

Appraisal of CO₂ storage potential in compressional hydrocarbon-bearing basins: global assessment and case study in the Sichuan Basin (China)

Xiaolong Sun, Juan Alcalde, Enrique Gomez-Rivas, Lucía Struth, Gareth Johnson, Anna Travé

PII: S1674-9871(20)30050-5

DOI: https://doi.org/10.1016/j.gsf.2020.02.008

Reference: GSF 959

To appear in: Geoscience Frontiers

Received Date: 29 July 2019

Revised Date: 28 November 2019

Accepted Date: 22 February 2020

Please cite this article as: Sun, X., Alcalde, J., Gomez-Rivas, E., Struth, L., Johnson, G., Travé, A., Appraisal of CO₂ storage potential in compressional hydrocarbon-bearing basins: global assessment and case study in the Sichuan Basin (China), *Geoscience Frontiers*, https://doi.org/10.1016/j.gsf.2020.02.008.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2020 China University of Geosciences (Beijing) and Peking University. Production and hosting by Elsevier B.V. All rights reserved.

Journal Prevention

Appraisal of CO₂ storage potential in compressional 1 hydrocarbon-bearing basins: global assessment and case study in 2 the Sichuan Basin (China) 3 Xiaolong Sun^{a,*}, Juan Alcalde^b, Enrique Gomez-Rivas^a, Lucía Struth^b, Gareth Johnson^c, Anna 4 5 Travé^a 6 ^a Department of Mineralogy, Petrology and Applied Geology, University of Barcelona, Martí i Franquès s/n, 7 Barcelona, 08028, Spain 8 ^b Department of Structure and Dynamics of the Earth, Institute of Earth Sciences Jaume Almera, ICTJA-CSIC, 9 Lluis Sole i Sabaris s/n, Barcelona, 08028, Spain 10 ^c Department of Civil and Environmental Engineering, University of Strathclyde, Glasgow, G1 1XZ, United 11 Kingdom. 12 13 Abstract: Carbon capture and storage (CCS) has been proposed as a potential technology to mitigate 14 15 climate change. However, there is currently a huge gap between the current global deployment of this 16 technology and that which will be ultimately required. Whilst CO₂ can be captured at any geographic 17 location, storage of CO₂ will be constrained by the geological storage potential in the area the CO₂ is 18 captured. The geological storage potential can be evaluated at a very high level according to the 19 tectonic setting of the target area. To date, CCS deployment has been restricted to more favourable 20 tectonic settings, such as extensional passive margin and post-rift basins and compressional foreland 21 basins. However, to reach the adequate level of deployment, the potential for CCS of regions in 22 different tectonic settings needs to be explored and assessed worldwide. Surprisingly, the potential of 23 compressional basins for carbon storage has not been universally evaluated according to the global and 24 regional carbon emission distribution. Here, we present an integrated source-to-sink analysis tool that 25 combines comprehensive, open-access information on basin distribution, hydrocarbon resources and 26 CO₂ emissions based on geographical information systems (GIS). Compressional settings host some of 27 the most significant hydrocarbon-bearing basins and 36% of inland CO₂ emissions but, to date, large-scale CCS facilities in compressional basins are concentrated in North America and the Middle 28 29 East only. Our source-to-sink tool allows identifying five high-priority regions for prospective CCS 30 development in compressional basins: North America, north-western South America, south-eastern 31 Europe, the western Middle East and western China. We present a study of the characteristics of these 32 areas in terms of CO₂ emissions and CO₂ storage potential. Additionally, we conduct a detailed

33 case-study analysis of the Sichuan Basin (China), one of the compressional basins with the greatest

34 CO₂ storage potential. Our results indicate that compressional basins will have to play a critical role in

35 the future of CCS if this technology is to be implemented worldwide.

36 **Keywords:** CO₂ storage, Compressional basins, CO₂ emissions, Sichuan Basin.

37 **1 Introduction**

38 The cumulative anthropogenic CO_2 emissions to the atmosphere have produced an approximate $1^{\circ}C$

increase in global average temperature above pre-industrial levels (Peters et al., 2012; 39 40 Masson-Delmotte et al., 2018). Serious concerns about global warming have recently been raised in 41 the latest Intergovernmental Panel on Climate Change (IPCC) Report, which warns of the need to limit 42 global warming to 1.5°C to avoid catastrophic environmental damage (Masson-Delmotte et al., 2018). 43 Achieving this target will require the combination of different approaches to climate change mitigation compatible with sustainable development, including CO₂ emission reductions. Carbon Capture and 44 Storage (CCS) can be an efficient and safe method to meet these reductions (Metz et al., 2005; Scott et 45 46 al., 2013; Alcalde et al., 2018; Bui et al., 2018; Global CCS Institute, 2018). However, there are only 47 44 large-scale CCS facilities under different development and operation status globally, with a combined CO₂ removal capacity of 83.41 Megatons of CO₂ per annum (Mtpa) (Global CCS Institute, 48 2019). Note that the current CCS development also includes CO₂ enhanced oil recovery (CO₂-EOR) 49 50 projects, which can catalyse the implementation of CCS from economic aspects (Stewart and 51 Haszeldine, 2014), but whose effect in the decarbonisation significance is unclear (e.g., 52 Ettehadtavakkol et al., 2014; Armstrong and Styring, 2015; Hornafius and Hornafius, 2015). If the 53 trend of CCS development continued, even considering CO₂-EOR projects, it would still be very far 54 from the global decarbonisation targets (Koelbl et al., 2014; Bui et al., 2018; Global CCS Institute, 55 2018; Masson-Delmotte et al., 2018; Fig. 1), e.g., 348 Gigatons (Gt) based on a scenario with a broad focus on sustainability (Masson-Delmotte et al., 2018). 56

57 Kearns et al. (2017) estimated the global practically accessible geological storage capacity for CO₂ 58 to be between 8000 Gt and 55,000 Gt, indicating that the storage capacity seems not to be a limiting 59 factor for CCS deployment for the rest of this century for most regions. However, storage capacity is 60 not the only parameter that determines a region's suitability for CCS. Other factors include the tectonic 61 setting, basin architecture, reservoir quality, caprock sealing capacity, depth, geothermal gradient, 62 reservoir pressure, hydrogeology, and other environmental and economic factors (Bachu, 2003; Wei et 63 al., 2013; Edlmann et al., 2015).

64 In particular, the tectonic settings under which a targeted basin was formed exert a significant effect 65 on the other factors listed above (Edlmann et al., 2015; McDermott et al., 2017). Tectonic settings are 66 broadly split into compressional, extensional and strike-slip categories that reflect the relative plate 67 motions that determine their past and present stress state. Despite being ubiquitous in all continents, 68 the potential of compressional basins to safely store captured CO_2 has not been systematically studied, especially in terms of comparison between their storage capacity and the demand for storage, which is 69 70 directly determined by the geographic distribution and volume of carbon emissions. The present study 71 aims to critically close this knowledge gap by providing a global assessment on the role of 72 compressional basins in the future of global CCS.

73 Compressional basins are generally formed by the collision and subduction of tectonic plates and 74 can also form within plates, and are characterized by shortening and deformation of the lithosphere. 75 We consider here the two most common types of compressional basins: peripheral foreland basins, 76 developed adjacent to mountain belts, and retro-arc foreland basins, developed adjacent to island 77 volcanic arcs. Compressional basins tend to develop in tectonically active areas and experience 78 faulting and folding, raising the risk of CO_2 leakage (Bachu, 2003). Compared to other basin types, 79 such as those developed under extensional or strike-slip tectonic regimes, compressional basins present in some cases lower geothermal gradients because of the cooling effect of the relatively cold 80 81 subducting plate (Edlmann et al., 2015). This results in lower reservoir temperature and higher CO₂ 82 density, and further leads to high storage capacity and low buoyancy force due to lower density

contrast between CO_2 and formation fluids (Bachu, 2003; Miocic et al., 2016; Iglauer, 2018). Moreover, compressional basins also typically present higher fluid pressure and lower risk of CO_2 leakage owing to their much higher minimum principal stress (Wei et al., 2013), compared with other basin types. Using geomechanical facies assessments, Edlmann et al. (2015) ranked peripheral foreland basins as the most suitable sites for CO_2 storage, followed by passive continental margins, rift and strike-slip basins. These results indicate that compressional basins, and more especially foreland basins, have great potential for CCS development.

90 Mann et al. (2003) studied 877 giant fields worldwide, observing that 27.83% of them are located in 91 compressional settings. Tian et al. (2014) pointed out that 20.46% of globally undiscovered conventional hydrocarbon resources are stored in foreland basins. Abundant hydrocarbon resources are 92 93 stored in compressional basins, especially concentrating in the Middle East, North America, South 94 America, Central Asia, and China (Tian et al., 2014; Wang et al., 2016; Tong et al., 2018). 95 Hydrocarbon-bearing provinces are the primary targets of CCS because of proven sufficient capacity and suitable characteristics to trap and store fluids over long periods of time and a substantial number 96 97 of geological datasets and host industrial infrastructures with potential for re-use for CCS development 98 (Godec et al., 2011; Kuuskraa et al., 2013; Alcalde et al., 2019).

99 However, it should be noted that the properties of hydrocarbons are different than those of CO₂, such as the physical-chemical processes (e.g., interfacial tension, wettability, density), their flow 100 101 dynamics and the associated risks when these fluids are in the subsurface (Chiquet et al., 2007; Naylor 102 et al., 2011; Alcalde et al., 2018; Miocic et al., 2019). Therefore, it must take care when using 103 hydrocarbon reserves as a proxy for CO₂ storage potential. In this sense, we use hydrocarbon volume 104 only as a proxy to quantify and rank CO_2 storage potential of these hydrocarbon-bearing basins, rather 105 than using them as a quantitatively equivalent to storable CO_2 emissions. A detailed site 106 characterisation is still needed to assess the storable CO₂ emissions and the potential security of a 107 chosen hydrocarbon reservoir, case by case.

108 To date, large-scale CCS facilities in compressional basins are concentrated in North America and 109 the Middle East. China and Europe account for significant proportions of global CO₂ emissions and 110 host large compressional basins that could be used for CO₂ storage. However, there are currently no large-scale CCS facilities in operation or even under consideration in these basins, indicating that the 111 112 potential of these regions still needs to be explored. Despite their promising prospect, the potential of 113 compressional basins has not been assessed quantitatively and in detail to date. Global and regional 114 assessments of CO_2 storage potential are critical to identify short-to-middle term prospects, which can become primary targets for the development of a CCS industry in high priority/high need regions. The 115 overarching aim of this study is to reveal the role of compressional basins and evaluate how 116 117 appropriate storage regions that developed in compressional settings are for CCS development.

In this contribution, we analyse the spatial distribution of the main hydrocarbon-bearing basins in 118 119 the world and compare their potential reservoir capacity with global CO₂ emissions using GIS 120 methods. Based on previous source-to-sink appraisals (e.g., UNIDO, 2011; Edlmann et al., 2015), we 121 adopt updated CO₂ emissions, comprehensively consider tectonic settings of basins and projected emission reductions of countries and, finally, create an integrated parameter to identify regions with 122 123 high CO₂ storage potential in compressional basins. This detailed analysis allows us to evaluate to 124 what extent compressional basins represent the best CCS option in certain regions, and whether they 125 can play an essential role in global CCS development.

126 **2 Current status of CCS in compressional basins**

According to the latest data from the CCS Facilities Database (Global CCS Institute, 2019), there 127 are 44 large-scale CCS facilities under different development and operation status, able to capture and 128 inject at most 83.41 Mtpa of CO₂, once they are all fully functional (Fig. 2a, b). By number of 129 130 facilities, most CCS activity is located in North America, Europe and Asia, with 15, 11 and 11 131 facilities, respectively. If measured by the capacity for CO_2 capture and injection, activity concentrates 132 in North America, Europe, Asia and Australia, with 33.1, 22.8, 11.91 and 11.5 Mtpa, respectively. 133 Global CCS development is hence far from achieving the CO₂ emission reduction targets set for 1.5°C 134 above pre-industrial levels (Masson-Delmotte et al., 2018).

135 CCS development in compressional basins shows a heterogeneous distribution to date (Fig. 2). 136 There are currently eleven large-scale CCS facilities located in compressional basins, while there are 137 30 facilities in other basin types. The large-scale CCS facilities in compressional basins can capture 138 and inject 23.1 Mpta of CO₂, accounting for 27.7% of all large-scale facilities globally. However, they 139 are nearly all in North America with nine facilities that can capture and inject 21.5 Mpta of CO₂, with 140 another two facilities and storing 1.6 Mpta of CO₂ in the Middle East. Furthermore, 90% of these

141 facilities are enhanced oil recovery projects (CO₂-EOR), and therefore not fully dedicated to storage.

142 Most regions do not host any large-scale CCS facilities either in operation or even under consideration.

143 In the following sections, we investigate the characteristics of global compressional basins to identify

144 areas with potential for CCS development.

145 **3 Data and methods**

146 **3.1 Basin resources and CO₂ emission data**

Suitable storage options include oil and gas fields, unconventional reservoirs, basaltic rocks and 147 deep saline aquifers (Metz et al., 2005; Bachu, 2007; Matter et al., 2009). Oil and gas fields are likely 148 149 targets for CCS because of their proven capacity to safely retain fluids over geological timescales. 150 Furthermore, substantial subsurface data, as well as infrastructure in place suitable for re-use, are 151 usually available from exploration and production activities (Alcalde et al., 2019). Although unconventional reservoirs show potential for CCS development and even resulted in recent CCS 152 153 project evaluation and implementation, especially in coal seams and shales (Bachu, 2007; Kang et al., 154 2011; Liu et al., 2013), there are still noticeable uncertainties and risks due to their heterogeneous and 155 tight characteristics. Basaltic rocks facilitate the transformation of CO₂ to carbonate minerals, referred to as mineral trapping, owing to their high reactivity and abundant metal ions, but this option is only 156 157 very recent and it is still being investigated (Gislason and Oelkers, 2014). Saline aquifers and oil and gas fields are the most developed storage types because of the large potential capacity and the data 158 availability respectively. However, the subsurface data that characterise global saline aquifers is more 159 sparse and incomplete than in oil and gas fields, so we restrict our assessment to hydrocarbon-bearing 160 161 basins.

Based on data from the National Petroleum Assessment and the World Petroleum Assessment of the United State Geological Survey (USGS) (USGS, 1995–2013, 2000; Bird et al., 2008), we obtained global basin shapes and values for conventional hydrocarbon resources of more than 200 basins (Fig. 3a). The total hydrocarbon resources utilized here consist of the cumulative hydrocarbon production, remaining recoverable hydrocarbon and undiscovered recoverable hydrocarbon estimated to exist

based on geological knowledge and theory (USGS, 2000). Since the USGS only provides data on undiscovered resources for the United States (USGS, 1995-2013), we deduced their total resources using the ratio of undiscovered vs total resources of global basins (USGS, 2000). For most basins in the Arctic Circle, which have not experienced extensive exploration and development, undiscovered resource estimates are assumed to match their total resource estimates (Bird et al., 2008).

Based on the CGG Robertson Sedimentary Basins compilation (Robertson, 2014), we have divided global hydrocarbon-bearing basins into five major tectonic settings: foreland basins, passive margin basins, intracratonic basins, rift and post-rift basins, and other basins (Fig. 3b). Over 40% of hydrocarbon-bearing basins by area are located in foreland basins, which mainly concentrate in six regions (Fig. 3a, b): North America, West South America, East Europe, West Middle East, central Asia and China.

The global stationary CO₂ emissions in 2012 were extracted from the version v4.3.2 of the 178 Emissions Database for Global Atmospheric Research (EDGAR) (EDGAR, 2012; Janssens-Maenhout 179 180 et al., 2019) (Fig. 4). We use emission sources in 2012 to identify areas of high stationary emissions, 181 assuming that these areas will require greater mitigation efforts. The dataset includes CO₂ emissions from various resources, including population, energy, fossil fuel consumption and production, 182 agriculture, industry, and solid and liquid waste. Our current technological level does not allow us to 183 184 capture small and dispersed CO_2 emissions, such as those associated with transport or agricultural activities. Thus, we have only considered emission points above 10,000 tons of CO₂ per annum (tpa), 185 186 which add up to 32.72 Gt globally, constituting the 97% of the global total emissions (34.87 Gt; 187 EDGAR, 2012).

188 Finally, we have used the Projected Emission Reductions (PER) plans by 2030 that different G20 189 economies signed according to the unconditional Intended Nationally Determined Contributions 190 (INDCs) scenario (Fig. 5) (Den Elzen et al., 2016). We assume that countries with high PER have 191 greater urgency for addressing climate change mitigation, and thus CCS will be more likely to be 192 implemented in them. These unconditional INDCs are not directly comparable, since different 193 economies submitted their INDCs in various forms. For example, some countries provided baseline 194 emission projections in INDCs while others did not. Moreover, China and India have proposed a combination of targets, which need to be calculated using their respective energy models (Den Elzen et 195 196 al., 2016). Den Elzen et al. (2016) compiled these datasets and produced a unified and comparable 197 dataset. However, since 2016, some of the G20 countries considered have changed their emission 198 reduction plans. For example, the USA announced that they withdraw from the Paris Agreement, and its Nationally Determined Contribution was rated "Critically Insufficient" by the Climate Action 199 Tracker (Climate Action Tracker, 2018). Furthermore, our focus on G20 countries does not imply that 200 201 other countries do not have their own emission reduction plans. Thus, the data from Den Elzen et al. 202 (2016) is not necessarily in line with the current climate policies, but offer a unified framework for 203 comparison across countries.

204 3.2 Data processing in GIS software

We have combined the three datasets (i.e., basin distribution, basin hydrocarbon resources and CO_2 emissions) to develop a source-to-sink matching approach. This process allows us to correlate the distribution of CO_2 emissions with the available storage space in compressional basins, using hydrocarbon resources as a proxy.

First, we input the basin polygon shapes and localised the CO_2 emission points into a GIS-based software (QGIS version 3.4.2, 2018). To delimit and calculate the combined CO_2 emissions in each basin, we summed all the CO_2 emissions lying within each basin (Fig. 6). As long distances between CO_2 sources and sinks (i.e., emission points and basins) can increase the transport and monitoring costs, making CCS financially unattractive, we only considered CO_2 emission points lying within the target basins and disregarded all other emission sources.

For the storage potential appraisal, we assume that compressional regions with high potential for developing CCS must encompass sufficient hydrocarbon resources and CO₂ emissions. Due to the difference in magnitude between hydrocarbon resources ($V_{\rm H}$) and CO₂ emissions ($V_{\rm CO2}$), data processing is necessary before the selection of potential regions. We applied a data normalization based on a function of their minimum and maximum values:

$$220 V_n = \frac{V - V_{\min}}{V_{max} - V_{\min}} (1)$$

221 Where V_n , V, V_{min} and V_{max} are the normalized value, the actual value, the minimum value and the 222 maximum value, respectively.

223 We created an integrated evaluation parameter (V_{CCS-P}) to evaluate basin potential for CO₂ storage:

$$224 V_{CCS-P} = V_{nH} \times V_{nCO2_2} (2)$$

225 Where V_{nH} and V_{nCO2} are the normalized values of V_{H} and V_{CO2} , respectively.

Hydrocarbon resources are not quantitatively equivalent to storable CO_2 emissions, which require more geological parameters to be calculated (Goodman et al., 2011). Hence, we use hydrocarbon resources only as a proxy to quantify and rank CO_2 storage potential of these hydrocarbon-bearing basins. Finally, we obtained the distribution of V_{CCS-P} that highlights basins with high (yellow) and low (blue) potential for CCS (Fig. 7a) and identified five high-priority regions that have high V_{CCS-P} and are dominated by compressional basins (Fig. 7b).

232 **4 Results and discussion**

4.1 CO₂ storage potential in compressional basins

The hydrocarbon industry has abundant oil and gas resources stored in compressional basins, indicating their significant potential for CCS. Our GIS analysis relates the storage capacity of basins with the potential demand for carbon storage, according to the geographic distribution and volume of CO₂ emissions.

The total hydrocarbon resources in global compressional basins reach over 2,184 billion barrels of oil equivalent (BBOE), accounting for around 50% of the total resources in all hydrocarbon-bearing basins. Compressional basins also contain significant CO_2 emission sources, with 3.8 Gt of CO_2 annual emissions accounting for 34% of all hydrocarbon-bearing basins. Compressional basins with high CO_2 emissions are mainly located in Western Canada, America, the Middle East, Europe and China (Fig. 6).

To select the target areas with the greatest CO_2 storage potential in compressional basins, which will be taken forward for detailed assessment, we favoured the areas with high V_{CCS-P} compressional basins

that are also relatively isolated from other basin types for prospective CCS storage. Based on the distribution of V_{CCS-P} , we have selected five high-priority regions for detailed assessment (Fig. 7, Fig. 8): (1) North America, (2) North-western South America, (3) South-eastern Europe, (4) Western Middle East, and (5) Western China. Of the five high-priority regions, only North America, Europe and China have explicit high-emission reduction targets in place (Den Elzen et al., 2016) (Fig. 7c), and therefore they are more likely to implement decarbonisation actions, like CCS.

252 4.2 High-priority regions

4.2.1 North America

The area spreads across the USA and western Canada and is composed of 17 compressional basins adjacent to the Rocky Mountain, Marathon-Ouachita and Appalachian fold-and-thrust belts (Fig. 7b), which formed owing to the closing of ocean between Laurasia and Gondwana in the Late Paleozoic and the collision between the North American and Pacific plates during the Meso–Cenozoic (Ma et al., 2014).

These basins have 11 BBOE of undiscovered conventional hydrocarbon resources and 26.5 BBOE of estimated total hydrocarbon resources, mainly distributed in the Western Canadian Sedimentary Basin (WCSB), the Permian Basin, the Appalachian Basin and the Montana Thrust Belt. In this area, the major CO_2 sources relate to electricity generation in Canada and electricity, refinery, chemical and other hydrocarbon industries in the USA (U.S. Department of Energy Office of Fossil Energy, 2015). Around 1,180 Mtpa of CO_2 emissions are distributed in compressional basins, mainly in the Appalachian Basin, the Bend Arch-Fort Worth Basin and the WCSB.

The USA and Canada account for 11.85% and 1.92% of global greenhouse gas emissions in 2012, 266 respectively (Den Elzen et al., 2016). Their high emission reduction targets (Den Elzen et al., 2016) 267 (Fig. 8) and high suitability for CCS development (Mitrovic et al., 2011; Blondes et al., 2013) have 268 made this region the most active area of CCS development worldwide (Global CCS Institute, 2018). 269 270 There are nine large-scale CCS facilities in operation or under advanced development in the target 271 compressional basins that can capture and inject at most 21.5 Mtpa of CO₂, dominating the global 272 CCS development in compressional settings. According to the distribution of V_{CCS-P} value, the 273 compressional basins with the highest potential are the WCSB and the Appalachian Basin. The CO₂ 274 emissions from the large-scale facilities in the WCSB (the Alberta Carbon Trunk Line and the Quest) 275 derive mainly from fertiliser production, oil refining and hydrogen production (Global CCS Institute, 276 2019). Only two pilot and demonstration CCS facilities have been developed in the Appalachian Basin, the Marshall County ECBM Project (Wilson et al., 2012) and the Mountaineer Validation Facility 277 278 (Mishra et al., 2014), both closed in the 2010's with around 40,000 t CO₂ stored in the subsurface.

279 4.2.2 North-western South America

Owing to the subduction of the Pacific and Caribbean plates under the South American Plate after the Late Cretaceous, fore-arc basins, the Andes and retro-arc foreland basins developed from offshore to inland in western and northern South America (Xie et al., 2009; Yang et al., 2009). Retro-arc foreland basins dominate hydrocarbon resources in North-western South America (Yang et al., 2009), which are regarded as the main CCS targets located in Peru, Ecuador, Colombia and Venezuela (Fig. 7b).

286 North-western South America has 178 BBOE of hydrocarbon resources, mainly distributed in

Venezuela. On the other hand, CO_2 emissions are mainly outcomes from power generation, cement and refinery industries in west South America, accounting for 46%, 24% and 18% of the emissions, respectively (UNIDO, 2011). These compressional hydrocarbon-bearing basins in North-western South America contain 123 Mtpa of CO_2 emissions.

Colombia and Venezuela are the main CO₂ emitters in the region, accounting for around 0.5% of 291 292 global greenhouse gas emissions in 2012, which aim to achieve emission reduction targets of 20% 293 below business as usual level by 2030 (Den Elzen et al., 2016). Although there are no large-scale CCS 294 facilities under operation or construction, other decarbonisation measures (e.g., enhancing energy 295 efficiency, substituting energy-intense appliances with more efficient models) have been effectively applied in the region (Pereira et al., 1997; Román et al., 2018). The high potential for CCS of the 296 297 region, marked by its V_{CCS-P} , may facilitate CCS development in the future. In particular, the East Venezuela Basin contains some of the largest oil accumulations in the world (Erlich and Barrett, 1992), 298 299 a long history of production and suitability for CO₂-EOR (Manrique et al., 2003), which can open the 300 door to a CCS industry in the area.

301 4.2.3 Southeastern Europe

The compressional setting in this region is closely related to the Alpine Orogeny, originated by the 302 convergence of the African and European plates after the closing of the interposed Tethys Ocean 303 304 (Castellarin, 2001). Three compressional basins with high CO₂ storage potential are located in 305 southern and eastern Europe, the North Carpathian, Carpathian-Balkanian and Po basins (Fig. 7b), 306 which mainly belong to Romania, Bulgaria, Poland, Ukraine and Italy. These three basins contain 21 307 BBOE of hydrocarbon resources and host activities emitting 344 Mtpa of CO₂ per year. CO₂ emissions 308 are mostly produced from power generation, cement and refinery industries, accounting for 71%, 14% 309 and 10% of the total emissions in these industries in south-eastern Europe, respectively (UNIDO, 310 2011).

countries 311 The European Union are the third largest CO_2 emitter globally 312 (www.globalcarbonatlas.org), and therefore have been urged to assume important emission reductions 313 (e.g., 20% reduction by 2020) (da Graça Carvalho, 2012) and 40% by 2030 compared to 1990 314 (deLlano-Paz et al., 2016), which equal to more than 600 MtCO₂eq (Den Elzen et al., 2016). Within these scenarios, CCS must be invoked in order to meet their CO₂ reduction targets 315 (Vangkilde-Pedersen et al., 2009). Despite new initiatives are mainly concentrated in Norway, the UK 316 317 and the Netherlands (Neele et al., 2017), the Carpathian region shows great storage potential and has 318 drawn some attention for CCS development, particularly in Poland (Uliasz-Misiak, 2007; Radoslaw et 319 al., 2009), which is a major coal producer in Europe. CCS could help in the transition to cleaner 320 energy production systems while reducing the economic impact of this transformation (Odenberger et 321 al., 2013).

322 4.2.4 Western Middle East

In this region, the foreland basins formed from the Cretaceous to the Miocene because of the subduction of the Arabian Plate under the Eurasian Plate (Mohajjel et al., 2003; Wang, 2012). These basins experienced transpression during the Pliocene, which superposed on previous passive margin and faulted basins (Wang, 2012). This area contains the greatest enrichment of hydrocarbon resources in the world. All these resources (1,458 BBOE) are hosted in compressional basins, mainly distributed across the Zagros Fold Belt, the Rub Al Khali Basin, the Greater Ghawar Uplift and the Mesopotamian

Foredeep Basin. The CO₂ emissions in this area (988 Mtpa) mainly result from power generation and refinery activities, which take up 64% and 16% of all CO₂ emissions of the Middle East (UNIDO, 2011).

332 The Middle Eastern INDCs are generally quite low. For example, CO₂ emission reductions in Iran, Iraq and Oman are 4%, 1% and 2% respectively, and countries such as the United Arab Emirates and 333 Qatar have not committed to quantitative targets (Den Elzen et al., 2016). Saudi Arabia even has 334 335 negative projected emission reductions relative to the current policy scenario in 2030 (Den Elzen et al., 336 2016) (Fig. 8). However, the availability of giant hydrocarbon fields in the area offers significant 337 potential for CCS development, especially for CO₂-EOR projects (Algharaib, 2009). There are two large-scale CCS facilities operating for enhanced oil recovery, the Uthmaniyah CO₂-EOR 338 339 Demonstration in Saudi Arabia and the Abu Dhabi CCS, whose capture capacities are both 0.8 Mtpa with CO₂ emissions resulting from natural gas and steel industries (Global CCS Institute, 2019). 340

4.2.5 Western China

Compressional settings in western China are controlled by the collision of the Indian and Eurasian plates and are closely related to the evolution of the Tethys Ocean (Jia et al., 2003; Song et al., 2015). The main hydrocarbon-bearing basins include the Sichuan, Tarim and Junggar basins, which store 33.6 BBOE of conventional hydrocarbon resources. CO_2 emissions mainly result from cement, power plants, ammonia and steel industries (Li et al., 2009; Wei et al., 2013). Furthermore, compressional basins have 445 Mtpa of CO_2 emissions, dominated by the Sichuan Basin accounting for 87% of the total emissions.

349 As the second largest energy consumer and the largest carbon emitter, there is an urgent need for 350 carbon emission reductions in China, with 671 Mt of CO₂ emissions to be reduced by 2030 compared 351 to the current policy scenario (Den Elzen et al., 2016). CCS has been regarded as one of the essential actions for climate change mitigation (Li and Huang, 2010; Zhang et al., 2013). It has been evaluated 352 that the Tarim, Junggar and Sichuan basins have high suitability for CCS (Wei et al., 2013; Guo et al., 353 354 2015). However, the nine large-scale CCS facilities that are in operation or in construction in China to 355 date are located outside these basins, as most western basins (e.g., the Tarim and Junggar basins) are 356 located relatively far away from the main industrial areas than eastern basins in China. The Sichuan Basin, on the other hand, with its relatively high hydrocarbon reserves and high CO₂ emissions, 357 deserves more attention for CCS in China. Accordingly, we present here a more detailed analysis of 358 359 the Sichuan basin and evaluate the opportunity that it represents for the future development of CCS in 360 this region.

361 **4.3 Case study: Sichuan Basin**

Regions must satisfy several requirements to be considered suitable for CCS. These requirements 362 are related to the characteristics of the storage site (i.e., tectonic activity, geo-temperature, pressure), 363 364 the reservoir (i.e., volume, porosity, permeability), the caprock (sealing capability), and other 365 economic and social aspects (e.g., source of CO₂, industrial infrastructures, policy support) (Bachu, 2003; Wei et al., 2013; Leung et al., 2014). In this respect, the Sichuan Basin presents a high V_{CCS-P} 366 and is located in China, a country with a high PER and therefore prospective decarbonisation plans. 367 This basin is used here to illustrate the potential of compressional basins for CCS development from 368 369 the above aspects.

370 The Sichuan Basin, located in SW China (Fig. 9a), is a typical superimposed basin (Ma, 2017a) that 371 was developed during the Middle and Late Proterozoic, with the Yangtze Platform forming its 372 basement. The Sichuan Basin developed in extensional settings before the Early Triassic, and was 373 inverted into compressional settings due to the closing of the Paleo-Tethys Ocean and the collision between the oceanic crust and the Yangtze Platform, and accordingly formed a foreland basin in the 374 Late Triassic and Jurassic. Since then, intense folding and erosion have constantly shaped the Sichuan 375 Basin (Mao et al., 2006), currently surrounded by peripheral orogenic belts and a series of 376 377 fold-and-thrust belts. The geothermal gradient in the Sichuan Basin generally ranges of 20-25 °C/km 378 (Wang et al., 2011), resulting in higher storage capacity and lower buoyancy force than warmer basins (Bachu, 2003; Wei et al., 2013). The Sichuan Basin can be divided into six secondary tectonic units, 379 380 among which, the Southern Low-steep Fold Belt (region I₂), the South-western Low-steep Fold Belt 381 (II_2) and the Western Low-steep Fold Belt (III_2) have complicated tectonic background, with relatively high seismic intensity and more developed active faults, which may be responsible for the large 382 number of earthquakes occurred (China Earthquake Networks Centre, 2019; Fig. 9b). On the other 383 hand, the Central Gentle Fold Belt (II₁) has a relatively stable crust with low seismicity, making it is 384 385 suitable for CO₂ storage (Fan et al., 2014) (Fig. 9b). It has an area of 37,000 km², which corresponds to a large basin according to the CCS evaluation criteria of Wei et al. (2013). Finally, the Eastern 386 High-steep Fold Belt (I₁) and the North-western Low-flat Fold Belt (III₁) have moderate tectonic 387 environments. 388

389 The Sichuan Basin has the largest reserves and the second largest production of natural gas in China 390 (Ma, 2017a). The latest data indicate that there are 12.5 trillion cubic meters of conventional natural 391 gas resources (Ma, 2017b) and 81.2 million tons of oil (Luo et al., 2013). Hydrocarbon resources are 392 mainly distributed in the Permian and Triassic units, and oil is mainly lying in the central Sichuan 393 Basin, while natural gas is mainly stored in the eastern Sichuan Basin (Ma et al., 2010; Ma, 2017b) 394 (Fig. 9c). All these hydrocarbon resources and fields indicate the significant potential of the Sichuan Basin for CCS. First, it has qualified reservoirs and caprocks which provide significant capacity to 395 396 store and seal fluids over long periods of time. It is estimated that the Sichuan Basin can store 5.45 Gt 397 or 3.41 Gt of CO₂ in hydrocarbon fields based on the methods of depleted hydrocarbon fields or 398 enhanced hydrocarbon recovery, respectively (Diao et al., 2017a). Since oil and gas exploration and production in the Sichuan Basin started in 1953 (Zhang and Zhang, 2002), abundant boreholes, 399 seismic data and other geological data provide prerequisites for CCS development. Finally, the 400 Sichuan Basin has the most advanced and mature technology of the natural gas industry in China, 401 402 including equipment, infrastructure, technology and research systems (Ma, 2017b). For instance, the total length of gas pipeline exceeds 4,000 km with more than 50 billion cubic meters of gas 403 transportation capacity in total (Ma, 2017a, b), which will also benefit the construction of CO₂ 404 405 pipelines or can even be directly utilized as CO_2 pipelines. Considering their hydrocarbon resources, I_1 , 406 I_2 and II_1 secondary tectonic units have high potential for CCS development.

407 Due to the relatively underdeveloped industry in western China, CO_2 emissions in most 408 compressional basins are lower than in the eastern basins (Li et al., 2009; Wei et al., 2013), except for 409 the Sichuan Basin where two of the most developed cities in China are located, Chongqing and 410 Chengdu. The CO_2 emissions in the Sichuan Basin are mainly produced from cement manufacturing 411 and power generation (Li et al., 2009). It is estimated that at least 0.39 Gt of utilizable CO_2 were 412 emitted to the atmosphere in the Sichuan Basin in 2012, exceeding the sum of all other compressional 413 basins in western China, and indicating the existence of sufficient CO_2 emissions in the Sichuan Basin

- 414 to justify CCS development. Except for the northern part and southern edge of the Sichuan Basin, 415 most regions have large CO_2 emission concentrations (Fig. 9d).
- As the largest carbon emitter worldwide (Li and Huang, 2010), China accounts for 23.27% of global 416 417 greenhouse emissions in 2012, whose emissions will peak around 2030 with between 14.7 and 14.0 MtCO2eq based on the current policy scenario and the Unconditional INDC scenario, respectively (Ma 418 419 et al., 2014). CCS has been regarded as an essential technology for climate change mitigation in a 420 series of released reports, e.g., the China's National Climate Change Programme, the China's Policies 421 and Actions for Addressing Climate and the China's Intended Nationally Determined Contributions (Li 422 and Huang, 2010; UNFCCC, 2015). At a smaller scale, the regions of Sichuan and Chongqing have proposed to explore and promote pilot and demonstration CCS projects within their Work Programme 423 for "Control Greenhouse Gas Emissions During the Thirteenth Five-Year Plan", providing policy 424 425 support for CCS development in the Sichuan Basin (Chongqing Municipal People's government, 2017; The People's Government of Sichuan Province, 2017). It is thus expected that the Sichuan Basin will 426 draw the attention of different CCS stakeholders in the near future. 427

428 Based on the analysis of tectonic environments, hydrocarbon resources, CO₂ emissions and political support, the Central Gentle Fold Belt of the Sichuan Basin represents an optimal area to develop a 429 CCS industry. Here, we present a preliminary discussion to identify the storage sites with greatest 430 431 potential within this sector. From the Ediacaran (Sinian) to the Triassic, the Sichuan Basin was 432 dominated by marine carbonate deposits with localized clastic sedimentation in stable sedimentary 433 environments (Yang et al., 2016). Subsequently, after the marine-to-continental transition in the Late 434 Triassic, the Sichuan Basin experienced continental sedimentation, mainly controlled by an alluvial fan-fluvial-delta-lacustrine depositional system. A series of source-reservoir-cap assemblages 435 developed during the Ediacaran (Sinian), Cambrian, Silurian, Permian, Triassic and Jurassic (Luo et al., 436 437 2013; Wang et al., 2015), whose depths (generally more than 3500 m) meet the carbon storage requirements (Bachu, 2003; Wei et al., 2013). However, these reservoirs present two problems that 438 439 should be taken into consideration. First, they tend to have low porosity and tight characteristics due to 440 their deep burial (with an average porosity of 3.24% and permeability of 1.45 mD for carbonate and 441 5.3 % and 0.19 mD for clastic reservoirs (Wang, 2004; Yang et al., 2016). Second, caprocks deeper 442 than around 2400 m cannot immobilize CO_2 permanently by structural trapping as efficiently as shallower reservoirs due to wettability reversal (Iglauer, 2018). Thus, it is priority to find shallower 443 high-quality reservoir-caprock assemblages, which are mainly located in Jurassic and Triassic Xujiahe 444 445 Formation (Fig. 10). In this sense, the Central Gentle Fold Belt contains the Guang'an, Hechuan and Bajiaochang large sized gas fields (around 300 billion m³ of proved reserve in these gas fields (Ma et 446 447 al., 2010)), whose reservoirs are dominated by Jurassic and Triassic Xujiahe Formation with reservoir and caprock burial generally ranging from 1500 m to 3500 m. Therefore, this area should be 448 considered a priority for CCS implementation. 449

450 **5 Conclusions**

451 CCS will have an essential and challenging role in achieving the global target to limit the warming 452 of global average temperature to 1.5° C above pre-industrial levels. However, there is still a huge gap 453 between the current CCS development and the ultimate objective, which is set to capture and store 454 more than 300 Gt CO₂ by 2100 globally. CCS needs to develop fast, and for that purpose, it is crucial 455 to consider the different potential storage options globally. Sedimentary basins in compressional 456 tectonic settings are abundant and cover large areas on the Earth's surface. However, their potential for

storing captured carbon has not been systematically evaluated against the geographic distribution of 457 458 CO_2 emissions. To fill this knowledge gap, we employ a source-to-sink approach to evaluate the 459 potential of compressional basins for CCS development based on basin distribution, hydrocarbon resources and CO₂ emissions. These inputs have been combined into an integrated evaluation 460 parameter that allows the selection of five regions for potential CCS development in compressional 461 462 basins: North America, north-western South America, south-eastern Europe, western Middle East, and 463 western China. The most promising regions are located in the foreland basins of mountain chains, except in north-western South America, where the subduction of the Pacific and Caribbean plates 464 465 under the South American plate resulted in the formation of hydrocarbon-rich retro-arc basins in Peru, 466 Ecuador, Colombia and Venezuela. Among these potential regions, only North America and the Middle East currently have large-scale CCS facilities in operation, construction or development. The 467 north-western South America and western Middle East regions present particularly high potential for 468 CO₂-EOR and, in fact, there are two ongoing projects currently carrying out CO₂-EOR in the Middle 469 East. Although CO₂-EOR is not a long-term solution for CO₂ emission reduction, because the overall 470 471 emissions will increase due to the extra oil produced, it can initiate the development of a CCS industry 472 in a suitable region while mitigating the upfront and operational costs with revenues from the 473 enhanced production.

Being the largest coal user and CO₂ emitter in the world, China needs to decarbonise its energy and 474 475 industrial sectors to promote a sustainable development. The most active and planned CCS facilities 476 are located in the heavily industrialised east of the country, but our appraisal tool has identified the 477 Sichuan Basin as a promising region for CCS development, according to the match between the existing carbon emissions and its potential storage capacity. The vast gas resources accumulated in the 478 Sichuan Basin ensure the capacity and containment of the reservoirs. At the same time, the existing 479 480 hydrocarbon infrastructure could be re-used for CCS, reducing the cost of implementation and hence 481 increasing the prospects of this much needed industry in the region.

482 **6 Acknowledgements**

483 This research was performed within the framework of DGICYT Spanish Projects 484 CGL2015-66335-C2-1-R and PGC2018-093903-B-C22, Grup Consolidat de Recerca "Geologia Sedimentària" (2017-SGR-824), and it was also funded by the China Scholarship Council (CSC) 485 (201806450043). J. Alcalde is currently funded by EIT Raw Materials - SIT4ME project (17024). 486 487 EGR acknowledges AGAUR (Agència de Gestió d'Ajuts Universitaris i de Recerca) for a "Beatriu 488 de Pinós" research project. The authors would like to thank the United States Geological Survey, the CGG Robertson Sedimentary Basins, and the Emissions Database for Global Atmospheric Research 489 490 for allowing access to their databases.

491 **7 References**

- Alcalde, J., Flude, S., Wilkinson, M., Johnson, G., Edlmann, K., Bond, C.E., Scott, V., Gilfillan, S.M.,
 Ogaya, X., Haszeldine, R.S., 2018. Estimating geological CO₂ storage security to deliver on climate
 mitigation. Nature communications 9(1), 2201. doi:10.1038/s41467-018-04423-1.
- 495 Alcalde, J., Heinemann, N., Mabon, L., Worden, R.H., de Coninck, H., Robertson, H., Maver, M.,
- Ghanbari, S., Swennenhuis, F., Mann, I., Walker, T., 2019. Acorn: Developing full-chain industrial
- 497 carbon capture and storage in a resource-and infrastructure-rich hydrocarbon province. Journal of
- 498 Cleaner Production 233, 963-971. doi:10.1016/j.jclepro.2019.06.087.

_	
	Journal Pre-proof
499	Algharaib, M.K., 2009. Potential applications of CO ₂ -EOR in the Middle East, in: Proc. SPE Middle
500	East Oil and Gas Show and Conference. Society of Petroleum Engineers. doi:10.2118/120231-ms.
501	Armstrong, K., Styring, P., 2015. Assessing the potential of utilization and storage strategies for
502	post-combustion CO ₂ emissions reduction. Frontiers in Energy Research 3, 8.
503	Bachu, S., 2003. Screening and ranking of sedimentary basins for sequestration of CO ₂ in geological
504	media in response to climate change. Environmental Geology 44(3), 277-289.
505	doi:10.1007/s00254-003-0762-9.
506	Bachu, S., 2007. Carbon dioxide storage capacity in uneconomic coal beds in Alberta, Canada:
507	methodology, potential and site identification. International Journal of Greenhouse Gas Control 1(3),
508	374-385. doi:10.1016/S1750-5836(07)00070-9.
509	Bird, K.J., Charpentier, R.R., Gautier, D.L., Houseknecht, D.W., Klett, T.R., Pitman, J.K., Moore, T.E.,
510	Schenk, C.J., Tennyson, M.E., Wandrey, C.R., 2008. Circum-Arctic resource appraisal: Estimates of
511	undiscovered oil and gas north of the Arctic Circle (No. 2008-3049). U.S. Geological Survey, 4 pp.
512	doi.org/10.3133/fs20083049
513	Blondes, M.S., Brennan, S.T., Merrill, M.D., Buursink, M.L., Warwick, P.D., Cahan, S.M., Cook, T.A.,
514	Corum, M.D., Craddock, W.H., DeVera, C.A., Drake, R.M., II, Drew, L.J., Freeman, P.A., Lohr,
515	C.D., Olea, R.A., Roberts-Ashby, T.L., Slucher, E.R., Varela, B.A., 2013. National assessment of
516	geologic carbon dioxide storage resources: methodology implementation. U.S. Geological Survey
517	Open-File Report 2013-1055, 26 pp. doi.org/10.3133/ofr20131055
518	Bui, M., Adjiman, C.S., Bardow, A., Anthony, E.J., Boston, A., Brown, S., Fennell, P.S., Fuss, S.,
519	Galindo, A., Hackett, L.A., Hallett, J.P., 2018. Carbon capture and storage (CCS): the way forward.
520	Energy & Environmental Science 11(5), 1062-1176. doi:10.1039/C7EE02342A
521	Castellarin, A., 2001. Alps-Apennines and Po Plain-frontal Apennines relations. In Vai, G.B., Martini
522	I.P. (Eds.), Anatomy of an Orogen: the Apennines and adjacent Mediterranean Basins. Springer,
523	Dordrecht, pp. 177-195. doi.org/10.1007/978-94-015-9829-3_13
524	China Earthquake Networks Centre. http://news.ceic.ac.cn/index.html?time=1571215898, 2019
525	(accessed 14 November 2019).
526	Chiquet, P., Daridon, J.L., Broseta, D., Thibeau, S., 2007. CO ₂ /water interfacial tensions under
527	pressure and temperature conditions of CO ₂ geological storage. Energy Conversion and
528	Management 48(3), 736-744.
529	Chongqing Municipal People's government, 2017. Chongqing's Work Programme for Control
530	Greenhouse Gas Emissions during the Thirteenth Five-Year Plan.
531	http://www.cq.gov.cn/publicity/cxjshjbh/jnyzyzhly/588919
532	Climate Action Tracker, 2018. U.S. climate policy: one year on from announcement of Paris
533	Agreement withdrawal. https://climateactiontracker.org/press
534	da Graça Carvalho, M., 2012. EU energy and climate change strategy. Energy 40(1), 19-22.
535	doi:10.1016/j.energy.2012.01.012.
536	deLlano-Paz, F., Fernandez, P.M., Soares, I., 2016. Addressing 2030 EU policy framework for energy
537	and climate: Cost, risk and energy security issues. Energy 115, 1347-1360.
538	doi:10.1016/j.energy.2016.01.068.
539	Den Elzen, M., Admiraal, A., Roelfsema, M., van Soest, H., Hof, A.F., Forsell, N., 2016. Contribution
540	of the G20 economies to the global impact of the Paris agreement climate proposals. Climatic
541	Change 137(3-4), 655-665. doi:10.1007/s10584-016-1700-7.
542	Diao, Y.J., Zhu, G.W., Jin, X.L., Zhang, C., Li, X.F., 2017a. Theoretical potential assessment of CO ₂
543	geological utilization and storage in the Sichuan Basin. Geological Bulletin of China 36(6),

- 1	Journal Pre-proof
544	1088-1095.
545	Diao, Y.J., Zhu, G.W., Cao, H., Zhang, C., Li, X.F., Jin, X.L., 2017b. Mesoscale assessment of CO ₂
546	storage potential and geological suitability for target area selection in the Sichuan Basin. Geofluids
547	2017, 1-17. doi.org/10.1155/2017/9587872.
548	EDGAR, Emissions Database for Global Atmospheric Research.
549	http://edgar.jrc.ec.europa.eu/overview.php?v=432&SECURE=123
550	https://data.europa.eu/doi/10.2904/JRC_DATASET_EDGAR, 2018 (accessed 12 November 2018).
551	Edlmann, K., Edwards, M.A., Qiao, X.J., Haszeldine, R.S., McDermott, C.I., 2015. Appraisal of
552	global CO ₂ storage opportunities using the geomechanical facies approach. Environmental earth
553	sciences 73(12), 8075-8096. doi:10.1007/s12665-014-3965-3.
554	Erlich, R.N., Barrett, S.F., 1992. Petroleum geology of the Eastern Venezuela Foreland Basin. In:
555	Macqueen, R.W., Leckie, D.A. (Eds.), Foreland Basins and Fold Belts. AAPG Memoir 55, pp.
556	341-362.
557	Ettehadtavakkol, A., Lake, L.W., Bryant, S.L., 2014. CO ₂ -EOR and storage design optimization.
558	International Journal of Greenhouse Gas Control 25, 79-92. doi.org/10.1016/j.ijggc.2014.04.006.
559	Fan, J.J., Jia, X.F., Hu, Q.Y., Pan, J.Y., Zhang, S.Q., Zhang, C., 2014. Potential and suitable conditions
560	evaluation of CO ₂ storage in the salt water aquifer in the depth of Sichuan basin. Ground Water
561	36(6), 59-64.
562	Gislason, S.R., Oelkers, E.H., 2014. Carbon storage in basalt. Science 344(6182), 373-374.
563	doi:10.1126/science.1250828.
564	Global CCS Institute, 2018. The global status of CCS: 2018. Australia.
565	https://www.globalccsinstitute.com/resources/global-status-report/
566	Global CCS Institute, CCS Facilities Database. <u>https://co2re.co/StorageData</u> , 2019 (accessed 15 May
567	2019).
568	Godec, M., Kuuskraa, V., Van Leeuwen, T., Melzer, L.S., Wildgust, N., 2011. CO ₂ storage in depleted
569	oil fields: The worldwide potential for carbon dioxide enhanced oil recovery. Energy Procedia 4,
570	2162-2169. doi:10.1016/j.egypro.2011.02.102.
5/1	Goodman, A., Hakala, A., Bromnal, G., Deel, D., Rodosta, I., Frailey, S., Small, M., Allen, D.,
572	Romanov, V., Fazio, J., Huerta, N., 2011. U.S. DOE methodology for the development of geologic
5/5	storage potential for carbon dioxide at the national and regional scale. International Journal of
5/4 575	Greenhouse Gas Control 5(4), 952-965. doi:10.1016/j.ijggc.2011.03.010.
515	Guo, J.Q., wen, D.G., Zhang, S.Q., Xu, I.F., Li, X.F., Diao, Y.J., Jia, X.F., 2015. Potential and
570	suitability evaluation of CO_2 geological storage in major sedimentary basins of China and the demonstration project in Order Pasin. Acta Coological Sinica English Edition 80(4), 1210–1222
578	doi:10.1111/1755.6724.12531
570	Hornafius KV Hornafius IS 2015 Carbon negative oil: A pathway for CO, emission reduction
580	goals International Journal of Greenhouse Gas Control 37, 492, 503
581	doi org/10 1016/i jigge 2015 04 007
582	Iglauer S 2018 Optimum storage depths for structural CO ₂ trapping International Journal of
583	Greenhouse Gas Control 77, 82-87. doi.org/10.1016/i.ijggc.2018.07.009.
584	Janssens-Maenhout, G., Crippa, M., Guizzardi, D., Muntean, M., Schaaf, E., Dentener, F.,
585	Bergamaschi, P., Pagliari, V., Olivier, J.G., Peters, J.A., Aardenne, J.A.V., 2019. EDGAR v4.3.2
586	Global Atlas of the three major Greenhouse Gas Emissions for the period 1970–2012. Earth System
587	Science Data 11(3), 959-1002. doi:10.5194/essd-2018-164.
588	Jia, C.Z., Wei, G.Q., Li, B.L., Xiao, A.C., Ran, Q.G., 2003. Tectonic evolution of two-epoch foreland

589	basins and its control for natural gas accumulation in China's mid-western areas. Acta Petrolei
590	Sinica 24(2), 13-17.
591	Kang, S.M., Fathi, E., Ambrose, R.J., Akkutlu, I.Y., Sigal, R.F., 2011. Carbon dioxide storage capacity
592	of organic-rich shales. SPE Journal 16(4), 842-855. doi:10.2118/134583-pa.
593	Kearns, J., Teletzke, G., Palmer, J., Thomann, H., Kheshgi, H., Chen, Y.H.H., Paltsev, S., Herzog, H.,
594	2017. Developing a consistent database for regional geologic CO ₂ storage capacity worldwide.
595	Energy Procedia 114, 4697-4709. doi:10.1016/j.egypro.2017.03.1603.
596	Koelbl, B.S., van den Broek, M.A., Faaij, A.P., van Vuuren, D.P., 2014. Uncertainty in Carbon Capture
597	and Storage (CCS) deployment projections: a cross-model comparison exercise. Climatic change
598	123(3-4), 461-476. doi: 10.1007/s10584-013-1050-7.
599	Kuuskraa, V.A., Godec, M.L., Dipietro, P., 2013. CO2 utilization from "next generation" CO2
600	enhanced oil recovery technology. Energy Procedia 37, 6854-6866.
601	doi:10.1016/j.egypro.2013.06.618.
602	Leung, D.Y., Caramanna, G., Maroto-Valer, M.M., 2014. An overview of current status of carbon
603	dioxide capture and storage technologies. Renewable and Sustainable Energy Reviews 39, 426-443.
604	doi:10.1016/j.rser.2014.07.093.
605	Li, H.J., Huang, S.C., 2010. China's development potential & latest actions on CCS. China Coal 36(1),
606	13-17.
607	Li, X., Wei, N., Liu, Y., Fang, Z., Dahowski, R.T., Davidson, C.L., 2009. CO ₂ point emission and
608	geological storage capacity in China. Energy Procedia, 1(1), 2793-2800.
609	doi:10.1016/j.egypro.2009.02.051.
610	Liu, F., Ellett, K., Xiao, Y., Rupp, J.A., 2013. Assessing the feasibility of CO ₂ storage in the New
611	Albany Shale (Devonian-Mississippian) with potential enhanced gas recovery using reservoir
612	simulation. International Journal of Greenhouse Gas Control 17, 111-126.
613	doi:10.1016/j.ijggc.2013.04.018.
614	Luo, Z.L., Han, J.H., Luo, C., Luo, Q.H., Han, K.Y., 2013. The discovery characteristics and prospects
615	of commercial oil and gas layers/reservoirs in Sichuan basin. Xinjiang Petroleum Geology 34(5),
616	504-514.
617	Ma, F., Zhang, G.Y., Tian, Z.J., Yang, L.Y., Liu, Z.D., Li, F., 2014. The enrichment characteristics and
618	undiscovered resources evaluation of the conventional oil and gas in North America. Earth Science
619	Frontiers $21(3)$, $91-100$.
620	Ma, X.H., 2017a. A golden era for natural gas development in the Sichuan Basin. Natural Gas Industry
621	B 4(3), 163-173.
622	Ma, X.H., 2017b. Natural gas and energy revolution: a case study of Sichuan-Chongqing gas province.
023 624	Natural Gas Industry B 4(2), 91-99.
024 625	Ma, Y.S., Cai, X. Y., Zhao, P.R., Luo, Y., Zhang, A.F., 2010. Distribution and further exploration of the
023 626	Mann, D. Cabagon, J. Cordon, M.B. 2002. Testonic acting of the world's gight oil and gos fields
020 627	A DC Momein 78 15 105
628	Manrique E. Panson A. Alverado V. 2003 Perspectives of CO. injection in Venezuela. In 24th
620	annual workshop and symposium for the IFA collaborative project on enhanced oil recovery
630	Canada 7-10
631	Mao O Zou GE Zhang HM Jin H Huang HB 2006 Discussion on geodynamic evolution
632	and oil/gas prospect of the Sichuan Basin Natural Gas Industry 26(11) 7-10
633	Masson-Delmotte, T.W., Zhai, P., Pörtner, H.O., Roberts, D., Skea J. Shukla P.R. Pirani A

	Journal Pre-proof
634	Moufouma-Okia, W., Péan, C., Pidcock, R., Connors, S., 2018. IPCC, 2018: Summary for
635	Policymakers. Global warming of 1.5 C. Geneva, Switzerland. 2018.
636	https://report.ipcc.ch/sr15/pdf/sr15_spm_final.pdf
637	Matter, J.M., Broecker, W.S., Stute, M., Gislason, S.R., Oelkers, E.H., Stefánsson, A., Wolff-Boenisch,
638	D., Gunnlaugsson, E., Axelsson, G., Björnsson, G., 2009. Permanent carbon dioxide storage into
639	basalt: the CarbFix pilot project, Iceland. Energy Procedia 1(1), 3641-3646.
640	doi:10.1016/j.egypro.2009.02.160.
641	McDermott, C.I., Miocic, J.M., Edlmann, K., Gilfillan, S.M.V., 2017. Natural Analogue Studies. In:
642	Niemi, A., Bear, J., Bensabat, J. (Eds.), Geological Storage of CO ₂ in Deep Saline Formations.
643	Springer, Dordrecht, pp. 473-520.
644	Metz, B., Davidson, O., de Coninck, H., Loos, M., Meyer, L., 2005. IPCC special report on carbon
645	dioxide capture and storage. Intergovernmental Panel on Climate Change, United States.
646	https://www.osti.gov/biblio/20740954.
647	Miocic, J.M., Johnson, G., Bond, C.E., 2019. Uncertainty in fault seal parameters: implications for
648	CO ₂ column height retention and storage capacity in geological CO ₂ storage projects. Solid earth 10,
649	951-967. doi.org/10.5194/se-10-951-2019.
650	Miocic, J.M., Gilfillan, S.M., Roberts, J.J., Edlmann, K., McDermott, C.I., Haszeldine, R.S., 2016.
651	Controls on CO ₂ storage security in natural reservoirs and implications for CO ₂ storage site
652	selection. International Journal of Greenhouse Gas Control 51, 118-125.
653	doi.org/10.1016/j.ijggc.2016.05.019.
654	Mishra, S., Oruganti, Y.D., Gupta, N., Ganesh, P.R., McNeil, C., Bhattacharya, I., Spitznogle, G., 2014.
655	Modeling CO ₂ plume migration based on calibration of injection and post-injection pressure
656	response at the AEP Mountaineer Project. Greenhouse Gases: Science and Technology 4(3),
657	331-356. doi:10.1002/ghg.1434.
658	Mitrović, M., Malone, A., 2011. Carbon capture and storage (CCS) demonstration projects in Canada.
659	Energy Procedia 4, 5685-5691. doi:10.1016/j.egypro.2011.02.562.
660	Mohajjel, M., Fergusson, C.L., Sahandi, M.R., 2003. Cretaceous-Tertiary convergence and continental
661	collision, Sanandaj-Sirjan zone, western Iran. Journal of Asian Earth Sciences 21(4), 397-412.
662	doi:10.1016/S1367-9120(02)00035-4.
663	Naylor, M., Wilkinson, M., Haszeldine, R.S., 2011. Calculation of CO ₂ column heights in depleted gas
664	fields from known pre-production gas column heights. Marine and Petroleum Geology 28(5),
665	1083-1093. doi.org/10.1016/j.marpetgeo.2010.10.005.
666	Neele, F., Sinayuc, C., Nermoen, A., Burlacu, A., 2017. Status of CCS and CCU in South Eastern
667	Europe (revision 1). 73 pp.
668	Odenberger, M., Kjärstad, J., Johnsson, F., 2013. Prospects for CCS in the EU energy roadmap to 2050.
669	Energy Procedia 37, 7573-7581. doi:10.1016/j.egypro.2013.06.701.
670	Pereira, N., Bonduki, Y., Perdomo, M., 1997. Potential options to reduce GHG emissions in Venezuela.
671	Applied Energy 56(3-4), 265-286. doi:10.1016/S0306-2619(97)00010-X.
672	Peters, G.P., Andrew, R.M., Boden, T., Canadell, J.G., Ciais, P., Le Quéré, C., Marland, G., Raupach,
673	M.R., Wilson, C., 2012. The challenge to keep global warming below 2° C. Nature Climate Change
674	3(1), 2-4. doi:10.1038/nclimate1783.
675	Quantum GIS (QGIS) version 3.4.2, 2018. QGIS Development Team. http://qgis.org
676	Radoslaw, T., Barbara, U.M., Adam, W., 2009. CO ₂ storage capacity of deep aquifers and hydrocarbon
677	fields in Poland-EU GeoCapacity Project results. Energy Procedia 1(1), 2671-2677.
678	doi.org/10.1016/j.egypro.2009.02.035

	Journal Pre-proof
679	Robertson, C.G.G., 2014. Sedimentary Basins of the World.
680	https://www.cgg.com/en/What-We-Do/GeoConsulting/Robertson
681	Román, R., Cansino, J.M., Rodas, J.A., 2018. Analysis of the main drivers of CO ₂ emissions changes
682	in Colombia (1990–2012) and its political implications. Renewable energy 116, 402-411.
683	doi:10.1016/j.renene.2017.09.016.
684	Scott, V., Gilfillan, S., Markusson, N., Chalmers, H., Haszeldine, R.S., 2013. Last chance for carbon
685	capture and storage. Nature Climate Change 3(2), 105-111. doi:10.1038/nclimate1695.
686	Song, X.D., Li, J.T., Bao, Z.W., Li, S.T., Wang, L.S., Ren, J.Y., 2015. Deep structure of major basins in
687	Western China and implications for basin formation and evolution. Earth Science Frontiers 22(1),
688	126-136. doi.org/10.13745/j.esf.2015.01.011
689	Stewart, J.R., Haszeldine, R.S., 2014. Carbon Accounting for Carbon Dioxide Enhanced Oil Recovery.
690	Scottish Carbon Capture and Storage (SCCS), 62 pp.
691	The People's Government of Sichuan Province, 2017. Sichuan Province's Work Programme for
692	Control Greenhouse Gas Emissions during the Thirteenth Five-Year Plan.
693	http://www.sc.gov.cn/zcwj/xxgk/NewT.aspx?i=20170518084142-766800-00-000
694	Tian, Z.J., Wu, Y.P., Wang, Z.M., 2014. Global conventional oil and gas resource assessment and its
695	potential. Earth Science Frontiers 21(3), 10-17.
696	Tong, X.G., Zhang, G.Y., Wang, Z.M., Wen, Z.X., Tian, Z.J., Wang, H.J., Ma, F., Wu, Y.P., 2018.
697	Distribution and potential of global oil and gas resources. Petroleum Exploration and Development
698	45(4), 727-736.
699	Uliasz-Misiak, B., 2007. Polish hydrocarbon deposits usable for underground CO ₂ storage.
700	Gospodarka Surowcami Mineralnymi 23(4), 111-120.
701	UNFCCC, Intended nationally determined contributions (INDCs).
702	https://www4.unfccc.int/sites/submissions/indc/Submission%20Pages/submissions.aspx, 2017_
703	(accessed 12 December 2018).
704	(UNIDO) United Nations Industrial Development Organization, 2011. Global technology roadmap for
705	CCS in industry-sectoral assessment: Sources and sinks matching report. 180 pp.
706	(USGS) United States Geological Survey, 1995-2013. National assessment of oil and gas resources.
707	https://energy.usgs.gov.
708	(USGS) United States Geological Survey, 2000. World petroleum assessment. https://energy.usgs.gov.
709	U.S. Department of Energy Office of Fossil Energy, 2015. Carbon Storage Atlas 5th Ed.
710	https://www.netl.doe.gov/node/5841
711	Vangkilde-Pedersen, T., Kirk, K., Smith, N., Maurand, N., Wojcicki, A., Neele, F., Hendriks, C., Le
712	Nindre, Y., Lyng Anthonsen, K., 2009. EU geocapacity-assessing European capacity for geological
713	storage of carbon dioxide. Project no. SES6-518318. http://www.geology.cz/geocapacity
714	Wang, H.J., Ma, F., Tong, X.G., Liu, Z.D., Zhang, X.S., Wu, Z.Z., Li, D.H., Wang, B., Xie, Y.F., Yang,
715	L.Y., 2016. Assessment of global unconventional oil and gas resources. Petroleum Exploration and
716	Development 43(6), 925-940. doi.org/10.1016/S1876-3804(16)30111-2.
717	Wang, J.Q., 2004. Characteristics of petroleum geology in the Sichuan basin-commemorating Mr.
718	Huang Jiqing's 100th birthday. Petroleum Geology & Experiment 26(2), 115-120.
719	Wang, W., Zhou, Z.Y., Guo, T.L., Xu, C.H., 2011. Early Cretaceous-Paleocene geothermal gradients
720	and Cenozoic tectono-thermal history of Sichuan Basin. Journal of Tongji University (Natural
721	Science) 39(4), 606-613.
722	Wang, X.J., 2012. Superposed evolution of Persian Gulf Basin and its petroleum distribution. Chinese
723	Journal of Geology 47(4), 1223-1227.

	Journal Pre-proof
724	Wang, X.J., Yang, Z.R., Han, B., 2015. Superposed evolution of Sichuan Basin and its petroleum
725	accumulation. Earth Science Frontiers 22(3), 161-173.
726	Wei, N., Li, X., Dahowski, R.T., Davidson, C.L., Liu, S., Zha, Y., 2015. Economic evaluation on
727	CO ₂ -EOR of onshore oil fields in China. International Journal of Greenhouse Gas Control
728	37,170-181. doi.org/10.1016/j.ijggc.2015.01.014.
729	Wei, N., Li, X., Wang, Y., Dahowski, R.T., Davidson, C.L., Bromhal, G.S., 2013. A preliminary
730	sub-basin scale evaluation framework of site suitability for onshore aquifer-based CO ₂ storage in
731	China. International Journal of Greenhouse Gas Control 12, 231-246.
732	doi:10.1016/j.ijggc.2012.10.012.
733	Wilson, T.H., Siriwardane, H., Zhu, L., Bajura, R.A., Winschel, R.A., Locke, J.E., Bennett, J., 2012.
734	Fracture model of the Upper Freeport coal: Marshall County West Virginia pilot ECBMR and CO2
735	sequestration site. International Journal of Coal Geology 104, 70-82.
736	doi:10.1016/j.coal.2012.05.005.
737	Xie, Y.F., Zhao, M.Z., Yang, F.Z., Wei, C.G., 2009. Primary Types of sedimentary basins and
738	petroleum geological characteristics of typical basins in Latin America. China Petroleum
739	Exploration 14(1), 65-73.
740	Yang, F.Z., Wei, C.G., Yin, J.Q., Zhang, C.L., Xie, Y.F., 2009. Structural characteristics of typical
741	oil-bearing basins in northwest of South America. Geotectonica Et Metallogenia 33(2), 230-235.
742	Yang, G., Li, G.H., Li, N., Chen, S.L., Wang, H., Xu, L., 2016. Hydrocarbon accumulation
743	characteristics and enrichment laws of multi-layered reservoirs in the Sichuan Basin. Natural Gas
744	Industry 36(11), 1-11.
745	Zhang, J., Zhang, Q., 2002. The review and prospects of oil and gas exploration in Sichuan Basin.
746	Natural Gas Industry 31(3), 348-354.

- 747 Zhang, X., Fan, J.L., Wei, Y.M., 2013. Technology roadmap study on carbon capture, utilization and
- storage in China. Energy Policy 59, 536-550. doi.org/10.1016/j.enpol.2013.04.005.

749 **Figure captions**

750 Figure 1. Total capacity of CCS facilities (data source Global CCS Institute, 2019) and predicted CCS 751 contribution in CO₂ emission reduction (in Mtpa) according to different IPCC Special Report on Global 752 Warming of 1.5°C scenarios (namely P2, P3 and P4). P2 is a sustainability-oriented scenario where emission 753 reductions are mainly achieved by high human and low-carbon technology development, and low demand in 754 energy and products; P3 is a middle-of-the-road scenario where emission reductions are mainly achieved by 755 changing the ways energy is produced and products are manufactured, and to a lesser degree by demand 756 reductions; P4 is a resource- and energy-intensive scenario where emission reductions are mainly achieved 757 through technological means, making strong use of carbon dioxide removal through the deployment of bioenergy 758 with CCS) (Global CCS Institute, 2018; Masson-Delmotte et al., 2018).

- Figure 2. (a) Number of large-scale CCS facilities and (b) capture and injection capacity (in Mtpa) in different
 regions of the world (data source Global CCS Institute, 2019). Grey bars represent CCS facilities whose storage
 sites and transportation methods are still under investigation.
- Figure 3. Distribution of (a) major conventional hydrocarbon resources (given in million barrel of oil equivalent
 (MBOE)): basins in the United States (USGS, 1995-2013), the Arctic Circle (Bird et al., 2008) and other regions

764 (USGS, 2000) and (b) the tectonic settings of main hydrocarbon-bearing basins (Robertson, 2014).

- 765 **Figure 4.** Distribution of CO₂ emissions (tons per annum (tpa)) (data source EDGAR, 2012).
- Figure 5. Projected emission reductions in 2030 of G20 economies (Million tonnes CO₂ equivalent (MtCO₂eq))
 (data source Den Elzen et al., 2016).
- Figure 6. Distribution of potential CO_2 emissions (in 10^5 tpa) within the main hydrocarbon-bearing basins. Only emission points above 10^4 tpa are considered in this study.
- Figure 7. Distribution of the integrated evaluation parameter (V_{CCS-P}) in (a) the main hydrocarbon-bearing basins
- in the world; (b) V_{CCS-P} in compressional hydrocarbon-bearing basins; and (c) distribution of the high-priority
- regions and the projected emission reductions of G20 economies (data source Den Elzen et al., 2016). The

numbers in (b) and (c) mark the high-priority regions selected for detailed analyses: (1) North America; (2)

- North-western South America; (3) South-eastern Europe; (4) Western Middle East; (5) Western China.
- 775 Figure 8. Comparison of hydrocarbon resources (BBOE) (only the undiscovered resources are attainable for
- North America), CO₂ emissions (Mtpa) and projected emission reductions (MtCO₂eq) of the selected
- high-priority regions. (Only the PER of the western Middle East is negative)
- Figure 9. (a) Geographical location, (b) tectonic units (the Eastern High-steep Fold Belt (I_1), the Southern Low-steep Fold Belt (I_2), the Central Gentle Fold Belt (II_1), the South-western Low-steep Fold Belt (II_2), the
- 780 North-western Low-flat Fold Belt (III₁) and the Western Low-steep Fold Belt (III₂)) (Diao et al., 2017b), major
- active faults, seismic intensity (Wei et al., 2013), occurred earthquake from 2012 (≥4 magnitude) (data source
- 782 China Earthquake Networks Centre, 2019), (c) oil and gas fields (Ma et al., 2010) and (d) CO₂ emissions
- 783 (\geq 10,000 tpa) (data source EDGAR, 2012) of the Sichuan Basin.
- Figure 10. Stratigraphic column, source-reservoir-caprock assemblages and tectonic evolution of the Sichuan
 Basin (after Luo et al., 2013).

Journal Prevention

East

Johngibrow

Journal Prerk

Journal Prent

- cunssion reductions (MCC

Highlights

- Compressional basins host 50% of oil and gas reserves and 36% of land CO₂ emissions \triangleright
- CO_2 storage potential in compressional basins is assessed based on source-to-sink \geq matching
- \triangleright Five regions are identified as high-priority for prospective CCS development
- The Sichuan Basin is identified and assessed as a high-priority compressional basin \geq

Declaration of interests

 \boxtimes The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

The authors declare the following financial interests/personal relationships which may be considered as potential competing interests:

Journal Prerk