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Abstract
Cerro Quema (Azuero Peninsula, southwest Panama) is a high sulfidation epithermal Au-Cu deposit hosted by a 
dacite dome complex of the Río Quema Formation (late Campanian to Maastrichtian), a fore-arc basin sequence. 
Mineral resource estimates (indicated + inferred) are 30.86 Mt at 0.73 g/t Au, containing 728,000 oz Au (includ-
ing 76.900 oz Au equiv of Cu ore). Hydrothermal alteration and mineralization are controlled by an E-trending 
regional fault system. Hydrothermal alteration consists of an inner zone of vuggy quartz with locally developed 
advanced argillic alteration, enclosed by a well-developed zone of argillic alteration, grading to an external halo 
of propylitic alteration. Mineralization produced disseminations and microveinlets of pyrite and minor chalco-
pyrite, enargite, and tennantite, with traces of sphalerite, crosscut by late-stage base metal veins. New 40Ar/39Ar 
data of igneous rocks combined with biostratigraphic ages of the volcanic sequence indicate a maximum age of 
lower Eocene (~55–49 Ma) for the Cerro Quema deposit. It was probably triggered by the emplacement of an 
underlying porphyry-like intrusion associated with the Valle Rico batholith. The geologic model suggests that 
in the Azuero Peninsula high sulfidation epithermal mineralization occurs in the Cretaceous-Paleogene fore 
arc. This consideration should be taken into account when exploring for this deposit type in similar geologic 
terranes.

Introduction
South Central America is a region characterized by a long-
lived intraoceanic subduction zone with a volcanic arc active 
since the Late Cretaceous (e.g., Lissinna, 2005; Buchs et 
al., 2010, 2011a). It displays many characteristics of zones 
where epithermal, porphyry copper, and volcanogenic mas-
sive sulfide (VMS) deposits are found around convergent 
plate boundaries (e.g., Roberts and Irving, 1957; Levy, 1970; 
Ferencic, 1971; Weyl, 1980; Nelson, 2007). 

High sulfidation epithermal deposits (Hedenquist et al., 
2000) are commonly hosted by subaerial, calc-alkaline volca-
nic rocks that formed at convergent margins, generally within 
island or continental arcs as a direct result of plate subduction 
(Sillitoe, 1993, 2010; Arribas and Tosdal, 1994; Cooke and 
Simmons, 2000). Mineralization styles related to high sulfida-
tion deposits display a wide variety, including veins, hydro-
thermal breccia bodies, stockworks, and dissemination or 
replacements (Arribas, 1995). A distinguishing feature of this 
deposit type is the presence of alteration halos (grading from 

the fluid conduit outward) characterized by quartz ± alunite ± 
pyrophyllite ± dickite ± kaolinite ± illite, and montmorillonite 
± chlorite (Steven and Ratté, 1960; Stoffregen, 1987; Arribas, 
1995; Hedenquist et al., 2000). The most common geologic 
setting documented for this deposit type is a volcanic dome 
complex; however, they may also occur in a central-vent vol-
cano setting and in a spatial association with maar-diatremes 
or calderas (Sillitoe et al., 1984; Arribas, 1995; Sillitoe, 1999; 
Hedenquist et al., 2000). Furthermore, submarine high sufi-
dation epithermal Au-Cu deposits have been reported in the 
Izu-Bonin-Mariana arc, the Tonga-Kermadec arc, and the 
Bismark archipelago (e.g., Binns and Scott, 1993; Hannington 
and Herzig, 1993; de Ronde et al., 2003; Embley et al., 2004).

In Panama, gold and copper are the most economically 
important metals, and they are mainly hosted by epithermal 
(e.g., Cana, Santa Rosa, and Cerro Quema deposits; Woakes, 
1923; Wleklinski, 1969; White, 1993; Nelson, 1995, 2007; 
Corral et al., 2011a) and porphyry copper deposits (e.g., Pet-
aquilla and Cerro Colorado, Kesler et al., 1977; Kesler, 1978; 
Nelson, 1995; Speidel, 2001). The present study focuses on 
the Cerro Quema deposit, located in the Azuero Peninsula, 
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southwest Panama (Fig. 1A). This region hosts several epi-
thermal deposits and prospects (e.g., Juan Diaz, Pitaloza, Las 
Minas, Cerro Viejo, Fig. 1B). Cerro Quema, considered one 
of the most promising Au-Cu prospects in the country, is a 
structurally and lithologically controlled high sulfidation epi-
thermal deposit, hosted by dacite domes, in a calc-alkaline vol-
canic arc environment (Corral et al., 2011a). Mineral resource 
estimates (indicated + inferred) are 30.86 Mt at 0.73 g/t Au, 
containing 728,000 oz Au, including 76.900 oz (Au equiv) of 
Cu ore (Valiant et al., 2011; Puritch et al., 2012). 

Hypogene sulfides at Cerro Quema deposit include pyrite, 
enargite, and tennantite. The associated hydrothermal 
alteration minerals include alunite, kaolinite-dickite, and 

pyrophyllite. All of these are diagnostic of a high sulfidation 
state and acidic hydrothermal conditions (Arribas, 1995). 
Although Cerro Quema shows characteristics of high sulfida-
tion epithermal deposits, its age and geodynamic setting are 
not well understood. It has been interpreted to be a volca-
nic dome-hosted high sulfidation deposit related to fore-arc 
magmatism (Corral et al., 2011a; Corral, 2013), in contrast 
to the classical high sulfidation epithermal models (e.g., 
Hedenquist, 1987; Sillitoe, 1989, 1999; White, 1991; Heden-
quist and Lowenstern, 1994; Arribas, 1995). Cerro Quema is 
hosted by fore-arc basin volcanosedimentary rocks that have 
been intruded by different plutonic rocks through time (Cor-
ral et al., 2011a). 
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We document the geologic setting, mineralogy, geochem-
istry, and 40Ar/39Ar geochronology of Cerro Quema. A geo-
logic model is developed from these data that contributes to 
the understanding and exploration of high sulfidation Au-Cu 
deposits in ancient and modern terranes, with similar geologic 
features.

Geologic Setting

Regional geology

Panama, located in south Central America, is the youngest 
segment of the land bridge between the North and South 
American plates. It is a tectonic block that lies at the junc-
tion of the Caribbean, South American, Cocos, and Nazca 
plates (e.g., Duque-Caro, 1990; Kellogg et al., 1995; Harmon, 
2005). A volcanic arc developed during the Late Cretaceous 
as a result of the subduction of the ancient Farallon plate 
(nowadays Cocos and Nazca plates) beneath the Caribbean 
plate. Volcanic arc magmatism continued until the Miocene 
(~23 Ma; Barckhausen et al., 2001; Werner et al., 2003; Lon-
sdale, 2005; Buchs et al., 2009, 2010; Pindell and Kennan, 
2009; Wörner et al., 2009). The accretion and obduction of 
seamounts and oceanic plateaus (middle Eocene; Buchs et al., 
2010) and the collision of the Panamanian volcanic arc with 
Colombia during the middle to late Miocene (e.g., Keigwin, 
1978; Trenkamp et al., 2002; Coates et al., 2004; Barat et al., 
2012, 2014) produced a change in the subduction direction 
and the migration of the volcanic arc toward the north (Lis-
sinna et al., 2002; Lissinna, 2005). The Cordillera Central in 
north Panama is the present-day expression of the active Pan-
amanian volcanic arc.

Geology of the Azuero Peninsula and the  
Cerro Quema deposit

The Azuero Peninsula is composed of igneous basement over-
lain by fore-arc sediments (Buchs et al., 2011). This region 
contains volcanic, plutonic, sedimentary, and volcaniclastic 
rocks ranging in age from ~98 to ~40 Ma (Del Giudice and 
Recchi, 1969; Bourgois et al., 1982; Kolarsky et al., 1995; Lis-
sinna, 2005; Wörner et al., 2009; Buchs et al., 2010; Wegner 
et al., 2011; Corral et al., 2013).

Five distinct rock associations have been recognized in the 
Azuero Peninsula (Fig. 1B): 

1. The Azuero igneous basement is composed of Late Creta-
ceous (Aptian to Santonian) basalts and pillow basalts with 
geochemical affinities similar to the Caribbean large igne-
ous province, interpreted as the arc basement (Del Giu-
dice and Recchi, 1969; Kolarsky et al., 1995; Hauff et al., 
2000; Hoernle et al., 2002, 2004; Lissinna, 2005; Buchs et 
al., 2009; Corral et al., 2011a). 

2. The Azuero primitive volcanic arc, a nonmappable unit at 
regional scale, consists of tholeiitic basalts and volcaniclas-
tic rocks, locally interbedded with late Campanian-Maas-
trichtian hemipelagic limestones, which are equivalent to 
the proto-arc defined by Buchs et al. (2010). It corresponds 
to the initial stages of arc volcanism. 

3. The Azuero Arc Group consists of volcanosedimentary, vol-
canic, and arc-related intrusive rocks with calc-alkaline char-
acter, representing the Cretaceous and Paleogene volcanic 

arcs (Lissinna, 2005; Wörner et al., 2009; Buchs et al., 2010, 
2011a; Wegner et al., 2011; Corral et al., 2011a, 2013). 

4. The Tonosí Formation, a middle Eocene to early Miocene 
sedimentary sequence, unconformably overlies the older 
units (Recchi and Miranda, 1977; Kolarsky et al., 1995; 
Krawinkel and Seyfried, 1994; Krawinkel et al., 1999). 

5. The Azuero accretionary complex consists of Paleocene to 
middle Eocene seamounts, oceanic plateaus, and mélanges 
accreted along the ancient subduction trench (Hoernle et 
al., 2002; Lissinna, 2005; Hoernle and Hauff, 2007; Buchs 
et al., 2011b).

The Azuero Peninsula is transected by several regional-
scale subvertical faults (Fig. 1B). These include the NW-
trending Soná-Azuero fault zone, the E-trending Ocú-Parita 
fault, and the Río Joaquín fault zone (Kolarsky et al., 1995; 
Buchs, 2008; Corral et al., 2011a, 2013). The Río Joaquín fault 
zone is 30 km in length, shows evidence for reverse dip-slip 
motion, and juxtaposed the Azuero igneous basement against 
the Azuero Arc Group (e.g., Río Quema Formation). Second-
ary NW-trending regional structures such as the Pedasí fault 
zone and the Punta Mala fault, both with a sinistral strike-slip 
motion, have disrupted the eastern Azuero Peninsula (Fig. 
2). In the central Azuero Peninsula mesoscale open folds 
with SW-plunging fold axes and moderate limb dips indicate 
dextral transpression with dominant reverse dip-slip motion 
(Corral et al., 2011a, 2013).

The local stratigraphy was initially defined by two units 
(C.F. Horlacher, pers. comm., 1993): (1) the Ocú Formation, 
composed of limestones and volcanosedimentary rocks, and 
(2) the Quema Formation, composed of dacites and mas-
sive andesites. Corral et al. (2011a, 2013) used new field, 
geochemical, and biostratigraphic data to define a new litho-
stratigraphic unit, the Río Quema Formation (Fig. 3). This 
newly defined unit, which hosts the Cerro Quema deposit, is 
a volcanosedimentary sequence enclosed within the Azuero 
Arc Group. It is interpreted as the volcaniclastic apron of the 
Panamanian Cretaceous volcanic arc. The volcanic sequence 
is exposed from the central to southeastern Azuero Penin-
sula and represents the fore-arc basin, the region between 
the subduction trench and the magmatic arc (e.g., Stern et 
al., 2012). On the basis of biostratigraphic data, the volca-
nosedimentary sequence is late Campanian to Maastrichtian 
in age (Corral et al., 2013). The Río Quema Formation is 
subdivided into three units (Fig. 3). The lower unit contains 
andesitic lava flows and well-bedded crystal-rich sandstone to 
siltstone turbidites, interbedded with hemipelagic thin lime-
stone beds. The limestone unit is a thick, light gray biomicritic 
hemipelagic limestone, interlayered with well-bedded cherts, 
thin-bedded turbidites, and fine ash layers. The upper unit 
consists of volcaniclastic sediments interlayered with mas-
sive to laminar andesitic lava flows, dacite domes, dacite hya-
loclastites (Fig. 3B), and polymictic conglomerates. Dacites 
are characterized by quartz and hornblende phenocrysts (up 
to 5 cm in hornblende) and smaller plagioclase crystals in a 
microcrystalline quartz-feldspar groundmass. The total thick-
ness of the Río Quema Formation is approximately 1,700 m. 
It overlies both the Azuero igneous basement (Fig. 3A) and 
the Azuero primitive volcanic arc, and is discordantly overlain 
by the Tonosí Formation (Fig. 3C).
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The Cerro Quema deposit is located in the center of the 
Azuero Peninsula. It covers an area of ~20 km2 (Figs. 1B, 2) 
and is associated with an E-trending regional fault system, 
parallel to the Río Joaquín fault zone (Corral et al., 2011a). 
The deposit is hosted by the dacite dome complex of the Río 
Quema Formation and contains several orebodies. From east 
to west, these are Cerro Quema, Cerro Quemita, and La Pava 
(Fig. 4). Although mineralization and hydrothermal alteration 
persist to the east (e.g., Cerro Idaida, Pelona, and Peloncita), 

the economic potential of this zone is poorly known. Data 
from Cerro Idaida are presented below in order to comple-
ment the geologic characterization of Cerro Quema.

Hydrothermal Alteration
Wall-rock alteration at Cerro Quema was initially described by 
T. M. Leach (pers. comm., 1992) and, subsequently, by Corral 
et al. (2011a). We provide new data on hydrothermal altera-
tion mineralogy and zoning based on field mapping and core 
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Fig. 4.  Overview of Cerro Quema including La Pava, Cerro Quemita, Cerro Quema, and Cerro Idaida ore zones.
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logging, and on analysis of surface and drill core samples by 
petrographic microscope, X-ray diffraction (XRD), scanning 
electron microscope-energy dispersive X-ray (SEM-EDX), and 
electron microprobe analysis (EMPA). Hydrothermal altera-
tion at Cerro Quema appears mainly restricted to the dacite 

domes of the Río Quema Formation (Fig. 5) due to the differ-
ence in permeability and porosity with respect to other rock 
types of the volcanosedimentary sequence (Corral, 2013). 

Hydrothermal alteration follows an easterly trend that 
is parallel to secondary faults of the Río Joaquín fault zone. 
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Volcaniclastic sedimentary rocks and andesite lava flows 
affected by the E-trending faults to the east and west of 
Cerro Quema have also been weakly affected by hydrother-
mal alteration. Dacites are easily distinguished, due to their 
characteristic porphyritic texture, even when hydrothermally 
altered (Figs. 5, 6A, 7A). Although hydrothermal alteration 
had a strong structural control, a lithological control is also 
evident in the mushroom-shaped alteration domains at shal-
low levels (e.g., La Pava). 

The Cerro Quema alteration pattern consists of an inner 
zone of vuggy quartz (30–230 m wide), with local quartz-alu-
nite and pyrophyllite (advanced argillic alteration, 30–200 m 
wide), enclosed by a kaolinite, illite, and illite/smectite-bear-
ing widespread alteration zone (argillic alteration, 100–400 m 
wide; Fig. 5). Propylitic alteration has only been observed in 
some drill core samples, and forms a halo surrounding the 
argillic alteration zone.

Vuggy quartz

This innermost alteration zone (Fig. 5) occurs as irregular, 
generally vertical, funnel- and tabular-shaped bodies, and is 
commonly found on top of mineralized zones. Patches of mas-
sive quartz and silicified breccias are also present in this zone.

Vuggy quartz is made up of a groundmass of microcrystal-
line anhedral quartz grains, disseminated pyrite, barite, and 
minor rutile, with traces of sphalerite. At depth, vuggy quartz 
contains disseminated pyrite, chalcopyrite, enargite, and ten-
nantite. Vuggy quartz texture is characterized by voids pre-
serving the crystal morphology of hornblende and plagioclase 
(Figs. 6B, 7B). Drusy quartz, pyrite, and rutile have partially 
filled some void spaces. Quartz phenocrysts preserved within 
dacite contain secondary two-phase (liquid rich) fluid inclu-
sions, possibly recording the fluids responsible for hydrother-
mal alteration and mineralization.

Advanced argillic

The advanced argillic alteration zone is an irregular halo 
developed around the vuggy quartz alteration zone (Fig. 5). 
The advanced argillic alteration zone has different miner-
alogical expressions depending on its occurrence (surface/
subsurface).

Quartz-alunite alteration associated with a massive quartz-
cemented breccia zone is exposed at surface at La Pava (Fig. 
6C). Alunite is a very fine grained minor component that is 
only identifiable by XRD and is associated with the breccia 
cement. A more representative association of the advanced 
argillic alteration at surface is characterized by quartz, dick-
ite, pyrophyllite, barite, illite, and minor diaspore (at La Pava, 
Chontal Edge, and Cerro Quema). These minerals altered the 
massive and brecciated dacites (Fig. 6D) to quartz. Clay min-
erals (dickite, pyrophyllite, and illite) replaced hornblende 
and plagioclase, and also occur in the breccia as cement 
(Fig. 7C). Barite occurs along fractures and as part of breccia 
cement. Disseminated pyrite is characteristic of the advanced 
argillic alteration zone.

At depth, the advanced argillic alteration assemblage con-
sists of quartz, alunite-natroalunite, aluminum phosphate-sul-
fate (APS) minerals, dickite, pyrophyllite, barite, and rutile. 
This assemblage has only been observed in drill core samples, 
associated with hydraulic breccias (Fig. 7D).

Argillic 

The argillic alteration zone defines a halo surrounding the 
vuggy quartz and advanced argillic alteration zones (Fig. 5). 
The argillic envelope generally bounds the vuggy quartz zone 
with a sharp contact, whereas the contact with the advanced 
argillic zone is gradational. The whitish-gray, hydrothermally 
altered rock typically preserves the original volcanic textures 
(Fig. 6E). Argillic alteration produced quartz, kaolinite, illite, 
and illite-smectite with minor chlorite, which replaced horn-
blende and plagioclase crystals (Fig. 7E). Disseminated pyrite 
is found locally. 

Minerals within the argillic alteration zone are zoned out-
ward from the mineralized centers. Kaolinite is dominant 
proximal to ore, and the assemblage grades to kaolinite ± illite, 
and then to ± illite-smectite. Kaolinite ± smectite ± chlorite-
smectite and chlorite have been recognized in distal locations. 
At La Pava, there are subvertical pipe-like structures where 
dacites with hornblende and plagioclase phenocrysts have 
been replaced by quartz, dickite, barite, and pyrite alteration 
(advanced argillic alteration; Fig. 6F). These pipes have cross-
cut the argillic altered rocks (Fig. 6F).

Propylitic 

A propylitic assemblage constitutes the most distal alteration 
halo, affecting dacites, andesites, and volcaniclastic sedimen-
tary rocks (e.g., turbidites and debris flows; Fig. 6G). It is 
characterized by chlorite, epidote, carbonate, rutile, pyrite, 
and chalcopyrite, with minor hematite and magnetite. Horn-
blende has been partially to completely replaced by chlorite 
and epidote, and plagioclase by carbonate (Fig. 7F). Car-
bonates also occur as patches and veinlets. Minor amounts 
of pyrite, chalcopyrite, rutile, magnetite, and hematite have 
replaced hornblende, and also occur as disseminated grains. 
The propylitic zone has a transitional contact with the argil-
lic alteration zone, where clay minerals have partially over-
printed propylitic alteration minerals.

Mineralization
Gold occurs as disseminated submicroscopic grains and as 
invisible gold within pyrite (Corral et al., 2011a). Copper is 
associated with hypogene chalcopyrite, enargite, bornite and 
tennantite, and supergene covellite and chalcocite. Mineral-
ization (gold and copper) is mainly associated with the vuggy 
quartz and advanced argillic alteration zones. However, minor 
gold and copper occurrences have been found in the argillic 
and propylitic alteration zones.

Hypogene mineralization

Hypogene mineralization is generally developed below the 
oxidized zone, even though small (meter scale) outcrops are 
found at surface. Pyrite is the most abundant sulfide at the 
Cerro Quema deposit; however, there is a group of accompa-
nying sulfides also associated with the Au-Cu mineralization. 

Hypogene mineralization is divided into five stages (Fig. 8), 
where stages 3 and 4 are the main ore-forming stages. Stage 1 
consists of disseminated, fine-grained, idiomorphic and subi-
diomorphic pyrite, accompanied by rutile and barite in voids 
and groundmass (Fig. 9A), with minor enargite, tennantite, 
and chalcopyrite at depth. Sphalerite is a trace mineral that 
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Fig. 6.  Field examples of host rocks and hydrothermal alteration assemblages at Cerro Quema. A) Unaltered porphyritic 
texture of dacites (Río Quema Formation). B) Dacite altered to vuggy quartz at Cerro Quemita, preserving the original 
volcanic rock texture. Voids corresponding to hornblende and plagioclase crystals are now filled by Fe oxides. C) Quartz-
alunite–altered breccia zone at La Pava. D) Quartz-, dickite-, pyrophyllite-, barite-, and illite-altered breccia, composed by 
dacite clasts with argillic alteration in a matrix of advanced argillic alteration (Cerro Quema). E) Kaolinite-, illite-, and illite/
smectite-altered dacite preserving the original volcanic rock texture (Cerro Quemita). F) Pipe-like structures (dashed-line 
circles) composed of quartz, dickite, barite, and pyrite crosscutting the argillic alteration zone at La Pava. Image width ~20 m. 
G) Drill core sample showing a chlorite, epidote, pyrite, and carbonate alteration in a sedimentary breccia or microconglom-
erate, crosscut by carbonate veins. H) Oxidation boundary developed on the advanced argillic alteration zone at Chontal edge.
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occurs disseminated in the groundmass. Stage 2 is constituted 
by disseminated pyrite in the cement of a hydraulic breccia, 
associated with alunite-natroalunite, dickite, and traces of 
chalcopyrite. Stage 3 consists of pyrite, chalcopyrite, enargite, 
and tennantite veinlets crosscutting stages 1 and 2 (Fig. 9B). 
Replacement textures of pyrite by enargite, enargite by ten-
nantite, and tennantite by chalcopyrite are observed in the 
veinlets. Bornite occurs as a trace mineral. Stage 4 occurs as 
breccia bands ~5 cm thick, composed of pyrite, chalcopyrite, 
and minor enargite. Breccia bands crosscut all the previous 

stages (Fig. 9C). Stage 5 reflects intermediate sulfidation min-
eralization. These 5- to 10-cm-thick base metal sulfide-rich 
veins are composed of pyrite, quartz, and barite together with 
minor chalcopyrite, sphalerite, and galena (Fig. 9D).

Supergene mineralization and alteration

Intense weathering typical of tropical latitudes has affected 
fresh and hydrothermally altered rocks in the Cerro Quema 
area to depths of 150 m. Sulfide oxidation in high sulfidation 
systems is largely controlled by rock permeability (Sillitoe, 
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Fig. 7.  Microscope images of alteration assemblages at Cerro Quema. A) Relatively fresh dacite showing honrnblende 
phenocrysts and partially calcite altered plagioclase crystals in a slightly altered groundmass (cross-polarized light). B) Vuggy 
quartz; dacite groundmass has been totally replaced by microcrystalline quartz, preserving the hornblende and plagioclase 
crystal morphologies (cross-polarized light). C) Dacite altered to quartz + dickite + pyrophyllite + pyrite assemblage, typical 
of the advanced argillic alteration assemblage (cross-polarized light). D) Hydraulic breccia with fragments of vuggy quartz 
cemented by alunite-natroalunite, pyrite, and dickite (cross-polarized light). E) Dacite affected by argillic alteration (cross-
polarized light). Groundmass has been replaced by microcrystalline quartz and plagioclase voids have been filled by kaolinite. 
F) Cross-polarized light image of a sedimentary breccia affected by propylitic alteration. The matrix has been altered to 
quartz + chlorite + calcite + pyrite. Volcanic clasts have undergone selective replacement of plagioclase to calcite and horn-
blende to chlorite. Abbreviations: ap = apatite, alu = alunite, cb = carbonate, chl = chlorite, dck = dickite, hbl = hornblende, 
kao = kaolinite, plag = plagioclase, prl = pyrophyllite, py = pyrite, qz = quartz, qz-fs = quartz-feldspar groundmass.
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1999). At Cerro Quema, high permeability was provided by 
the vuggy quartz, hydrothermal breccias, fracture zones, and 
hyaloclastites (Fig. 6H).

Weathering of the high sulfidation ores has produced a 
thick quartz- and iron oxide-rich zone that overprinted the 
primary sulfide-bearing zone. This zone developed in the 
upper part of mineral bodies, and is characterized by vuggy 
quartz containing abundant hematite and goethite within 
the groundmass, replacing the cement of hydrothermal 
breccias, and filling voids in the vuggy quartz zone (Fig. 9E). 
Supergene jarosite, kaolinite, halloysite, and gypsum are 
also found in fractures, vugs, and breccia matrix. Hypogene 
pyrite, barite, and rutile remain as trace minerals in the oxi-
dation zone.

Below the oxidation zone, supergene enrichment has 
caused deposition of secondary Cu-bearing minerals such as 
chalcocite and minor covellite. The secondary Cu sulfides are 
found replacing chalcopyrite, tennantite, and enargite as well 
as filling small fractures (Fig. 9F).

The enrichment factor of the oxide zone with respect to 
the sulfide zone in terms of gold and copper is 2.41 and 0.61, 
respectively (Corral, 2013). At Cerro Quema, the oxidation 
zone has higher gold grades (up to 2,400 ppb Au), and the 
enrichment zone has higher copper grades (up to 1% Cu).

Trace Element Geochemistry
Trace element data from high sulfidation epithermal depos-
its are not abundant (e.g., Nansatsu, Japan—Hedenquist et 
al., 1994; Rodalquilar, Spain—Hernandez et al., 1989; Pueblo 
Viejo, Dominican Republic—Kesler et al., 2003). Co/Ni and 
S/Se ratios in pyrite have been used as empirical indicators 
of the depositional environment (e.g., Edwards and Carlos, 
1954; Goldschmidt, 1954; Loftus-Hills and Solomon, 1967; 
Bralia et al., 1979). Pyrite compositions combined with major 
and trace element contents of alunite and APS group minerals 
may provide significant information for understanding their 
origin. Chemical composition of enargite, alunite, and APS 
minerals can be used as an ore guide in mineral exploration 
as they can be related in time and space to epithermal and 

porphyry mineralization (e.g., Bove, 1990; Dill, 2003; Chang 
et al., 2009, 2011; Deyell and Hedenquist, 2011).

Analyses of S, Fe, Co, Ni, Cu, As, Se, Ag, Cd, Sb, Au, and 
Hg have been performed by EMPA for 55 pyrites from six drill 
hole samples of the vuggy quartz and advanced argillic altera-
tion. The contents of Al, Fe, Ca, Na, K, P, F, S, Cu, As, Sr, Ba, 
Ce, and Pb of 20 alunites and 21 APS minerals were analyzed 
by EMPA from two drill core samples of the advanced argil-
lic alteration. All the analyses were performed at the Serveis 
Científics i Tecnològics of the University of Barcelona.

Pyrite

Several pyrite types have been analyzed (e.g., idiomorphic, 
subidiomorphic, zoned, massive, framboidal, and brecciated; 
Fig. 10A, B). The aim was to determine the chemical compo-
sition of the different pyrite types. However, they have simi-
lar Ag, Cd, Sb, and Se concentrations, but some differences 
exist in Co and Ni concentrations (Table 1; Appendix 1). Co/
Ni ratios (N = 11) range from 0.58 to 5.50 (Fig. 11A), and S/
Se ratios (N = 21) are between 1,050 and 2,694. Pyrites are 
generally Cu rich, varying from 0.03 to 3.67 wt % Cu. The 
Au, Hg, and As concentrations of pyrite are below detection 
limits.

Alunite and APS minerals

At Cerro Quema, alunite and APS minerals occur as cement in 
the hydraulic breccias associated with pyrite and dickite, fill-
ing voids in the vuggy quartz zone, and replacing plagioclase 
crystals (Fig. 10C, D). In general, alunite is zoned (~1–7 µm 
wide), which is mainly due to the variation in Na, K, and Ca 
contents. Alunites have typical flaky shapes, indicating a hypo-
gene origin (e.g., Arribas et al., 1995a; Itaya et al., 1996), and 
commonly have a core of APS minerals (e.g., svanbergite; Fig. 
10C). Representative chemical data for alunite and APS min-
erals from Cerro Quema are shown in Table 2 and Appendix 
2. Alunite is Na rich, exhibiting a compositional range within 
the alunite-natroalunite solid solution (Fig. 11B). P is gener-
ally present as a trace, excepting few alunite crystals that show 
P enrichment, which is also correlated with an enrichment in 

Stage 1
early pyrite and 

chalcopyrite

Stage 2
brecciation

Stage 3
veinlets

Stage 4
breccia bands

Stage 5
IS base metal

veins

Stage 6
supergene

pyrite

chalcopyrite

enargite
tennantite

sphalerite

galena

bornite

covellite

chalcocite

goethite

hematite

Fig. 8.  Paragenetic sequence of ore minerals at Cerro Quema.
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Sr and Ba. In contrast, APS minerals show irregular element 
content (e.g., Na, Ca, Sr, Ba, and Fe), typically with enrich-
ment in Sr, and locally in Ca and Ba (Fig. 11C), which is char-
acteristic of the svanbergite-woodhouseite solid solution.

40Ar/39Ar Geochronology
The first geochronological studies of arc rocks in the Azuero 
Peninsula were conducted by Del Giudice and Recchi (1969) 
and Kesler et al. (1977). Recent studies have focused on dat-
ing igneous rocks such as those at El Montuoso, Valle Rico, 
and Parita batholiths, as well as quartz-diorites from the Punta 

Mala area, northeast Azuero basalts, and Central Azuero arc 
rocks (Fig. 1; Lissinna, 2005; Wegner et al., 2011; Montes et 
al., 2012). Results of the previous geochronological studies 
are summarized in Table 3. 

Ar/Ar step-heating dating has been conducted in this study 
in order to complete the existing radiometric and biostrati-
graphic ages of the volcanic, volcaniclastic, sedimentary, and 
plutonic rocks of the Azuero Peninsula, and to constrain the 
age of the Cerro Quema deposit. Mineral separates of eight 
hornblende phenocrysts were prepared by crushing 1 kg of 
rock, sieving, washing, and handpicking to obtain 100 mg of 
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optically pure mineral. The 40Ar/39Ar step-heating analyses 
were performed at the U.S. Geological Survey on samples 
irradiated at the U.S. Geological Survey TRIGA reactor in 
Denver, Colorado (Dalrymple et al., 1981). Dated samples 
are from the El Montuoso, Valle Rico, and Parita batholiths, 
the Cerro Quema host rock (dacite dome complex), and vol-
caniclastic andesite (Fig. 1). Results and sample locations are 
shown in Table 4 and in Figure 12.

El Montuoso

Two hornblendes from the El Montuoso batholith yielded 
40Ar/39Ar plateau ages of 65.7 ± 1.0 and 67.5 ± 1.1 Ma (Fig. 
12; Table 4), consistent with previous hornblende K/Ar ages 
(69 ± 10 and 64.87 ± 1.34 Ma; Del Giudice and Recchi, 1969; 
Kesler, 1977), and also with the zircon U/Pb ages (67.7 ± 1.4, 
66.0 ± 1.0, and 67.6 ± 1.0 Ma) of Montes et al. (2012). Kesler 
(1977) also obtained a younger plagioclase K/Ar age (52.58 
± 0.63 Ma), interpreted to reflect partial postcrystallization 
argon loss from the plagioclase.

Valle Rico
40Ar/39Ar dating of a sample of the Valle Rico quartz-diorite 
(Fig. 12; Table 4) provided an integrated age of 54.8 ± 1.2 
Ma, which is consistent with the hornblende K/Ar age of 53 
± 3 Ma (Del Giudice and Recchi, 1969). However, our age 
is considerably older than plagioclase 40Ar/39Ar ages of 49.5 
± 0.2 and 50.6 ± 0.3 Ma for the same batholith reported by 
Lissinna (2005). A recent zircon U/Pb age of 49.2 ± 0.9 Ma 

(Montes et al., 2012) suggests that this is the true age of this 
quartz diorite. The Valle Rico hornblende 40Ar/39Ar date is 
therefore interpreted to have been compromised by the pres-
ence of excess argon.

Parita

A hornblende from the Parita batholith yielded a small pla-
teau-like segment at 40.9 ± 1.3 Ma, in agreement with previ-
ous zircon U/Pb ages of 48.1 ± 1.2 and 41.1 ± 0.7 Ma (Montes 
et al., 2012) of the Parita batholith. However, the 40Ar/39Ar 
spectra show evidence for excess argon (Fig. 12; Table 4).

Río Quema Formation

Four hornblendes separated from the dacite dome complex 
of the Río Quema Formation yielded 40Ar/39Ar plateau ages 
of 67.9 ± 1.1, 66.0 ± 1.0, and 65.6 ± 1.3 Ma and an integrated 
age of 69.7 ± 1.2 Ma (Fig. 12; Table 4). Wegner et al. (2011) 
reported hornblende 40Ar/39Ar ages of 71.0 ± 2.0 and 67.5 ± 
1.9 Ma for two dacite samples found in the Tonosí River (cen-
tral Azuero Peninsula), probably corresponding to boulders 
coming from the erosion of the dacite dome complex of the 
Río Quema Formation.

An attempt to date the volcaniclastic rocks of the Río 
Quema Formation was made. Unfortunately, the integrated 
age of 143 ± 11 Ma and the plateau age of 105 ± 3 Ma (Fig. 
12; Table 4) have no geologic sense within the geologic frame-
work of the Azuero Peninsula (the 143 ± 11 Ma age indicates 
that the rock is older than the Azuero igneous basement).
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Hydrothermal alteration and mineralization

Geochronologic dating of the Cerro Quema hydrothermal 
alteration-mineralization was attempted by the performance 
of 40Ar/39Ar step-heating analysis on alunite (advanced argillic 
alteration). Unfortunately, we had no success due to the fine-
grained size of the alunite crystals and their intergrowths with 
kaolinite, which prevented the preparation of a pure alunite 
sample. 

Discussion

Deposit type

Classification of Cerro Quema has been a matter of debate 
since the first studies were carried out in the area. T. M. 

Leach (pers. comm., 1992) and Nelson (1995) considered the 
deposit to be a high sulfidation epithermal deposit potentially 
related to an underlying porphyry-style intrusion. In contrast, 
Nelson and Nietzen (2000) and Nelson (2007) proposed that 
Cerro Quema could be an oxidized Au-Cu deposit transitional 
between epithermal deposits and volcanogenic massive sul-
fide deposits, similar to the Pueblo Viejo deposit, Dominican 
Republic.

The spatial distribution of hydrothermal alteration assem-
blage at Cerro Quema (e.g., vuggy quartz grading outward 
to advanced argillic, argillic, and propyllitic assembages) and 
the alteration mineralogy (e.g., alunite, APS minerals, barite, 
kaolinite, dickite, pyrophyllite), together with the mineraliza-
tion style (e.g., dissemination and veinlets of pyrite, enargite, 

Table 1.  Quantitative Analyses and Co/Ni and S/Se Ratios of Pyrites from Cerro Quema

Sample no. 9107-11.55 9343-66 9316-173.2 9316-236 0308-51.8 0308-73.6

Alteration Vuggy quartz Vuggy quartz Vuggy quartz Vuggy quartz Advanced argillic Advanced argillic
Location La Pava Cerro Idaida La Pava La Pava Chontal Edge Chontal Edge
Fe (wt %) n = 4 n = 10 n = 15 n = 7 n = 9 n = 10
  Min–max 43.68–46.63 44.51–46.84 44.10–46.72 44.63–46.58 44.61–46.51 43.59–46.53
  Median 44.68 45.38 45.76 45.44 45.97 46.17
  Average (± sd) 44.92 (± 1.48) 45.61 (± 0.72) 45.61 (± 0.69) 45.37 (± 0.66) 45.72 (± 0.64) 45.87 (± 0.85)
S (wt %) n = 4 n = 10 n = 15 n = 7 n = 9 n = 10
  Min–max 52.52–53.38 53.10–53.85 52.68–54.14 52.85–53.54 53.31–54.02 53.08–54.06
  Median 52.92 53.53 53.49 53.35 53.51 53.46
  Average (± sd) 52.94 (± 0.48) 53.56 (± 0.22) 53.54 (± 0.37) 53.29 (± 0.24) 53.57 (± 0.22) 53.47 (± 0.30)
Cu (wt %) n = 2 n = 10 n = 15 n = 6 n = 9 n = 7
  Min–max 1.12–1.14 0.03–2.12 0.06–3.67 0.57–2.21 0.05–1.72 0.12–3.16
  Median 1.13 0.47 0.24 1.28 0.24 0.19
  Average (± sd) 1.13 (± 0.01) 0.82 (± 0.74) 0.56 (± 0.94) 1.22 (± 0.61) 0.48 (± 0.57) 0.71 (± 1.11)
Co (ppm) n = 3 n = 0 n = 2 n=4 n = 3 n = 1
  Min–max 500–17,800 - 183–800 175–400 200–300 1,100 
  Median 17,800  - 492 400 231.00 -
  Average (± sd) 12,033 (± 9,988) - 492 (± 436) 344 (± 113) 244 (± 51) -
Ni (ppm) n = 3 n = 1 n = 2 n = 4 n = 1 n = 1
  Min–max 700–4,300 300 200–700 200–600 300.00 200
  Median 4,300  - 450 400 - -
  Average (± sd) 3,100 (± 2,078) - 450 (± 354) 400 (± 183) - -
Se (ppm) n = 4 n = 1 n = 5 n = 4 n = 4 n = 3
  Min–max 200–500 300 200 200 200–300 200–300
  Median 400 - 200 200 200.00 200
  Average (± sd) 375 (± 150) - 200 (± 0) 200 (± 0) 225 (± 50) 233 (± 58)
Ag (ppm) n = 1 n = 5 n = 5 n = 5 n = 3 n = 0
  Min–max 400 300–300 300 300–400 300–400 -
  Median - 300 300 300 300 -
  Average (± sd) - 300 (± 0) 300 (± 0) 340 (± 55) 333 (± 58) -
Cd (ppm) n = 4 n = 2 n = 1 n = 0 n = 2 n = 1
  Min–max 300–311 300–300 300 - 300 300
  Median 306 300 - - 300 -
  Average (± sd) 306 (± 7.8) 300 (± 0) - - 300 (± 0) -
Sb (ppm) n = 1 n = 1 n = 7 n = 2 n = 4 n = 5
  Min–max 500 500 500–700 500 500–700 500–700
  Median - - 600.00 500.00 600.00 600.00
  Average (± sd) - - 600 (± 100) 500 (± 0) 600 (± 82) 600 (± 71)
Co/Ni n = 3 n = 0 n = 2 n = 4 n = 1 n = 1
  Min–max 0.71–4.14 - 0.92–1.14 0.58–2.00 1.00 5.50
  Median 4.14 - 1.03 0.73 - -
  Average (± sd) 3.00 (± 4.81) - 1.03 (± 0.16) 1.01 (± 0.66) - -
S/Se n = 4 n = 1 n = 5 n = 4 n = 4 n = 3
  Min–max 1,050–2,669 1,782  2,634–2,694 2,658–2,669 1,801–2,681 1,779–2,664
  Median 1,414 - 2,675 2,665 2,678 2,654 
  Average (± sd) 1,637 (± 769) - 2,671 (± 25) 2,664 (± 5) 2,459 (± 439) 2,365 (± 508)



14 CORRAL ET AL.

tennantite, chalcopyrite), show that Cerro Quema fits well 
within the classical high sulfidation epithermal model (e.g., 
Hedenquist, 1987; Berger and Henley, 1989; White, 1991; 
Hedenquist and Lowenstern, 1994; Arribas et al., 1995a). 
Therefore, it can be also considered as a mineralized lithocap, 
possibly overlying a porphyry copper system, in the sense of 
Sillitoe (1995) and Corbett and Leach (1998). Consequently, 
in agreement with T. M. Leach (pers. comm., 1992), hydro-
thermal alteration and high sulfidation epithermal mineraliza-
tion at Cerro Quema is inferred to be related to the circulation 
of acidic fluids derived from an underlying porphyry-like 
intrusion.

Pyrite origin

No relationships between trace element content and pyrite 
textures (idiomorphic, zoned, or framboidal; Fig. 10) were 
observed. Pyrites do not show significant differences in 
terms of major and trace elements, except for their Cu, Co, 
and Ni content (Table 1). Co/Ni ratios in pyrites have been 

Table 2.  Representative Analyses of Alunites and APS Minerals  
from Cerro Quema

Sample no. 1 2 3 4 5
Description Natroalunite Natroalunite Natroalunite APS APS

Al2O3 35.86 33.43 33.6 32.53 31.83
FeO total 0.05 0.14 2.16 0.00 0.26
CaO 0.02 0.17 0.23 0.77 2.49
Na2O 4.22 3.77 4.62 0.92 0.52
K2O 4.31 3.56 1.98 0.52 0.41
P2O5 0.25 2.42 3.20 12.33 17.53
F 0.33 0.06 0.55 0.45 0.62
SO3 38.43 35.85 34.34 20.14 16.65
CuO 0.10 0.08 0.00 0.29 0.00
As2O5 0.04 0.00 0.02 0.05 0.04
SrO 0.51 3.39 3.28 16.44 15.81
BaO 0.42 0.38 1.73 0.41 0.22
CeO 0.00 0.27 0.59 0.29 0.22
PbO 0.10 0.16 0.26 0.00 0.25
(H2O)1 15.36 16.31 13.43 14.86 13.16
(Total)2 100 100 100 100 100

Cations based on 14 oxygen atoms
Al 2.83 2.65 2.78 2.81 2.80
Fe 0.00 0.01 0.13 0.00 0.02
Ca 0.00 0.01 0.02 0.06 0.20
Na 0.55 0.49 0.63 0.13 0.08
K 0.37 0.31 0.18 0.05 0.04
P 0.01 0.14 0.19 0.77 1.11
F 0.07 0.01 0.12 0.10 0.15
S 1.93 1.81 1.81 1.11 0.93
Cu 0.01 0.00 0.00 0.02 0.00
As 0.00 0.00 0.00 0.00 0.00
Sr 0.02 0.13 0.13 0.70 0.68
Ba 0.01 0.01 0.05 0.01 0.01
Ce 0.00 0.01 0.02 0.01 0.01
Pb 0.00 0.00 0.00 0.00 0.01
Calculated H 6.86 7.32 6.30 7.28 6.54
Total cations 12.66 12.91 12.36 13.05 12.55

Oxide content is expressed in wt %; 1 = Na-rich alunite (natroalunite), 2 = 
Sr-rich natroalunite, 3 = Sr-, P-, and Ba-rich natrolaunite (natroalunite-
svanbergite), 4 = Sr-rich APS (svanbergite), 5 = Sr- and Ca-rich APS 
(svanbergite-woodhouseite)

1 Calculated by difference
2 Assume 100% sum 

Fig. 11.  Chemical composition of pyrite, alunite, and APS minerals from 
Cerro Quema. A) Co-Ni content of pyrites and their average composition. 
B)  Normalized K-Na-Ba compositions of alunite. Data points are recalcu-
lated EMPA compositions (20 analyses). C) Normalized K + Na-Sr + Ba + 
Pb-Ca compositions of APS minerals. Data points are recalculated EMPA 
compositions (21 analyses).
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used to distinguish between magmatic-hydrothermal and 
sedimentary origin. Ratios from ~1 to 5 have usually been 
assigned to hydrothermal pyrites, whereas Co/Ni ratio val-
ues of <1 are typical of pyrites of sedimentary or digenetic 
origin (e.g., Loftus-Hills and Solomon, 1967; Price, 1972; 
Bralia et al., 1979; Bajwah et al., 1987; Brill, 1989; Raymond, 
1996; Fintor et al., 2011). Cerro Quema pyrites have Co/Ni 
ratios ranging from 0.58 to 5.50 (Fig. 11A), with an aver-
age of 1.96, suggesting a hydrothermal origin, irrespective 
of their textures. 

S/Se ratios have also been used to discriminate between 
sedimentary and magmatic-hydrothermal origins of pyrites 
(e.g., Edwards and Carlos, 1954; Hawley and Nichol, 1959; 

Huston et al., 1995; Fitzpatrick, 2008). S/Se values of <15,000 
correspond to magmatic-hydrothermal origin whereas those 
of sedimentary origin have values larger than 30,000. S/Se 
ratio values of pyrites from Cerro Quema range from 1,050 to 
2,694, pointing to a magmatic-hydrothermal origin.

All these results are in agreement with pyrite sulfur iso-
topes (–4.8 to –12.7‰) and bulk sulfur isotope composition 
(–0.5‰), suggesting a sulfide-dominant hydrothermal fluid of 
magmatic origin (Corral et al., 2011b; Corral, 2013).

Alunite and APS origin

Analyzed alunite crystals have a flaky shape and are Na 
rich, covering a wide range of the alunite-natroalunite solid 

Table 3.  Summary of Geochronological Studies Carried Out in the Azuero Peninsula

               Results
 Dating
 method Rock Mineral El Montuoso Valle Rico Punta Mala NE Azuero Dacite Parita

Del Giudice  K/Ar Qd Hornblende 69 ± 10 Ma
  and Recchi (1969)
  Qd Hornblende  53 ± 3 Ma
Kesler et al. (1977) K/Ar Qd Hornblende 64.87 ± 1.34 Ma
  Qd Feldspar  52.58 ± 0.63 Ma
Lissinna (2005) Ar/Ar Gd Plagioclase  49.5 ± 0.2 Ma
  Gr Plagioclase  50.6 ± 0.3 Ma
  B Matrix   52.0 ± 0.2 Ma
  Gr Plagioclase   50.7 ± 0.1 Ma
  B Matrix    60.9 ± 0.5 Ma
Wegner et al. (2011) Ar/Ar Dac  Hornblende     67.5 ± 1.9 Ma
  Dac  Hornblende     71.0 ± 2.0 Ma
Montes et al. (2012) U/Pb Gd Zircon 67.6 ± 1.4 Ma
  Ton  Zircon 66.0 ± 1.0 Ma
  Ton  Zircon 67.6 ± 1.0 Ma
  Ton  Zircon  49.2 ± 0.9 Ma
  Ton  Zircon      41.1 ± 0.7 Ma
  Ton  Zircon      48.1 ± 1.2 Ma

Abbreviations: B = basalt, Dac = dacite, Gd = granodiorite, Gr = granite, Qd = quartz diorite, Ton = tonalite

Table 4.  Summary of 39Ar/40Ar Incremental-Heating Experiments 

                Coordinates (°WGS84)   Plateau

Sample no. Latitude Longitude Rock Mineral Age (Ma) ± σ N

El Montuoso batholith
PIT 01 7.643911 –80.646462 Quartz-diorite Amphibole 65.7 ± 1.4 4 of 8
   Quartz-diorite Amphibole 65.5 ± 0.71 9 of 9

Dacite (Río Quema Fm)
LP 204 7.544964 –80.542382 Dacite Amphibole 67.9 ± 1.3 5 of 9
   Dacite Amphibole 69.7 ± 1.21 7 of 7
   Dacite Amphibole 66.0 ± 1.1 5 of 7
   Dacite Amphibole 65.6 ± 1.3 3 of 6

Volcaniclastic rocks (Río Quema Fm)
LP 111 7.532564 –80.552439 Volcaniclastic andesite Amphibole 143 ± 111 10 of 10
   Volcaniclastic andesite Amphibole 105 ± 3  4 of 13

Valle Rico batholith
TRI 01 7.620795 –80.300616 Quartz-diorite Amphibole 54.8 ± 1.21 11 of 11

Parita batholith
PA 01 7.994204 –80.527150 Diorite Amphibole 40.8 ± 1.4  4 of 12

1 Integrated age
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Fig. 12.  Hornblende argon age spectra of rocks from Cerro Quema. Arrows indicate the steps used for plateau age calcula-
tion. A, B) El Montuoso batholith, C-F) Dacite dome complex (Río Quema Formation), G) Valle Rico batholith, H) Parita 
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solution (Fig. 11B; Table 2; Appendix 2). APS minerals in 
the core of alunite and occurring as single crystals are mainly 
Sr rich, locally showing Ca enrichment (Fig. 11C; Table 2; 
Appendix 2), characteristic of the svanbergite-woodhouseite 
solid solution. 

Studies focused on the alunite geochemistry (e.g., Stof-
fregen and Alpers, 1987; Arribas et al., 1995b; Deyell et al., 
2005a, b; Chang et al., 2011) showed that supergene alunite 
and low-temperature alunite are generally K rich in compari-
son with higher-temperature occurrences, which are Na rich. 
Aoki et al. (1993) suggested that the core of hypogene alunite 
is commonly enriched in PO4 and multivalent cations such 
as Ca (crandalite, woodhouseite), Sr (svanbergite), and Ba 
(groceixite). These inclusions are typically rimmed by min-
amiite and rhythmic bands of alunite and natroalunite (Stof-
fregen and Alpers, 1987; Aoki et al., 1993). According to the 
aforementioned studies, texture and chemical composition 
of alunite (Na-rich, flaky shapes and with inner core of APS) 
and svanbergite-woodhouseite (Sr- and Ca-rich APS mineral, 
occurring as an alunite core as well as single crystals) from 
Cerro Quema (see Figs. 10, 11; Table 2) present all of the 
characteristics indicating a magmatic-hydrothermal origin 
related to an intrusion-driven hydrothermal system, such as a 
porphyry copper intrusion.

Geologic Evolution and Epithermal Mineralization
This section summarizes the events from Late Cretaceous to 
present times that constrained the geologic evolution of the 
Azuero Peninsula and the formation of Cerro Quema (Fig. 
13).

Arc development 

The late Campanian (~75–73 Ma) marked the initiation of 
Farallon plate subduction beneath the Caribbean plate (Buchs 
et al., 2010). The initial stages of an intraoceanic subduction 
are characterized by extension of the overriding plate (Stern 
and Bloomer, 1992; Stern, 2010). In the Azuero Peninsula, 
this extension controlled the morphology and evolution of 
the volcanic arc and fore arc. From late Campanian to Maas-
trichtian (~71–66 Ma), the first stage of magmatism occurred 
within the Caribbean plate. This stage is characterized by the 
intrusion of El Montuoso batholith and the development of 
the arc and fore-arc basin. The Río Quema Formation, of 
late Campanian to Maastrichtian age, represents the fore-arc 
basin. Contemporaneous intrusions of dacite domes (~71–66 
Ma) into the Río Quema Formation resulted in the interstrati-
fied volcanic and sedimentary sequences of the fore-arc basin 
(Fig. 13A).

Arc maturation and emplacement of the  
Cerro Quema deposit

During the lower Eocene (~55–49 Ma), a second stage of 
magmatism occurred (Fig. 13B), where the Paleogene volca-
nic arc developed on top of the Cretaceous volcanic arc. Valle 
Rico-like batholiths intruded along E-trending regional faults 
to the north of the Cretaceous fore-arc basin. However, some 
Valle Rico-like intrusions (quartz-diorites, diorites, and tra-
chyandesites) also occurred in the central and southern limit 
of the fore-arc basin. Emplacement of Valle Rico intrusions in 
the fore-arc led to the formation of Cerro Quema.

Age of the Cerro Quema deposit

The age of Cerro Quema has been constrained from field evi-
dence coupled with biostratigraphic data of sedimentary rocks 
of the Río Quema Formation and geochronological data of 
the igneous rocks of the Azuero Peninsula. The age of the 
deposit is estimated to be ~55 to 49 Ma (lower Eocene), based 
on the following observations:

1. Crystal-rich sandstones and turbidites of the Río Quema 
Formation, a volcanosedimentary sequence of Campanian-
Maastrichtian age, do not contain altered clasts derived 
from hydrothermally altered rocks. Dacite clasts in con-
glomerates derived from the erosion of the dacite dome 
complex that hosts Cerro Quema (~71–66 Ma; Wegner et 
al., 2011) show no signs of hydrothermal alteration. There-
fore, hydrothermal alteration and mineralization should be 
younger than the age of the dacite dome complex (~71–66 
Ma).

2. As a high sulfidation deposit, Cerro Quema will have been 
related to a magmatic event. In the Azuero Peninsula, the 
first recorded post-Cretaceous magmatic event occurred 
during the lower Eocene (~55–49 Ma; Del Giudice and 
Recchi, 1969; Kesler et al., 1977; Lissinna, 2005; Montes et 
al., 2012), corresponding to Valle Rico-like batholith intru-
sions. Based on correlations with this second magmatic 
event, the maximum age of Cerro Quema is lower Eocene 
(55–49 Ma).

Arc migration

During the middle Eocene (~45 Ma), the Azuero Peninsula 
was an area of accreted intraoceanic island arcs, such as la 
Hoya and Punta Blanca islands (Buchs et al., 2011b). Subduc-
tion erosion and possible slab flattening induced the migra-
tion of the arc front toward the Caribbean. The emplacement 
of the Parita batholith (~48–41 Ma) to the north of the Ocú-
Parita fault (Fig. 1) supports arc migration toward the north 
during middle Eocene times. This migration is in agreement 
with geodynamic reconstructions of Buchs et al. (2010) and 
geochronological data of Lissinna et al. (2002).

In the Azuero Peninsula, volcanism was less intense in the 
Cerro Quema and Tonosí area due to arc migration (Fig. 
1). It allowed development of an overlapping sedimentary 
sequence (e.g., Tonosí Formation). This unit overlaps all 
older units, and is composed of reefal limestones, calcaren-
ites, sandstones, conglomerates, and coal seams (Recchi and 
Miranda, 1977; Krawinkel and Seyfried, 1994; Kolarsky et al., 
1995; Krawinkel et al., 1999). 

Erosion and supergene enrichment

Some time before the emplacement of the Cerro Quema 
deposit (~55–49 Ma) and present day, erosion and supergene 
enrichment affected the Cerro Quema deposit (Fig. 13C). 
Consequently, oxidation and intense weathering generated a 
thick Au-bearing, silica- and iron-rich zone of up to 150-m 
depth, below which a Cu-rich zone was developed.

Conclusions
Cerro Quema is a high sulfidation epithermal deposit hosted 
by the dacite dome complex of the Río Quema Formation, 
and was emplaced into a Cretaceous fore-arc sequence. 
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Weathering and supergene oxidation processes at Cerro 
Quema produced two mineralized zones, an upper quartz and 
iron oxide zone enriched in Au and a lower supergene enrich-
ment zone where Cu is concentrated. 

Field observations as well as geochronologic and biostrati-
graphic data support a maximum lower Eocene (~55–49 Ma) 
age for Cerro Quema. The deposit is interpreted to be related 

to the emplacement of a porphyry-like intrusion associated 
with the Valle Rico batholith.

The formation of Cerro Quema in the lower Eocene fore arc 
has important implications for exploration in the Panamanian 
volcanic arc and elsewhere. Our results suggest that high sul-
fidation deposits can form in a fore-arc environment if acidic 
intrusions are emplaced between the volcanic arc front and 

A

B

C

sea level

Upper Cretaceous (~71-65 Ma)

Au-Cu mineralization

Lower Eocene (~55-41 Ma)

Present day

Present day
relief

sea level

Oxidation/Supergene enrichment

Tonosí Formation (Late Eocene to Miocene) 

Paleogene volcanic rocks (~55-41 Ma)

Valle Rico quartz-diorite (~55-50 Ma)

Limestone (RQF; ~Campanian to Maastrichtian)

Volcanic and Volcaniclastic rocks (RQF; Campanian to Maastrichtian)

Dacite dome complex (RQF; ~71-66 Ma)

Basalt to andesite dikes (RQF; Campanian to Maastrichtian)

El Montuoso quartz-diorite (~69-66 Ma)

Basalts (APVA; Campanian to Maastrichtian)

Pillow basalts (AIB; Aptian to Santonian)

Faults

Fig. 13.  Geologic model of Cerro Quema and the Azuero Peninsula from Late Cretaceous to present. AIB = Azuero igneous 
basement, APVA = Azuero primitive volcanic arc, RQF = Río Quema Formation.
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the trench. Exploration for high sulfidation epithermal depos-
its in the Azuero Peninsula should therefore be focused in the 
Cretaceous fore-arc sequence, especially in the Río Quema 
Formation dacite domes, targeting E-trending regional faults 
(parallel to the Río Joaquín fault zone) and lower Eocene 
acidic intrusions (Valle Rico-like intrusions). This implies 
a potential zone about ~70 × 10 km for hosting porphyry-
related high sulfidation epithermal deposits (Fig. 14). These 
findings should also be considered when exploring for high 
sulfidation deposits in geologically similar terranes globally. 
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