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Abstract 14 

The eastern sector of the south Pyrenean fold and thrust belt developed during the Alpine 15 

compression and affected Upper Cretaceous to lower Oligocene foreland basin deposits. 16 

In this study, we determine the changes in fluid regime and fluid composition during the 17 

growth of this fold and thrust belt, integrating petrographic and geochemical data 18 

obtained from fracture-filling cements. 19 

Hydrothermal fluids at temperatures up to 154 °C, migrated from the Axial zone to the 20 

foreland basin and mixed with connate fluids in equilibrium with Eocene sea-water during 21 

lower and middle Eocene (underfilled foreland basin). As the thrust front progressively 22 

emerged, low-temperature meteoric waters migrated downwards the foreland basin and 23 

mixed at depth with the hydrothermal fluids from middle Eocene to lower Oligocene 24 

(overfilled non-marine foreland basin).  25 

The comparison of the fluid flow models from the Southern Pyrenees with other orogens 26 

worldwide, seems to indicate that the presence or absence of thick evaporitic units highly 27 

control fluid composition during the development of fold and thrust belts. Whereas in 28 

thrusts not detached along thick evaporite units, mixed fluids are progressively more 29 

depleted in δ18O and have a lower temperature and lower Fe and Sr contents as the 30 

thrust front emerges, in thrust detachments through thick evaporite units, the mixed fluids 31 

are enriched in δ18O. 32 
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1. Introduction 35 

Geofluids interact with sediments during development of fold and thrust belts. These 36 

interactions are responsible of ore deposits precipitation and have an important role 37 

during hydrocarbon migration and diagenesis, which affects reservoir quality (Oliver, 38 

1986; Qing and Mountjoy, 1992; Machel and Cavell, 1999; Bitzer et al., 2001; Dewaele 39 

et al., 2004; Roure et al., 2005; Evans and Fischer, 2012; Vandeginste et al., 2012; 40 

Rodríguez-Morillas et al., 2013). 41 

The geochemical composition of the diagenetic products related to fluid flow (cements) 42 

depends on the type of fluid, fluid/rock ratios and host rock composition (Banner, 1995; 43 

Swennen et al., 2003; Travé et al., 2007; Swart, 2015). Furthermore, fluids favour 44 

propagation of fractures, which act as seals or paths (Reynolds and Lister, 1987; 45 

McCaig, 1988; Sibson et al., 1988; Carter et al., 1990; Shackleton et al., 2015). Fluid 46 

migration along fractures and rock porosity is induced by tectonics (squeegee-type) 47 

and/or topography during the successive stages of fold and thrust belts evolution (Oliver, 48 

1986; Heydari, 1997; Bitzer et al., 2001; Pollyea et al., 2015). Thus, the study of fracture- 49 

and porosity-filling cements provide information about changes in fluid regime (e.g. 50 

temperature, pressure, burial and fluid composition) and in turn, sheds light on the 51 

tectonic history of compressional belts (Banks et al., 1991; Marker and Burkhard, 1992; 52 

Bitzer et al., 2001; Roure et al., 2005, 2010).  53 

Studies of the relationships between fluids and deformation in fold and thrust belts 54 

worldwide report two general trends regarding to fluid flow. The first trend consists of the 55 

progressive depletion in δ18O of the fluids, which has been related to the increase of the 56 

temperature of fluids due to the progressive burial of the studied structures (Dewaele et 57 

al., 2004; Travé et al., 2004; Breesch et al., 2009; Vilasi et al.,  2009; Vilasi, 2010; Evans 58 
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et al., 2012; Vandeginste et al., 2012; Beaudoin et al., 2014; Fontana et al., 2014). 59 

However, other works relate this depletion to the progressive input of low-temperature 60 

meteoric waters into the fluid system, which mixed at depth with fluids with a higher 61 

temperature and salinity (Immenhauser et al., 2007; Hausegger et al., 2010; Cruset et 62 

al., 2016). The second trend consists of the enrichment in δ18O of fluids along time due 63 

to their interaction with clays (Dewever, 2008; Dewever et al., 2013), although in the 64 

Larra/Eaux-chaudes thrust (Jaca Basin) and areas affected by salt tectonics, this 65 

enrichment is related to the increase of fluid salinity due to the influence of evaporites 66 

(Fischer et al., 2013; Crognier et al., 2017).  67 

The South Pyrenean fold and thrust belt constitutes a well-known example in which the 68 

relationships between sequential emplacement of thrust sheets of different ages and 69 

syn-tectonic deposits are well-constrained (Muñoz et al., 1986; Vergés and Muñoz, 1990; 70 

Burbank et al.  , 1992a, b; Vergés, 1993; Vergés et al., 2002; Beamud et al., 2010; 71 

Carrigan et al., 2016; Labaume et al., 2016). In addition, works already done on fluid 72 

regime evolution in the Southern Pyrenees show the same evolution trends regarding 73 

fluid flow than those observed in other fold and thrust belts worldwide (Travé et al., 1997, 74 

1998, 2000, 2007; Caja et al., 2006; Caja and Permanyer, 2008; Lacroix et al.,  2011, 75 

2014; Beaudoin et al., 2015; Cruset et al. 2016; Crognier et al., 2017). Consequently, 76 

the southern Pyrenees represent an excellent laboratory for the study of the changes in 77 

fluid regime during progressive deformation in fold and thrust belts. 78 

In this work we define the changes in fluid regime from the beginning of the emplacement 79 

of the South eastern Pyrenean thrust sheets to the end of contraction, using data from 80 

the entire pile of superposed thrust sheets (Lower Pedraforca, Vallfogona, L’Escala and 81 

Abocador thrusts) within the foreland basin (Vergés, 1993). We determine the origin of 82 

fluids from which cements precipitated in fractures and rock porosity, their evolution 83 

trends during each stage of deformation and controlling parameters using petrographic 84 

and geochemical data (carbon, oxygen and strontium isotopes, clumped isotopes 85 
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thermometry and elemental composition). The results are integrated with previous 86 

studies done in the west central Pyrenees (Ainsa Basin (Travé et al., 1997), Castillo 87 

Mayor klippe and Jaca thrust (Lacroix et al., 2014), Larra/Eaux-chaudes thrust (Crognier 88 

et al., 2017)) and the eastern Ebro Basin, (El Guix anticline (Travé et al., 2000) and Puig-89 

reig anticline (Cruset et al., 2016)), to constrain the evolution of fluid regime at the scale 90 

of the south Pyrenean fold and thrust belt, which finally is compared to other 91 

compressional belts. 92 

2. Geological setting 93 

The Pyrenees consist of a doubly verging orogenic belt generated during the continental 94 

collision between Iberia and Eurasia plates, from Late Cretaceous to Miocene (Muñoz, 95 

2002; Vergés et al., 2002a) (Fig. 1). This collision resulted from the partial subduction of 96 

the Iberian plate beneath the Eurasian plate (Choukroune et al., 1989; Roure et al., 1989; 97 

Muñoz, 1992, 2002; Vergés et al., 2002). The previous Mesozoic extensional basins 98 

were inverted and an antiformal stack constituted of basement-involved thrust sheets 99 

developed in the central part of the chain (Axial zone), acting as a boundary between the 100 

North and south Pyrenean fold and thrust belts (Muñoz, 1992) (Fig. 1).  101 

The south Pyrenean fold and thrust belt consists of a sequence of south-verging thrusts 102 

emplaced in a piggy-back thrust sequence (Puigdefàbregas et al., 1992) and detached 103 

predominantly above Triassic evaporites (Séguret, 1972) and Eocene evaporites 104 

deposited in the foreland basin (Vergés et al., 1992: Sans,  2003) (Fig. 2).  105 

The four structures selected for this study are located in the south- eastern Pyrenees 106 

(Fig. 1) and are representative of the change from marine to continental conditions during 107 

thrust front migration. The oldest structure studied is the Lower Pedraforca thrust sheet 108 

(Fig. 2a, 3a), an allochthonous klippe detached in the Keuper facies and emplaced from 109 

lower to middle Eocene (Puigdefàbregas et al., 1986; Burbank et al., 1992a). The 110 

emplacement of the Lower Pedraforca thrust sheet was under marine conditions, as 111 
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attested by the syn-orogenic conglomerates of Queralt related to this structure (Vergés, 112 

1993). The second structure is the Vallfogona thrust (Fig. 2a, b, 3a), which is the southern 113 

boundary of the Cadí thrust sheet. The activity of this thrust fault started in the middle 114 

Eocene under marine conditions and finished during the lower Oligocene under 115 

continental conditions (Burbank et al., 1992; Vergés, 1993; Vergés and Burbank, 1996; 116 

Haines, 2008). The two youngest structures are the Abocador and L’Escala thrusts (Fig. 117 

2b, 3a), active from middle to upper Eocene and from upper Eocene to lower Oligocene, 118 

respectively (Travé et al., 2007; Haines, 2008). These two structures affect the 119 

sediments of the Ebro foreland basin, which form the footwall of the Vallfogona thrust, 120 

and developed under marine-continental transitional conditions (Travé et al., 2007).  121 

The sediments of the study area range in age between Upper Triassic and Oligocene 122 

and consist of pre- and syn-orogenic deposits related to the emplacement of the thrust 123 

sequence (Fig. 3b). The Lower Pedraforca thrust sheet is composed of the pre-orogenic 124 

Keuper facies, Lias and Dogger limestones and dolostones, Santonian limestones and 125 

the syn-orogenic Campanian-Maastrichtian coastal deposits of the Areny Fm., 126 

Maastrichtian-Thanetian continental deposits from the Garumnian facies, Ilerdian 127 

limestones from the Cadí Fm. and Lutetian-Bartonian conglomerates of the Coubet Fm. 128 

(Mey et al., 1968; Vergés, 1993; López-Martínez et al., 1999; Rosell et al., 2001; Oms et 129 

al., 2007). The hangingwall of the Vallfogona thrust consists of Cuisian-Lutetian turbiditic 130 

deposits of the Vallfogona Fm, which are overlain by the Lutetian evaporites of the Beuda 131 

Fm. (Vergés et al., 1998). These turbidites are overthrusting the Lutetian to Bartonian 132 

marls of the Banyoles and Igualada Fm. and Priabonian-Rupelian syn-tectonic alluvial 133 

sediments of the Berga Fm., indicating that the Vallfogona thrust was active until the 134 

lower Oligocene (Burbank et al., 1992b; Haines, 2008; Valero et al., 2014). Further south, 135 

two formations are involved in the Abocador and L’Escala thrusts. The hangingwalls of 136 

both thrusts are constituted of alluvial and fluvial deposits of the Bellmunt Fm. (upper 137 

Lutetian; Moya et al., 1991; Serra-Kiel et al., 2003), whereas the footwalls consist of the 138 
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Bartonian deltaic deposits of the Puigsacalm Fm. (Mató et al., 1994; Serra-Kiel et al., 139 

2003).  140 

3. Methodology 141 

In order to characterize the evolution of the fluids involved in the emplacement of the 142 

Lower Pedraforca, Vallfogona, Abocador and L’Escala thrusts, 107 polished thin 143 

sections made from host rocks and fracture-filling cements precipitated during the Alpine 144 

compression were studied using petrographic and geochemical methods.  145 

Petrographic observations were made using optical and cathodoluminescence 146 

microscopy. A CL TECHNOSYN Cathodoluminescence device Model 8200 MkII 147 

operating at 23 kV and 350 µA gun current was used to distinguish the different 148 

generations of cements.  149 

Fluid inclusions were examined in calcite cements to determine salinity and temperature 150 

conditions of the mineral-forming fluid. Thick sections were used for petrographic 151 

characterization of the fluid inclusions and for microthermometric analyses. 152 

Measurements were made on a Linkam THMS-600heating-freezing stage. Fluid 153 

inclusions, with a size ranging between 2 and 5 μm, were cooled and heated to 154 

temperatures around -150°C and 300°C, respectively. However, the attempt to obtain 155 

ice melting and homogenization temperatures from two-phase fluid inclusions (liquid-156 

gas) failed, since changes in bubble volume were not observed.   157 

Carbon-coated polished thin sections were used to analyze major, minor and trace 158 

element concentrations on a JEOL JXA-8230 electron microprobe. The microprobe was 159 

operated using 20 kV of excitation potential, current intensity of 6 nA for Ca and Mg and 160 

40 nA for Mn, Fe and Sr with a beam diameter of 10 µm. Detection limits are 236 ppm 161 

for Ca, 131 ppm for Na, 397 ppm for Mg, 226 ppm for Mn, 78 ppm for Fe and 291 ppm 162 

for Sr. Precision on major element analyses averaged a standard error of 6.15% at 2σ 163 

confidence levels. 164 
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Fracture-filling calcite and carbonate host rocks were sampled for carbon- and oxygen-165 

isotope analysis employing a 400 µm-thick dental drill to extract 60 ± 10 µg of powder 166 

from trims. The calcite powder was reacted with 100% phosphoric acid for two minutes 167 

at 70⁰C. The resultant CO2 was analyzed using an automated Kiel Carbonate Device 168 

attached to a Thermal Ionization Mass Spectrometer Thermo Electron (Finnigan) MAT-169 

252 following the method of McCrea (1950). The results were corrected using the 170 

standard technique (Craig and Gordon, 1965; Claypool et al., 1980), expressed in ‰ 171 

with respect to the VPDB (Vienna Pee Dee Belemnite) standard.  172 

For clumped isotopes thermometry, aliquots (replicates) of three carbonate samples 173 

weighing 2-3 mg were measured for three out of five samples (GDV20, GDV30, GDV13, 174 

table 1) using an automated line developed at Imperial College (The IBEX: Imperial 175 

Batch EXtraction system). In addition, two single measurements of two additional 176 

samples (TAB9, STn(3)(2), Table 1) were measured using a manual vacuum line 177 

described in Dale et al. (2014). In both cases, samples are dropped in 105 % phosphoric 178 

acid maintained at 90°C, and reacted for 10 minutes. The reactant CO2 is separated from 179 

contaminants using a poropak-Q column, and transferred into the bellows of a MAT 253 180 

mass spectrometer from Thermo Scientific. Full characterization of a replicate consists 181 

of 8 acquisitions in dual inlet mode with 7 cycles per acquisition. All post-acquisition 182 

processing were performed using Easotope, a dedicated software for clumped isotope 183 

analysis (John and Bowen, 2016). Δ47 values are corrected for isotope fractionation 184 

during phosphoric acid digestion using a phosphoric acid correction of 0.069 ‰ at 90°C 185 

for calcite following Guo et al. (2009), the data is corrected for non-linearity using the 186 

heated gas method (Huntington et al., 2009) and projected into the absolute reference 187 

frame of Dennis et al. (2011). Carbonate δ18O values are calculated using the acid 188 

fractionation factors of Kim and O'Neil (1997). Most of the samples were measured at 189 

least three times, and the results averaged before being converted to temperatures using 190 

the calibration of Kluge et al. (2015); in this case, the error reported represents ± 1 191 
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standard error of the means. For two samples (TAB9, STn(3)(2), Table 1), only one 192 

measurement was performed and the error reported is ± 1 external standard deviation 193 

of a measurement. 194 

For 87Sr/86Sr analyses, samples of 100% calcite from veins and host rocks were fully 195 

dissolved in 0.5M acetic acid, dried and redissolved in 3M HNO3. The solid residue 196 

resulting from reprecipitation was centrifuged at 4000 rpm during 10 minutes before 197 

being charged in chromatographic columns. Samples were analyzed on Re single 198 

filament with 1µl of H3PO4 1M and 2µl of Ta2O5 on a TIMS-Phoenix mass spectrometer. 199 

The data acquisition method consists of dynamic multicollection during 10 blocks of 16 200 

cycles each one, with a beam intensity in the 88Sr mass of 3V. Analyses have been 201 

corrected for possible interferences of 87Rb. 202 

4. Structural and stratigraphic location of the samples 203 

Seven outcrops were studied and sampled to determine the fluid flow regime in the 204 

Lower Pedraforca and Vallfogona thrusts and in the Abocador and L’Escala foreland 205 

thrusts (Fig. 3). 206 

In the Lower Pedraforca thrust sheet, two different outcrops were sampled along a 1.5 207 

km long transect composed of the Campanian-Maastrichtian coastal deposits of the 208 

Areny Fm. and Maastrichtian-Thanetian continental deposits from the Garumnian facies 209 

(Q, Fig.3a, b). This transect consists of three south-verging anticlines formed in the 210 

southern sector of the imbricated thrust system forming the Lower Pedraforca thrust 211 

sheet. The limbs and hinges of these folds are affected by vug porosity and intense 212 

fracturing, which consists of bed-perpendicular joints and reverse and strike-slip faults 213 

formed as a result of the background deformation related to the Lower Pedraforca thrust 214 

sheet. Fault zones related to the major thrusts forming the imbricate system of the Lower 215 

Pedraforca thrust sheet do not outcrop in the studied area. 216 
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The Vallfogona thrust was sampled in three different outcrops along its strike (GDV, 217 

GDB1-2; Fig. 3). Outcrops GDV and GDB1 are formed of up to 450 m-thick fault zones 218 

affecting the Cuisian-Lutetian turbidites of the Vallfogona Fm. and the alluvial sediments 219 

of the Berga Fm. (Fig. 3b). Outcrop GDB2 is formed of an up to 40 m-thick fault zone 220 

affecting only the Berga Fm (Fig. 3b) and consists of a minor thrust fault related to the 221 

activity of the Vallfogona thrust. In the three outcrops, the fault zones are mainly 222 

composed of damage zones both in the hangingwall and footwall of the Vallfogona thrust 223 

in which vug porosity, bed-parallel slip surfaces and reverse and strike-slip faults are 224 

concentrated and filled with calcite cement. Sampled fault cores consist of cm-thick 225 

gouges with very scarce calcite veins.  226 

The Abocador thrust (TAB) has been studied in a 200 m-thick fault zone with a 7 meters 227 

thick fault core whereas the L’Escala thrust (TES) has been studied in a 150 m-thick fault 228 

zone, with less than 1 m thick fault core, in both cases cutting through the alluvial 229 

sediments of the Lutetian Bellmunt Fm. and Bartonian deltaic deposits of the Puigsacalm 230 

Fm (Fig. 3a, b). The fault cores of both thrusts are composed of clay-rich gouges with 231 

small calcite veins. Damage zones comprise almost all the volume of the sampled 232 

outcrops and are intensively affected by bed-perpendicular joints and reverse and strike-233 

slip faults filled by calcite cement. 234 

5. Fracture analysis 235 

Rocks involved in the studied structures are affected by bed-parallel slip surfaces, joints, 236 

E-W to WSW-ENE trending reverse faults and predominantly NW-SE and NE-SW 237 

trending strike-slip faults (Fig. 4). Joints are mostly bed-perpendicular, indicating that 238 

they formed during layer-parallel shortening together with bed-parallel slip surfaces 239 

(Casini et al., 2011). However, some of the joints in L’Escala thrust cut the Bellmunt and 240 

Puigsacalm formations at a constant angle regardless bedding dips, indicating that these 241 

fractures formed after folding and thrusting. The high trend and dip dispersion of joints in 242 
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the Lower Pedraforca thrust sheet in contrast to the Abocador and L’Escala thrusts (Fig. 243 

4) is interpreted that deformation was more intense in the former structure or that it 244 

extended during a longer period. Reverse and strike-slip faults in the Lower Pedraforca 245 

thrust sheet and in the Vallfogona, Abocador and L’Escala thrusts cut stratification at a 246 

high angle regardless bedding dips, suggesting that these fractures formed once strata 247 

was already folded and therefore, after development of bed-perpendicular joints. The 248 

concentration of these faults in the fault zones of major thrusts and the striae sets 249 

measured on their planes (Fig. 4), indicating a tectonic displacement to the south in 250 

agreement with the regional trend (Vergés, 1993), suggest that they formed during the 251 

activity of the major thrusts.  252 

6. Calcite cements 253 

The integration of textural, petrographic and geochemical data obtained from fracture-254 

filling cements allows to identify three generations of calcite cement for the Lower 255 

Pedraforca thrust sheet (Cc1 to Cc3), seven for the Vallfogona thrust (Cc1 to Cc7) and 256 

two for the Abocador thrust (Cc1 and Cc2) (Fig. 5). In the L’Escala thrust, three calcite 257 

cement generations (Cc1 to Cc3) were already identified (Travé et al., 2007) (Fig. 5). 258 

6.1. Petrology 259 

In the Lower Pedraforca thrust sheet, Cc1 cement is formed of up to 30 µm in size of 260 

non-luminescent blocky calcite crystals precipitated in the intergranular and intragranular 261 

porosity of the Upper Cretaceous Areny Fm. (Fig. 5). Cement Cc2 consists of up to 1 262 

mm of non- to dull orange luminescent sparite calcite crystals precipitated in vug porosity, 263 

joints and reverse and strike-slip faults postdating Cc1 (Fig. 5) and affecting both the 264 

Areny Fm. and Paleocene Garumnian facies. Calcite cement Cc3 consists of up to 3 mm 265 

of zoned dull brown and dull orange blocky sparite calcite crystals precipitated in vug 266 

porosity, reverse and strike-slip faults cutting the previous fractures and vugs (Fig. 5). 267 
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In the Vallfogona thrust, calcite cements Cc1, Cc2, Cc3 and Cc4 consist of dull brown to 268 

non-luminescent calcite, precipitated in fractures and porosity of the Lutetian Vallfogona 269 

turbidites from the hangingwall (Fig. 5). Cement Cc1 is formed of 10-20 µm in size blocky 270 

sparite precipitated in the intergranular and intragranular porosity of the turbidite 271 

sandstones (Fig. 5). Cc2 is formed of 200 µm to 2 mm blocky and up to 1 mm long fibrous 272 

sparite precipitated in bed-parallel slip surfaces, bed-perpendicular joints and vug 273 

porosity postdating Cc1 (Fig. 5). Calcite cement Cc3 is formed of up to 1 mm long fibrous 274 

calcite precipitated parallel to the walls of thrust faults postdating Cc2 (Fig. 5). Cc4 is 275 

formed of 100 µm to 2 mm blocky and up to 1mm long fibrous sparite precipitated in 276 

strike-slip and thrust faults postdating Cc3 (Fig. 5). Calcite cement Cc5 precipitated in 277 

strike-slip and reverse faults and intergranular porosity of Upper Eocene to Oligocene 278 

syn-orogenic alluvial sediments of the Berga Fm. from the thrust footwall (Fig. 5). This 279 

cement is formed of up to 100 µm blocky and up to 1 mm long fibrous sparite crystals of 280 

bright orange calcite (Fig. 5). The presence of Cc5 cement in sediments younger than 281 

those in the hangingwall accounts for a later precipitation with respect to Cc1 to Cc4 282 

cements. Cements Cc6 and Cc7 are formed of up to 10 µm of zoned non-luminescent to 283 

bright blocky calcite crystals precipitated in vug porosity cross-cutting Cc4 and Cc5 284 

cements, respectively (Fig. 5). The difference between these two last cements lies in 285 

their elemental composition (Fig. 6).  286 

In the Abocador thrust, cement Cc1 precipitated in rock porosity and strike-slip and thrust 287 

faults affecting the Lutetian alluvial sediments of the Bellmunt Fm. in the hangingwall and 288 

Bartonian marls of the Puigsacalm Fm. in the footwall. Cement Cc2 postdates cement 289 

Cc1 and precipitated in some reactivated thrust faults (Fig. 5). Both cements consist of 290 

orange to bright orange up to 6 µm blocky calcite and up to 10 µm long and 2 µm thick 291 

fibrous calcite associated with celestite and barite (Fig. 5).  292 

In L’Escala thrust, calcite cements Cc1, Cc2 and Cc3 consist of orange to bright orange 293 

calcite precipitated in fractures affecting the Bellmunt and Puigsacalm Fms. (Fig. 5). Cc1 294 
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cement is formed of up to 2 mm blocky crystals and up to 0.7 mm long and 200 µm thick 295 

fibrous sparite precipitated in bed-perpendicular pre-thrust joints and thrust faults (Fig. 296 

5). Calcite cements Cc2 and Cc3 are formed of up to 5 mm long and 2 mm thick fibrous 297 

sparite filling post-thrust strike-slip faults and post-thrust NW-SE joints respectively (Fig. 298 

5).  299 

6.2. Geochemistry 300 

6.2.1. Elemental composition 301 

Minimum, maximum and mean Fe, Mg, Sr and Mn contents of the calcite cements 302 

precipitated in fractures and rock porosity in the Vallfogona, Abocador and L’Escala 303 

thrusts, and together with already published data of the Ainsa Basin (Travé et al., 1997), 304 

El Guix anticline (Travé et al., 2000) and Puig-reig anticline (Cruset et al., 2016), are 305 

plotted in figure 6 (details in supplementary data), summarizing up to 39 analyzed 306 

samples and 747 measures. 307 

The graphic (Fig. 6) shows that the Fe content decreases from the activity of the Molinos 308 

thrust (23780 ppm) to the last stages of evolution of the Vallfogona thrust (below the 309 

detection limit in cement Cc7), that is, from lower Eocene to lower Oligocene (Fig. 6). 310 

However, a final increase in the Fe content (up to 7731 ppm) is observed during the 311 

lower Oligocene in calcite cements precipitated in the Guix anticline (Fig. 6). The Sr 312 

content also shows a depletion from lower Eocene to lower Oligocene, with values 313 

ranging from 8090 ppm in the Arro syncline and Atiart thrust to below the detection limit 314 

in the El Guix anticline (Fig. 6). Contrarily, the Mg and Mn contents do not show a specific 315 

trend during this time span, with values ranging from 4135 to 1452 ppm and from 4239 316 

to below the detection limit, respectively (Fig. 6). 317 

6.2.2. Carbon and oxygen isotopes 318 

The carbon and oxygen composition of the calcite cements precipitated in the Lower 319 

Pedraforca thrust sheet, Vallfogona, Abocador and L’Escala thrusts, together with 320 
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already published data from the Ainsa Basin (Travé et al., 1997), Castillo Mayor klippe 321 

and Jaca thrust (Lacroix et al., 2014), El Guix anticline (Travé et al., 2000) and Puig-reig 322 

anticline (Cruset et al., 2016) is presented in Fig. 7, summarizing up to 153 analyzed 323 

samples.  324 

6.2.2.1. Lower Pedraforca thrust sheet 325 

Upper Cretaceous marine carbonates from the Areny Fm. show δ13C values ranging 326 

between +1.45 and +1.68 ‰ VPDB and δ18O values ranging between -4.48 and ‰ -3.20 327 

VPDB (Fig. 7). Palustrine limestones from the Paleocene (Garumnian facies) show δ13C 328 

values ranging between -17.47 and -3.65 ‰ VPDB and δ18O values ranging between -329 

8.20 and -4.77 ‰ VPDB (Fig. 7). 330 

Due to the small size of calcite cement Cc1, only cements Cc2 and Cc3 were analyzed 331 

for carbon and oxygen isotopes analysis. Calcite cement Cc2 shows δ13C values ranging 332 

between -15.18 and -0.38 ‰ VPDB and δ18O values between -9.21 and -2.61 ‰ VPDB 333 

(Fig. 7), similar to its adjacent host rock (Fig. 8). Calcite cement Cc3 shows δ13C values 334 

ranging between +0.84 and +1.71 ‰ VPDB and δ18O values ranging between -9.86 and 335 

-4.39 ‰ VPDB (Fig. 7). Calcite cement Cc3 has δ13C similar to the Upper Cretaceous 336 

Areny Fm. and the Paleocene Garumnian Facies, whereas has δ18O   slightly depleted 337 

with respect these host rocks (Fig. 8). 338 

6.2.2.2. Vallfogona thrust 339 

Cuisian marine marls from the hangingwall of the Vallfogona thrust (Vallfogona Fm.) 340 

show δ13C values between -2.56 and -0.26 ‰ VPDB and δ18O values between -6.94 and 341 

-4.72 ‰ VPDB (Fig. 7). One sample of Priabonian-Rupelian palustrine limestones from 342 

the footwall of the Vallfogona thrust (Berga Fm.) shows δ13C values of -2.95 ‰ VPDB 343 

and δ18O values of -7.19 ‰ VPDB (Fig. 7). 344 

Due to the small size of Cc1, Cc6 and Cc7 calcite cements, only Cc2, Cc3, Cc4 and Cc5 345 

calcite cements were analyzed for carbon and oxygen isotopes (Fig. 7). These calcite 346 
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cements show a progressive depletion in δ13C and δ18O from Cc2 to Cc5 (Fig.7). Cc2 347 

calcite cement shows δ13C values ranging between -3.86 and -1.08 ‰ VPDB and δ18O 348 

ranging between -6.24 and -4.74 ‰ VPDB. Cc3 shows δ13C values ranging between -349 

0.9 and +0.21 ‰ VPDB and δ18O between -7.55 and -6.04 ‰ VPDB. Calcite cement Cc4 350 

shows δ13C values ranging between -1.74 and -1.38 ‰ VPDB and δ18O between -7.34 351 

and -6.74 ‰ VPDB. Calcite cement Cc5 has δ13C values between -3.05 and -0.57 ‰ 352 

VPDB and δ18O between -9.95 and -7.56 ‰ VPDB. Calcite cements Cc2 to Cc5 have 353 

δ18O progressively more depleted with respect their adjacent host rocks, whereas the 354 

δ13C do not show a clear trend (Fig. 8).  355 

6.2.2.3. Abocador thrust 356 

Due to their small size, carbonate clasts from the Bellmunt Fm. were not sampled. A 357 

detrital carbonate clast from the Bartonian Puigsacalm Fm. (footwall) shows δ13C of -358 

1.69 ‰ VPDB and δ18O of -8.05 ‰ VPDB. The carbonate fraction from marls from the 359 

Puigsacalm Fm. shows δ13C of +0.45 ‰ VPDB and δ18O of -6.73 ‰ VPDB (Fig. 7).  360 

Contrarily to the Vallfogona thrust, calcite cements show depletion in δ13C and 361 

enrichment in δ18O from Cc1 to Cc2 (Fig. 7, 8). Cc1 calcite cement has δ13C values 362 

between -2.72 and -1.05 ‰ VPDB and δ18O values between -8.81 and -7.61‰ VPDB 363 

(Fig. 7). Calcite cement Cc2 has δ13C values between -4.19 and -1.46 ‰ VPDB and δ18O 364 

values between -6.9 and -4.98 ‰ VPDB (Fig. 7).  365 

6.2.5.4. L’Escala thrust 366 

The carbonate fraction of marls from the Puigsacalm Fm. (footwall) show δ13C values 367 

between -0.80 and 0 ‰ VPDB and δ18O values between -7.40 and -6.50 ‰ VPDB (Fig. 368 

7). 369 

In the L’Escala thrust, calcite cements show a progressive depletion in δ13C and δ18O 370 

from Cc1 to Cc3, like in the Vallfogona thrust (Fig.7, 8). Calcite cement Cc1 has δ13C 371 

values between -2.8 and -1.90 ‰ VPDB and δ18O values between -8.80 and -8.30 ‰ 372 
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VPDB (Fig. 7). Calcite cement Cc2 has δ13C values between -0.60 and -0.50 ‰ VPDB 373 

and δ18O values between -9.50 and -9.20 ‰ VPDB (Fig. 7). Calcite cement Cc3 has δ13C 374 

values between -4 and -3.10 ‰ VPDB and δ18O values between -14.40 and -12.60 ‰ 375 

VPDB (Fig. 7). 376 

6.2.3. Clumped isotopes 377 

For this study, clumped isotopes thermometry has been measured in three calcite 378 

cements from the Vallfogona thrust (Fig. 9; Table 1). The results are presented together 379 

with data already published from the Puig-reig anticline (Cruset et al., 2016) and two 380 

preliminary data from the Abocador thrust and El Guix anticline (Fig. 9; Table 1).  381 

For the Vallfogona thrust, the ∆47 values for calcite cements Cc2, Cc4 and Cc5 are 0.463 382 

± 0.002 ‰, 0.532 ± 0.010 ‰ and 0.527 ± 0.023 ‰, respectively. These values translate 383 

into temperatures of 154° ± 2°C (Cc2), 101° ± 6°C (Cc4) and 105° ± 14°C (Cc5) using 384 

the equation of Kluge et al. (2015) (Fig. 9). Thus, from clumped isotopes temperatures 385 

and the equation of Friedman and O'Neil (1977), the δ18Ofluid for Cc2, Cc4 and Cc5 is 386 

+12.12 ± 0.14 ‰, +6.37 ± 0.63 ‰ and +4.22 ± 1.37 ‰ VSMOW respectively (Fig. 9).  387 

In the Puig-reig anticline, the measured ∆47 values in calcite cements Cc1 and Cc2 are 388 

between 0.548 ± 0.009 ‰ and 0.493 ± 0.0010 ‰ and between 0.574 ± 0.010 ‰ and 389 

0.551 ± 0.004 ‰, respectively. With these values, and from the equations mentioned 390 

above, we obtain temperatures ranging between 92° ± 5°C and 129° ± 8°C for Cc1 and 391 

between 77 ± 5°C and 93° ± 1°C for Cc2 (Fig. 9) and  δ18Ofluid for Cc1 and Cc2 is between 392 

+4.7 ± 0.6 and +9.2 ± 0.7‰ VSMOW and between -1.7 ± 0.7 and -0.7 ± 0.3‰ VSMOW 393 

respectively (Fig. 9). 394 

In the Abocador thrust, a preliminary measured ∆47 of 0.423 ± 0.03 is obtained for calcite 395 

cement Cc2, which translates into a temperature of 177 ± 40 °C and a δ18Ofluid of +14.1 396 

± 4.7‰ VSMOW (Fig. 9). 397 
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In the El Guix anticline, a preliminary measured ∆47 of 0.487 ± 0.03 is obtained for calcite 398 

cement precipitated in a thrust fault affecting the sediments forming this fold (micro 399 

fracture stage 2 (mfs2) in Travé et al., 2000). This value translates into a temperature of 400 

117 ± 25 °C and a δ18Ofluid of +7.1 ± 2.5‰ VSMOW (Fig. 9). 401 

6.2.4. Strontium isotopes 402 

The 87Sr/86Sr ratios of the calcite cements, celestite, host carbonates and evaporites from 403 

the Ainsa Basin (Travé et al., 1997), Vallfogona and L’Escala thrusts, El Guix anticline 404 

(Travé et al., 2000) and Puig-reig anticline (Cruset et al., 2016) are presented in Fig. 405 

10(for details see supplementary data). The 87Sr/86Sr ratios of the Cuisian evaporites of 406 

the eastern sector of the south Pyrenean foreland basin (Carrillo, 2012) and the 407 

LOWESS curve (McArthur et al., 2001) are also plotted. 408 

From Lower Eocene to Lower Oligocene an increase of the 87Sr/86Sr ratios of calcite 409 

cements (from 0.707744 to 0.70933) is observed (Fig. 10). At outcrop scale, the 87Sr/86Sr 410 

ratios from older to younger cements in the Ainsa Basin and the Vallfogona and L’Escala 411 

thrusts also show an increment of the 87Sr/86Sr ratios (Fig. 10). In contrast, in the Puig-412 

reig anticline this trend is overturned and in El Guix anticline trends are not observed 413 

(Fig. 10).   414 

8. Discussion 415 

In this section, we discuss 1) the type and origin of fluids from which calcite cements 416 

precipitated in each structure; 2) the changes of fluid regime at the scale of the south 417 

Pyrenean fold and thrust belt from lower Eocene to lower Oligocene; and 3) a conceptual 418 

model of fluid flow in fold and thrust belts.  419 

8.1. Type of fluids 420 

The type of fluids that flowed through rock porosity and fractures in the south Pyrenean 421 

fold and thrust belt can be determined by using the elemental and isotopic composition 422 

of the studied calcite cements (Meyers and Lohman, 1985; Banner and Hanson, 1990).  423 
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The δ13C of the calcite cements in the Lower Pedraforca thrust, Vallfogona thrust, cement 424 

Cc2 in L’Escala thrust, Ainsa Basin (Travé et al., 1997), El Guix anticline (Travé et al., 425 

2000), Castillo Mayor klippe and Jaca thrust (Lacroix et al., 2014) and Puig-reig anticline 426 

(Cruset et al., 2016) are similar to their adjacent host rocks (Fig. 7, 8), indicating that the 427 

fluid system was rock-buffered. In contrast, in the Abocador thrust and in cements Cc1 428 

and Cc3 in L’Escala thrust, the δ13C of calcite cements shows depletion with respect to 429 

their adjacent host rocks up to 3.42‰ VPDB and 3.8‰ VPDB respectively (Fig. 7, 8). 430 

This depletion can be explained by the input of organogenic or soil-derived carbon into 431 

the fluid system (Irwin et al., 1977; Cerling et al., 1989).    432 

The δ18Ofluid calculated from clumped isotopes temperatures for the Vallfogona thrust 433 

(+12.12 ‰ VSMOW for Cc2, +6.37 ‰ VSMOW for Cc4 and +4.22 ‰ VSMOW for Cc5), 434 

calcite cement Cc1 in Puig-reig anticline (between +4.7  and +9.2 ‰ VSMOW), calcite 435 

cement Cc2 in the Abocador thrust (+14.083 ‰ VSMOW) and El Guix anticline (+7.09 436 

‰ VSMOW) are within the range of magmatic, metamorphic and formation waters 437 

(Taylor, 1987). In the Ainsa Basin, a δ18Ofluid within the same range of composition 438 

(between +9.51 and +16 ‰ VSMOW) is calculated from fluid inclusion data of celestite 439 

formed within calcite cements precipitated in the Arro syncline (Travé et al., 1998) and 440 

from the Equation of Friedman and O’Neil (1977). A magmatic origin for these fluids is 441 

discarded since magmatism did not develop during the formation of the Pyrenees. 442 

Nevertheless, we have no evidence to differentiate between metamorphic and formation 443 

waters. The sulfur isotope composition of celestite crystals formed within calcite cements 444 

in the Ainsa Basin indicates the influence of marine connate waters trapped in the rock 445 

porosity (Travé et al., 1997). This influence has also been reported in calcite veins in the 446 

Castillo Mayor klippe, which are time-equivalent to the first stages of deformation of the 447 

Ainsa basin (Lacroix et al., 2014). However, the 87Sr/86Sr ratios of all the studied calcite 448 

cements are higher than those of Eocene seawater (Fig. 10). This fact can be explained 449 

by fluids in contact with clay minerals, the input of an external fluid in contact with 450 
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Paleozoic crystalline rocks located at depth of the Axial zone and diluted by connate 451 

marine waters with low 87Sr/86Sr ratios or from the dissolution of emerged rocks by 452 

meteoric fluids (McCaig et al., 1995; Travé et al., 1997). The temperatures measured in 453 

the Vallfogona thrust (154°C for Cc2, 101°C for Cc4 and 105°C for Cc5), Puig-reig 454 

anticline (between 92°C and 129°C for Cc1 and between 77°C and 90°C for Cc2) and 455 

Arro syncline (between 157°C and 183°C) were never reached by burial according to 456 

cross sections (Vergés, 1993) and vitrinite reflectance data (Clavell, 1992; Vergés et al., 457 

1998) assuming a geothermal gradient of 25°C km-1, thus indicating a thermal anomaly. 458 

Preliminary temperature data from the Abocador thrust (177°C) and El Guix anticline 459 

(117°C) also seem to point to the presence of high temperature fluids. These results 460 

suggest hydrothermal fluid flow along fault zones in the Vallfogona, Abocador and 461 

L’Escala thrusts, background fractures in the Lower Pedraforca thrust sheet and fold-462 

related fractures and intergranular porosity in the Puig-reig and el Guix anticlines, which 463 

were connected at depth with basement-involved thrusts in the inner part of the 464 

Pyrenees, as has been already reported (Bradbury and Woodwell, 1987; McCaig et al., 465 

1995; Travé et al., 2007). However, the progressive decrease in Sr content (Table 1; Fig. 466 

6) and increase of the 87Sr/86Sr ratios (Fig. 10) in the thrust front from the lower Eocene 467 

to lower Oligocene, together with the depletion in δ18O (Fig. 7) and decrease in 468 

temperature at outcrop scale in the Ainsa Basin, Vallfogona and L’Escala thrusts and 469 

Puig-reig anticline, account for the input of meteoric waters, which mixed at depth with 470 

the hydrothermal fluids. The depletion in Fe content and δ18O from older to younger 471 

calcite cements related to the input of meteoric waters has been also observed in the 472 

Jaca thrust (Lacroix et al., 2014). The progressive depletion in δ18O is related to the 473 

mixing between hydrothermal and meteoric fluids (Immenhauser et al., 2007), whereas 474 

the decrease in Fe content (Fig. 6) could be related to the progressive input of oxidizing 475 

meteoric fluids into the system (Froelich et al., 1979; Tucker and Wright, 1990), which 476 

may have flowed downwards along faults and joints by topography-driven fluid flow 477 

(Bitzer et al., 2001).  478 
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By contrast, in the Abocador thrust, there is enrichment in the δ18Ocalcite from older to 479 

younger cements (Fig. 7). This trend has also been observed in the Santo Domingo 480 

anticline (Sierras Exteriores, south western Pyrenees) with δ18Ofluid values between -5 481 

and 0 ‰ VSMOW in Bartonian-Priabonian veins and between +5 and +10 ‰ VSMOW 482 

in upper Priabonian-lower Rupelian veins (Crognier et al. 2016). These authors interpret 483 

the highest δ18Ofluid values as a strong interaction between meteoric waters and host 484 

rocks or by the input of strongly evaporated fluids. In the same area, in the Pico del 485 

Águila anticline, post-folding calcite veins precipitated from low-temperature meteoric 486 

waters (Beaudoin et al., 2015). From the δ18Ocalcite of these veins (from -2.2 to 0 ‰ VPDB) 487 

together with the temperatures reported by these authors (below 80 ± 20ºC) a δ18Ofluid 488 

between -4 and +11 ‰ VSMOW is obtained, suggesting that these meteoric waters could 489 

be highly δ18O-enriched brines. In the Larra/Eaux-chaudes thrust (Jaca Basin), a positive 490 

correlation between the δ18Ofluid, temperature and salinity is observed from older to 491 

younger stages without enrichment in the δ18Ocalcite (Crognier et al., 2017). These authors 492 

suggest that hydrothermal fluids interacted with Triassic evaporites which acted as the 493 

detachment level of the Larra/Eaux-chaudes thrust. A positive correlation between the 494 

δ18Ocalcite and fluid salinity has also been observed in fracture-filling calcites precipitated 495 

in worldwide areas affected by salt tectonics (Fischer et al., 2013).   496 

The same scenario could be suggested for: 1) the Abocador thrust, where preliminary 497 

results on clumped isotopes thermometry (177 ± 40 °C and δ18Ofluid of +14.1 ‰ VSMOW) 498 

and the presence of barite and celestite associated to calcite cements favor the 499 

hypothesis of hydrothermal fluids interacting with brines released from the underlying 500 

Eocene evaporites of the Beuda Fm., which acted as the detachment of this structure 501 

(Fig. 2b); 2) the El Guix anticline, with calcite cements without systematic δ18O variation, 502 

temperature around 117 ± 25 °C, δ18Ofluid of +7.1 ‰ VSMOW and halite precipitation in 503 

thrust zones also favoring the hypothesis of a fluid derived from the underlying Eocene 504 

Cardona Salt Formation (Travé et al., 2000) and; 3) the Larra/Eaux chaudes thrust and 505 
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Sierras Exteriores with Triassic evaporites acting as the detachment level of the major 506 

thrust faults (Labaume et al., 2016). Consequently, we suggest that when evaporitic units 507 

are present, the presence of high salinity fluids derived from them, highly controls the 508 

δ18O of the calcite cements.  509 

The presence of the thermal anomalies discussed above, with fluids in disequilibrium 510 

with their adjacent host rocks during millions of years, indicate the occurrence of thermal 511 

convection controlling fluid flow (Lipsey et al., 2016). According to this mechanism, large 512 

volumes of fluids are drived to the reaction site through fractures and permeable host 513 

rocks during long time periods (Person et al., 1996; Morrow, 1998). Other scenarios, 514 

which involve fluid release by heating or decompression of interstitial fluids by seal 515 

breaking are ruled out, since these mechanisms provide low volumes of fluids and they 516 

do not generate thermal anomalies (Gomez-Rivas et al., 2014). 517 

8.2. Changes in fluid regime in the south Pyrenean fold and thrust belt from 518 

lower Eocene to lower Oligocene 519 

The geochemical signatures of the calcite cements in the Lower Pedraforca thrust sheet, 520 

Vallfogona, Abocador and L’Escala thrusts, Ainsa Basin (Travé et al., 1997), Castillo 521 

Mayor klippe and Jaca thrust (Lacroix et al., 2014), El Guix anticline (Travé et al., 2000) 522 

and Puig-reig anticline (Cruset et al., 2016) with respect to their timing of precipitation 523 

(Fig. 11) highlights that hydrothermal fluids have migrated along the south Pyrenean fold 524 

and thrust belt from the lower Eocene to lower Oligocene (Fig. 12).  525 

From the lower to middle Eocene, hydrothermal fluids migrated during thrusting along 526 

reverse faults, strike-slip faults and joints from the crystalline basement to the syn-527 

orogenic marine sediments deposited in the foreland basin (Fig. 12). During this period, 528 

hydrothermal fluids mixed with connate marine waters expelled from rock porosity by 529 

sediment compaction during the early stages of evolution of the foreland basin (Bitzer et 530 

al., 2001). The resultant fluid had a sulfur isotope composition in equilibrium with Eocene 531 
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marine waters (Travé et al. 1997), high Fe and Sr contents (Fig. 6), enriched δ18O (Fig. 532 

7) and had 87Sr/86Sr ratios slightly higher than Eocene seawater (Fig. 10). 533 

From the middle Eocene to lower Oligocene, as the foreland basin changed from 534 

underfilled to overfilled, the thrust front progressively emerged from deep water to 535 

endorheic domains (Fig. 11 and 12). The relative sea-level fall and related change in 536 

topographic elevation initiated topography-driven fluid flow (Bitzer et al., 2001) and as a 537 

consequence, the influence of meteoric waters, that mixed at depth with hydrothermal 538 

ascending fluids, increased progressively and changed the fluid composition (Fig. 12). 539 

This change in fluid flow conditions is reflected in the progressive decrease in Fe and Sr 540 

contents (Fig. 6), temperature (Table 1), depletion in δ18O (Fig. 7) and high 87Sr/86Sr 541 

ratios with respect calcite cements precipitated previously (Fig. 10). However, in other 542 

areas such as the Abocador thrust, El Guix anticline (Travé et al., 2000) and the Sierras 543 

Exteriores and Larra/Eaux-chaudes thrust (Beaudoin et al., 2015; Crognier, 2016; 544 

Crognier et al., 2017), brines derived from the underlying thick evaporite units interacted 545 

with hydrothermal and meteoric fluids and controlled fluid composition even when these 546 

structures grew under continental conditions. 547 

Assuming that hydrothermal fluid flow was continuous during the activity of the studied 548 

structures, the minimum fluid flow rate has been roughly estimated considering that fluids 549 

migrated from the basement hanging-wall cut-off to the frontal part of the Lower 550 

Pedraforca thrust sheet (30 km), the Vallfogona thrust (20 km where it has been studied; 551 

Fig. 2A), the Abocador thrust (24 km) and the L’Escala thrust (24 km) during 6, 11, 5 and 552 

8 Ma, respectively. These ranges of time are based on magnetostratigraphy and 40Ar/39Ar 553 

dating on authigenic illite on fault planes (Vergés, 1993; Haines, 2008).   Thus, for the 554 

Lower Pedraforca thrust sheet and the Abocador thrust, a minimum fluid flow rate of 5 555 

km Ma-1 is obtained, whereas for the Vallfogona and the L’Escala thrusts the minimum 556 

calculated rate is 2 and 3 km Ma-1, respectively. These values are consistent with the 557 

lowest rates calculated in other forelands such as in the Canadian and eastern 558 
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Venezuelan foothills (Schneider, 2003) and in the Bighorn Basin (Beaudoin et al., 2014). 559 

This large-scale migration of hydrothermal fluids along the south Pyrenean fold and 560 

thrust belt was probably controlled by different driving forces such as squeegee-type fluid 561 

flow, which induces rates between 1 and 100 km Ma-1 (Ge and Garven, 1989) but only 562 

during short time periods (Schneider, 2003), coupled with topography and thermal 563 

gradients (Lyubetskaya and Ague, 2009). 564 

8.3. Conceptual model of fluid flow in fold and thrust belts 565 

The fluid flow model established for the southern Pyrenees in the previous section 566 

together with previous works done by other authors in other orogens worldwide (Ferket 567 

et al., 2000; Van Geet et al., 2002; Breesch, 2008; Vilasi, 2010; Vandeginste et al., 2012; 568 

Dewever et al., 2013), indicate that the presence or absence of thick evaporitic units 569 

highly control the final fluid composition. In all cases, ascending hydrothermal fluids 570 

mixed with low-temperature meteoric fluids (Fig. 13).  571 

However, whereas in thrust sheets not detached along evaporite units (Fig. 13a), the 572 

mixed fluid was progressively more depleted in δ18O and had lower Fe and Sr contents 573 

with respect to the former, not mixed, hydrothermal fluid (Fig. 13a), in thrust sheets 574 

detached along evaporite successions (Fig. 13b), brines derived from these evaporites 575 

were responsible for the δ18O enrichment of the mixed fluid, without a systematic 576 

increase in Fe and Sr contents (Warren, 2006).  577 

The trend from high δ18O to more depleted values along with, where documented, the 578 

progressive decrease in Fe and Sr contents (Fig. 13a) during the emersion of the thrust 579 

front has been observed in the Vallfogona and L’Escala thrust, Ainsa Basin (Travé et al., 580 

1997), Veracruz Basin (Ferket et al., 2000), North Oman Mountains (Breesch, 2008), 581 

south Ionian zone (Vilasi, 2010), Canadian Rocky Mountains (Vandeginste et al., 2012), 582 

Bighorn Basin (Beaudoin et al., 2011, 2014), Castillo Mayor klippe and Jaca thrust 583 

(Lacroix et al., 2014) and Puig-reig anticline (Cruset et al., 2016), which are structures 584 
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not detached through thick evaporite units. As these structures emerged, the input of 585 

oxidizing meteoric waters depleted in Sr controlled the decrease in Fe content (Froelich 586 

et al., 1979; Tucker and Wright, 1990), whereas their mixing with hydrothermal fluids 587 

induced δ18O depletion (Immenhauser et al., 2007). The trend from low δ18O to more 588 

enriched values (Fig. 13b) has been observed in the Abocador thrust, El Guix anticline 589 

(Travé et al., 2000), Central Ionian Zone (Van Geet et al., 2002), Sicilian fold and thrust 590 

belt (Dewever et al., 2013), Sierras Exteriores (Beaudoin et al., 2015; Crognier et al., 591 

2015; Crognier, 2016) and Larra/Eaux chaudes thrust (Crognier et al., 2017), where 592 

thrusts are detached along thick evaporitic units. In the Iudica-Scalpello area (Sicilian 593 

fold and thrust belt), based on the low salinity of the fluid inclusions, this trend is 594 

explained by smectite-illite transformations (Dewever et al., 2013). 595 

9. Conclusions 596 

A multidisciplinary study has been carried out to determine the changes in fluid regime 597 

and composition during the growth of the south Pyrenean fold and thrust belt from lower 598 

Eocene to lower Oligocene. 599 

Integration of petrographic and geochemical data obtained from fracture-filling calcite 600 

cements reveals that hydrothermal fluids migrated from the Axial zone of the Pyrenees 601 

to its related foreland basin during Paleogene compression.  602 

From Lower to Middle Eocene, ascending hydrothermal fluids migrated from the Axial 603 

zone to the foreland basin and mixed with connate marine waters trapped in rock 604 

porosity. The mixed fluid had temperatures up to 154 °C, enriched δ18O, 87Sr/86Sr slightly 605 

higher than Eocene seawater and high Fe and Sr contents. From Middle Eocene to 606 

Lower Oligocene, as the thrust front progressively emerged, meteoric waters migrated 607 

downwards the foreland basin by topography-driven fluid flow and mixed at depth with 608 

the hydrothermal fluids. The mixed fluid was progressively more depleted in δ18O, with 609 
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temperatures between 77 and 129°C, lower Fe and Sr contents and more radiogenic 610 

87Sr/86Sr ratios than the former fluid. 611 

The comparison of southern Pyrenees to other orogens worldwide, suggests that the 612 

presence or absence of thick evaporitic units had a fundamental role in the fluid 613 

composition during fold and thrust belt evolution. In all cases, hydrothermal fluids 614 

migrated along fractures within thrust sheets and mixed with low-temperature meteoric 615 

waters. When thrusts were not detached through thick evaporite units, the resultant fluid 616 

was progressively more radiogenic, more depleted in δ18O and had a lower temperature 617 

and lower Sr and Fe content, as the thrust front emerged. In contrast, when thrusts were 618 

detached along thick evaporitic units, the resulting fluid was enriched in δ18O. 619 
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Fig. 1 Structural sketch of the Pyrenees from Vergés (1993). The white squares show the location 1014 
of the studied structures in this work: 1) Lower Pedraforca thrust sheet; 2) Vallfogona thrust; 3) 1015 
Abocador and L’Escala thrusts. The grey squares show the location of the structures previously 1016 
studied by other authors that have been compared with our structures: 4) Larra/Eaux-chaudes 1017 
thrust (Crognier et al., 2017); 5) Jaca Basin (Lacroix, et al., 2014; Crognier et al., 2017); 6) Sierras 1018 
Exteriores (Beaudoin et al., 2015; Crognier, 2016); 7) Ainsa Basin (Travé et al., 1997); 8) 1019 
Gavarnie thrust (McCaig et al., 1995); 9) Puig-reig anticline (Cruset et al., 2016); 10) El Guix 1020 
anticline (Travé et al., 2000). The purple and red lines indicate the location of cross-sections 1021 
shown in Figs. 2a and b, respectively. 1022 

Fig. 2 Cross sections of the studied areas (Vergés, 1993). The color boxes indicate the structural 1023 
position of the studied outcrops in SE Pyrenees also shown in Fig. 1. Each color is equivalent to 1024 
the color of lines and boxes in Figs. 3, 4, 5, 6, 7, 8, 9 and 10.  1025 

Fig. 3 A) Structural sketch of the studied area with outcrop locations. Q samples are referred to 1026 
the Lower Pedraforca thrust sheet, GDV and GDB to the Vallfogona thrust and TAB and TES to 1027 
the Abocador and L’Escala thrusts, respectively. B) N-S stratigraphic panel of the Lower 1028 
Pedraforca thrust sheet, Cadí thrust sheet and eastern Ebro Foreland Basin modified from Vergés 1029 
et al. (1998). The age of sedimentary units has been defined according to Burbank et al. (1992a, 1030 
b), López-Martínez et al. (1999), Oms et al. (2007), Costa et al. (2010) and Valero et al. (2014). 1031 
Shallow Benthic Zones (SBZ) from Serra-Kiel et al. (1998a and b). The color boxes with 1032 
references Q, GDV, GDB, TAB and TES indicate the stratigraphic location of the studied outcrops. 1033 

Fig. 4 Lower hemisphere Schmidt stereoplots representing fracture data from the different studied 1034 
outcrops. The dotted thick black lines indicate the main plane orientation for thrust faults. The 1035 
boxes with numbers represent the structure location in Fig. 1. 1036 

Fig. 5 Cross-cutting relationships between fractures and related calcite cements in the Lower 1037 
Pedraforca thrust sheet and Vallfogona, Abocador and L’Escala thrusts. The different cement 1038 
generations and their main petrographic features as well as host rock formations are indicated. 1039 
  1040 
Fig. 6 Elemental composition of the calcite cements for the Vallfogona and L’Escala thrusts, Ainsa 1041 
Basin (Travé et al., 1997), El Guix anticline (Travé et al., 2000) and Puig-reig anticline (Cruset et 1042 
al., 2016). For each structure Mg, Mn, Fe and Sr minimum, maximum and mean contents are 1043 
given. Each of the different color lines represent one single structure. Equivalent colors are used  1044 
in figures 2, 3, 4, 5, 7, 8, 9 and 10. The dashed grey line indicates the change from marine to 1045 
continental conditions of thrust emplacement. The age of each calcite cement generation is 1046 
approximated. 1047 

Fig. 7 δ18O vs δ13C cross-plots of carbonate host rocks and calcite cements from the Lower 1048 
Pedraforca thrust sheet, Vallfogona, Abocador and L’Escala thrusts, Ainsa Basin (Travé et al., 1049 
1997), Castillo Mayor klippe and Jaca thrust (Lacroix et al., 2014), El Guix anticline (Travé et al., 1050 
2000) and Puig-reig anticline (Cruset et al., 2016). Empty symbols represent the different host 1051 
rocks.  1052 

Fig. 8 δ13Ccalcite veins vs δ13Chost rocks and δ18Ocalcite veins vs δ18Ohost rocks cross-plots from the Lower 1053 
Pedraforca thrust sheet, Vallfogona, Abocador and L’Escala thrusts.  The dashed black line 1054 
represents the equilibrium between calcite veins and their adjacent host rocks. 1055 

Fig. 9 Clumped isotopes temperatures (°C) vs calculated δ18Ofluid (‰ VSMOW) for The Vallfogona 1056 
and Abocador thrusts, Puig-reig anticline (Cruset et al., 2016) and El Guix anticline (Travé et al., 1057 
2000). δ18O Eocene seawater in ‰ VSMOW is from Tindall et al. (2010).  1058 
 1059 
Fig. 10 87Sr/86Sr composition of calcite cements, carbonate host rocks and celestite minerals from 1060 
the Vallfogona and L’Escala thrusts, Ainsa Basin (Travé et al., 1997), El Guix  anticline (Travé et 1061 
al., 2000) and Puig-reig anticline (Cruset et al., 2016). The age of each calcite cement generation 1062 
is approximated. The 87Sr/86Sr ratios of the Cuisian evaporites of the eastern sector of the south 1063 
Pyrenean foreland basin from Carrillo (2012) and the LOWESS curve from McArthur et al. (2001) 1064 
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are also plotted. The dashed grey line indicates the change from marine to continental conditions 1065 
of thrust emplacement. 1066 

Fig. 11 Chronogram of the approximate ages of the different calcite cements in the Lower 1067 
Pedraforca thrust sheet, Vallfogona, Abocador and L’Escala thrusts, Ainsa Basin (Travé et al., 1068 
1997), Castillo Mayor klippe and Jaca thrust (Lacroix et al., 2014), El Guix anticline (Travé et al., 1069 
2000) and Puig-reig anticline (Cruset et al., 2016). The dashed grey line indicates the change 1070 
from marine to continental conditions of thrust emplacement. 1071 

Fig. 12 Fluid flow evolution in the south Pyrenean fold and thrust belt from submarine to 1072 
continental conditions during thrust front emplacement. The shifts in δ18Ofluid VSMOW, Fe and Sr 1073 
content and 87Sr/86Sr ratio from Lower Eocene to Lower Oligocene are also included. The middle 1074 
Eocene stage is redrawn from Vergés et al. (1995) and the lower Oligocene stage is redrawn from 1075 
Vergés (1993). Legend units are in Fig. 2. 1076 

Fig. 13 Sketches of two possible scenarios for fluid flow regime in fold and thrust belts. A) Thrust 1077 
sheet not detached through evaporites. B) Thrust sheet detached through evaporites. Not to 1078 
scale. 1079 
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Table 1 1080 

Structure Sample Cement type n δ13C VPDB δ18O VPDB ∆47 T °C δ18Ofluid VSMOW 

         

Vallfogona 
thrust 

GDV20 Cc2 3 -1.06 -6.04 0.463 ± 0.002 154 ± 2 +12.12 ± 0.1434 
GDV30 Cc4 3 -1.66 -7.11 0.532 ± 0.010 101 ± 6 +6.37 ± 0.626 
GDV13 Cc5 3 -2.29 -9.64 0.527 ± 0.023 105 ± 14 +4.22 ± 1.37 

         
Puig-reig 
anticline 

(Cruset et al., 
2016) 

309B1 Cc1 3 -0.44 -7.77 0.548 ± 0.009 92 ± 5 +4.7 ± 0.6 
317 Cc1 3 -0.99 -6.95 0.494 ± 0.010 129 ± 8 +9.2 ± 0.7 

311A Cc2 3 -0.77 -12.32 0.574 ± 0.010 77 ± 5 -1.7 ± 0.7 
311D Cc2 3 -0.73 -12.85 0.551 ± 0.004 90 ± 3 -0.7 ± 0.3 

         
Abocador thrust TAB9 Cc2 1 -1.69 -8.22 0.423 ± 0.03 177 ± 40 +14.1 ± 4,7 

         
El Guix anticline STn(3)(2) Mfs2 1 -4.48 -8.62 0.487 ± 0.03 117 ± 25 +7.1 ± 2.5 

         

1081 
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Table 1 Calcite cement δ13C, δ18O, ∆47 and δ18Ofluid of the Vallfogona thrust and Puig-reig anticline. 

Preliminary ∆47 and δ18Ofluid  for the Abocador thrust and El Guix anticline are also included. n 

represents the number of analyses per sample. 

 


