𝑘

𝑛
+

𝑛 − 𝑘

𝑛
 

𝑖 − 𝑘 −  𝛼

𝑛𝑠 − 𝑒 + 1 − 2𝛼
 

where k is the total number of extreme floods above the threshold (≥M3); e is 

the number of extreme floods during the systematic (instrumental) record; h is 

the length of the historical (pre-instrumental) period (years); s is the length of 

systematic records (years); n represents the combined number of years in the 

records (h + s); and α is the 0.44 plotting position constant introduced by 

Cunnane (1978).   

The choice of a augmented distribution is justified by the fact that this is today a 

well-established method that provides a good fit for humid mid-latitude rivers 

(Macdonald et al., 2006) and the rivers of the Mediterranean basin (Barrera et 

al., 2006; Barriendos et al., 2014). The flood data used to calculate the return 
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period include all available instrumental data from the Serón, Cantoria and 

Santa Bárbara gauging stations, the estimated river discharge in hydraulic 

reports (flood events of 1888 and 1924) and the estimated discharge for  each 

magnitude class. We established a bottom threshold (3600 m3s-1) so as to only 

consider floods of a higher magnitude and avoid the potential errors attributable 

to lower magnitude floods.    

Because of the uncertainties associated with the interpretation of historical 

descriptions, large error ranges need to be considered when classifying floods. 

However, to reduce these errors to a minimum, we applied the method 

described by Neppel et al. (2010) and Salinas et al. (2016), which calculates the 

error associated with each flood magnitude separately (Fig. 7). 

3.4. Analysis of the meteorological trends from major flood events 

In order to understand the meteorological trends that trigger extreme flood 

events, we analyzed the synoptic patterns of the four major flood events that 

occurred over the last 450 years (namely, March 20th of 1550, November 9th of 

1729, October 14th of 1879 and October 19th of 1973).  

The synoptic configurations of the floods from the pre-instrumental period 

(1500-1850) were simulated from the sea level pressure (in hPa; SLP) 

composite of the 13 runs of full forcing simulation taken from the daily values of 

the Last Millennium Ensemble Project Atmosphere Post Processed Data 

developed by the Community Earth System Model-Last Millennium Ensemble 

(CESM-LME). The CESM-LME’s mission is to produce weather map 

simulations for the period from 850 to 2005 onwards with a horizontal spatial 
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resolution of 2°. The CESM-LME employs version 1.1 of CESM with the 

Community Atmosphere Model version 5 (Hurrell et al. 2013). 

The LME project used a ~2-degree atmosphere and land, ~1-degree ocean and 

sea ice version of CESM-CAM5_CN (1.9x2.5_gx1v6). The following ensemble 

members were chosen for the transient evolution of paleoclimate from AD 1500 

to 1849: solar intensity, volcanic emissions, greenhouse gases, aerosols, land 

use conditions, and orbital parameters. 

Quantile-quantile mapping transformation (Amengual et al., 2012) was used to 

correct the paleoclimate SLP grid. The procedure involves calculating the 

changes, quantile by quantile, in the cumulative frequency distribution (CFD) of 

daily SLP of LME outputs and the observed data. The statistical adjustment is 

based on the relationship between the ith ranked value of the corresponding 

CFD for the past calibrated model (AD 1500-1849), the control instrumental or 

baseline (AD 1850-2006), and the raw control simulated model (AD 1850-2006). 

The analyses of the two most recent events were based on the synoptic 

sequence from the day of the flood plus six days prior to the event. In this way 

we are able to analyze the evolution of meteorological conditions before the 

flood event.   

The synoptic patterns were reconstructed from a reanalysis of the grids of SLP, 

the 850 hPa temperature (T850) and the 500 hPa geopotential (Z500). The grid-

data were taken from the 20th Century V2 Reanalysis Project (20CRP), provided 

by the NOAA/OAR/ESRL PSD, Boulder, Colorado (Compo et al., 2011) and the 

extended temporal coverage from the NCEP/NCAR Reanalysis Project (Kalnay 
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et al., 1996). The 20CRP data begin in 1871 and have a horizontal spatial 

resolution of 2°. 

In addition to the synoptic patterns, we include an analysis of flood trends based 

on temperature and precipitation data. Temperature data were obtained from a 

composite of three air temperature series recorded at Almería Airport (1951-

2018), Alicante (1901-2018) and Oran-Algeria (1852-2012). The meteorological 

station at Almeria Airport provides the longest continuous temperature record in 

the region and, as such, is the reference station for our composite temperature 

series (Figure 9). The other two meteorological stations are located some 

distance from the study area, but show a good correlation with the temperatures 

recorded at Almeria Airport (correlation coefficients of 0.9 for Alicante and 0.8 

for Oran-Algeria). The precipitation series was collected from the Albox station 

(1945-2018), located in the Almanzora catchment (Fig. 1).  

4. RESULTS 

4.1. Distribution of flood events  

From our analysis of documentary sources and the instrumental discharge data, 

we were able to identify the occurrence of 53 flood events over the last 500 

years. Of these events, 44 were described in historical sources (municipal 

records, technical reports and letters to newspapers) while references to the 

other 13 were found in more recent newspaper sources (years or centuries after 

the flood event itself).  

The distribution of flood events in Figure 3 shows a significant difference 

between the number of flood events M<3 occurring between the 16th and mid-

19th centuries, compared to the number of floods after 1850.  This difference 
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can be attributed to the poor preservation of documents from the 16th to the 18th 

centuries and to the omission from these records of lower magnitude events. 

Neither the newspapers nor scientific papers provided further information on the 

flood events of these centuries. We also observe a marked increase in the 

number of flood events since the appearance of the first newspapers. 

 

Figure 3. Distribution of flood events of the Almanzora catchment since the 16
th
 century. 

The seasonality of flood events presents a clear predominance of flooding 

during the summer and autumn months. Thus, 63% of floods occurred during 

the autumn months, above all in September and October, whereas 21% 

occurred during the summer months (JJA). These seasons are prone to the 

occurrence of short episodes of intense precipitation that contribute to the 

occurrence of catastrophic flood events. The triggering of these flood events is 

usually associated with cold drops, a synoptic situation that is common in the 

western Mediterranean Sea (Llasat and Ramis, 1996). For example, the 

catastrophic flood events of 1729, 1879 and 1973 (magnitude M=4) occurred in 

the months of September and October, because of such cold drops. Floods in 

the other seasons are much less frequent: 9% in spring and 7% in winter. 
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4.2. Historical flood series 

Figure 4 shows the frequency of floods of the Almanzora catchment since the 

year 1550, classified according to the four magnitude classes described above 

in section 3.2. The majority of flood events (37) are classified as magnitudes 1 

and 2, twelve flood events are classified as magnitude 3, while four events are 

classified as magnitude 4 (the floods of 1550, 1729, 1879 and 1973). As 

highlighted in section 4.1, there is a marked difference in the distribution of flood 

events between the periods 1500 until 1870 and the more recent period (1870 

to 2018). In this first period, there are no records of small floods, due in all 

probability to the lack interest on the part of the local government and the fact 

that fewer records have been conserved from those years. This may explain in 

part the marked surge in flood events – above all M1 and M2 events – recorded 

from the mid-19th century onwards. Flood clusters of these magnitudes can be 

identified between 1647 and 1676, 1750 and 1780, 1870 and 1900, 1966 and 

1977 and 1989 and 2018.  

Taking into account all the flood events in the Almanzora catchment since 1500, 

five high frequency clusters of flood magnitudes M2 to M4 can be identified. The 

first cluster occurs between 1647 and 1676, and comprises four flood events, 

one extraordinary (M2) and three catastrophic flood events (M3). A further three 

flood events occurred in this period, but no detailed descriptions were found in 

the written sources.  

The second cluster begins in 1750 and ends in 1780. During this period, flood 

events were less frequent than in the first cluster. Despite there being fewer 

flood events, the historical sources from this period describe it as being 

hydrologically very active in terms of flood magnitudes and from the point of 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

view of the behavior of the river, with various high discharge events being 

recorded.  

The third cluster occurs between 1870 and 1900 with a total of 14 flood events: 

8 extraordinary floods (M2), 2 catastrophic flood events (M3) and 1 magnitude 4 

event. The descriptions of the flood events of this period are considerably more 

detailed, benefitting from the reports published in the local press, most notably 

El Minero de Almagrera (Fig. 2). Moreover, many of these flood events caused 

considerable damage to the settlements located near the river’s main channel, 

including the town of Cuevas del Almanzora. This occurred despite the 

construction of several retention walls (continuous or discontinuous) – given the 

name of the Malecón del Pilar – in Cuevas del Almanzora by the local 

government, in order to keep buildings, infrastructure and agricultural fields safe 

from floods. However, the M3 and M4 flood event levels all rose above this 

protective wall and caused severe damage to agricultural fields and the 

urbanized area closest to the riverbed.  

The fourth cluster occurs between 1966 and 1977, a period marked by a very 

high frequency of floods, and with an eight-year subperiod in which six flood 

events took place. It was during this period that the 1973 flood event (M4), one 

of the most catastrophic events in this catchment, occurred, with severe 

consequences for the settlements located in the main valley floor. Indeed, this is 

one of the few well-documented examples of a magnitude 4 flood in the 

Almanzora catchment. 

The fifth and last cluster began in 1989 and has continued to the present day. 

During these last 27 years, in which flood events have reached magnitudes of 1 

and 2 only, there have been significant changes to the main channel and the 
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natural river dynamics. The construction of the Cuevas del Almanzora dam and 

the channeling of the last 15 km of the Almanzora River have contributed to a 

reduction in flood risk in the lower river.  

 

Figure 4. Frequency of flood events of the Almanzora River since the year 1500. Events are classified 

according to four classes of magnitude. 

4.3. Flood discharge and return period 

The flood peak at the Santa Bárbara gauging station (1962-2018) reached a 

maximum of 5600 m3 s-1 during the 1973 flood event (17/10/1973), while 

minimum peak discharges ranging between 45 and 800 m3 s-1 were recorded 

during magnitude 1 events. 

Based on the calibration of the 20th century flood magnitudes (all levels of 

magnitude) using the measured annual peak discharges at the St. Bárbara 

gauging station (1962-2018), estimated discharges could then be extrapolated 

to the flood magnitudes reconstructed in the documentary sources for the 

period 1550 to 1962. Figure 5 shows the distribution of the instrumental data 

from the Santa Bárbara gauging station, together with each category of 

historical flood magnitude described in section 4.2. From this distribution, we 

obtained the median discharge of each magnitude class, which was used as the 
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estimated value for the historical flood events (Salinas et al., 2016; Bösmeier et 

al., 2017). Figure 5 also shows that the median discharge is closer to the lower 

discharge values and that, in each class, the discharges included in the 3rd and 

4th quartiles are less frequent. According to these results, ungauged events of 

magnitude 1 correspond to a discharge of 138 m3 s-1; those of magnitude 2 

correspond to a discharge of 1300 m3 s-1; those of magnitude 3 correspond to a 

discharge of 3600 m3 s-1; and, those of magnitude 4 correspond to the 

maximum peak discharge of 5600 m3 s-1 as recorded during the 1973 flood 

event.  

 

Figure 5. Flood distribution according to flood magnitudes. Discharges are related to real peak 

discharge data recorded at the Santa Bárbara gauging station. 

The frequency of flood events, together with the instrumental and estimated 

discharges (Fig. 6), shows that there were at least three extreme events (1550, 

1729 and 1879), which probably reached a maximum peak discharge 

comparable to that attained by the 1973 flood event. An analysis of Figure 6 

highlights the variability in discharge recordings obtained from instrumental 

data, thus, illustrating the variability in the annual peak discharge over the last 

50 years. The few high magnitude flood events during this period (1973 and 
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2012) had a discharge greater than 1000 m3 s-1, which is indicative of the type 

of flow that can occur in this catchment during flash flood events.   

 

Figure 6. Instrumental and estimated flood discharges of the Almanzora River. The 1888 and 1924 flood 

events are shown in orange, their respective discharges being estimated from secondary sources 

(Agencia Andaluza del Agua, 2009). 

The calculation of the return period based on the augmented distribution of 

instrumental and estimated historical flood discharges (see Fig. 7 and Table 2) 

shows that magnitude 1 events can occur every 1 to 5 years; magnitude 2 

events every 10 to 15 years; and, magnitude 3 events every 50 years. Finally, 

events such as the 1973 flood, with a peak discharge of 5600 m3 s-1, can occur 

approximately every 100 years. A comparison of our calculations with the return 

period estimated by the Andalusia Water Agency (Table 2) indicates that the 

latter significantly underestimates the flood risk. Our return periods are shorter 

because our calculations incorporate historical information about extreme flood 

events. The return period (Fig. 7) for higher peak discharges is associated with 

a considerably larger uncertainty than that of low magnitude floods. This can be 
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attributed to the fewer events with peak discharges over 2000 m3 s-1 (here, just 

10 floods). 

 

Figure 7. Return period and discharge of instrumental and historical flood events in the Almanzora 

catchment. Instrumental data measured at the Santa Bárbara gauging station. 

Table 2. Flood return periods and peak discharge estimations of the Almanzora  River according to this 

paper (column 2 and 3) and the Andalusian Water Agency (AWA or Agencia Andaluza del Agua, 2009).  

Return 

period  

[yrs]  

Instr. and hist. data 

1500-2018 

discharge [m3 s-1] 

Instr. and estim. data 

1879-2018 

discharge [m3 s-1] 

Instr. data AWA 

1962-2009 

discharge [m3 s-1] 

5 385 250 65 

10 684 809  

50 3082 4010 661 

100 6076 >10000  

4.4. Meteorological characterization of major flood events 

In general, the synoptic patterns linked to large floods in the semi-arid 

catchments of southeastern Spain are characterized by low-pressure systems 

that advect warm, wet air in the low levels of the troposphere from the 
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Mediterranean Sea. Configurations of this type can produce severe convective 

systems at the mesoscale. 

4.4.1.  March, 1550. 

According to the 13 runs of full forcing simulation from the CESM-LME model, 

the meteorological conditions in 1550 (Fig.8) were characterized by an 

anticyclonic blocking over the European continent that provoked a persistent 

southeastern flux advecting a warm, wet mass of air from the Mediterranean 

Sea. The configuration was enhanced by the presence of a low-pressure area 

in the southwest of the Iberian Peninsula.  

4.4.2.  November 9-10, 1729. 

The atmospheric configuration in 1729 (Fig.8) was characterized by a strong 

low-pressure system over the Atlantic Ocean to the northwest of the Azores 

Islands and, furthermore, by a high-pressure over the Mediterranean Sea. This 
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configuration provoked a wet, warm flux from the south over the study area. 

 

Fig. 8. Left panel. March, 1550 flood. Synoptic simulation of composite SLP fields (in hPa) of the 13 runs of 

full forcing simulation from the CESM-LME. Right panel. As left panel but for November 9-10, 1729 flood. 

4.4.3.  October 14, 1879 

The analysis included a 7-day time sequence to investigate the meteorological 

conditions prior to the occurrence of the flood event. The meteorological 

conditions associated with the flood event that occurred on October 14th of 1879 

were characterized by an anticyclonic blocking over the European continent that 

generated a persistent southeastern flux, transferring advecting warm, wet air 

masses from the Mediterranean Sea into the catchment (Fig. 9A). The flow was 

enhanced by the presence of a low-pressure area, located in the southwest of 
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the Iberian Peninsula. In addition, cold air dominated the 850 hPa level, 

between the second and fourth day of the 7-day time sequence. In contrast, the 

middle levels of the troposphere did not present convection conditions. 

4.4.4.  October 18-19, 1973. 

The 7-day synoptic configuration sequence associated with the 1973 flood 

event (Fig. 9B) was characterized by a low-pressure area centered over the 

northwest of the Iberian Peninsula, in conjunction with a cold front. The passage 

of this front generated a cut-off configuration on the fifth day of the 7-day time 

sequence, coinciding with a warm-wet eastern flux that entered the study area 

in the low levels of troposphere. The dynamic of this configuration was 

strengthened by the presence of cold air at the 850 hPa level and negative 

anomalies of the geopotential in the middle levels of the troposphere. This 

atmospheric pattern caused severe convective instability, with large amounts of 

precipitation in the study area. 
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5. DISCUSSION 

5.1. Historical flood trends 
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To interpret the flood data series for the Almanzora catchment over the last 500 

years requires that we consider two different periods of data density: the first 

extends from 1500 until 1870; the second from 1870 to the present day (Fig. 4). 

Periods marked by socio-economic instability, such as the constitutional reign of 

Alfonso XIII (1902-1923) and the Spanish Civil War (1936-1939), present fewer 

flood events.  

The differences between these two periods are not related to climate variability, 

but rather to i) flood perception, ii) recording and iii) the conservation of local 

documentary sources referring to lower magnitude floods. The publication of 

local newspapers contributed notably to the increase in flood data over the last 

150 years. This increase went hand-in-hand with the increase in human 

occupation of the catchment (exposure) and of flood-prone areas, making local 

communities more vulnerable to floods. The growth in human occupation at the 

end of the 19th century was related to an expansion in the area dedicated to 

farmland, which in turn contributed to an increased concern among local 

inhabitants for the effects of smaller floods, which could damage the agricultural 

plots located closest to the river channel. During the recent decades of 

urbanization (tourism) and construction of infrastructure, local government 

awareness of flood risk and flood losses has grown significantly (Macdonald 

and Sangster, 2017).  

On the understanding that the past flood data series (from the 16th to mid-19th 

centuries) could be biased by the lack of records for low magnitude floods 

(specifically M1 and M2 events), we can only effectively analyze the trends of 

high magnitude events (M3 and M4 events). The occurrence of these events 

increased towards the end of the 19th and the beginning of the 20th centuries, 
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with three M3 events and one M4 event being recorded in a relatively short 

period of time (50 years). The earlier flood series, from the 16th to the 18th 

centuries, presents a maximum of two high magnitude events in a 50-year 

interval, with the exception of the decade of the 1650s when two M3 events 

were recorded in less than a 10-year interval. The increase in high magnitude 

events at the end of the 19th century is almost certainly associated with the rise 

in population and increased flood vulnerability. Moreover, it might also be 

related to the cool climate associated with the end of the Little Ice Age and the 

advance of fluvial terraces and glaciers in Sierra Nevada (Schulte, 2002), a 

change in the atmospheric patterns over this region (Machado et al., 2011), and 

an increase in the precision of flood records. Indeed, Schulte (2002) has dated 

the aggradation of flood deposits in the Aguas River, using 210Pb and 14C dating 

techniques, to the onset (15th century) and end (19th century) of the Little Ice 

Age. However, it should be stressed that what increased is not the flood 

magnitude in itself, but rather the magnitude of the damages recorded.  

If we focus on the periods without any flood events (i.e. the flood gaps), the 

majority of gaps occurring between the 16th and mid-19th centuries can be 

attributed to the lack of M1 and M2 events. An analysis of recent data (last 100 

years) shows, however, that while flood gaps may occur, they are never longer 

than one or two decades. Were we to compare flood gaps in recent periods to 

precipitation data for last 65 years (Fig. 10), we find evidence to show they are 

associated with periods of severe drought and low precipitation during the 

summer and autumn seasons (Estrela et al., 1999). Indeed, when temperature 

and precipitation series are plotted against the flood series for the last 150 

years (Fig. 10), we are able to identify some patterns related to the frequency of 
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high magnitude floods. Thus, on the one hand, the largest flood pulses occurred 

during periods of cooler temperature, periods that are also prone to the 

occurrence of high magnitude flood events (M3 and M4); while, on the other 

hand, the warmest temperature pulses seem to correlate only with secondary 

flood pulses in the catchment, related mainly with low magnitude floods. 

According to the precipitation series from the Albox station (1945-2018), major 

floods correlate well with positive precipitation trends (see Fig. 9). This 

correlation is highly significant in the cases of the 1973 and 2012 flood events.  

It should also be stressed that after a long dry period the damage attributable to 

flood events can be much greater. This reflects the fact that, in this region, after 

a long period of drought, the soils become more compact and capillaries 

become narrower, contributing to a lower soil permeability during high intensity 

precipitation events, which means that the majority of rainfall turns into surface 

run off (Nadal-Romero et al., 2018). 
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Figure 10.  Comparison of the flood series for the Almanzora catchment (1850-2018) and its summer-

autumn temperature and precipitation data. Temperature data were obtained as the composite of three air 

temperature series from Almería Airport (1951-2018), Alicante (1901-2018) and Oran-Algeria (1852-2012). 

Precipitation data come from the Albox station (1945-2018). Temperature and precipitation data 

correspond to the period from June to November (JJASON), the predominant flooding months. Blue bars 

highlight the main flood periods in this series. The data were normalized and smoothed using an 11-year 

Gaussian filter. 

A comparison of our flood series (1500-2018) with other historical flood series 

(Barriendos et al., 2004; Machado et al., 2011) shows no close correlations for 

the period between the 16th and 18th centuries. This can be attributed to 

differences in historical human occupation rather than to different climatic 

patterns. More recently (the last 150 years), the flood data for the Segura River 

(Machado et al., 2011), located to the north of the Almanzora catchment, show 

similar trends. Some flood periods identified by Machado et al. (2011) coincide 
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with those identified in our series, the period between 1870 and 1900 (cluster 3 

in Fig. 4) being the one that presents the strongest similarities. A comparison of 

our series with the flood database built by Barriendos et al. (2014) for the rivers 

of the NE Iberian Peninsula also shows considerable similarities during the 

period from 1870 to 1900. This lends weight to the argument that this flooding 

period was a response to the combination of the climatic variability experienced 

at the end of the Little Ice Age and the growth in human occupation in the 

Mediterranean region. The flooding period identified in our series from 1965 to 

1980 (cluster 4 in Fig. 4) is also apparent in that of the rivers of the NE Iberian 

Peninsula. This similarity may be attributed to an increase in human occupation 

across the whole of the coastal Mediterranean region; however, the 

precipitation data from our catchment (Fig. 10) show that it was also closely 

related to a period of increased rainfall during a cooler climate period caused by 

fronts and cyclones that moved over the Mediterranean basin to the east. 

The impact of extreme climate events, including floods, on constructions 

associated with the tourism sector is more than apparent (Kellens et al., 2012; 

Yang, 2016). In Spain, several cases have been documented in recent 

decades, including, for example, in Vendrell in NE Spain in 2000 (Milelli et al., 

2006), and along the entire east coast of the Almeria Province (Benito et al., 

2012).  

5.2. Analysis of high magnitude flood events  

The flood data for the Almanzora catchment point to four events – those of 

1550, 1729, 1879 and 1973 – that can be considered as being the most 

destructive and which affected the largest areas (Fig. 6). Here, we focus our 
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discussion on the 1879 and 1973 flood events, given that the 1550 and 1729 

events are less extensively documented.  

The 1879 flood caused severe damage to buildings and infrastructure as well as 

fatalities in the settlements of Cuevas del Almanzora (30 victims) and Muleria 

(50). The event was of such destructive force that the area received financial 

aid from the Spanish State as well as from private entities in nearby areas and 

Madrid. The newspaper, El Minero de Almagrera, considered this event a major 

natural catastrophe and published references to it in all its articles addressing 

subsequent floods. This flood event occurred within a period of clustered floods 

(cluster 3 in Fig. 4), which coincided with the climatic transition from the end of 

the Little Ice Age and the beginning of 20th century warming (Xoplaki et al., 

2005), marked by lower than average temperatures in summer and autumn 

(see Fig. 10).  

The 1973 flood event is perhaps the best-documented high magnitude event in 

the catchment, with information available not only in written sources but also in 

the photographic and documentary film records. It is, moreover, the only event 

of this magnitude (M4) for which a maximum peak discharge was reconstructed 

by hydraulic estimation (Vallejos Izquierdo et al., 1994). The flood, with a 

maximum discharge of approximately 5600 m3 s-1, affected several settlements 

along the Almanzora main channel and also those on some of its tributaries, 

including the settlements of Albox and Huércal-Overa. There were 10 fatalities 

and extensive damage to communication infrastructure (mainly bridges).  As a 

consequence of this flood event, the Spanish State eventually decided to 

channelize the lower river stretch so as to mitigate flood damage in the town of 

Cuevas del Almanzora and in the area’s agricultural fields. Like the 1879 flood, 
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the 1973 flood event also occurred within a period of clustered floods (cluster 4 

in Fig. 4). Likewise, the temperature trends associated with both clusters were 

lower than average (Fig. 10). Moreover, the recent cluster (1989 to 2018) shows 

a strong relationship with increased precipitation in the catchment (Fig. 10). 

During recent decades, river management has played a major role in the 

attenuation of flood magnitudes, especially in the lower catchment. Since the 

end of the 1980s, the majority of the Almanzora River discharges are retained in 

a reservoir, with a maximum capacity of 161 hm3. This, together with the 

channelization of the lower river stretch, has contributed to a considerable 

reduction in flood magnitudes and in the flood vulnerability of the downstream 

settlements and infrastructure. By way of example, during the 2012 flood event, 

the reservoir retention capacity played a crucial role in protecting the town of 

Cuevas del Almanzora. The initial reservoir volume on the morning of 

September 28th was 19 hm3; by the end of the day it had reached 51 hm3 (SAIH 

Hidrosur, 2012). It should also be noted that the reservoir reached this 

maximum volume three hours after a rainfall of 240.4 mm was recorded in the 

nearby Almagro Range. This is a clear indication of the immediate response in 

the discharge rate to a torrential rainstorm in dryland.  

If we consider the discharge associated with high magnitude events, we can 

compare the instrumental and estimated data for the Almanzora catchment with 

the data recorded in similar catchments nearby. Here, the comparison is made 

with the data reported by Benito et al. (2012) for the 2012 flood event. Although 

classified in our series as a M2 event, the 2012 flood reached a peak discharge 

of 3600 m3 s-1 (as measured at the Cuevas del Almanzora Reservoir, SAIH, 

2012). In the absence of the retention capacity of the reservoir in the lower 
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Almanzora, the impact of this flood event on the downstream settlements would 

have certainly be catastrophic and would probably have reached a flood 

magnitude of 3 (see other M3 events with similar estimated discharge in Fig. 6). 

Benito et al. (2012) estimate that some neighboring ephemeral flow rivers 

(Ramblas) reached lower peak discharges than that verified for the Cuevas del 

Almanzora Reservoir. They estimate that during the day of September 28th of 

2012 the Rambla Nogalte, with a catchment area of 140 km2, reached a peak 

discharge of 1500 m3 s-1; and that the Rambla Guadalentín and the Rambla 

Guadalhorce, with catchment areas of 1389 km2 and 3158 km2, respectively, 

reached similar peak discharges of around 1200 m3 s-1. These estimates are, 

therefore, lower than those associated with our M3 events (3600 m3 s-1) and 

reflect the fact that the catchments of Rambla Nogalte and Rambla Guadalentín 

are considerably smaller than that of the Almanzora River.  

As for the meteorological characterization of the four high magnitude events of 

1550, 1729, 1879 and 1973  (section 4.4), we assume that these floods were 

characterized by low-pressure systems that contributed to the advection of 

warm, wet air into the low levels of the troposphere, coming from the 

Mediterranean Sea into the coastal region of the Almeria Province. This 

atmospheric pattern triggered the occurrence of severe mesoscale convective 

systems. These meteorological configurations can be compared to the 

dynamics of other flood events in the Mediterranean region. Martin-Vide and 

Llasat (2018) analyzed the 1962 flash-flood event in the northeastern Iberian 

Peninsula and report a similar synoptic mechanism as those that triggered the 

1879 and 1973 flood events. Likewise, Capel Molina (1989) described the 1989 
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flood event that affected the eastern Iberian Peninsula, triggered also by a 

similar synoptic situation. 

5.3. Flood frequency analysis 

The FFA performed in this study emphasizes the importance of extending the 

flood database further back into the past by combining historical flood sources 

with instrumental data. Indeed, the inclusion of these historical data, together 

with discharge estimates for each flood magnitude class, significantly reduces 

the return periods for high magnitude events compared to the results published 

in the Andalusian Water Agency (AWA) study (see Table 2). The main reasons 

accounting for this difference reside in the statistical methods used and in the 

fact that the AWA only considered instrumental data from the Santa Bárbara 

gauging station (1962-1992), which significantly reduces the number of flood 

data included in the calculations. Our results point to the significant limitations 

associated with the use of 30-year gauging data when undertaking FFAs of 

catchments such as the Almanzora basin, where flood occurrence is highly 

variable and discharges show a wide range of values. 

Other studies have likewise highlighted the importance of using historical flood 

series to correct underestimated FFA calculations based on short-term 

instrumental measurements (Balasch et al., 2010; Barriendos et al., 2014; 

Salinas et al., 2016). FFAs that incorporate historical series benefit from a 

greater number of flood data covering a longer observation period, which 

includes low-frequency extreme events. In other words, when using a shorter 

time series there is less chance of finding an event with extraordinary discharge 

(Baker, 1987; Balasch et al., 2010). This means the use of longer time series 
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should be mandatory to ensure more accurate FFAs (Himmelsbach et al., 

2015). 

The problem of employing short time periods is also illustrated by our data for 

M1 and M2 flood events. However, here, in the case of our low magnitude flood 

events (M1 and M2), it might be that the return periods from our historical flood 

series tend to overestimate values. This is probably due to the limited 

inhomogeneous data distribution in our 500-year series. Our complete series 

comprises 53 flood events, of which 30 have instrumental discharges and the 

remaining 23 have estimated discharges. This number of events would appear 

to be insufficient to carry out correctly a FFA of low magnitude events. This 

problem is caused primarily by the lack of M1 and M2 events between the 16th 

and mid-19th centuries. If we only take into consideration the period for which 

we have the most complete record of M1 and M2 events (1870-2018), the 

return period changes dramatically, and now corresponds to discharges of 250 

m3 s-1 in a 5-year, 809 m3 s-1  in a 10-year and 4010 m3 s-1  in a 50-year return 

period (see, Table 2).  

Stokes et al. (2012) used the instrumental data of Sta. Bárbara gauging station 

to estimate the return periods of the Almanzora river. The 1973 flood would 

represent an extreme event with a return period of more than 1000 years, 

according to Stokes et al. (2012), while for Álvarez (2009) represents an event 

with a return period of 500 years. In both cases, as with the results of the 

Andalusian Water Agency, the fact that they only use instrumental data and the 

period of these is so short, makes flood frequencies overestimate. Once the 

historical data are included, it can be observed that the flow of the 1973 flood 

was extreme but not exceptional. 
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Finally, we should stress that other uncertainties in the FFA are likely to be 

influenced by changes to the flood magnitude dynamic reflecting recent land-

use changes that have modified the catchment’s run-off. Such uncertainties are 

further exacerbated by the estimation and attribution of discharges to flood 

magnitudes classes. Finally, the FFA is also affected by the incomplete nature 

of the historical records and by discontinuities in the discharge data, as 

discussed in sections 4.2, 4.3 and 5.1. 

The land use changes introduced over the last two decades play a key role in 

the area’s exposure and vulnerability to flood risk. It is clear that a regional flood 

risk management plan needs to be adopted and that a concerted attempt has to 

be made to control and restrict the construction of buildings and infrastructure 

near or on the floodplains, as has occurred in recent decades. The 

incorporation of historical flood series into the local government and civil 

defense action is mandatory to ensure adequate flood mitigation strategies, 

river management and risk assessment (Real Decreto 903/2010, of July 9th, 

Assessment and management of floods). 

6. CONCLUSIONS 

Our analysis of the 500-year long flood record for the Almanzora catchment 

shows that there were five periods of high flood frequency: from 1647 to 1676, 

1750 to 1780, 1870 to 1900, 1966 to 1977, and 1989 until the present day. 

Moreover, we detect a marked difference in the flood data corresponding to the 

period from the 16th to the mid-19th centuries, on the one hand, and those 

corresponding to the period covering the last 150 years, on the other. This 

difference is characterized by a significant increase in flood data for the later 

period and can be attributed to the increase in flood information available in 
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written sources as well as to the increased perception among local communities 

and governments of the risk of smaller flood events. 

The historical record shows that there have been four high magnitude events in 

the catchment resulting in fatalities and severe destruction in the settlements 

located near the floodplain. These events occurred in 1550, 1729, 1879 and 

1973, the most recent being the most catastrophic flood event on record.  

Our return period calculations, when using an augmented series (1500-2015), 

show a periodicity of approximately 100 years for the 5600 m3 s-1 maximum 

flood peak, as registered during the 1973 flood event. In contrast, discharges of 

around 684 m3 s-1 and 385 m3 s-1 have a return periodicity of approximately 

every 10 and 5 years, respectively.   

Our analysis of the historical flood record suggests, moreover, that high 

magnitude events are not associated with recent global warming and have in 

fact occurred at various moments over the last 500 years. Indeed, the flood 

clusters over the last 150 years show a significant correlation with cooler 

climatic trends (1870 to 1900 and 1970 to 1975). However, the recent growth in 

human occupation and recent land use changes appear to have modified the 

magnitude of flood damage and increased economic losses. These effects, 

moreover, appear to be aggravated by low magnitude flood events, thus 

increasing the challenges faced in reducing flood vulnerability in the catchment. 

This said, the construction of the Cuevas del Almanzora reservoir and the 

channelization of its lower river stretch have proved to be effective flood 

mitigation measures, having drastically reduced the impact of flood events in 

the lower catchment of the Almanzora River.  
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Highlights: 

 500-year long flood record shows five clusters of high flood frequency. 

 Historical record show that there were four high magnitude events. 

 Flood Frequency Analysis show a periodicity of approximately 100 years 

for a 5600 m3 s-1 flood peak. 

 Flood clusters from the last 150 years show a significant correlation with 

cooler climatic trends. 
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